
SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 1 of 198 January 2016






User’s Manual and Quick Reference Guide

Written and programmed by Ángel M. Martin – January 2016

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 2 of 198 January 2016

This compilation revision 5.85.05

Copyright © 2012 – 2016 Ángel M. Martin

Acknowledgments.-

Documentation wise, this manual begs, steals and borrows from many other sources – in particular
Jean-Marc Baillard’s program collection on the web. Really both the SandMath and this manual would
be a much lesser product without Jean-Marc’s contributions.

There are multiple graphics and figures taken from Wikipedia and Wolfram Alpha, notably when it
comes to the Special Functions sections. I’m not aware of any copyright infringement, but should that
be the case I’ll of course remove them and create new ones using the SandMath function definition and
PRPLOT. Just kidding...

An important contribution comes from the AECROM (Geometric Solvers, Curve Fitting and Program
Generator) and the HP-41 Advantage Pac (FROOT and FINTEG, and Number Base Conversions).

Original authors retain all copyrights, and should be mentioned in writing by any party utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow. Its
breakpoints capability and MCODE trace console are a godsend to programmers. See www.hp41.org

SandMath Overlays © 2009-2015 Luján García

Published under the GNU software licence agreement.

http://www.hp41.org/�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 3 of 198 January 2016



0.- Preamble to Version 4x4+

 7

 Configuring the SandMath 4x4 (revision “Q”) 8

1. Introduction.

Function Launchers and Mass key assignments 9
Used Conventions and disclaimers 10
Getting Started. Accessing the functions. 11
Main and Dedicated Launchers: the Overlay 12
Appendix 0.- The Hyper-shift keyboard 13
Appendix 1.- Last Function and Launcher Maps 15
Function index at a glance. 16

2. Lower Page Functions in Detail

2.1. SandMath44 Group

 Elementary Math functions. 22
 Number Displaying and Coordinate conversions 26
 Number Base Conversions 28
 First, Second and Third degree Equations 31

Appendix 2.- FOCAL program listing 34
 Additional Test Functions: rounded and otherwise 35

2.2. Fractions Calculator

 Fraction Arithmetic and displaying 36

2.3. Hyperbolic Functions

 Direct and Indirect Hyperbolics 38
 Errors and Examples 39

2.4. Recall Math and Floating FIX mode

 Individual RCL Math functions 40
 RCL Launcher – the “Total Rekall” 41
 Floating FIX mode 43
 Appendix 3.- A trip down memory lane 45

2.5. Derivatives and Continued Fractions

Function first and second Derivatives 49
Continued Fractions Evaluation

 51

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 4 of 198 January 2016

2.6. Geometric and TVM$ Solvers

Introduction: yet a new Launcher 54
Triangles, Circles and Slopes 56

 Implementation Details 57

 The Time Value of Money Solver 60
 Definition and Equations 61
 Program Information 63

3. Upper Page Functions in Detail

3.1.a. Statistics and Probability

 Statistical Menus – Another type of Launcher 64
 Alea jacta est… 67
 Combinations and Permutations 68
 Linear Regression – Let’s not digress 69
 Single and Duplex Means (to an end) 70

Ratios, Sorting and Register Maxima 71

 Probability Distribution Functions 72
 Cumulative Probability and Inverse 73
 Poisson Standard Distribution 74

 And what about Prime Factorization? 75

Appendix 4. Prime Factors decomposition 76

Curve Fitting: The AECROM Fitter 78

3.1.b. A few more Geometry Functions

3D vectors and 2D distance 82
ircles and Triangle
Circles, Triangles and tetrahedrons 84
Area and radius from three points

 85

r

3.2. Factorials

A timid foray into Number Theory 86
 Pochhammer symbol: rising and falling empires 87
 Multifactorial, Superfactorial and Hyperfactorial 88
 Logarithm Multi-Factorial 90

Appendix 5.- Primorials; a primordial view. 91
Apery Numbers 93
Kaprekar Sequence 94

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 5 of 198 January 2016

3.3. High-Level Math

 The case of the Chameleon function in disguise 96
 Gamma Function and associates 97
 Lanczos Formula 98

Appendix 6. Comparison of Gamma results 99
 Reciprocal Gamma function 100
 Incomplete Gamma function (lower) 100
 Logarithm Gamma function 101
 Digamma and Polygamma functions 103
 Inverse Gamma Function 104
 Euler’s Beta function 106
 Incomplete Beta function 106

 Bessel Functions and Modified 107
 Bessel functions of the 1st Kind 107
 Bessel functions of the 2nd Kind 108

