
EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 1 OF 25

Written & Programmed by Ángel Martin
Revision 1-AB, February 2019

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 2 OF 25

This compilation revision 1.1.1

Copyright © 2018-19 Ángel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Front cover image taken from:

Thanks to Greg McClure and Mark Fleming for theircontributions, suggestions for improvement and
revisions to the manuals.

https://www.dreamstime.com/royalty-free-stock-photography-
mathematics-background-image20849947

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

https://www.dreamstime.com/royalty-free-stock-photography-mathematics-background-image20849947�
https://www.dreamstime.com/royalty-free-stock-photography-mathematics-background-image20849947�
http://www.hp41.org/�

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 3 OF 25

Table of Contents

1. Introduction
a. From SOLVE to Solver. 4
b. Scope, Intent and Dependencies . 4
c. Module function Summary . 5

2. Theory of Operation
a. Variable Declaration 8
b. Program Editing vs. Running Modes . 8
c. Building the Solver Program. 9
d. Solving and Resolving. 10
e. Tricks & Treats . 12
f. A Look under the Hood. 14
g. Mini Equation Library & Examples . 15

3. Equation Library
a. New Record Pointer Functions. 18
b. Mark Fleming’s Equation Library . 19
c. A new twist to the old Solver . 21
d. Show me the Money . 22

Appendix. AOS Simulator . 23

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 4 OF 25

Equation SolverROM
Revision 1-AB - HP-41 Module

Introduction. From SOLVE to $OLVER.

Welcome to the Equation Solver ROM, the logical next step that extends the Formula Evaluation
Module and expands on its capabilities by providing a full-fledged Equation Solver.

Perhaps the last remaining open subject to address on the HP-41 platform, Equation Solvers have
become a standard fixture since the HP-42S days, which had the first soft-keys, SOLVE-based
implementation on HP calculators. Much has happened since, and successive generations have
refined the initial concept in different aspects as new functionality was being added to their operating
systems.(see: https://support.hp.com/us-en/document/c01822098)

As you can guess, the implementation on this ROM follows the same approach present on the HP-42,
relying on the local labels and the data entry flag. Chances are you’re already familiar with it so it
should be relatively simple to grasp -but this module adds an interesting twist by utilizing formula
expressions directly, using the functionality from the Formula Evaluation Module.

Even if it’s not strictly required to be proficient on the Formula Evaluation functionality, knowing your
way around that module will facilitate using the Equation Solvers. You’re therefore encouraged to
read the Formula Evaluation ROM manual for a deeper understanding on the underpinnings of this
module. You’ll need to write the main equation to solve following the conventions from in the Formula
Evaluation manual, and for that you’ll need to follow the syntax and other operation rules explained
there with detail.

Scope, Intent and Dependencies

There are two sets of SOLVER functions in this module, the standard set that handles up to five
variables; and the extended set

Note that in both cases the equation is not programmed using the standard FOCAL language, but as
an ALPHA string that is later interpreted by the EVAL$ functions from the Formula Evaluation ROM.
This ALPHA string is the basis of the SOLVER operation, as it facilitates the selection of the
appropriate variable to solve for in a dynamic and automated way.

 – allowing up to six variables in the equations. Regarding the SOLVE
capabilities, each of them may use a direct SLV$ algorithm based on the secant-method, or a more
sophisticated one based on FROOT, featuring a combination of Newton and Secant methods. The
former is sufficient in most cases for Science & Engineering equations, but both methods are at your
disposal to use them as you see fit. The latter requires that the Solve & Integrate ROM be plugged in
the calculator as well. This ROM offers the same solving functionality also found in the SandMath’s
FROOT, which in turn is the same one originally from the HP41 Advantage’s SOLVE.

As for other dependencies, this module is a Library#4-aware ROM that requires the library#4
(revision R47 or higher) to be plugged in. Also, the ROM is only compatible with the CX OS, as
internal routines from it are used.

https://support.hp.com/us-en/document/c01822098�

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 5 OF 25

Equation Solver ROM – Function Summary

The table below lists all functions available in the module. All of them are programmable and directly
accessible by the user, as it’ll be explained in the sections that follow. The EVAL_EQNS section is an
update to the work previously done by Mark Fleming and Greg McClure, with a few new functions
added for convenience sake.

Name Description Input Author
00 -SOLVER 1AB Section header n/a n/a
01 A-PM ALPHA to Program Text in ALPHA Ángel Martin
02 A-PM7 ALPHA to Program (7 Chars) Test in ALPHA Ángel Martin
03 CLVARS Clear Variables Data in buffer Ángel Martin
04 DEDUP De-duplicate String String in ALPHA Ángel Martin
05 DOSELF _ Self-Programming Number of blocks Ángel Martin
06 DOSLF+ _ Self-Programming+ Number of blocks Ángel Martin
07 LCDV LCD Variables Data in Buffer Ángel Martin
08 LCDV+_ LCD Variables+ Data in Buffer Ángel Martin
09 LKAOFF Suspend Local Keys Key Assignments Ángel Martin
10 LKAON Resume Local Keys Kay Assignments Ángel Martin
11 MPREP Menu Preparation none Ángel Martin
12 MUTE _ _ Mute Variable ASCII char in prompt Ángel Martin
13 MVARS _ _ _ _ _ Declare Variables Prompts for letters Ángel Martin
14 MVRS+ _ _ _ _ _ _ Declare Variables+ Prompts for letters Ángel Martin
15 SHOW Show text in LCD Text in program line Doug Wilder
16 SOLVER Solve for Unknown Data in program Ángel Martin
17 SOLVR+ Solve for Unknown+ Data in program Ángel Martin
18 VMENU View Menu Vars in Buffer Ángel Martin
19 VMNU+ View Menu+ Vars in Buffer Ángel Martin
20 ?T=L Test for equal values Values in T, L Ángel Martin
21 “#” Auxiliary function Data in program Ángel Martin
22 -EVAL$ EQNS Section header n/a n/a
23 ADVREC Advance Record N Pos. FileName in ALPHA, N in X Ángel Martin
24 AOS AOS Simulator FileName in ALPHA Greg McClure
25 ARCLCHR ARCL Character FileName in ALPHA Håkan Thörngren
26 READREC Read Record to ALPHA Data in Record Ángel Martin
27 REC- Move record one down Pointer position Ángel Martin
28 REC+ Move record one up Pointer position Ángel Martin
29 SEEK* Seek record by X FName in ALPHA, n in X Ángel Martin
30 “APP$” Append Equation To file “EQNS” Mark Fleming
31 “APPEQN” Append Equation To file in ALPHA Mark Fleming
32 “DELEQN” Delete Equation Removes four records Mark Fleming
33 “EQNLIB” Equation Library Main Driver Program Fleming - Martin
34 “INITEQN” Initialize Library Creates EQNS File Mark Fleming
35 “SAR” Search & Replace Prompts for values Mark Fleming
36 “SLVEQ$” Equation Solver Driver Prompts for data Greg McClure
37 “SV$” Solves for X Equation in ALPHA Ángel Martin
38 “TVM$” TVM equation Prompts for inputs Greg McClure
39 “CH2X” Change to X Text in ALPHA, char$ in X Mark Filming
40 /+/ Sums of Inverses Values in X, Y Ángel Martin
41 SIGMD Sigmoid Function Argument in X Ángel Martin
42 3PMT _ _ _ 3-Prompts Test none Ángel Martin

