
CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 1

41CL eXPanded Memory Utilities Module
With Register Management and Stack Swap Functions

Revision 2C

Written and programmed by Ángel Martin
October 9, 2016

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 2

This compilation revision 2.2.1

Copyright © 2014 -2016 Ángel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this

material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.

See www.hp41.org

Acknowledgments. - This module is specific to the 41CL system – so the first thanks goes to Monte
Dalrymple, the designer of the 41CL. Also thanks to Greg McClure and Håkan Thörgren for valuable

suggestions and advise.

Everlasting thanks to the original developers of the HEPAX and CCD Modules – real landmarks and

seminal references for the serious MCODER and the 41 system overall. With their products they
pushed the design limits beyond the conventionally accepted, making many other contributions pale

by comparison.

http://www.hp41.org/

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 3

Module Main Function Table and Descriptions.

Function Description Dependency Type Author

0 -CLXMEM 2B {Ƙƻǿǎ άw¦bbLbDέ ƳǎƎ Lib#4 MCODE Ángel Martin

1 "BK-MM" Block to Main memory YFNX; OSX3 FOCAL Ángel Martin

2 "BK-XM" Block to Extended memory YFNX; OSX3 FOCAL Ángel Martin

3 "BKRST" Alternate Block Reset (Clear) YFNX; OSX3 FOCAL Ángel Martin

4 "BKSWP" Alternate Block Swap YFNX; OSX3 FOCAL Ángel Martin

5 "MM -BK" Main memory to Block YFNX; OSX3 FOCAL Ángel Martin

6 "MMRCL" Main Memory Recall OSX3 FOCAL Ángel Martin

7 "MMSTO" Main memory Storage OSX3 FOCAL Ángel Martin

8 "MMSWP" Main Memory Exchange OSX3 FOCAL Ángel Martin

9 "OKM" Validates MM set Lib#4, YFNX FOCAL Ángel Martin

10 "OKM?" Checks for valid MM set Lib#4, YFNX FOCAL Ángel Martin

11 "OKX" Validates XM set Lib#4, YFNX FOCAL Ángel Martin

12 "OKX?" Checks for valid XM set Lib#4, YFNX FOCAL Ángel Martin

13 "RAMRCL" Complete RAM Recall YFNX; OSX3 FOCAL Ángel Martin

14 "RAMSTO" Complete RAM Storage YFNX; OSX3 FOCAL Ángel Martin

15 "RAMSWP" Complete RAM Exchange YFNX; OSX3 FOCAL Ángel Martin

16 "XM-BK" Extended memory to Block YFNX; OSX3 FOCAL Ángel Martin

17 "XMRCL" Extended memory Recall OSX3 FOCAL Ángel Martin

18 "XMSTO" Extended memory Storage OSX3 FOCAL Ángel Martin

19 "XMSWP" Extended memory Exchange OSX3 FOCAL Ángel Martin

20 -YFNM BCKUP Lib#4 Check & Splash Lib#4 MCODE Nelson F. Crowle

21 MM-YBK Main memory to Block Lib#4 MCODE Martin-Dalrymple

22 MMYSWP Main Memory Exchange Lib#4 MCODE Martin-Dalrymple

23 ST-YBK Status Regs to Block Lib#4 MCODE Martin-Dalrymple

24 STYSWP Status Regs exchange Lib#4 MCODE Martin-Dalrymple

25 XM-YBK Extended memory to Block Lib#4 MCODE Martin-Dalrymple

26 XMYWP Extended memory Exchange Lib#4 MCODE Martin-Dalrymple

27 YBK-MM Block to Main memory Lib#4 MCODE Martin-Dalrymple
28 YBK-ST Block to Status Regs Lib#4 MCODE Martin-Dalrymple

29 YBK-XM Block to Extended memory Lib#4 MCODE Martin-Dalrymple

30 YBKSWP Alternate Block Swap Lib#4 MCODE Martin-Dalrymple

31 YEDIT Edit/View Block Lib#4, YFNX, OSX3 FOCAL Ángel Martin

32 YINPT _ Input control string Lib#4 MCODE Ángel Martin

33 YMEM Memory Functions Launcher Lib#4 MCODE Ángel Martin

34 YMMOVE General-Purpose Move Lib#4 MCODE Monte Dalrymple

35 YMSWAP General-Purpose Swap Lib#4 MCODE Monte Dalrymple

36 -STKSWP Stack Swap Launcher Lib#4 MCODE Ángel Martin

37 ?RAM Checks if running from RAM Lib#4 MCODE Ángel Martin

38 A<>YRG _ _ _ Sawps ALPHA and Y-Regs Lib#4 MCODE Ángel Martin

39 CLYRG Clears All Expanded Regs Lib#4 MCODE Ángel Martin

40 CLYRGX Clears Y-Regs by X Lib#4 MCODE Ángel Martin

41 CPYBNK _”_:_ Copies bank-switched page Lib#4 MCODE Ángel Martin

42 ST<>YRG _ _ _ Swaps Stack and Y-Regs Lib#4 MCODE Ángel Martin

43 XF$ _ Sub-function Launcher by Name Lib#4 MCODE Ángel Martin

44 XF# _ _ _ Sub-function Launcher by index Lib#4 MCODE Ángel Martin

45 YRGMOV Block-moves Y-Regs Lib#4 MCODE Ángel Martin

46 YRGSWP Block-Swaps Y-Regs Lib#4 MCODE Ángel Martin

47 -Y-REG FNS Section Header n/a MCODE Ángel Martin

48 YARC _ _ _ Expanded Reg. ARCL Lib#4 MCODE Ángel Martin

49 YAST _ _ _ Expanded Reg. ASTO Lib#4 MCODE Ángel Martin

50 YDSE _ _ _ Expanded Reg DSE operation Lib#4 MCODE Ángel Martin

51 YISG _ _ _ Expanded Reg ISG operation Lib#4 MCODE Ángel Martin

52 XRCL _ _ _ Expanded Reg. Recall Lib#4 MCODE Ángel Martin

53 YRC+ _ _ _ YRCL Addition Lib#4 MCODE Ángel Martin

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 4

54 YRC- _ _ _ YRCL Subtract Lib#4 MCODE Ángel Martin

55 YRC* _ _ _ YRCL Multiply Lib#4 MCODE Ángel Martin

56 YRC/ _ _ _ YRCL Division Lib#4 MCODE Ángel Martin

57 YSTO _ _ _ Expanded Reg Store Lib#4 MCODE Ángel Martin

58 YST+ _ _ _ YSTO Addition Lib#4 MCODE Ángel Martin

59 YST- _ _ _ YSTO Subtract Lib#4 MCODE Ángel Martin

60 YST* _ _ _ YSTO Multiply Lib#4 MCODE Ángel Martin

61 YST/ _ _ _ YSTO Division Lib#4 MCODE Ángel Martin

62 YVEW _ _ _ View Expanded Register Lib#4 MCODE Ángel Martin

63 YX<> _ _ _ Expanded Reg Exchange Lib#4 MCODE Ángel Martin

This module also includes a set of sub-functions arranged in an Auxiliary FAT, as follows:

0 -STK SWAPS Section Header Lib#4 MCODE Ángel Martin

1 a<> _ _ Swap a and register Lib#4 MCODE Ángel Martin

2 b<> _ _ Swap b and Register Lib#4 MCODE Ángel Martin

3 c<> _ _ Swap c and register Lib#4 MCODE Ángel Martin

4 d<> _ _ Swap d and Register Lib#4 MCODE Ángel Martin

5 e<> _ _ Swap e and register Lib#4 MCODE Ángel Martin

6 }<> _ _ Swap }- and Register Lib#4 MCODE Ángel Martin

7 L<> _ _ Swap L and register Lib#4 MCODE Ángel Martin

8 M<> _ _ Swap M and Register Lib#4 MCODE Ángel Martin

9 N<> _ _ Swap N and register Lib#4 MCODE Ángel Martin

10 O<> _ _ Swap O and Register Lib#4 MCODE Ángel Martin

11 P<> _ _ Swap P and register Lib#4 MCODE Ángel Martin

12 Q<> _ _ Swap Q and Register Lib#4 MCODE Ángel Martin

13 T<> _ _ Swap T and register Lib#4 MCODE Ángel Martin

14 Y<> _ _ Swap Y and Register Lib#4 MCODE Ángel Martin

15 Z<> _ _ Swap Z and register Lib#4 MCODE Ángel Martin

16 ?LIB4 Checks for Library#4 Lib#4 MCODE Ángel Martin

17 ?YFNX Checks for YFNX ROM Lib#4 MCODE Ángel Martin

18 ASWP> Swaps ALPHA around '>" Lib#4 MCODE W&W GmbH

19 D>H Decimal to Hex Lib#4 MCODE William Graham

20 H>D Hex to Decimal Lib#4 MCODE William Graham

21 YFINDX Finds register with X-value Lib#4 MCODE Ángel Martin

22 FCAT Sub-function Catalog Lib#4 MCODE Ángel Martin

Note that the new Expanded Register Management functions have complete replaced the page
management from previous versions of the CLXMem module. These continue to be available in the
PowerCL_Extreme, under the sub-functions FATs.

file:///C:/HP-41/CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls%23RANGE!D2668
file:///C:/HP-41/CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls%23RANGE!D2662
file:///C:/HP-41/CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls%23RANGE!D2656
file:///C:/HP-41/CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls%23RANGE!D2650
file:///C:/HP-41/CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls%23RANGE!D2644
file:///C:/HP-41/CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls%23RANGE!D2674
file:///C:/HP-41/CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls%23RANGE!D2710
file:///C:/HP-41/CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls%23RANGE!D2710
file:///C:/HP-41/CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls%23RANGE!D2710
file:///C:/HP-41/CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls%23RANGE!D2710
file:///C:/HP-41/CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls%23RANGE!D2710
file:///C:/HP-41/CL_UTILS/CL%20Expanded%20Mem/CL_XMEM_V6.xls%23RANGE!D2710

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 5

Introduction – Unleashing the CL RAM

This module includes utility functions to take advantage of the CL RAM in a very convenient way,
modeled after the standard (native) utilization of the basic calculator RAM. Anyone already familiar

with the HP-41C data registers and stack operation will have an immediate and intuitive grasp of the

expanded registers functions – as they simple extend the same model to the CL RAM.