Getting Spherical, are we? 109
Programming Remarks 110
Appendix 7. FOCAL program for Yn(x), Kn(x) 111

 Riemann Zeta Function 115

Appendix 8.- Putting Zeta to work: Bernoulli numbers 117
 Lambert W Function 118

3.4. Remaining Special Functions in Main FAT

 The unsung Hero 120
Exponential Integral and associates 121

 Generalized Exponential Integrals 122
 Errare humanum est… 123
 Generalized Error Functions 123
 Appendix 9a.- Inverse Error function: coefficients galore 124

Appendix 9b. IERF using the CUDA Library approach 125
 How many logarithms, did you say? 126
 Clausen and Lobachevsky functions 127

3.5. Approximations and Transforms

 The basics: Approximation theory 129
Chebyshev’s Approximation 130
Chebyshev Polynomials 131
Taylor Coefficients and Approximation 133
Appendix 10a. Derivatives of Gamma 136
Fourier Series 137
Appendix 10b. Fourier Coefficients by brute force 138
Discrete Hartley (symmetrical) Transform 140

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 6 of 198 January 2016

3.6. More Special Functions in Secondary FAT

 Carlson Integrals and associates 143
The Elliptic Integrals 144

 Carlson Symmetric Form 146
Complete and Incomplete Legendre Forms 146
Example: Perimeter of an Ellipse 148
Jacobi Elliptic Functions 149
JacobianTheta Functions 152

 Airy Functions 153
 Fresnel integrals 154
 Weber and Anger Functions 155

Hankel, Struve and others.
 A Lambert relapse 156
 Hankel functions – yet a Bessel 3rd. Kind 157
 Getting Spherical, are we? 158
 Struve Functions 159
 Lommel functions 160
 Lerch Trascendent function 161

 Kelvin functions 162
 Kummer functions 163
 Associated Legendre functions 164
 Generalized Laguerre Function 165
 Whittaker functions 166

Toronto function 167

Orphans and Dispossessed.
Tackle the Simple ones First 168

 Decibel Addition 169
Polynomial evaluation – 1st derivative 170

 Arithmetic-Geometric Mean (Revisited) 171
 Example: Complete Elliptic Integral of 1st. Kind 172
 Modified AGM and Complete Elliptic Intg. 173
 Appendix: Mutual inductance of coaxial coils 174
 Debye Function 175
 Dawson Integral 176
 Hypergeometric Functions 177

Regular Coulomb Wave function 179
 Integrals of Bessel functions 180
 Appendix 11.- Looking for Zeroes 181

3.7. Solve and Integrate - Reloaded ___

 Functions Description and Examples

 184
MCODE Cathedrals – a dissertation 185

 Appendix 12 – His master’s voice 186

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 7 of 198 January 2016

4. System Extensions

4.1

AECROM Program Generator

Intro and quick Example 193
A general description 193
Keying in Formulas: the Overlay 195
Details of PRGM 196

.END.

 198

Note: Make sure that revision “O2” (or higher) of the Library#4 module is installed.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 8 of 198 January 2016

Preamble – What’s new in Revision “Q”.

Revision “Q” is the eleventh generation of the SandMath module. It adds many important architectural
changes; such as a dual bank-switched configuration for each of its two pages, and thus multiplying is
initial size four-fold, to 32k in total – without changing its original 8k footprint. The benefits obtained
with this layout are easy to see: more functions and programs are now available. However double
storage space doesn’t mean duplicating the number of functions for several reasons:

1. Because bank-switched pages are not available simultaneously, the code must be structured
taking into account this limitation and other requirements imposed by the OS. For technical
reasons FOCAL code can only reside in the primary bank – thus the usage of secondary banks
is limited to MCODE only. Furthermore, all the menu launchers use the partial data entry
technique (less demanding on battery consumption than keystroke pressing detection) which is
also restricted to the main bank – as the OS will always switch back to the main bank when the
CPU goes to light sleep.

2. Some of the functions are real juggernauts, with very large code streams taking up

considerable space. A good example is the Curve Fitting section (about 1.5k in size in total!),
but also some others fall in the same category as well (TAYLOR, takes about 1k, and IERF
takes about 650 bytes by itself – to mention just two). Ideal candidates for bank-switching!

3. With over 100 functions now, the secondary FAT has received the majority of the new
functions, with just a few changes made to the main FAT in the “-HL MATH” section to include
the most important ones in a more prominent location. Two new sections “–TRANSFORM” and
“-/+” were added to FCAT, to facilitate the navigation around this catalog.