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 6 OF 25

Theory of Operation.

As hinted at in the introduction section, the Equation Solver operation is based on a dynamic and
automated selection of the variable to solve for, as defined in a user program (FOCAL) that includes
the general equation inter-relating multiple variables. Regardless of how many variables make out the
general equation, five or six of them (depending on SOLVER set used) can be included in the SOLVER
operation.

The elements of the FOCAL program are as follows:

• The user first writes said general main equation as an alphabetical expression, using the
conventions defined by the Formula Evaluation functions. This expression may have a
combination of variables, parameters and constants linked by operations and syntax rules.
You can use the ^FRMLA function in the Formula Evaluation ROM to enter the expression,
or you may also do it directly typing the equation in ALPHA if you’re comfortable using special
characters (not part of the standard ALPHA keyboard but accessible using the AMC_OS/X
module)

• Next, the Solver Variables need to be declared – i.e. a subset of the variables and parameters
included in the alphabetical expression are defined as potential knowns/unknowns. This
definition becomes pivotal in the structure of the user program used to enter the known
values and to trigger the calculation of the unknown ones. It is made with the MVARS.
function, which must be located right after the general equation step – with no other
program lines in between.

• This is to be picked-up by the second part of the Solver, which is always executed in every
action – either to assign a value to a known variable, or to trigger the solving of the
unknown. As this requirement implies, each menu option needs to call the SOLVER. function
and act accordingly depending on the local label it is located under, and whether the data
entry user flag (UF 22) is set.

• The FOCAL program must have a local label associated to each variable declared. This local
label will be accessed by pressing the Top Keys in the calculator ({A-E} and also [F] in the
extended solver case). The action performed will depend on whether a value is entered
before pressing the soft-key (meaning the value is assigned to that variable) or if it’s directly
pressed (meaning the value will be calculated (solved for) using the main equation.

The functions provided in the module are used for the definition of variables, creation of the FOCAL
program and user operation of the solvers. They offer automation and convenient data input features
that make most of the underlying details, all transparent to the user.

Note.-To differentiate the two Solver sets, the names of the functions use the following convention:
Standard set function names don’t end with plus sign “+”, whereas extended set functions do.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 7 OF 25

Declaration of Variables .{ MVARS , MVRS+ }

The first step to define the SOLVER consists of telling the calculator which of the variables written in
the general equation will be used. This is accomplished by entering the variable names at the prompt
offered by the MVARS/MVRS+ functions, using only one letter per variable.

The available choices depend on the solver set, as follows:

- Any letter { A to Z } can be used in the declaration for the standard set.

- Only letters { A to F, and X, Y, Z, T, L} can be used in the declaration for the extended set –
but even it allowed, you should not use X, Y, T, L because these are used as scratch by the
solving routines. Refer to the block diagram in next page for an overview of the hierarchical
relationships amongst the sections involved in the complete process.

So right now, you see that the extended set restricts the variable names, even if it offers the
possibility to use one extra variable in the Solver. This is a compromise needed to maintain the code
size and buffer resources within reasonable specs, the overarching design criteria that always applies
in MCODE programming.

Here’s how the functions work:

• The user can enter fewer variables than the length of the prompt field – pressing R/S or the
radix key at any time will terminate the variable declaration step – and only the letters
already filled in will be used in the menu choices. Terminating them without any letter
entered will show the “NO MVARS” error message.

• The functions will automatically de-duplicate possible repeat entries, making only one menu
item per given letter.

• For the standard set the variables will be presented in the menu in the same order as they
are entered in the prompts. The user needs to bear this important fact in mind, as the
variable names in the general equation need to be mapped to the menu letters by position

• For the extended set they will be sorted alphabetically. This facilitates the mapping of their
letters to the variables

,
i.e. using the input order: variable ”a” for the first entered letter, variable “b” for the second,
etc.

by name

 irrespective of the local label they’re input from. Only when
all six of them are to be used there’s a direct name-to-label correspondence: Letter [A] maps
to variable “a”, letter [B] maps to variable “b”, etc. In principle all 10 letter are accepted but
note the additional restriction on which variables are available to the solver later on.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 8 OF 25

Program Editing vs. Running modes

Both MVARS and MVRS+ have very different behavior depending on when they’re used, either
during program editing or while running the program. During program editing they’ll display the
prompt fields as described above, for the user to declare the solver variables.

When the declaration completes (either filling all prompts or capping the entry using R/S or Radix),
the function will store the menu letters in the header of buffer #7, from where they will be picked up
by the other functions, and it will insert two lines in the current program: one for itself (to be
executed when the program runs), followed by a text line with the selected variable letters.