There are three general groups of functions and programs, represented by the three sections in the
main FAT as described below.

¶ The module starts with a set of FOCAL programs used to make bulk back-ups of the

calculator RAM in the CL RAM. These programs are a good vehicle for getting an
understanding of the basic CL memory arrangement, and how it becomes accessible using

some advanced functions included in the YFNX and OS/X modules.

¶ The second section is a set of MCODE functions also related to the calculator RAM backup to

and restore from CL RAM. These functions can replace the FOCAL programs in a more
efficient way – faster and somehow more flexible, with equivalent results even if they don’t

have entirely identical approaches.

¶ The third section introduces the MCODE functions used to access individual Extended

registers within the CL RAM. A total of 1,024 registers are accessible using them, and the

function set is very complete – even adds RCL math, which is lacking in the mainframe OS.
The user interface mimics that of the mainframe functions, extended with novel use cases

like using standard registers for indirect addresses of expanded registers.

Module Dependencies.

The CLXMEM is a Library4-aware module; therefore, it expects the Library#4 revision R4 to be
present on the system. The module will check for it upon the calculator ON event, showing an error

message if not found. This will abort the polling points sequence for all other modules plugged at

higher position in the bus. Do not attempt to run the programs or functions within the module
without the Library#4 plugged in.

The AMC_OS/X Module is also required to run most of the FOCAL programs from the first section.

This module provides advanced OS extensions and therefore it’s recommended to have it always

plugged in the machine – a real power user can’t live without it.

An obvious dependency is the CL itself: all MCODE functions will check for it, showing and error
message and aborting the execution if they’re running on standard HP-41’s or SW emulators like V41.

Finally, and like the PowerCL Extreme, the CLXMEM is also meant to be used paired with the YFNS
Extreme Module, i.e. YFNX. Note however that the PowerCL Extreme is not required to use the

CLXMEM functions.

Note: The CL expanded Registers module requires the Library#4 revision R4 or higher
ǇƭǳƎƎŜŘ ƛƴΦ LǘΩǎ ŀƭǎƻ meant to be paired with the YFNS Extreme module, YFNX.

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 6

Managing the CL Expanded Y-registers

The CL board has three 4k-blocks of RAM memory reserved for extensions to the OS. So far these
have been rather ignored by all applications, but finally they’re put to a good use with the function

sets included in this module.

This first section covers the individual access of the expanded Y-registers included in the RAM block

located at 0x801, i.e. the first of those three RAM blocks. You’ll be able to store, recall, view,
exchange, and perform ISG/DSE operations on 1,024 of those registers as if they were standard 41

registers within main memory. Note the presence of the arithmetic operations as well.

Extended Regs Store Recall Other X-Blocks

Y-Register
From 0 to 1,023.
Use EEX for the
Fourth digit field.

YSTO _ _ _ YRCL _ _ _ YX<> _ _ _ CLYRG

YST+ _ _ _ YRC+ _ _ _ YVEW _ _ _ CLYRGX

YST- _ _ _ YRC- _ _ _ YDSE _ _ _ YRGMOV

YST* _ _ _ YRC* _ _ _ YISG _ _ _ YRGSWP

YST/ _ _ _ YRC/ _ _ _ YFINDX ST<>YRG _ _ _

ALPHA YAST _ _ _ YARC _ _ _ A<>YRG _ _ _

Besides the direct access, you also have the INDirect addressing capabilities implemented on the

expanded registers; the sixteen Stack registers (including synthetic regs {M-e}); and all the standard-
Registers - a hybrid mode, unique to this implementation.

Most of the functions will prompt for the parameters to use. The initial prompt is a three-field

underscore for the Y-register indeed. Pressing [SHIFT] changes it to IND three digit fields for another
Y-register to be used as indirect. Pressing the [RADIX] key changes to the IND ST _ prompt, where

you’ll enter the register mnemonic, from T to e (all sixteen are available). Pressing the radix key again

changes to a IND RG_ _ prompt where you can enter a standard register number to use as indirect
address. Repeat pressings of the radix key act as a toggle between those two. There’s also provision

for direct stack and standard register arguments – even if those can be redundant in practice, being
exactly the same as the original ones.

Once you complete the entry adding the register number the action is performed in RUN mode, or
two program lines are entered in program mode – automatically selecting the appropriate parameter

depending on the direct or indirect types. This is automatically done so you needn’t (and shouldn’t)
edit the value entered in the program’s second line at all – which will be properly interpreted in a

running program.

You can move between the functions while the prompts are up; not only to select the math operation

but also to change the main function amongst the group. So for instance during the RCL _ _ _ main

prompt pressing the SST key will trigger the YX<> function, or pressing STO will invoke the

YSTO function instead. Also you can revert to the original mainframe functions pressing the

corresponding key of the function in the prompt, for instance here pressing RCL will trigger the

original RCL _ _

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 7

The functions will not allow you to enter any value greater than 1,023 either as direct index or

indirect index – not even when entering them in a program line. Attempting to enter larger values will
trigger a “NONEXISTENT” error message. However, that check is not made for IND_RG combinations,

as there’s no telling at that point about how many standard registers will be available at the execution
stage.

The usage of standard stack and data registers is not only more convenient from the usability
standpoint, but also it enables the RCL math on these registers via the YRCL function:

Although possible, it is however not meant to be used in a program because of the obviously higher

byte count. You should use the native STO/RCL functions instead for direct stack and data registers in
programs – which has the additional benefit of a clearer representation by the OS as merged lines.

Storing and Recalling ALPHA Data

The expanded functions YAST and YARC provide the means to store and recall ALPHA data directly

in the expanded registers area. Like their numeric counterparts, these support direct, INDirect, stack

and standard registers indexes for a complete palette of options at your disposal. You can access
these directly from the YSTO/YRCL prompts by pressing the ALPHA key at any time.

Deleting Expanded Registers.

The function CLYRG will delete all the 1,024 expanded registers, and therefore it’s equivalent to

YMCLR used on the entire 801 block, as follows: “801000-0FFF”, YMCLR

Additionally with CLYRGX you can selectively delete a defined block of expanded registers as defined

by its control word (in X) “bbb.eeeiii”, where “bbb.eee” defines the beginning and end of the registers
range to delete, and “ïii” the increment between them. For contiguous registers “zero” is equivalent to

just “one”.

Other Block Operations.

Think of the following functions as analogous to the X-Functions extensions on the original function
set of the calculator, only applied to the expanded memory area instead.

¶ A<>YRG and ST<>RG exchange a group of five expanded registers with ALPHA (plus Q)

or the Stack (T-L) respectively. The start register is to be entered at the prompt in manual
mode, or expected to be in the X-Register when running a program. These functions do not

allow INDirect indexing.

¶ YRGMOV and YRGSWP can be used to move or exchange a block of expanded registers at

once – either contiguous or in an increment pattern as provided by the control word in the X-

register. Much the same as the X-Functions RGMOVE and RGSWAP - in case you wonder.

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 8

Moving around the Expanded Registers Functions.

(ISG)

YARC YAST

YRC+ YST+

YRC- YST-

YRC* YST*

YRC/ YST/

1 _ _ _

(RCL) IND _ _ _ (STO)

IND 1_ _ _

IND ST _

IND RG_ _

(X<>) (VIEW)
YVEWYX<>

YRCL YSTO

YISG

YDSE

Figure 1.

Even if there isn’t a dedicated launcher for these functions, navigation amongst them is as easy as

intuitive. First off, assign one of the functions to its “natural” key, for instance YSTO to the STO key.

Then while the YSTO _ _ _ prompt is shown you can move about all the Y-Reg functions by pressing

the key for the corresponding action, i.e.

¶ RCL will toggle to YRCL _ _ _

¶ SST (for X<>) will launch YX<> _ _ _

¶ R/S (for VIEW) will launch YVEW _ _ _

¶ CHS (for ISG) will launch YISG _ _ _

¶ ALPHA will trigger YAST _ _ _

¶ The math keys will launch the corresponding math function, ie. YST+ _ _ _

¶ EEX will add one field to the prompt: YSTO 1 _ _ _

¶ SHIFT will add the IND prompt (assuming EEX isn’t already up)

¶ RADIX will add the ST _ prompt. All 16 status regs are selectable.

¶ RADIX again to toggle between ST _ and RG _ _. Choose any standard reg up to 99.

¶ STO again to exit to the native STO function (no way back!)

¶ Note that the DIRECT Stack/REG prompt is not strictly needed – that’s the native function

already. However, the RCL Math functions are useful and are available using this approach.

All the options above are available from within any of the 15 functions (YDSE is not part of this
scheme) – regardless of which one you used to start the sequence. See the descriptions earlier in this

manual for additional details.

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 9

Extra bonus: Finding the X-needle in the Y-haystack.

For those times when you’d like to know if a certain value is stored in the Y-data register, the sub-

function YFINDX (a.k.a. XF# 2 1) is available to do a cursory comparison looking for a match with
the value in the X-register. All Y-data registers are checked, starting with YR00 until YR1023 – which

could take a long time depending on where the match exists.

The function returns the number of the first Y-data register found that contains the same value as the
X-Register. If none is found, the function puts -1 in X to signify a no-match situation. The stack is

lifted so the sought for value will be pushed to stack register Y upon completion.

Below there is a FOCAL routine that checks up to YR999, as well as an equivalent routine for the

standard data registers - for comparison purposes. See the Total_Rekall manual for yet another
routine to tackle this “where is Waldo” problem using other advanced functions.