4. Defying those reports stating that it couldn’t be done, this module includes the all-time favorite

Solve and Integrate

functionality, first released by HP in the Advantage Module - and now
available here as FROOT and FINTG. The twist has been the modification of the original code
to run in a bank-switched configuration, located in bank-3 of the upper page. The challenge
was irresistible, and the end result really is a beauty to behold.

5. Revision 3x3 also added the Geometry Solvers

 from the AECROM. The three solvers (TRIA,
CIRC, and SARR) are consolidated into a single function, GMSLVR – so only one FAT entry
was needed. No surprisingly it is a launcher by itself.

6. The icing on the cake is a full implementation of the Last Function

 functionality. Similar to
LastX but applied to the last function executed, it allows repeated execution of the same
function using a convenient shortcut that bypasses all the launcher paths. Very useful for sub-
functions, which cannot be assigned to any key in USER mode. The LastFunction is recorded
either by name or index, using ΣFL , ΣF$ and ΣF#.

7. Substantial enhancements were made to the main launchers and the sub-function handling,
such as the automated display of the sub-function name during a single-step (SST) execution
of a program. Sub-function names are also briefly shown during the execution in RUN mode, or
when entering in a program using ΣF# - providing visual feedback to the user.

8. Revision “M” also managed to include the Time Value of Money functionallity from the just

released TVM ROM: an all-MCODE implementation of the classic functions that rivals with that
in the HP-12C in speed and accuracy.

9. And last but not least, the Advantage Base Conversion functions and the AECROM program

generator

 functionality are now included in revision 4x4 – providing more options to
complement the programming choices at your disposal within the same module.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 9 of 198 January 2016

Rather than re-invent the wheel, the SandMath uses optimized versions of the best math software
available for the 41’ platform. The Geometric Solvers and Curve Fitting programs from the AECROM are
a good example; as well as all the excellent programs developed by Jean-Marc Baillard that have found
its way here. Very often I added a few enhancements to the code (like using 13-digit OS routines or
other MCODE tweaks) but all credit should go to the original authors.

All in all I hope you’d agree this new incarnation of the SandMath takes good advantage of the
developments made and reaches an even balance between enhancements and usability – with few
compromises to speak of. Note that the changes from previous revisions caused a re-arrangement of
the function entries in the upper page, the High-Level Math – both in the main and auxiliary FATs. Be
advised that the individual function codes are different, in case you have written some programs using
the older ones.

Configuring the SandMath_4x4 Revision “P2”

Plugging the SandMath 4x4 module requires using the bank-switching configuration options on the 41-
CL (as well as on Clonix/NoVRAM, or the MLDL-2k). For the 41-CL make sure that the eight ROM
images are stored in the appropriate block locations in memory (either sRAM or Flash), and that you
use the “–MAX” control string in ALPHA for the execution of the PLUG command.

Hint.- this module is a full-house sector configuration: place the 4 lower banks in the first four blocks
within a sector, and the 4 upper banks in the remaining blocks of the same sector – leaving no gaps in
between.

There are only a few new functions in revision 4x4 not included before, but they alone account for two
additional banks (one on each page, lower and upper). The difference is therefore substantial, despite
the apparent sameness with revision 3x3. You may of course choose which one to use, depending on
which one is more convenient for your hardware. The optimal setup is the 4x4 revision, benefiting the
most from the bank-switching implementation - on-line code that doesn’t take additional footprint.

Note for Advanced Users

:

Even if the SandMath_4x4 is a 32k module, it is possible to configure only the first (lower) page as an
independent bank-switched 4k-ROM. This may be helpful when you need the upper port to become
available for other modules (like mapping the CL’s MMU to another module temporarily); or
permanently if you don’t care about the High Level Math (Special Functions) and Statistics sections.

Think however that the FAT entries for the Function launchers and the sub-functions are in the upper
page, so they’ll be gone as well if you use the reduced foot-print version (effective 4k only) of the
SandMath.

Page Bank-1 Bank-2 Bank-3 Bank-4

Upper High-Level Math,
Stats

Function Launchers,
Curve Fitting

HP Advantage
Solve & Integrate

AEC Program
Generator

Lower SandMath_44 FRC, HYP, RCL# Math TVM$, AECROM
Geometry Solvers

Derivatives, Base
Conversions

Note that it is not possible to do it the other way around; that is plugging only the upper page of the
module will be dysfunctional for the most part and likely to freeze the calculator– do not attempt.