For example, MVARS plus “YZFC” will create the two program steps at the current location:

Nn MVARS
nn+1 “YZFC”

A word on writing the General Equation.

As you should know by now the variables available to the ^FRMLA writing are the five stack
registers and the six buffer registers, i.e. {X, Y, Z, T, L} plus {a, b, c, d, e, F}. Not all of these can be
freely used in your general equation because the Solvers need the stack registers X, Y, T and L for
scratch during the evaluation of the functions. This leaves us with the six buffer registers plus register
Z available for the equation. This is further restricted to just the buffer registers in the 5-Vars case,
mapped by the position in the MVARS string.

You can use just as many as known/unknown variables in your equation, but you can also use the
others to hold parameters or other constants - this saves characters in the formula. Use the function
LET= to assign the parameter values as needed.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 9 OF 25

Building the Solver Program.

Both components of the Solver need to play their roles, therefore MVARS will now offer the user the
possibility to auto-create the rest of the FOCAL program needed for the Solver to work – by adding
automatically all local labels, the matching SOLVER statements and auxiliary steps required to
accommodate the menu letters declared.

Answering “N” will terminate this stage without adding the lines (the user will need to do it later
manually!), whilst answering “Y” will proceed inserting the additional lines required for the correct use
of the Solver.

The rule here is each menu letter will need one local label, followed by the SOLVER function, plus a
STOP instruction to halt the execution and continue entering values. For instance, using the same
example with four menu letters declared it’ll insert the following 12 program steps:

nn+2 LBL A
nn+3 SOLVER
nn+4 STOP
nn+5 LBL B

nn+6 SOLVER
nn+7 STOP
nn+8 LBL C
nn+9 SOLVER

nn+10 STOP
nn+11 LBL D

Obviously MVRS+ will insert SOLVR+ instructions instead, as these two always need to be paired
up. The baton is passed to the appropriate counterpart!

nn+12 SOLVER
nn+13 STOP

Note that the local label letters are completely unrelated to the menu letter – except in the sequence
order entered at the prompts. Which also determines the mapping to the EVAL$ variables as follows:

Menu Letter “Y” -> EVAL$ var “a” ; LBL A
Menu Letter “Z” -> EVAL$ var “b” ; LBL B

Menu Letter “F” -> EVAL$ var “c” ; LBL C
Menu Letter “C” -> EVAL$ var “d” ; LBL D

This will be presented in the display as follows when the MVARS function is executed during the
running program:

This FOCAL “skeleton” may well be all you need to proceed, in which case all you need to do is add
an END statement (or GTO ..) to complete the FOCAL program – just make sure it has a global label,
and don’t forget to define the general equation before the MVARS step

You’re of course free to edit the FOCAL program further, adding any other instruction needed that
you see fit (say angular modes for trigonometry, etc.) – but you mustn’t alter the “skeleton” written
by MVARS. The function SOLVER in particular must always be right after the local label, as this
condition is expected and used to determine its actual location.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 10 OF 25

Solving and Resolving. { SOLVER , SOLVR+ }

Once we’ve come to this point it’s time to hand it out to the actual SOLVE engine. The first thing to
say is that the expression of the equation follows the f(x) = 0 form, where just f(x) is programmed as
the general equation.

The Solver allows for two approached, the SLV$ way (using the secant method) and the FROOT way
(using a combination of Newton and secant methods depending on the cases. For the latter you need
to plug in the “Solve & Integrate” ROM that provides the FROOT function.

A few considerations on the secant method: - It is defined by the recurrent relation for the successive
iterations of the root:

As can be seen from the recurrence relation, the secant method requires two initial values, x0 and x1,
which should ideally be chosen to lie close to the root. The iterates xn, of the secant method
converge to a root of f(x), if the initial values x0 and x1 are sufficiently close to the root. Obviously,
this requires that x0 and x1 cannot be equal, and furthermore even if they are different it also
imposes an additional condition to avoid dividing by zero: f(x0) must be different from f(x1).

These limitations can tip the scale and render the method inadequate for some more finicky
equations – making the FROOT option better suited to the task. It employs a combination of the
Newton and secant methods, depending on the function’s behavior in the vicinity of the guesses
supplied by the user.

The method starts with a function f(x) defined over the real numbers x, the function's derivative f ′,
and an initial guess x0 for a root of the function f. If the function satisfies the assumptions made in
the derivation of the formula and the initial guess is close, then a better approximation x1 is:

 ;

The process is repeated until a sufficiently accurate value is reached.

The Solver program always prompts for two guesses (a and b). If no values are entered the program
will use the defaults as 0 and 1 – which surprisingly works just fine for many equations – even if the
execution time may be longer than if more targeted initial values are used.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 11 OF 25

Examples. Prepare a Solver FOCAL program to handle the general equation: “a + b + c + d = e”

Since there are only five variables involved, we’re free to use either of the two Solver set available.
Let’s do it for both for the sake of complete documentation.

First using the standard set

In PRGM mode we insert a global label and the equation, followed by MVARS “JKLMN”– and we take
advantage of the Self-programming option answering “Y” to the choice. We’ll complete the task by
removing the last STOP step (we won’t use it this time) and typing GTO .. to add the END and pack
the program memory area.

. We’ll label the menu items “J, K, L, M, and N”

Next using the extended set

In PRGM mode we insert another global label, followed by MVRS+ “ABCDE” – and again we take
advantage of the Self-programming option. As before, we finish by typing GTO ….

. Naturally labeling the menu items “A, B, C, D, and E”.

See below the two programs created so far:

01
02 “a+b+c+d-e”

LBL “STD”

03 MVARS
04 “JKLMN”
05
06 SOLVER

LBL A

07 STOP
08
09 SOLVER

LBL B

10 STOP
11
12 SOLVER

LBL C

13 STOP
14
15 SOLVER

LBL D

16 STOP
17
18 SOLVER

LBL E

19 END

20
21 “a+b+c+d-e” Same equation!