01 LBL “YFNDX”

02 .999
03 X<>Y

04 LBL 00
05 YRCL (IND Y)

06 3074

07 X=Y?
08 GTO 02

09 RDN
10 ISG X

11 GTO 00

12 CLX
13 -1

14 RTN
15 LBL 02

16 X<> Z

17 INT
18 END

01 LBL “FINDX”

02 SIZE?
03 E

04 –
05 E3

06 /

07 X<>Y
08 LBL 00

09 RCL IND Y
10 X=Y?

11 GTO 02

12 RDN
13 ISG Y

14 GTO 00
15 CLX

16 -1

17 RTN
18 LBL 02

19 X<> Z
20 INT

21 END

The possibilities of having an additional set of 1,024 registers available to your own programs are

wide and deep. For starters you could permanently operate with a SIZE 000 and use all the 319
standard registers for User Code programs, key assignments and I/O buffers; so a few more bytes

taken up by the parameter lines won’t be a problem.

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 10

Converting Standard Programs

Having a complete function set ensures you can convert programs very easily, simply by replacing the
standard functions with their expanded version. As of release 2B even the ALPHA storage functions

YAST and YARC are included, which can also use the expanded register range.

Then you have the benefit of a much larger set of registers available for your program, a sheer

advantage to manage larger size cases of the problem you’re trying to solve – from matrix operations
to sorting data, to mention just a couple.

For example, with a few modifications the PPC ROM programs S2 and S3 can be used to sort more

than 1,000 registers in a very efficient way. – with random data populating those registers it took

about 32 seconds to sort 1,000 registers on TURBO 50 mode!

See below two simple routines I used to populate the registers and to view them. They expect the
control word bbb.eee in X before you run them.

01 LBL "YVIEW"

02 LBL 00
03 "YR"

04 ARCLI
05 "|-: "

06 YRCL (IND X)
07 3075
08 ARCLX

09 AVIEW
10 PSE

11 RDN
12 ISG X

13 GTO 00

14 END

01 LBL "YRAN"

02 RCL X
03 LBL 00

04 RNDM
05 YSTO (IND Y)
06 3074
07 RDN
08 ISG X

09 GTO 00
10 RDN

11 END

Functions ARCLI and RNDM are available in the AMC_OS/X Module.

Note.- In case you’re interested, the parameter lines used by these functions correspond to the

following: (with SIZE 319 for the standard registers case)

1. The register index for direct access, from 0 to 1,023 [000 – 3FF]
2. The indirect register index for IND from 1,024 to 2,047 [400 – 7FF]

3. The hybrid standard register IND RG, from 2,048 to 2,367 [800 – 93F]
4. The direct standard registers, from 2560 to 2879 [A00 – B3F]

5. The indirect Stack register index, from 3,072 to 3,088 [C00 – C10]

6. The direct Stack registers index, from 3328 to 3343 [D00 – D10]

Obviously there’s a few voids, like between 2,368 and 2,559 – but you shouldn’t be concerned with
this at all; after all the parameters are entered automatically by the functions (totally transparent to

the user), and it takes the same number of bytes to use a 4-digit number, regardless of its value.

Note that the status register Q(9) is used internally by the functions MCODE, and therefore should
not be used in your FOCAL programs as synthetic register when the expanded registers functions are

also used.

Warning: The expanded Register functions are not to be used if the first block is already
used as back-up location. Use blocks #2 and #3 instead!

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 11

More application programs: the YREGAPPS Module

The YREGAPPS ROM contains a selection of Matrix and Registers applications programs mostly taken

from the PPC ROM and Jean-Marc Baillard’s collection. I have modified them to take advantage of the

expanded registers, replacing all operation form the standard registers – except the control
parameters in the PPC routines, which are still using those. Make sure you have the PPC Manual or

QRG handy when using these routines…

The Matrix routines are described in Jean-Marc’s excellent web site, a vast resource for HP-41 math

software. The routines include three MCODE functions for matrix product, norm and trace calculation
operating on the expanded registers directly – For JBM’s matrix documentation see:

http://hp41programs.yolasite.com/matrixop.php,

http://hp41programs.yolasite.com/matrixmcode.php

I added a few more Input/output routines for convenience, including data movement between the
standard and expanded registers zones These few new routines are briefly described below:

¶ STVIEW does a sequential enumeration of the stack values, {X,Y,Z,T,L}

¶ YCRYPT encrypts the contents of a given page (obviously mapped to RAM), from the

address provided in the first prompt to the end of the page, and using the encryption code
provided in the second prompt. You can undo the encryption using the same values of

address and code again (which therefore need to be remembered)

¶ YDUMP copies all standard registers into the Y-Reg area, using the same indexes.

¶ YSHFT does a selective copy, using the control word bbb.eee in X. Note that if this is

negative then the direction of the copy is reversed, i.e. will go from the Y-Area to the

standard registers. In this case, make sure the SIZE is set so that there are enough standard

registers to receive the Y-data!

¶ YINP and YOUT are input/output routines to enter or visualize the values respectively.

Require the control word bbb.eee in X. (Note: this is not the same as YINPT , the CL-input
string function from the PowerCL or the CLXPREGS module)

¶ YRAN populates a block of Y-Registers with random numbers, using RNDM from the OSX

module (which takes its initial seed from the Time Module). Useful to test the sorting
programs amongst other things.

¶ YSORT will do a descending data sort on the Y-registers block defined by the control word

bbb.eee in X. This is a slow program; use the PPC versions YS2 and YS3 for speed. Numeric

values only!

¶ YM>RM and RM>YM . The matrix convention used in Jean-Marc’s programs stores the

elements in COLUMN order, and uses the control word “bbbeeerr ” to define the matrix,

where bbb /eee are the beginning and ending registers, and “rr ” is the number of rows. This
is the “transposed” way of the method used by the Advantage and SandMatrix modules, but

these two routines will move a matrix between the Y-Registers and the Standard registers,
whilst performing the register transposition at the same time – In addition to moving data,

you can use these also to validate your results - but remember to set the SIZE large enough

for the matrix to fit in the standard registers area. For matrices in X-Mem you can use the
MMOVE function in the Advantage to move them first to the standard registers.

http://hp41programs.yolasite.com/matrixop.php
http://hp41programs.yolasite.com/matrixmcode.php

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 12

The following lists the programs contained in the YREGAPPS Module:

Function Description Dependency Type Author

021.00 -Y-RGS_1B Shows ‘RUNNING...” msg. Lib#4 MCode Ángel Martin

021.01 STVIEW Stack View Lib#4 MCODE Ángel Martin

021.02 YCRYPT Encrypts Page CL, OSX Hybrid Ángel Martin

021.03 "YDUMP Dumps Standard Regs into Y- CLXPRGS, OSX FOCAL Ángel Martin

021.04 "YINP Inputs Y-Regs CLXPRGS, OSX FOCAL Ángel Martin

021.05 "YOUT Outputs Y-Regs CLXPRGS, OSX FOCAL Ángel Martin

021.06 "YRAN Enters Random values CLXPRGS, OSX FOCAL Ángel Martin

021.07 "YSHFT Selective Std, Reg copy CLXPRGS, OSX FOCAL Ángel Martin

021.08 "YSORT Sorts Y-Regs CLXPRGS FOCAL JM Baillard

021.09 “YM>RM (*) Moves matrix to Standard Regs CLXPRGS, ADVTG FOCAL Ángel Martin

021.10 “RM>YM (*) Moves matrix to Y-Regs CLXPRGS, ADVTG FOCAL Ángel Martin

021.11 -YPPC_MTRX Section Header n/a MCODE Ángel Martin

021.12 "QR Quotient / Remainder none FOCAL PPC

021.13 "YMIO Matrix I/O CLXREGS FOCAL PPC

021.14 "YRRM Row Reduction Matrix CLXPRGS FOCAL PPC

021.15 "YM1 Interchange two rows CLXPRGS FOCAL PPC

021.16 "YM2 Multiply row by constant CLXPRGS FOCAL PPC

021.17 "YM3 Add multiple of row to another CLXPRGS FOCAL PPC

021.18 "YM4 Register address to (i, j) CLXPRGS FOCAL PPC

021.19 "YM5 (i, j) to Register address CLXPRGS FOCAL PPC

021.20 "YS1 Stack Sort CLXPRGS FOCAL PPC

021.21 "YS2 Small Register Sort CLXPRGS FOCAL PPC

021.22 "YS3 Large Register Sort CLXPRGS FOCAL PPC

021.23 -YPPC_BLCK Section Header n/a MCODE Ángel Martin

021.24 "YBC Block Clear CLXPRGS FOCAL PPC

021.25 "YBE Block Exchange CLXPRGS FOCAL PPC

021.26 "YBI Block Increment CLXPRGS FOCAL PPC

021.27 "YBM Block Move CLXPRGS FOCAL PPC

021.28 "YBR Block Rotate CLXPRGS FOCAL PPC

021.29 "YBV Block View CLXPRGS FOCAL PPC

021.30 "YBX Block Extrema CLXPRGS FOCAL PPC

021.31 "YB? Block Statistics CLXPRGS FOCAL PPC

021.32 "YDR Delete Record CLXPRGS FOCAL PPC

021.33 "YIR Insert Record CLXPRGS FOCAL PPC

021.34 "YMS Memory to Stack CLXPRGS FOCAL PPC

021.35 "YPR Pack Registers CLXPRGS FOCAL PPC

021.36 "YSM Stack to Memory CLXPRGS FOCAL PPC

021.37 "YUR Unpack Registers CLXPRGS FOCAL PPC

021.38 -YJMB_MTRX Section Header n/a MCODE Ángel Martin

021.39 "CRYMAT Create Matrix from function CLXPRGS FOCAL JM Baillard

021.40 M*M Matrix Product CL, Lib#4 MCODE JM Baillard

021.41 MNORM Matrix Norm CL, Lib#4 MCODE JM Baillard

021.42 TRACE Matrix Trace CL, Lib#4 MCODE JM Baillard

021.43 "YDET Determinant CLXPRGS FOCAL JM Baillard

021.44 "YLS Linear Systems CLXPRGS FOCAL JM Baillard

021.45 "YLS1 Linear Systems (variant) CLXPRGS FOCAL JM Baillard

021.46 "YM- Matrix Subtraction CLXPRGS FOCAL JM Baillard

021.47 "YM+ Matrix Addition CLXPRGS FOCAL JM Baillard

021.48 "YM* Matrix Product CLXPRGS FOCAL JM Baillard

021.49 "YMCO Matrix Copy CLXPRGS FOCAL JM Baillard

021.50 "YMINV Inverse Matrix CLXPRGS FOCAL JM Baillard

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 13

021.51 "YMNORM Matrix Norm CLXPRGS FOCAL JM Baillard

021.52 "YMPL Matrix Polynomial CLXPRGS FOCAL JM Baillard

021.53 “YMRCL (*) Recall Matrix CLXPRGS, OSX FOCAL Ángel Martin

021.54 "YMSTO (*) Store Matrix CLXPRGS, OSX FOCAL Ángel Martin

021.55 "YRANM Random (integers) Matrix CLXPRGS, TIMER FOCAL JM Baillard

021.56 "YRNSYM Symmetric RANM CLXPRGS, TIMER FOCAL JM Baillard

021.57 "YTRACE Matrix Trace CLXPRGS FOCAL JM Baillard

021.58 "YTRN Transpose Matrix CLXPRGS FOCAL JM Baillard

021.59 "YTRN2 Symmetric TRN CLXPRGS FOCAL JM Baillard

(*) See the program listings in the appendices.

Figure 2. – Conceptual scheme of the different CL sRAM blocks.

CL sRAM CL sRAM CL sRAM

at 0x801 at 0x802 at 0x803

RAM:

X-Mem 1,024

600 rgs

Backup #2 Backup #3

4k 4k

4k

RAM:

Standard

319 rgs

Y-Regs

or

Backup #1

Warning: The expanded Register functions are not to be used if the first block is already

used as back-up location. Use blocks #2 and #3 instead!

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 14

Appendix 0.- Program Listings: Moving Matrices

Note that when copying matrices between register areas, it is the transposed matrix what gets moved.
If the original matrix is in the Y-Regs, say with control word bbb.eeerr1, then its transposed is

created first in a group of contiguous registers, starting at eee+1. Then it is copied to the standard
registers area using YSHFT, and a matrix is “defined” using the “R(bbb+1)” name as per the

Advantage functionality. You can move it back to Y-Regs after this is complete, effectively undoing

the initial transposition but now stored in the same location the transposed matrix was created,
starting at eee+1.

However, the opposite direction has a different (and simpler) behavior: if you start moving a matrix

“Rn” from the standard registers area its transpose will replace the original one first, and then it will

be moved to the Y-Regs starting at register nnn. The routines are shown below.

1 LBL "YM>RM" bbb'.eee'rr' 36 *

2 ENTER^ 37 INT

3 FRC 38 E3

4 E3 39 / removes the "rr"

5 * beee'.rr' 40 CHS from Y-Regs to Standard

6 FRC 0.rr' 41 XROM "YSHFT" copy data over

7 E2 42 RCL 00

8 * rr' 43 MATDIM

9 STO 00 0,0cc 44 RTN done.

10 X<>Y 45 LBL "RM>YM expects "Rn" in ALPHA

11 ENTER^ 46 DIM? rr,0cc

12 FRC bbb 47 INT rr,0cc

13 E3 48 E5

14 * 49 / 0,000rr

15 INT 50 STO 00

16 E 51 TRNPS

17 + 52 DIM? cc,0rr

18 XROM "YTRN" bbb.eeerr 53 INT cc,0rr

19 ENTER^ 54 LASTX

20 ENTER^ 55 FRC 0.0rr

21 INT bbb 56 E3

22 E 57 * rr,0cc

23 - bbb-1 58 * cc*cc = size

24 "R" 59 ANUM n

25 ARCLI 60 + n+cc*rr

26 RDN bbb.eeerr 61 E3

27 FRC 0.eeerr 62 / 0.0(n+cc*rr)

28 E3 eee.rr 63 ANUM n

29 * 64 E

30 FRC 0.rr' 65 + n+1

31 E1 66 + (n+1),0(n+cc*rr)

32 / 0.0cc 67 ST+ 00

33 ST+ 00 rr,0cc 68 XROM "YSHFT"

34 X<>Y bbb.eeerr 69 RCL 00 brinf cnt'l word to X

35 E3 70 END done.

The Y-Register functions are within the YSHFT routine, used for the actual data copying.

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 15

The next programs are for the storage and review of the matrix. The input required is the control

word, and the element enumeration will proceed in column order as mentioned before.

These routines use the standard registers {R00 - R03} as auxiliary for control – contrary to the
Advantage-style matrices there’s no header containing index information, thus that needs to be done

using standard registers.

As you can see the control word is returned to X upon completion of the data input/review. This is

your handle to the matrix, thus the importance to have it available for the subsequent operation. It is
also stored in R02 in case you need it.

1 LBL "YMSTO" 36 STO 00 1.0rr

2 SF 01 37 LBL 00

3 GTO 01 38 RCL 00 k.00rr

4 LBL "YMRCL" 39 LBL 02

5 CF 01 40 "a"

6 LBL 01 41 ARCLI "ak"

7 STO 02 bbb.eee.rr 42 "|-," "ak,"

8 FRC 0.eeerr 43 RCL 01 p,0cc

9 E3 44 ARCLI "ak,p"

10 * eee.rr 45 "|-=" "ak,p="

11 INT eee 46 RDN

12 RCL 02 bbb.eee.rr 47 YARC IND RG_06

13 INT 48 2051

14 STO 03 bbb 49 FS? 01

15 - eee-bbb 50 "|-?" "ak,p= xxxxxxx?"

16 E 51 AVIEW

17 + eee-bbb+1 52 FC? 01

18 RCL 02 bbb.eee.rr 53 GTO 01

19 E3 54 CF 22

20 * bbbeee.rr 55 STOP

21 FRC 0.rr 56 FC?C 22

22 E2 57 GTO 01

23 * 58 YSTO IND RG_06

24 STO 00 rr 59 2051

25 / cc = (eee-bbb+1)/rr 60 LBL 01

26 E3 61 FC? 01

27 / 0.0cc 62 PSE

28 E 63 ISG 03 next Y-register

29 + 64 NOP

30 STO 01 1.0cc 65 ISG X next row

31 RCL 00 rr 66 GTO 02

32 E3 67 ISG 01 next column

33 / 68 GTO 00

34 E 69 RCL 02 control word

35 + 70 END all done.

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 16

Backing up data in the CL Expanded Memory Blocks.

The CL board has four 4k-blocks in sRAM that can be allocated for the 41 system RAM. Of these, only
the first one (0x800) is utilized by the OS, holding the registers 0-3FF – that is the complete

calculator memory set, including both Main and all Extended Memory.

It is therefore possible to use the other three blocks to hold backup copies of the first (default) one,

or alternate sets of memory and programs. This requires a few utility functions to store, recall and
exchange (swap) the block contents – which is the main subject of the CL_XMEM module.

Refrain from using the 801 block (index “1” in the functions to follow) if you’re already using it as
expanded registers area with the functions described before.

FOCAL Function Set #1: Using Extended PEEKR and POKER

The first set of available programs utilize the PEEKR and POKER functions in the AMC_OS/X Module,

(extended versions of the originals from the CCD Module), and are summarized in the table below.

The strategy in this case is to use the expanded pages as destination of the backups; which can be
done because PEEKR and POKER can operate in the full range of addresses up to FFF (hex). The

advantage of this method is that the operation can either be done at the complete block level, or

selectively for Main and Extended memory only. However note that there’s not a function for the
entire block space handled at once within this set.

F-Set-1 Store Recall Exchange

All n/a n/a n/a

Main MMSTO MMRCL (*) MMSWP (*)

Extended XMSTO XMRCL XMSWP

(*) these functions will check that the program is not running from RAM,
which would create a problem if allowed to occur for obvious reasons.

All functions will first prompt for the alternate block# to be used in the corresponding action. The

only valid answers are 1, 2, or 3 – denoting the blocks at addresses 0x400, 0x800, and 0xC00
respectively.

The swap action will always happen between the default block (#0) and the selected one. Info
messages will pop up during the execution, indicating the memory area being transferred: “MAIN”,

“XF/M”, “EM-1”, and “EM-2”. When finished the message “DONE” will be shown.

Setting flag 21 will halt the program execution just before each of the block-transfer operations. You

should let the programs run until the end for a complete backup or restore action.

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 17

FOCAL Function Set #2 : Using Y-Functions

A second set of programs is provided – equivalent to the ones listed above but using YFNX functions

instead of PEEKR and POKER (but the OS/X module is still needed). The methods are equivalent but

here there’s a small reduction in the execution time (bulk copy as opposed to register by register) –
although the feedback messages are not so self-explanatory.

Note that also in this case the backups are placed in the expanded blocks, located at addresses 0x801,

0x802, and 0x803 within the CL sRAM space.

F-Set-2 Store Recall Exchange

All RAMSTO RAMRCL (*) RAMSWP (*)

Main MM-BK BK-MM (*) n/a

Extended XM-BK BK-XM n/a

(*) these functions will check that the program is not running from RAM,
which would create a problem if allowed to occur for obvious reasons.

Note that these programs all use the Y-Buffer block as a temporary storage location – overwriting
any previous contents of this block. This may be specially damaging if you’re using a RAM copy of the
IMDB data base, so plan accordingly first!

Finally, even if they use different approaches, the back-up data sets produced by each of the function

sets are interchangeable, i.e. you don’t need to use the same function set for the restore and backup
operations.

Swapping and Resetting alternate blocks.