LBL “XTD”

22 MVRS+
23 “ABCDE”
24
25 SOLVR+

LBL A

26 STOP
27
28 SOLVR+

LBL B

29 STOP
30
31 SOLVR+

LBL C

32 STOP
33
34 SOLVR+

LBL D

35 STOP
36
37 SOLVR+

LBL E

38 END

It’s all ready to go now: calling each of the programs will generate the following menu screens,
standard solver on the left and extended solver on the right respectively:

Using J=1, K=2, L=3, M=4 => N= 10 ; Using A=1, B=1, C=1, D=1 => E= 5

The sequences being: 1, XEQ[A], 2, XEQ [B], 3, XEQ [C], 4, XEQ [D], XEQ [E]

And: 1, XEQ [A], 1, XEQ [B], 1, XEQ [C], 1, XEQ [D], XEQ [E]

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 12 OF 25

As mentioned previously, you can choose the solving method employed by the programs, either the
secant method in SLV$ or the Newton/Secant combination in FROOT. This is controlled by the status
of User flag 01 when you press the “Solve for the Unknown” soft key:

Tricks and Treats.

• If UF 01 is Clear => Secant Method by SLV$
• If UF 01 is Set => Newton/Secant combo by FROOT

Don’t forget to plug the “Solve & Integrate” ROM for the second case.

Apart from that important consideration, the following observations should be borne in mind:

1. Using the Data Entry flag is a convenient way to distinguish between the value assignment
and the call for solving the unknown, but it’s not perfect. The most important limitation is
that you need to enter actual numeric values for F22 to be set, not being enough with
recalling them from a data register using RCL nn. Another scenario that frequently trips folks
up is using PI, which doesn’t activate the flag either. Therefore make sure you set it
manually (SF 22) or force the condition with dummy operations like { 0, + }; or: { 1, * }

2. You can use the function GET= (in the Formula Evaluation) to recover the values currently
stored in the variables. Be aware that – consistent with the RCL situation - here too such
won’t set the Data Entry Flag (!)

3. Note that after the solution for the unknown has been calculated, it is *not* automatically
stored

4. The SOLVER functions will ignore pressing of local Labels if the corresponding letter hasn’t
been previously declared – even if you manually manage to add the local label yourself – or if
it’s a left-over placed there from previous executions or MVARS that used more variables.

 by the program in the variable mapped to the menu letter. You need to do that
manually using the function LET= (also in the Formula Evaluation ROM). This is handy to
verify the obtained results, plugging it as a known and back-calculating some of the
previously known variables.

5. The extended Solver can use up to six variables, but their letters are limited to those of the
buffer registers. Furthermore, the variable mapping is done by their name

6. Perhaps the strongest limitation of this design – the general equation must fit in the ALPHA
registers, i.e. it cannot exceed 24 characters. If your formula wants to go beyond that
boundary you cannot use the automated Solvers. Refer to the “Equation Library” for a work-
around that allows these cases.

 within the
declaration string irrespective of the location of the local labels. For instance the string “BCF”
is using the buffer registers b, c and F behind the scenes. As a corollary, when all six
variables are used the sixth one will always be “F”, and even if not shown in the display it’ll
be mapped to the local label F (i.e. the X<>Y key).

Finally, the Solvers use data registers {R00 – R04} and {R07 – R10} to store the general equation
and the muted equation respectively. You should refrain from using them in the FOCAL programs
prepared for the Solvers.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 13 OF 25

A few other functions are provided that may become handy to you, either to play around during the
learning phase or to take a peak on specific sub-sections of the Solver operation. When needed,
these functions are also named according to the naming convention for standard and extended sets -
like VMENU, vs. VMNU+, or LCDV vs. LCDV+

A look under the hood.

Here’s a short description of their capabilities.

• MPREP is a convenient shortcut to prepare for the use of the Solver – taking care of the
following housekeeping tasks: (1:) Clears UF 22, (2:) Clears UF 01, (3:) sets USER mode on,
and (4:) Disables the local key assignments (in the 2 top-rows) so they don’t interfere with
the local labels. You can insert it as a program step in your FOCAL Solver programs if you
want.

• LKAOFF and LKAON are used to disable or enable the key assignments on the local keys (2
top rows). Use them individually if you prefer this to the MPREP “bundled” way.

• VMENU and VMNU+ read the variable declarations from the buffer header and build the
menu choices in the display and ALPHA registers. This is automatically done during the
execution of functions MVARS and SOLVER - and their extended counterparts.

• LCDV and LCDV+ also read the variable declarations, then build a text string in the LCD
(but not ALPHA). This string is used internally by MVARS and MVRS+ to do the de-duplication
and alphabetical sorting of their names. Note that the standard solver LCD string is shown
with a dot behind each letter, to distinguished from an equal string from the extended set:

 vs.

• CLVARS is a short routine that lets you clear the variable declarations, resetting the buffer
header to the default zero values. Using any of the menu information functions above when
they have been cleared will show the “NO VARS” message.

• SHOW is a handy function written by Doug Wilder, initially available in the BLDROM and
repurposed here (and previously in the ALPHA ROM as well). It allows “reading” a text string
into the LCD without disturbing the ALPHA registers – which is very convenient if ALPHA has
information that cannot be overwritten. This is how the menu names string is read by
MVARS, whilst the general equation is still in the ALPHA registers.

• DEDUP is a global entry to the de-duplication routine. It’ll handle strings in ALPHA of up to
five characters in length, but not more. Larger strings will be truncated on entry.

• DOSELF and DOSLF+ are also global ROM entries, this time to the self-programming code
that is used by MVARS/MVRS+. In this form it is a prompting function, asking for the number
of “blocks” to insert in program memory – each block comprised by the local LABEL, SOLVER
(or SOLVR+) and STOP. Be careful not to enter a value larger than 10 or you’ll run out of
local labels to use!