Two other utility programs are available to clear and swap the contents between alternate blocks, as

follows:

Utilities Description Input

BKRST Clears Block Block number 1:2:3

BKSWP Swaps Blocks FROM/TO blocks

The prompt will only allow values {1,2,3} to be entered – thus ensuring that no accidental erasing or
corruption will occur on the main block. Note however that there is no protection against using any

of the restoring programs with a cleared block – which will completely erase your complete main or
extended memory (or both).

Backups in sRAM will survive Memory Lost conditions, but they require the battery to be charged and
in the calculator. For a permanent backup even without the batteries refer to the POWER_CL Module

manual, functions YWALL and YRALL.

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 18

Data Protection: Validity tokens.

As a general rule, all backup programs will write a check token in the alternate blocks to flag them for

valid data sets. Reversely, this token will be read by all the restore programs, aborting if it’s not
already present. This functionality resides in the following set of auxiliary functions:

Action Main Memory Extended Memory

Write OKM OKX

Check OKM? OKX?

Location 0x017 0x300

Storage programs will write the validity token in the destination block. No checks are made.

Recall programs will check for valid data sets at the backup block. If the Main memory token is not

correct, the execution will stop with the message “MM NOT OK”. This will persist upon R/S. However

if the Extended memory token is the problem, the warning message “XM NOT OK” will only show
once – and the user can choose to continue (pressing R/S) regardless. Be aware that the XM at the

main block will probably be wiped out as a result.

Exchange programs will first check for valid data sets, and if present will brand the blocks as valid.

The same considerations apply as for the recall case above.

Dependencies.

The CL_XMEM module functions are designed to use the Library-4, make sure it is installed. There’s a

library presence check upon the calculator ON event, showing the “NO LIBRARY” error message if not
found.

Besides the Library-4, the YFNX module and the AMC_OS/X module (CL mnemonic “OSX3”) are
required. A “NONEXISTENT” message will show if not found during the execution.

The expanded registers functions will check for CL hardware before performing the store action. This

protects non-CL models, which default to the standard addresses and therefore could cause Memory

Lost conditions if used on non-CL machines.

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 19

Appendix. Restoring to the Main block using the Set#2.

When using the YFNX functions to do the backup and restore, the only way to read the data from the
Y-buffer is the YMCPY function. This function operates on the complete 4,096-byte block, therefore

including the status registers as well. This requires that prior to calling YMCPY the PC location in the
Y-buffer must be overwritten with the appropriate value - for the FOCAL program to continue running

as desired after the YMCPY action has occurred. This is implemented with the following code:

16
WSIZE sets word size
R^ puts TO: adr in X
RCL b Program Pointer to X
DCD decode the NNN
"| -** " padding chars
-2 rotating factor
AROT put to left
ASHF discard leftmost 7 chars
ASHF ditto again
CLX disable stack lift
H>D convert to decimal
42 add 42 bytes (offset)
+ in ROM addresses INCREASE!
"805030-" pointer for first byte in b(12)
ARCLH append as Hex number
YPOKE return-to addr
LBL 05
"805>" prepare string for mass-transfer
ARCL Z contains the TO: adr (“800”)
AVIEW provide feedback
YMCPY do the transfer
TONE 0 will return here!
"DONE" final message
AVIEW show to user
END all done.

Obviously this is only relevant when moving data back to the main block (programs RAMRCL,
RAMSWP , BK-MM and BK-XM) - the OS couldn’t care less about the content of the OS registers

backup in the alternate blocks.

This issue does not occur with XMSWP or MMSWP because they use PEEKR / POKER to do the data
transferring on an individual register basis – thus avoiding altogether the conflictive status registers.

A bit of a nuisance to worry about that would not be necessary with an MCODE function - but an
interesting remark to make nonetheless.

CL XPMEM Module Manual

© Ángel Martin – October 2016 Page 20

Saving the best for last: MCODE Functions. (Set#3)

A vastly superior approach as it was mentioned before, the MCODE implementation removes all the
dependencies derived from using the OS status registers to run the FOCAL program; such as PC

counters, program line numbers, etc. They are also at least 20-fold faster in execution, and lastly
provide a more intuitive user interface and protection safeguards against accidental data loss.

The set provided here is all based on the general-purpose code written by Monte Dalrymple. With his
design it was very simple to provide canned solutions to deal with the different sections of the

memory, such as the Status Registers, and the Main- or Extended memory blocks.

The function set provides choices for the particular section to back-up or restore (Main & Extended

memory, Status registers), so you don’t have to worry about physical memory boundaries or type of
transfer. Besides those, two general-purpose functions YMMOVE and YMSWAP are also available

that allow a flexible selection of memory sectors to be transferred, defining a sector as a 256-word

set within the block – corresponding to 16 data registers, each 16-bits long.

In general, the input parameter (which can be either the source or destination block, depending on
the function used) is prompted by the function and should be entered there in RUN mode. For

Program mode execution the input parameter should be in X instead, as a decimal number 0, 1, 2, 3.

This applies to all functions except the general-purpose ones, which require both source and

destination parameters to be in a control NNN stored in the X-register. Because these two functions
are not prompting, this is equally so for RUN and Program modes. Note that the minimum amount of

data transferred is 256 words. The structure of the control NNN is shown below:

Source and Destination:

input X<13> = source
input X<12>= destination

(Valid values are 0/1/2/3)

Data fields:

input X<3:0> = blocks to transfer,
one digit (nibble) per 256-word block

(16 sectors for complete block)

The table below shows the values used on the standard functions internally, where “b” denotes the
alternate block# (1,2, or 3) used for the backup or restore:

Function Swap Flag Control NNN

MM-YBK Clear 0b-00000000-00F9
MMYSWP Set 0b-00000000-00F9

ST-YBK Clear 0b-00000000-0001
STYSWP Set 0b-00000000-0001

XM-YBK Clear 0b-00000000-FF06

XMYSWP Set 0b-00000000-FF06
YBK-MM Clear b0-00000000-00F9

YBK-ST Clear b0-00000000-0001
YBK-XM Clear b0-00000000-FF06

The diagram on the right shows the beginning and ending

addresses for each of the significant sections within the
main block; in decimal to the left and hex to the right.

With exception of the general-purpose functions YMMOVE

and YMSWP , the appropriate addresses are automatically

chosen by each of the memory transfer functions,
completely transparent to the user.

CL XMEM Module QRG

© Ángel Martin – February 2016 Page 21

Lastly, to prepare the control NNN to use with the general-purpose versions of the memory transfer

functions, you can use any of the HEX Entry functions available in the PWRCL_EXT, such as CDE,
HEXKB, HXNTRY , as well as the powerhouse memory editor RAMED. See their description in the

PWERCL_EXT Manual.

To prevent accidental data loss, the operation requires the confirmation string ”OK” in ALPHA to

proceed if the destination block is zero (i.e. the main RAM used by the OS). These functions are fully
programmable, but you should be careful about altering the main memory (or status registers) during

a program; as you may be overwriting the program itself, or other OS parameters like the program
pointer or line number. This will likely result in a MEMORY LOST event.

The picture below reflects the actual addresses used by this method (and also the FOCAT sets):

Main BLOCK @ 0x800

1,007 3EF

EM-2/0

769 301

2F0-300

751 2EF

EM-1/0

513 201

511 1FF

MAIN-0

192 0C0

191 0BF

64 040

010-03F

16 Status/0 00F

BLOCK-1 @ 0x801 BLOCK-2 @ 0x802 BLOCK-3 @ 0x803

2,031 7EF 3,055 BEF 4,079 FEF

EM-2/1 EM-2/2 EM-2/3

1,794 701 2,817 B01 3,841 F01

6F0-730 22F0-2300 EF0-F00

1,775 6EF 2,779 AEF 3,823 EEF

EM-1/1 EM-1/2 EM-1/3

1,537 601 2,561 A01 3,585 E01

1,535 5FF 2,559 9FF 3,583 DFF

MAIN-1 MAIN-2 MAIN-3

1,216 4C0 2,240 8C0 3,264 CC0

1,215 4BF 2,239 8BF 3,263 CBF

1,088 440 2,112 840 3,136 C40

410-43F 810-83F C10-C3F

1,040 Status/1 40F 2,064 Status/2 80F 3,087 Status/3 C0F

XF/M-3

XF/M-0

XF/M-1 XF/M-2

CL XMEM Module QRG

© Ángel Martin – February 2016 Page 22

The YMEM Launcher

Granted all these function names and purposes are both similar and inter-related, thus not
surprisingly making hard to remember their scope and spelling. To palliate this, the YMEM launcher

is included in the module, grouping the 10 MCODE functions into two launch prompts, toggled by

Shift.

The two screens and the accessed functions are shown below:

 ă Ą
Functions on Main block (block-0) Functions on Expanded Memory Blocks

Hotkey Function Hotkey Action Hotkey Function

M MM-YBK _ [USER] Calls -STKSWP M YBK-MM _

X XM-YBK _ [PRGM] Calls YF# X YBK-XM _

T ST-YBK _ [ALPHA] Calls YF$ T YBK-ST _

Y MMYSWP _ [ENTER^] Sub-Func. Catalog V YMMOVE

S STYSWP _ [,] Last Function S YMSWAP

W XMYSWP _ [ON] Calculator Off W YBKSWP_

P ά.Yw{¢έ P ά.Y{²tέ

As you can see the functions on each screen are arranged to be roughly inverses of each other –

within rhyme and reason of course. The Upload and Download functions (using the Serial Link) are
not part of the same theme but it’s useful to have them handy nevertheless.

Sub-functions and Launchers.

Pressing the keys RADIX , USER , ALPHA , and PRGM from within the YMEM launcher connects

with the Sub-function facilities also available in this Module to access the Stack Register Swap
functions, which are described next.

Note that these control keys are consistently used in all modules that feature auxiliary FATs for the
same purposes, as follows:

¶ PRGM accesses the numeric launcher, YF# _ _ _ (prompts for index)

¶ ALPHA accesses the Alphanumeric Launcher, YF$ _ò (prompts for name)

¶ RADIX accesses the LASTF feature to recall the last-executed sub-function

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 23

Stack Registers Swaps. { -STKSWP }

A set of 15 functions to perform stack and data register swaps is included in this module. They are

the logical extension of the native function X<> , but applied to all the other 15 stack registers –

including the ALPHA components {M,N,O,P} and the system-reserved {a,b,c,d,e, K, Q}.

This many functions won’t fit in the already-crowded FAT, therefore they have been implemented as
sub-functions on an auxiliary FAT. To access them you can use any of the two sub-function launchers,

either by their indexes (YF#) or their names (YF$). And in addition to this method, the header
function ïSTKSWP also doubles as another launcher, dedicated to this set.

In fact both launchers YMEM and ïSTKSWP are interconnected, so you can toggle back and forth
between them by pressing the USER key:

 ă Ą

The table below lists all sub-functions for the ïSTKSWP launcher, also including the sub-index
number when used as argument for SF#

Hotkey Sub-function # Hotkey Sub-function Hotkey Action

1 [A] a<> _ _ 9 [T] T<> _ _ [USER] Toggels to YMEM

2 [B] b<> _ _ 10 [L] L<> _ _ [PRGM] Calls YF#

3 [C] c<> _ _ 11 [M] M<> _ _ [ALPHA] Calls YF$

4 [D] d<> _ _ 12 [N] N<> _ _ [SHIFT] IND registers

5 [E] e<> _ _ 13 [O] O<> _ _ [RADIX] STACK registers

6 [K] }-<> _ _ 14 [P] P<> _ _ [EEX] Adds “1_ _” to field

7 [Y] Y<> _ _ 15 [Q] Q<> _ _ [+] Upwards rotation

8 [Z] Z<> _ _ - [X] Calls X<> _ _ [-] Downwards rotation

Individual Function arguments and hot-keys

Like the native X<> , all these functions offer full support of INDirect and STack registers as

arguments. They are also prompting (despite being sub-functions), and can be used in manual (RUN)

or program modes. In a program, the non-merged functions approach is extended to three program
steps, which include the launcher YF# plus its index, and then another number for the argument.

In addition to the numeric, STACK, and IND register arguments you can also use the hot-keys EEX ,

+ and - to lengthen the prompt field (so you can directly address register above 99); and to rotate

between all the 16 choices while their prompt is up in the LCD, regardless of which one you start off

with. The sequence ends on both ends with X<> (one before a<> and one after Q<>), as the “end
of the line”, so to speak.

Remember that you’ll need to manually add 112 (70 hex) for stack register arguments; or 128 (80
hex) for Indirect registers; or 240 (F0 hex) for both the combined case, i.e. IND_ST arguments.

For example, to enter the function Z<> IND 05 in a program you’d use the following three steps,

which is equivalent in functionality and number of bytes to the standard-functions listed on the right:

01 YF#

02 8 (eighth-sub-function)

03 133 (five plus 128 for indirect)

01 X<> Z
02 X<> IND 05

03 X<> Z

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 24

Final Bonus: Copying code from bank-switched ROMS.

Here’s a last-minute addition to the CLXMEM module – not related to the Expanded memory subject
but actually rather interesting per-se. The function code is long enough so there’s no chance to

include it in the PowerCL module; therefore it’s added here as a second best place to include it in.

There are almost no tools available to extract or copy code from a bank switched ROM. When faced

with that challenge I typically used ad-hoc modifications of Warren Furlow’s routine CB, posted at:
http://www.hp41.org/LibView.cfm?Command=View&ItemID=317

That routine is specific for fixed source and destination pages, as well as only useful for the second

bank. Writing a more general-purpose function was always on my mind, and finally here it is at last.

CPYBNK is a prompting function. It has a customized prompt with three distinct sections that are
shown on the screen as the data entry progresses. The parameters entered are as follows:

- Bank number, an integer decimal from 1 to 4
- Source page, an hex value from 0 to F

- Destination page, same as above.

The function is smart enough to know what the first prompt must be, thus it’ll simply ignore non-

allowed values, presenting the same prompt again. You can use the back-arrow key to cancel at any

moment. Once the bank number is entered the prompt requests the “FROM:TO” pages, as denoted
by the underscore characters on both sides of the colon. The screens below show this at different

stages of the process:

The copy is always made into the main bank of the destination page (bank-1). This is typically a Q-
RAM page in an MLDL (or a RAM page on the CL) thus only supports one bank. Besides the practical

usage is intended to copy elusive, hard-to-reach code buried into secondary banks – therefore it

wouldn’t appear very sensible to copy it into equally obscure destinations.

The main bank is the first one; therefore you can use “1” to select it. In this case the function
does the same as CPYPGE in the PowerCL, or COPYROM in the HEPAX.

If the source ROM doesn’t have the chosen bank an error message is shown and the execution aborts.

More than just a convenient feature, this is vital to ensure that the execution doesn’t activate a non-

existing bank – which could create all kinds of havoc if the location of the missing bank is already
occupied in RAM or FLASH by other modules.

There is no restriction made to the choice of pages. The function will read whatever is in the source
(or zeroes if nothing) and will attempt to write it on the destination. Obviously to be successful the

destination must be a Q-RAM (MLDL or CL).

http://www.hp41.org/LibView.cfm?Command=View&ItemID=317

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 25

CPYBNK Source Code.

Here it is for your enjoyment, not a complex piece of code but tricky just the same. The only specific

details to keep in mind are the fixed locations within each page reserved for the bank-switch
instructions; as well as the convention followed in the page signature characters (the trailing text).

Both are used by the routine to make sure it’s ok to execute the switching command.

1 CPYBNK Header A878 08B "K"

2 CPYBNK Header A879 00E "N"

3 CPYBNK Header A87A 002 "B" bank# in prompt

4 CPYBNK Header A87B 019 "Y" From:TO in prompt

5 CPYBNK Header A87C 310 "P"

6 CPYBNK Header A87D 103 "C" Ángel Martin

7 CPYBNK CPYBNK A87E 000 NOP

8 CPYBNK A87F 346 ?A#0 S&X

9 CPYBNK A880 02B JNC +05

10 CPYBNK A881 130 LDI S&X ONLY 4 BANKS MAX

11 CPYBNK A882 005 CON: so 5 is the limit

12 CPYBNK A883 306 ?A<C S&X n<5?

13 CPYBNK A884 03F JC +07 yes, go on

14 CPYBNK A885 130 LDI S&X re-exec the function!

15 CPYBNK A886 31B function code A5:1B

16 CPYBNK A887 236 C=C+1 XS "41B"

17 CPYBNK A888 236 C=C+1 XS "51B"

18 CPYBNK A889 329 ?NC GO Check #0 and [RAK70]

19 CPYBNK A88A 132 ->4CCA [RAK704]

20 CPYBNK A88B 0A6 A<>C S&X get prompt input to C[S&X]

21 CPYBNK A88C 128 WRIT 4(L) store bank# in LastX

22 CPYBNK A88D 3D1 ?NC XQ Right Justify LCD - Enables LCD

23 CPYBNK A88E 118 ->46F4 [RIGHTJ]

24 CPYBNK A88F 130 LDI S&X

25 CPYBNK A890 022 " " " Double Quotes

26 CPYBNK A891 3E8 WRIT 15(e) write it in display (9-bit)

27 CPYBNK A892 130 LDI S&X

28 CPYBNK A893 09F " _:" Underscore w/colon

29 CPYBNK A894 3E8 WRIT 15(e) as new prompt

30 CPYBNK NOSHFT1 A894 329 ?NC XQ

Inputs Hex key - 0-F, SHIFT

31 CPYBNK A894 120 ->48CA [HEXKEY] - from B1 only

32 CPYBNK A894 2C6 ?B#0 S&X was it SHIFT?

33 CPYBNK A898 3EB JNC -03 yes, ignore and repeat

34 CPYBNK A899 3B8 READ 14(d) remove excess prompt

35 CPYBNK A89A 0C6 C=B S&X copy chr$ to C[S&X]

36 CPYBNK A89B 3D8 C<>ST XP

37 CPYBNK A89C 288 SETF 7 add colon

38 CPYBNK A89D 3D8 C<>ST XP

39 CPYBNK A89E 3E8 WRIT 15(e) write it in display (9-bit)

40 CPYBNK A89F 379 PORT DEP: Get pg# from Key in B{S&X}

41 CPYBNK A8A0 03C XQ returns pg# in A[S&X]

42 CPYBNK A8A1 0FE ->A8FE [KEYPG]

43 CPYBNK A8A2 149 ?NC XQ valid return

44 CPYBNK A8A3 024 ->0952 [ENCP00]

45 CPYBNK A8A4 04E C=0 ALL

46 CPYBNK A8A5 0A6 A<>C S&X

47 CPYBNK A8A6 13C RCR 8 move it to C<6>

48 CPYBNK A8A7 268 WRIT 9(Q) source page, pg#

HP-41CL_UTILSCL%20Expanded%20Mem%22%20l
HP-41CL_UTILSCL%20Expanded%20Mem%22%20l
HP-41CL_UTILSCL%20Expanded%20Mem%22%20l