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 14 OF 25

• MUTE is a global ROM access point to the muting process performed by SOLVER. This
consists of replacing the letter used for the unknown with an “X” – so it is prepared for the
EVAL$ instruction. In this generic form it is a prompting function, expecting the ASCII value
of the character to mute in the prompt (in decimal).For example, using 65 as input will turn
the string on the left to the one on the right:

 =>

• A-PM7 is the secret weapon used to insert any text string from ALPHA into program
memory directly. A-PM7 breaks the text in ALPHA in “chunks” up to 7-chars long, thus
potentially will insert four text lines for 24 characters long text. This function is used internally
by MVARS and MVRS+ to enter the prompt values into the text line that follows itself in the
program.

Do not confuse it with the A-PM function in the Formula_Evaluation module, which uses the
maximum length permitted in the text line, i.e. 15 characters – and therefore only two lines
at most will be required. You can use A-PM to enter the general equation as a program text
line once it has been created in ALPHA by ^FRMLA.

• ?T=L is an auxiliary function that checks whether the values in the T and L stack registers
are equal. The result determines if the next line is skipped or not, pretty much like all
standard test functions such as X=Y?

• Finally, “#” is a scratch FOCAL routine used by FROOT in case that the Newton/Secant option
is selected (setting UF 01) during the Solver operation. You can ignore this one altogether,
it’s only there for housekeeping reasons – but if you’re curious below is the program listing
for your information:

01
02 RCL$ 07 ; brings the muted equation to ALPHA

LBL “#”

03 EVAL$; evaluates the equation into X
04 END

Note that the Solvers don’t use the stand-alone routine SLV$ included in the module, but a dedicated
version (embedded into the MCODE) reserved solely for this purpose.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 15 OF 25

Mini-Equation Library Examples.

The module comes equipped with a few examples of utilization of the Variable Solvers; use them to
become familiar with the approach before attempting to write your own equations.

Routine Equation LCD Display
3DM 3D Vector Module

M = SQRT(x^2 + y^2 + z^2)
4 variables, MVARS

CTRY Catenary Curve
d =H [1 - (1/cosh (L/2a))]
4 Variables, MVARS

KPL Kepler Equation
E – ec. sin E = m
3 Variables, MVARS

RGA$ Real Gas Equation
P.V = Z.N.R.T
5 Variables + 1 constant, MVARS

VdW Van-der-Waals Gas Equation
P + (a/Vm^2) = R.T /(Vm-b)
5 Variables + 1 constant, MVARS

Y=P1 Straight Line Equation
y = A.x + B
4 Variables, MVARS

Y=P2 Quadratic Equation
y = A.x^2 + B. x + C
5 Variables, MVARS

Y=P3 Cubic Equation
Y = x^2 + B.x + C
5 Variables, MVARS

Y=P4 Quartic Equation
Y = x^4 + A.X^3 + B.x^2 + C.x +D
6 Variables, MVRS+

Looking at the code you can see that all the above using MVARS are placed together in the same
FOCAL program, with the individual global labels and equations sharing the same local labels’ section.
This is a very convenient arrangement that saves a lot of room, and it’s possible because of the
design of the MVARS and SOLVER functions.

The Quartic Equation sits by itself, as it uses the Extended Solver (MVRS+ and SLVR+) to handle the
six variables involved. This means that, contrary to the others, the variables must be named using the
same letter as the buffer registers they’re mapped to. In this case the classic equation

y= x^4 + A.x^3 + B.x^2 + C.x + D becomes: F = E^4 + A.E^3 + B.E^2 + C.E + D

Of these only the Van-der-Waals and the Polynomial Equations would require using initial intervals
different from the default one [0, 1]. This is obviously due to the different roots that may exist,
which also applies to the VdW case as it’s nothing more than a Cubic Equation “in disguise”.

Generally the internal Solver is capable of finding the solutions – but you may want to plug the
“Solve & Integrate ROM” to use FROOT, a much more capable implementation. Remember to use
user flag 01 to select your choice of solvers: Clear for the internal case, Set for FROOT.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 16 OF 25

Numerical Examples.

1. Quadratic & Cubic Equations. -
Given a = 1, b = -4, b = -1, y =0, and default [a,b] = (0, 1)
Solves: x = 0.236067978 for quadratic, and x= 0.239123279 for cubic.

y = A.x^2 + B. x + C

2. 3D Vector Module.

3.

 - M = SQRT(x^2 + y^2 + z^2)
Given |v| = 5, x = 2, y = 4 and default [a,b] = (0, 1)
Solves: y = 2.236068

Catenary Equation

 - d =H [1 - (1/cosh (L/2a))]
Given H = 42 m, L = 100 m, a = 43.5 m and default [a,b] = (0, 1)
Solves: d = 17.814791 m

4. Kepler Equation.
Given ec = 0.2, and m = 0.8 and default [a,b] = (0, 1)
Solves: E = 0.964333888

 - E – ec. sin E = m

5. Real gas Equation

6.

. - P.V = Z.N.R.T
Given P= 5 kPa, V= 10 l, T = 25 oC, Z =0.161074 and default [a,b] = (0, 1)
Solves: n = 0.125283mol (Warning: always use SI units)

Van-der-Waals Equation
Given a = 14.66 ; b = 0.1226 ; P= 5 kPa, T = 25oC, and [a,b] = (1,5)
Solves: Vm = 0.614322294 m^3/mol (Warning: requires FROOT in the S&I ROM)

 - P + (a/Vm^2) = R.T /(Vm-b)

7. Quartic Equation.
Given a= 2; b= -7; c= -8; d= 12; F=0 and default [a,b] = (0, 1)
Solves: E = 1.0000

 - F = E^4 + A.E^3 + B.E^2 + C.E + D

Can you find the other roots? Try changing the a^b initial interval…

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 17 OF 25

Program Listing.