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 26

49 CPYBNK A8A8 3D9 ?NC XQ Enable but not clear LCD

50 CPYBNK A8A9 01C ->07F6 [ENLCD]

51 CPYBNK NOSHFT2 A8AA 329 ?NC XQ

Inputs Hex key - 0-F, SHIFT

52 CPYBNK A8AB 120 ->48CA [HEXKEY] - from B1 only

53 CPYBNK A8AC 2C6 ?B#0 S&X was it SHIFT?

54 CPYBNK A8AD 3EB JNC -03 yes, ignore and repeat

55 CPYBNK A8AE 0C6 C=B S&X copy chr$ to C[S&X]

56 CPYBNK A8AF 3E8 WRIT 15(e) write it in display (9-bit)

57 CPYBNK A8B0 379 PORT DEP: Get pg# from Key in B{S&X}

58 CPYBNK A8B1 03C XQ returns pg# in A[S&X]

59 CPYBNK A8B2 0FE ->A8FE [KEYPG]

60 CPYBNK A8B3 0A6 A<>C S&X

61 CPYBNK A8B4 13C RCR 8 move it to C<6>

62 CPYBNK A8B5 070 N=C ALL destination pg#

63 CPYBNK A8B6 1D5 ?NC XQ LeftJ, Test, EnRAM & Reset SEQ

64 CPYBNK A8B7 118 ->4675 [CLNUP4]

65 CPYBNK CHKBSM A8B8 006 A=0 S&X reset field

66 CPYBNK A8B9 1A6 A=A-1 S&X "FFF"

67 CPYBNK A8BA 138 READ 4(L) bank#

68 A8BB 1C6 A=A-C S&X subtract it from 'FFF"

69 No need to check for bk1 A8BC 266 C=C-1 S&X bk#-1

70 A8BD 266 C=C-1 S&X bk#-2

71 CPYBNK A8BE 0C7 JC +24d

no need to switch

72 CPYBNK A8BF 278 READ 9(Q) get source pg# to C[S&X]

73 A8C0 03C RCR 3 move it to C<3>

74 first we check that the bank A8C1 0A6 A<>C S&X

75 is marked in the ROM signature A8C2 1BC RCR 11 put in [ADR] field

76 (as a pre-requisite) A8C3 330 FETCH S&X read marker

77 A8C4 2F6 ?C#0 XS bank marked?

78 CPYBNK A8C5 14B JNC +41d no, abort

79 CPYBNK BSWITCH A8C6 138 READ 4(L) bank#

80 CPYBNK A8C7 266 C=C-1 S&X bk#-3

81 A8C8 02B JNC +05

82 then we send the execution A8C9 379 PORT DEP: Check forCode 2 & Switch

83 to the proper switching point, A8CA 03C XQ in the source module

84 also checking the code! A8CB 107 ->A907 [CHKCD2]

85 A8CC 053 JNC +10 [DATA]

86 CPYBNK A8CD 266 C=C-1 S&X bk#-4

87 CPYBNK A8CE 02B JNC +05

88 CPYBNK A8CF 379 PORT DEP: Check forCode3 & Switch

89 CPYBNK A8D0 03C XQ in the source module

90 CPYBNK A8D1 110 ->A910 [CHKCD3]

91 CPYBNK A8D2 023 JNC +04 [DATA]

92 CPYBNK A8D3 379 PORT DEP: Check forCode4 & Switch

93 CPYBNK A8D4 03C XQ in the source module

94 CPYBNK A8D5 119 ->A919 [CHKCD4]

95 CPYBNK DATA A8D6 0B0 C=N ALL

96 CPYBNK A8D7 0EE C<>B ALL destination pg# in B<6>

97 CPYBNK A8D8 278 READ 9(Q) get source pg# to C[S&X]

98 CPYBNK A8D9 03C RCR 3 move it to C<3>

99 CPYBNK LOOP A8DA 1BC RCR 11 move it to C<6>

100 CPYBNK A8DB 330 FETCH S&X read word

101 CPYBNK A8DC 15C PT= 6

102 CPYBNK A8DD 0E2 C<>B @PT destination page

103 CPYBNK A8DE 040 WROM write it in destination

104 CPYBNK A8DF 0E2 C<>B @PT restore source pg#

HP-41CL_UTILSCL%20Expanded%20Mem%22%20l
HP-41CL_UTILSCL%20Expanded%20Mem%22%20l
HP-41CL_UTILSCL%20Expanded%20Mem%22%20l
HP-41CL_UTILSCL%20Expanded%20Mem%22%20l

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 27

105 CPYBNK A8E0 03C RCR 3 move to S&X field

106 CPYBNK A8E1 226 C=C+1 S&X next word

107 CPYBNK A8E2 3C3 JNC -08 loop back

108 CPYBNK A8E3 138 READ 4(L) bank#

109 CPYBNK A8E4 266 C=C-1 S&X bk#-1

110 CPYBNK A8E5 266 C=C-1 S&X was bk#=1?

111 CPYBNK A8E6 3C1 ?C GO yes, do a proper exit

112 CPYBNK A8E7 003 ->2BF7 [NFRPU]

113 CPYBNK BKSWCH1 A8E8 278 READ 9(Q) no, get SOURCE pg#

114 CPYBNK A8E9 09C PT= 5

115 CPYBNK A8EA 3D0 LD@PT- F location for BK1:

116 CPYBNK A8EB 310 LD@PT- C "pFC7"

117 CPYBNK A8EC 1D0 LD@PT- 7

118 CPYBNK A8ED 1E0 GOTO ADR switch back to bank-1

119 CPYBNK NOBANK A8EE 138 READ 4(L) bank#

120 CPYBNK A8EF 0EE C<>B ALL

121 CPYBNK A8F0 321 ?NC XQ Show "NO_" msg

122 CPYBNK A8F1 10C ->43C8 [NOMSG4]

123 CPYBNK A8F2 002 "B"

124 CPYBNK A8F3 001 "A" "NO BANK"

125 CPYBNK A8F4 00E "N"

126 CPYBNK A8F5 00B "K"

127 CPYBNK A8F6 220 " "

128 CPYBNK A8F7 06E A<>B ALL

129 CPYBNK A8F8 01E A=0 MS

130 CPYBNK A8F9 17E A=A+1 MS

131 CPYBNK A8FA 3A1 ?NC XQ Generate dec. number ->display!

132 CPYBNK A8FB 014 ->05E8 [GENNUM]

133 CPYBNK A8FC 1F1 ?NC GO LeftJ, Show and Halt

134 CPYBNK A8FD 0FE ->3F7C [APEREX]

135 CPYBNK KEYPG A8FE 066 A<>B S&X put page# in A[S&X]

136 CPYBNK A8FF 31C PT= 1 clean up parameter:

137 CPYBNK A900 342 ?A#0 @PT from chr# to page#

138 CPYBNK A901 027 JC +04

139 CPYBNK A902 130 LDI S&X A[S&X] goes from 1 to 6

140 CPYBNK A903 009 CON: need to add 9 to chr#

141 CPYBNK A904 146 A=A+C S&X it now ranges from A to F

142 CPYBNK A905 002 A=0 @PT clear the "3" digit!

143 CPYBNK A906 3E0 RTN

144 CPYBNK CHKCD2 A907 130 LDI S&X

145 CPYBNK A908 180 CON: ENBNK2 code

146 CPYBNK A909 106 A=C S&X save in A for compares

147 CPYBNK A90A 278 READ 9(Q) get SOURCE Pg#

148 CPYBNK A90B 09C PT= 5

149 CPYBNK A90C 3D0 LD@PT- F location for BK2:

150 CPYBNK A90D 310 LD@PT- C "pFC9"

151 CPYBNK A90E 250 LD@PT- 9

152 CPYBNK A90F 093 JNC +18d [READCD]

153 CPYBNK CHKCD3 A910 130 LDI S&X

154 CPYBNK A911 140 CON: ENBNK3 code

155 CPYBNK A912 106 A=C S&X save in A for compares

156 CPYBNK A913 278 READ 9(Q) get SOURCE Pg#

157 CPYBNK A914 09C PT= 5

158 CPYBNK A915 3D0 LD@PT- F location for BK3:

159 CPYBNK A916 310 LD@PT- C "pFC3"

160 CPYBNK A917 0D0 LD@PT- 3

HP-41CL_UTILSCL%20Expanded%20Mem%22%20l
HP-41CL_UTILSCL%20Expanded%20Mem%22%20l

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 28

161 CPYBNK A918 04B JNC +09 [READCD]

162 CPYBNK CHKCD4 A919 130 LDI S&X

163 CPYBNK A91A 1C0 CON: ENBNK4 code

164 CPYBNK A91B 106 A=C S&X save in A for compares

165 CPYBNK A91C 278 READ 9(Q) get SOURCE Pg#

166 CPYBNK A91D 09C PT= 5

167 CPYBNK A91E 3D0 LD@PT- F location for BK4:

168 CPYBNK A91F 310 LD@PT- C "pFC5"

169 CPYBNK A920 150 LD@PT- 5

170 CPYBNK READCD A921 330 FETCH S&X read word

171 CPYBNK A922 366 ?A#C S&X does it match code?

172 CPYBNK A923 25F JC -53d no, abort!

173 CPYBNK A924 1E0 GOTO ADR switch bank

What follows are the Extended Registers manipulation routines. Note how there’s a CL-detection
included to avoid Memory Lost issues if you use these functions on non-CL models (or emulators,
like V41)..-

Header AC6B 087 "G"

Header AC6C 012 "R" Clear Extended Registers

Header AC6D 018 "X"

Header AC6E 00C "L"

Header AC6F 003 "C" Ángel Martin

CLXRG AC70 36D PORT DEP: check for CL mem

AC71 08C XQ to avoid memory lost!

AC72 372 ->A772 [CLMEM?]

AC73 130 LDI S&X

AC74 3FF first X-REG x-curtain

AC75 106 A=C S&X

AC76 166 A=A+1 S&X starts at "400"

AC77 0A6 A<>C S&X

AC78 270 RAMSLCT select register

AC79 0A6 A<>C S&X

AC7A 04E C=0 ALL

AC7B 2F0 WRTDATA clear it

AC7C 21C PT= 2

AC7D 210 LD@PT- 8 "800"

AC7E 306 ?A<C S&X last one?