4:09PM 02/09
 01
 02 RAD

*LBL "KPL"

 03 "b-c*S(b)-a"
 04 MVARS
 05 "MEC"
 06
 07 "a*c+b-d"

 *LBL "Y=P1"

 08 MVARS
 09 "ABXY"
 10
 11 "a*d^2+b*d+c-e"

*LBL "Y=P2"

 12 GTO 01
 13
 14 "d^3+a*d^2+b*d+c"

*LBL "Y=P3"

 15 "`-e"
 16 *LBL 01
 17 MVARS
 18 "ABCXY"
 19
 20 "Q(a^2+b^2+c^2)-"

*LBL "3DM"

 21 "`d"
 22 MVARS
 23 "XYZM"
 24
 25 "b*(1-(1/HC(c/2/"

*LBL "CTRY"

 26 "`a)))-d"
 27 MVARS
 28 "AHLD"
 29

 30 XEQ 00

 *LBL "RGA$"

 31 "a*b-c*d*e*F"
 32 MVARS
 33 "PVTZN"
 34
 35 XEQ 00

*LBL "VdW"

 36 "a+d/b^2-F*c/(b-"
 37 "`e)"
 38 MVARS
39 "PVTAB"
 40
 41 SOLVER

*LBL A

 42 STOP
 43
 44 SOLVER

*LBL B

 45 STOP
 46
 47 SOLVER

*LBL C

 48 STOP
 49
 50 SOLVER

*LBL D

 51 STOP
 52
 53 SOLVER

*LBL E

 54 STOP
 55 *LBL 00
 56 8.314459848
 57 LET=
 58 6
 59 END

4:13PM 02/09
 01
 02 "e*(c+e*(b+e*(a+"

*LBL "Y=P4"

 03 "`e)))+d-F"
 04 MVRS+
 05 "ABCDEF"
 06
 07 SOLVR+

*LBL A

 08 STOP
 09
 10 SOLVR+

*LBL B

 11 STOP
 12

 13 SOLVR+

*LBL C

 14 STOP
 15
 16 SOLVR+

*LBL D

 17 STOP
 18
 19 SOLVR+

*LBL E

 20 STOP
 21
 22 SOLVR+

*LBL F

 23 END

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 18 OF 25

Equation Libraries Revisited.

In this chapter you’ll find an update to the works done by Greg McClure and Mark Fleming on related
subjects, like the AOS Simulator and the Equation Library respectively. See the excellent manual
available at: http://www.hpmuseum.org/forum/thread-8795.html)

New Record and Pointer Functions.

A few new record pointer functions are included to complement the original set from the Extended
Functions module. The intent was to facilitate the operation of the Equation Library FOCAL programs,
saving some steps here and there and providing more flexibility in their use.

The functions are shown on the table below:-

Function Description Input Output
ADVREC Advance Pointer in Record Number of positions in X Pointer is moved
ARCLCHR ARCL Characters Number of Chars in X Chars added to ALPHA
READREC Read Nth. Record N in X String in ALPHA
REC- Move pointer one position down none Pointer moved
REC+ Move pointer one position up None Pointer moved
SEEK* Seek pointer (Customized) Pointer position in X Pointer Set to new pos.

The pointer functions mostly deal with updating the file header location where the pointer position is
saved. They verify that the chosen position is within the boundaries of the ASCII file and adjust it
accordingly. See the File Header diagram below for details:

T A D R - C H R R E C S Z E
13 12 11 10 9 8 7 6 5 4 3 2 1 0

An interesting challenge arises because the records are of variable length, so there’s not a constant
number of characters per record. This is handled by reading the record-length nybble, located at the
beginning of each record.

For comparison purposes the standard approach used by the original X-Functions always requires
recalling the pointer first using RCLPT(A), adding or subtracting the number of positions using the
stack, and resetting the pointer using SEEKPT(A). This alters the stack registers and requires
multiple steps per action – as opposed to using new pointer functions, with a more straight forward
method.

See below the program listing of Mark’s EQNLIB using the new pointer functions:-

http://www.hpmuseum.org/forum/thread-8795.html�

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 19 OF 25

Mark Fleming’s Equation Library - Program Listing

 02 LKAOFF
01 *LBL "EQNLIB"

 03 "EQNS"
 04 CLX
 05 SEEKPTA
 06 GETREC
 07 AVIEW
 08 SF 27
 09 RTN

 11 CLX
10 *LBL F

 12 4
 13 GTO 00

 15 CLX
14 *LBL G

 16 4
 17 CHS
18 *LBL 00
 19 ADVREC
 20 SF 25
 21 GETREC
 22 CF 25
 23 AVIEW
 24 PSE
 25 X<0?
 26 GTO G
 27 GTO F

 29 RCLPT
28 *LBL H

 30 INT
 31 STO Y
 32 4
 33 MOD
 34 X=0?
 35 ISG Y
 36 ""
 37 X#0?
 38 DSE Y
 39 ""
 40 X<>Y
 41 SEEKPT
 42 GETREC
 43 AVIEW
 44 RTN

 46 FS? 01
45 *LBL I

 47 "IN"
 48 FC? 01
 49 "EX"
 50 "`TERNAL SLV"

 51 AVIEW
 52 E
 53 TOGF
 54 RTN

 56 RCLPT
55 *LBL J

 57 INT
 58 RCL X
 59 4
 60 MOD
 61 -
 62 3
 63 X<>Y
 64 +
 65 SEEKPT
 66 GETREC
 67 AVIEW
 68 X<> L
 69 SEEKPT
 70 RTN

 72 FC?C 22
71 *LBL A

 73 GTO 00
 74 LET=
 75 1
 76 GTO J
77 *LBL 00
 78 97
 79 XEQ 09
 80 LET=
 81 1
 82 RTN

 84 FC?C 22
83 *LBL B

 85 GTO 00
 86 LET=
 87 2
 88 GTO J
89 *LBL 00
 90 98
 91 XEQ 09
 92 LET=
 93 2
 94 RTN

 96 FC?C 22
95 *LBL C

 97 GTO 00
 98 LET=
 99 3
100 GTO J

101 *LBL 00
102 99
103 XEQ 09
104 LET=
105 3
106 RTN
1
108 FC?C 22

07 *LBL D

109 GTO 00
110 LET=
111 4
112 GTO J
113 *LBL 00
114 E2
115 XEQ 09
116 LET=
117 4
118 RTN

120 FC?C 22
119 *LBL E

121 GTO 00
122 LET=
123 5
124 GTO J
125 *LBL 00
126 101
127 XEQ 09
128 LET=
129 5
130 RTN
131 *LBL 09
132 "a^b?"
133 PROMPT
134 FC? 22
135 E-99
136 FC?C 22
137 E
138 2
139 ADVREC
140 GETREC
141 CHS
142 ADVREC
143 R^
144 XROM "CH2X"
145 FC? 01
146 XROM "SV$"
147 FS? 01
148 XEQ IND 00
149 RTN
150*LBL "CH2X"

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 20 OF 25

151 *LBL 02
152 ENTER^
153 POSA
154 X<0?
155 GTO 00
156 AROT
157 ATOX
158 RDN
159 "`X"
160 E
161 -
162 CHS

163 AROT
164 RDN
165 GTO 02
166 *LBL 00
167 RDN
168 END

01 *LBL "SV$"
 02 STO$
 03 7
 04 *LBL 00
 05 EVALZ

 06 X<>Y
 07 EVALT
 08 "Y-Z*(Y-X)/(Z-T)"
 09 EVAL$
 10 FS? 10
 11 VIEW X
 12 RCL$
 13 7
 14 X#Y?
 15 GTO 00
 16 CLD
 17 END

The following equations and auxiliary text lines are written to the ASCII file “EQNS” upon execution of
the routine “INIEQN$”:

00 LINEAR 32 RLC FREQ.
01 Y=AX+B 33 F0=1/SQRT(LC)
02 c*a+d-b 34 1/Q(b*c)-a
03 X Y A B 35 F0 L C
04 QUADRATIC 36 GAS EQUATION
05 Y=AX^2+BX+C 37 PV=NRT
06 c*a^2+d*a+e-b 38 c*(16629/2000)*d-a*b
07 X Y A B C 39 P V N T
08 CUBIC 40 LIN. MOTION
09 Y=X^3+AX^2+BX+C 41 X=VT+1/2*AT^2
10 a^3+c*a^2+d*a+e-b 42 c*b+1/2*d*b^2-a
11 X Y A B C 43 X T V A
12 4TH ORDER 44 NEWTONS LAW3
13 D+X(C+X(B+X(A+X))) 45 F=G*M1*M2/R^2
14 e+a*(d+a*(c+a*(b+a))) 46 e*b*c/d^2-a
15 X? A B C D 47 F M1 M2 R G
16 POSROOT 48 INTEREST
17 X1=(-B+SQRT(B^2-4AC))/2A 49 P=PERIODS
18 (#b+Q(b^2-4*a*c))/2/a-d 50 ((1+b/100/c)^c-1)*100-a
19 A B C X1 51 EFF NOM P
20 NEGROOT 52 +INTEREST
21 X2=(-B-SQRT(B^2-4AC))/2A 53 (T-1)*100-a
22 (#b-Q(b^2-4*a*c))/2/a-d 54 (1+b/100/c)^c
23 A B C X2 55 EFF NOM P
24 OHMS LAW 56 +TVM END MODE
25 E=IR 57 a+T+e*(1+b)^#d
26 b*c-a 58 (1+b)*c*((1-(1+b)^#d)/b)
27 E I R 59 PV I PM N FV
28 PARALLEL R 60 +TVM BEG MODE
29 1/R1=1/R2+1/R3 61 a+T+e*(1+b)^#d
30 1/b+1/c-1/a 62 c*((1-(1+b)^#d)/b)
31 R1 R2 R3 63 PV I PM N FV

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 21 OF 25

A new twist to the Old Solver. { SLVEQ$ }

Once upon a time there was a FOCAL program used as a driver to select equations, their known
variables and to solve for the unknowns Said driver program was based on the SOLVE function
within the HP-41 Advantage, and used the standard FOCAL approach to program each of the
equation subroutines.

The new twist consists of replacing the FOCAL programming with formula strings evaluated by
EVAL$ instead – straight forward once you get comfortable with the Formula Evaluation
functionality!

The program listing is shown below, note the use of user flag F6 (as a proxy for the data entry flag
status in the Driver program) to signal whether calculation or menu displaying should be performed
by the equation subroutines. Note as well the selection of the unknown variable is made by storing
the register index in R00 – so the equation variable will be retrieved with a RCL IND 00 statement,
where the valid range is 1 to 5 (for R00 to R05).

Finally, the program assumes that at the menu has least three variables (no point in using a solver for
trivial cases, or is it?) and checks that the menu string length is long enough when the fourth and
fifth variable are called upon (pressing LBL D or LBL E respectively).

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 22 OF 25

Show me the Money .{ TVM$ }

The Time Value of Money equation poses some challenges to the Equation Library Solver in a couple
of accounts: the number of variables involved exceeds the standard capability, and the length of the
formulas goes beyond the 24-characters boundary of the ALPHA registers. few other functions are
provided.

Greg wrote the TVM$ subroutine to overcome these limitations, a mini-Solver dedicated to this
particular subject that relies on a chained EVAL$ calculation. This routine is accessed by the main
driver program SLVEQ$ – which prompts for the equation name and handles the value entering for
the known variables as well as the trigger to solve for the unknown.

By the way SLVEQ$ also uses the FROOT function from the “Solve & Integrate” Module to obtain
the root – so make sure it is plugged in the calculator when you work on this subject.

The program listing for the TVM$ routine is shown below.

Numerical Example:

Calculate the future payment of an initial capital of $5,000 with a 3% annual interest with yearly
deposits of $500 during 5 years. Use Begin and End modes to compare results.

Solutions: BEGIN: $7,509.004951
 END: $7,509.755401

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 23 OF 25

Appendix. AOS Simulator

Written by Greg McClure, this FOCAL program was first released in the GJM ROM and is added here
for completion.

The AOS (Algebraic Operating System) program is designed to allow entry of data and operations
using operations and parenthesis as written. The partial answers are saved in Extended Memory in a
small file created by the user when AOS initializes. It follows operation hierarchy. So “(“and “*”are
performed before “+”, etc).