AC7F 3BF JC -09 no, do next

AC80 3C1 ?NC GO yes, do a proper exit

AC81 002 ->00F0 [NFRPU]

CLMEM? A772 130 LDI S&X point at on-chip peripheral

A773 3F0 CON: 3F0

A774 270 RAMSLCT

A775 3F0 PRPHSLCT

A776 2A1 ?NC XQ Load RG address

detects the CL by reading A777 12C ->4BA8 [804018]

the current TURBO setting A778 150 LD@PT- 5 "read" command code

A779 1FC WCMD read stored turbo at 0x804018

A77A 0B8 READ 2(Y) get the value

A77B 2E6 ?C#0 S&X

A77C 381 ?NC GO

A77D 00A ->02E0 [ERRNE]

A77E 149 ?NC GO Select Chip0

A77F 026 ->0952 [ENCP00]

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 29

Header AC2A 0BE ">"

Header AC2B 03C "<" Extra-Reg Exchange

Header AC2C 118 "X" from 1 to 5

Header AC2D 118 "X" Ángel Martin

XX<> _ _ _ AC2E 248 SETF 9

AC2F 063 JNC +12d

Header AC30 08C "L"

Header AC31 003 "C" Extra-Reg Recall

Header AC32 112 "R" from 1 to 5

Header AC33 118 "X" Ángel Martin

XRCL _ _ _ AC34 104 CLRF 8

AC35 04B JNC +09

Header AC36 08F "O"

Header AC37 014 "T" Extra-Reg Storage

Header AC38 113 "S" from 1 to 5

Header AC39 118 "X" Ángel Martin

XSTO _ _ _ AC3A 244 CLRF 9

AC3B 108 SETF 8

AC3C 0F8 READ 3(X)

AC3D 070 N=C ALL

AC3E 36D PORT DEP: check for CL mem

AC3F 08C XQ to avoid memory lost!

AC40 372 ->A772 [CLMEM?]

AC41 04C ?FSET 4 SST'ing a program

AC42 01F JC +03 yes , go there

AC43 2CC ?FSET 13 RUN'ing a program

AC44 093 JNC +18d no, jump over

SST/PGM AC45 179 ?NC XQ Get Parameter from NextLine

AC46 10C ->435E [GETRG#]

AC47 130 LDI S&X if we were us ing a l l blocks

AC48 3FF max = 1,023 could be: C00 = (FFF - 3FF)

AC49 226 C=C+1 S&X plus one

AC4A 306 ?A<C S&X i legal index?

AC4B 381 ?NC GO yes, abort program

AC4C 00A ->02E0 [ERRNE]

AC4D 073 JNC +14d

ILEGAL AC4E 066 A<>B S&X

AC4F 130 LDI S&X

AC50 200 offset to HEX code

AC51 206 C=C+A S&X

AC52 1F6 C=C+C XS

AC53 236 C=C+1 XS "A5:3C/3D/3E"

AC54 329 ?NC GO Complete id# and [RAK70]

AC55 132 ->4CCA [RAK704]

RUNMOD AC56 130 LDI S&X if we were us ing a l l blocks

AC57 3FF max = 1,023 could be: C00 = (FFF - 3FF)

AC58 226 C=C+1 S&X plus one

AC59 306 ?A<C S&X i legal index?

AC5A 3A3 JNC -12d yes , prompt again

MERGE0 AC5B 206 C=C+A S&X add index#

AC5C 270 RAMSLCT select regis ter

AC5D 038 READATA current extra-reg

AC5E 10C ?FSET 8 storage action?

AC5F 027 JC +04 yes, branch off

AC60 0EE C<>B ALL

AC61 0B9 ?NC GO SELECTS Chip0 and Recall

AC62 04A ->122E [RCL]

AC63 0F0 C<>N ALL

AC64 2F0 WRTDATA

AC65 046 C=0 S&X

AC66 270 RAMSLCT select Chip0

AC67 24C ?FSET 9

AC68 3A0 ?NC RTN

AC69 0B0 C=N ALL

AC6A 3B3 JNC -10d

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 30

Appendix: Program listings. Function Set #1: Using PEEKR / POKER

1.1- Exchanging Memory Blocks (Main, X-Mem)

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 31

1.2. Main Memory Backups & All RAM Exchange.

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 32

1.3 X-Mem Backups & Memory Tokens

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 33

2. Function Set #2: using YMCPY

2.1. Exchanging, Storing & Recalling Memory Blocks

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 34

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 35

FLASH Backup: {YWALL, YRALL}

Two functions are available to store and recall the main memory block in/from FLASH memory. Note

that this is a permanent backup that will be burned in flash memory, and thus will remain even if the
calculator battery is removed or depleted.

Warning: Make absolutely sure that you use new batteries or freshly recharged battery packs – flash
burning is very critical and always requires battery power to be available at all times. Refer to the CL
manual for additional details.

You can choose whether to do just the calculator memory block 0x800 or also include the MMU

registers configuration in block 0x804. A control string in ALPHA selects that, use “OK” for the
memory only or “OKALL” to also include the MMU configuration.

Function OK OKALL

YWALL Writes Calculator Memory MMU and Calculator memory

YRALL Reads Calculator memory MMU and Calculator memory

The backups are stored in flash blocks located at 0x1FE and 0x1FF.

Warning: Writing to flash requires the YFNX module to be configured in RAM. The utility will
therefore make a copy of it into the CL RAM location at 0x805 ς overwriting any previous contents of
this block. This may be specially damaging if you’re using a RAM copy of the IMDB database, so plan
accordingly first!

Serial Link transfers: { DLD48, UPL48}

Two other functions are available for Serial link transfers of complete 4k-memory blocks from the
41CL to and from the PC. The functions simply take care of initializing and setting up the serial link to

use 4800 baud, and prompt for the block address in sRAM to be transferred to/from the PC.

On the PC side you need to have a program to send or receive the data using the comm port, like

CLWRITER and CLREADER written by Raymond Wicker. The timing is important, as it is the sequence
of operation:

¶ For data download, first use DLD48 , then CLWRITER on the PC

¶ For data upload first run CLREADER on the PC, then UPL48

It works best if previous to the execution you fill in the command line switches required by

CLWRITER and CLREADER on the PC side – to operate within the allowed timings.

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 36

Page-Management Functions

This section documents a few page-management functions also included in the module. Use them to
enquire the status and handle the data stored in Q-RAM blocks, from the CL sRAM, the MDLD2k, or

other devices with similar capability.

-BANKS & CO Lib#4 Check & Splash n/a

BANKED Show Banked pages Shows ALPHA string w/ PG numbers
BANKS? _ Get Number of banks Prompts for Page#, returns b# in X
BFREE Show Free pages Shows ALPHA string w/ PG numbers
BLANK? _ Is page blank? Prompts for Page#. YES/NO, skip if true
BUSED Show Used pages Shows ALPHA string w/ PG numbers
CPYBNK _ “_:_ Copy Banked Block Thriple-prompting, does the copy
CPYPG _ Copy Page Source in X, Destination in prompt
PGROOM _ Available Space in Page Prompts for Page#, returns b# in X
X=PG? _ Are pages equal? Source in X, Destination in Prompt
"XRAY" Total Calculator ROM size Enumerates all Pages sequentially

¶ BANKED presents a colon-separated string of numbers (in hex) corresponding to those

pages with a bank-switched configuration, as defined in the ROM signature characters. The
official convention is not strictly followed by the (very few) authors of the few bank-switched

ROMs, but the number of banks should be marked in characters 2/3/4 of the ROM signature.

An example with both the PowerCL and the SandMath_4x4 plugged returns the following: -

Can you explain the presence of the “5”? Hurry, time’s ticking out!

,

¶ BFREE and BUSED will present colon-separated strings of hex numbers corresponding to

those free or used pages in the calculator. Obviously the OS will always be listed by BUSED,

which is a nice clue to quickly tell which particular string you’re looking at. See for instance
the examples bellow showing a pretty decent configuration:

 for the free pages, and

 for the used pages.

The strings are compiled using the display, and transferred to ALPHA upon completion. For
full-house configurations the list of used pages will take up more characters than those

allowed in the display – and the string will be scrolled to the left, dropping the first three

pages in the worst case. Since those hold the OS (always there) there’s no real information
loss.

The strings can have “holes”, as this is totally dependent on the modules plugged. Some of

them use the upper part of the port (like the Zenrom), or just simply due to the physical

locations used.

CL XMEM Module Manual

© Ángel Martin – August 2016 Page 37

¶ BLANK? Is a test function that checks the contents of a full page, looking for non-zero

words, displaying YES/NO in RUN mode accordingly. If at least one word is not zero the result

is false and a program line is skipped when used in a program. Note that the word FFF is also
considered to be a blank; this is used by the CL and some other MLDL boxes for “empty”

Flash blocks.

¶ BANKS? returns the number of banks for a given page, which number is provided in the Hex

prompt (or in X as decimal in a running program). The allowed range of results is of course 0-
4: non bank-switched ROMS return a “1’, and empty pages will return zero. This function

reads the third nibble of the last three words in the ROM signature, which is where the bank-
switched configuration is supposed to be recorded according to some undocumented criteria.

This is loosely followed by the few authors who released this type of modules, thus the result
may be a little off. For example, the convention used by Zengrange for the ZEPROMs is not

exactly the same.

Not even HP followed this to the letter, or if they did I cannot figure out the Advantage’s

scheme. Another discrepancy occurs on the CL itself, where the time signature of the TIME
module has been altered – misleading BANKS to report 4 banks instead of just two.

¶ PGROOM counts the number of words with zero value in the page which number is provided

in the Hex prompt (or in X as decimal in a running program). Interesting to see the density of

your favorite MCODE modules (use the OS as a ranking benchmark), and to get an idea on
how much room is still available in the page.

¶ X=PG? does a block compare, sequentially checking all the bytes within the pages specified

in X and the function prompt (or in X and Y if used in a program). It returns YES.NO, skipping

a program line if TRUE when executed in a program.

Application Example. - How big is your lollypop?

The short program below – XRAY – will calculate the complete number of banks configured on-line in
the calculator at a given time. I have corrected the TIME Module glitch just by starting to scan the

I/O bus at page 3, thus the extra banks reported for it would account for the OS pages 0-2.

The program first enumerates the banks found for each page (set it in TURBOX if you want to see
them), and then shows the total actual size, given in kilobytes - with 4k per page. Note that the

listing shows BANKS? and ARCLI for clarity.