B.1 AOS Overview

The Algebraic Operating System emulator is designed to act like non-RPN calculators that use
parenthesis and pending operations to solve numeric math operations. This program requires an
Extended memory file (name AOS) to store data for pending operations for parenthesis operation.
The program does not require any other memory except for the stack (which is fully used).

B.2 AOS Flag Usage

Flag Use when set
0 + pending (flag 1 MUST be clear)
1 - pending (flag 0 MUST be clear)
2 * pending (flag 3 MUST be clear)
3 / pending (flag 2 MUST be clear)
4 ^ pending
5 Open (‘s pending

B.3 AOS User Keyboard

[A]: AOS + [B]: AOS - [C]: AOS * [D]: AOS / [E]: AOS ^
[F]: AOS ([G]: AOS) [J]: AOS = (R/S)

B.4 AOS User Instructions

After XEQ “AOS” the AOS flags and AOS buffer will initialize. It will ask for the size of the Extended
Memory file to use. If the AOS Data file already exists, it will ask for the new size. If no new size is
given the data file is not resized. User mode will be enabled.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 24 OF 25

B.5 AOS Example

Usage of the AOS program is best served by a simple example.

Calculate (1+2)*(3/4)+(5^(1/2))

Enter Keypress Comments (and Annun.s) Annunciators (red = on) Output
 XEQ “AOS” Reset AOS 01234 “SIZE?” (if no file)

“NEW SIZE?” (if file)
20 R/S Small array 0.0000
 F (0.0000
1 A 1 + 01234 1.0000
2 G 2), + performed 01234 3.0000
 C * 01234 3.0000
 F (, * with value saved 01234 3.0000
3 D 3 / 01234 3.0000
4 G 4),/ performed,

* with value recalled
01234 0.7500

 A +, * performed 01234 2.2500
 F (01234 2.2500
5 E 5 ^ 01234 5.0000
 F (, ^ with value saved 01234 5.0000
1 D 1 / 01234 1.0000
2 G 2), / performed,

^ with value recalled
01234 0.5000

 G), ^ performed,
+ with value recalled

01234 2.2361

 J or R/S = final + performed 01234 4.4861

In this example, after entering the final 2, instead of using G the final answer could have been
calculated by entering J or R/S (J or R/S will perform all pending parenthesis and functions).

For those interested, the data file saves required values from the stack and the status of the flags
every time the AOS “(“ function is performed. It restores the flags and data values required back to
the stack when AOS “)” is performed. The annunciators show which operations and how many stack
registers will be stored (only one register is required for the operations saved).

B.6 Program Listing

Starts in next page…

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – FEBRUARY 2019 PAGE 25 OF 25

 01 LBL “AOS”
 02 RAD
 03 SF 27
 04 "AOS"
 05 SF 25
 06 FLSIZE
 07 FS?C 25
 08 GTO 00
 09 "SIZE?"
 10 PROMPT
 11 "AOS"
 12 CRFLD
 13 GTO 01
 14 *LBL 00
 15 RCLFLAG
 16 FIX 0
 17 X<>Y
 18 "NEW SZ <"
 19 ARCL X
 20 "`>?"
 21 X<>Y
 22 STOFLAG
 23 RDN
 24 CF 22
 25 PROMPT
 26 FC? 22
 27 GTO 01
 28 CHS
 29 RESZFL
 30 *LBL 01
 31 CLST
 32 CLA
 33 SEEKPT
 34 X<>F
 35 X<> L
 36 +
 37 XEQ F
 38 XEQ G
 39 GTO 12
 40 *LBL 14
 41 FS?C 04
 42 Y^X
 43 RTN
 44 *LBL 13
 45 XEQ 14
 46 FS?C 03
 47 /
 48 FS?C 02
 49 *
 50 RTN
 51 *LBL 12
 52 XEQ 13

 53 FS?C 01
 54 -
 55 FS?C 00
 56 +
 57 RTN
 58 GTO 09
 59 *LBL A
 60 XEQ 12
 61 SF 00
 62 RTN
 63 GTO 09
 64 *LBL B
 65 XEQ 12
 66 SF 01
 67 RTN
 68 GTO 09
 69 *LBL C
 70 XEQ 13
 71 SF 02
 72 RTN
 73 GTO 09
 74 *LBL D
 75 XEQ 13
 76 SF 03
 77 RTN
 78 GTO 09
 79 *LBL E
 80 XEQ 14
 81 SF 04
 82 RTN
 83 *LBL J
 84 *LBL 09
 85 XEQ G
 86 FC? 05
 87 RTN
 88 GTO 09
 89 *LBL 11
 90 SAVEX
 91 CLX
 92 +
 93 RTN
 94 *LBL F
 95 SF 05
 96 ENTER^
 97 RDN
 98 FS? 04
 99 XEQ 11
100 FS? 03
101 XEQ 11
102 FS? 02
103 XEQ 11
104 FS? 01

105 XEQ 11
106 FS? 00
107 XEQ 11
108 CLX
109 X<>F
110 XEQ 11
111 R^
112 RTN
113 GTO 09
114 *LBL 10
115 STO [
116 CLX
117 RCLPT
118 DSE X
119 ""
120 SEEKPT
121 X<> [
122 GETX
123 X<> [
124 SEEKPT
125 CLX
126 X<> [
127 RTN
128 *LBL G
129 XEQ 12
130 RCLPT
131 X=0?
132 GTO 00
133 RDN
134 XEQ 10
135 *LBL 00
136 X<>F
137 RDN
138 ENTER^
139 ENTER^
140 ENTER^
141 FS? 00
142 XEQ 10
143 FS? 01
144 XEQ 10
145 FS? 02
146 XEQ 10
147 FS? 03
148 XEQ 10
149 FS? 04
150 XEQ 10
151 R^
152 RTN
153 GTO J
154 END

	This compilation revision 1.1.1
	Copyright © 2018-19 Ángel Martin
	B.1 AOS Overview
	B.2 AOS Flag Usage
	B.3 AOS User Keyboard
	B.4 AOS User Instructions
	B.5 AOS Example