Note: Make sure that revision “O2” (or higher) of the Library#4 module is installed.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 10 of 198 January 2016

SandMath_44 Module – Version 4x4, rev. Q.
Math Extensions for the HP-41 System

1. Introduction.

Simply put: here’s the ultimate compilation of MCODE Math functions and FOCAL applications to extend
the native function set of the HP-41 system. At this point in time - way over 30 years after the
machine’s launch - it’s more than likely not realistic to expect them to be profusely employed in FOCAL
programs anymore - yet they’ve been included for either intrinsic interest (read: challenging MCODE or
difficult to realize) or because of their inherent value for those math-oriented folks.

This module is a record-breaking 32k implementation, arranged in a dual bank-switched configuration.
The lower pages include more general-purpose functions, re-visiting the usual themes: Fractions, Base
conversion, Hyperbolic functions, RCL Math extensions, Triangles and Circles, as well as simple-but-
neat little gems to round off the page. In sum: all the usual suspects for a nice ride time.

The upper pages delve into deeper territory, touching upon the special functions, approximation theory,
and Probability/Statistics. Some functions are plain “catch-up” for the 41 system (sorely lacking in its
native incarnation), whilst others are a divertimento into a tad more complex math realms. All in all a
mixed-and-matched collection that hopefully adds some value to the legacy of this superb machine –
for many of us the best one ever.

I am especially thankful for the essential contributions from Jean-Marc Baillard: more than 3/4ths of
this module are directly attributable to his original programs, one way or another.

Wherever possible the 13-digit OS routines have been used throughout the module – ensuring the
optimal use of the available resources to the MCODE programmer. This prevents accuracy loss in
intermediate calculations, and thus more exact results. For a limited precision CPU (certainly per today’s
standards) the Coconut chip still delivers a superb performance when treated nicely.

The module uses routines from the Page#4 Library (a.k.a. “Library#4”). Many routines in the library
are general-purpose system extensions, but some of them are strictly math related, as auxiliary code
repository to make it all fit in an 8k footprint factor - and to allow reuse with other modules. This is
totally transparent to the end user, just make sure it is installed in your system and that the revisions
match. See the relevant Library#4 documentation if interested.

Function Launchers and Mass key assignments.

As any good “theme” module worth its name, the SandMath has its own mass-Key assignment routine
(MKEYS). Use it to assign the most common functions within the ROM to their dedicated keys for a
convenient mapping to explore the functions. Besides that, a distinct feature of this module is the
function launchers, used to access diverse functions grouped by categories. These include the
Hyperbolic, the Fractions, the RCL Math, and the Special Function groups. This saves memory registers
for key assignments, whilst maintaining the standard keyboard available also in USER mode for other
purposes.

This is the tenth incarnation of the SandMath project, which in turn has had a fair number of revisions
and iterations on its own. One distinct addition has been a secondary Function address Table (FAT) to
provide access to many more functions, exceeding the limit imposed by the operating system (64
functions per page). Some other refinements consisted in a rationalization of the backbone
architecture, as well as a more modular approach to each of pages of the module. Gone are the “8k”
and “12k” distinctions of the past – as now the Matrix and Polynomial functions have an independent
life of their own in separate modules, like the SandMatrix - more on that to come.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 11 of 198 January 2016

Conventions used in this manual.

This manual is a more-or-less concise document that only covers the normal use of the functions. All
throughout this manual the following convention will be used in the function tables to denote the
availability of each function in the different function launchers:

[*]: assigned to the keyboard by MKEYS
[ΣF]: direct execution from the main launcher ΣFL
[H]: executed from the hyperbolic launcher -HYP
[F]: executed from the fractions launcher -FRC
[RC]: executed from the RCL# launcher, -RCL/IO
[CR]; executed from the Carlson Launcher (no separate function exists)
[HK]: executed from the Hankel launcher (no separate function exists)
[ΣΣ]: executed from the Statistics Menu, –ST/PRB
[Σ$]: sub-function in the secondary FAT. ΣF$

MKEYS prompts for the asiign/de-assign action; use the Y/N keys or back arrow to cancel. There are a
total of 25 functions assigned, refer to the SandMath overlay for details. Note that MKEYS is
programmable as well.

Xtra Bonus:- High Rollers Game.

There is an Easter egg included in the SandMath 3x3 – hidden somewhere there’s a rendition of the
High Rollers game, so you can relax in between hard-thinking sessions of math, really! There was
simply too much available space in bank 3 of the upper page to leave it unused, so this 500+ bytes
MCODE rendition of the game (written by Roos Cooling, see PPCJ V14 N2 p31) was begging to be
included. As to how to access it… the discovery is part of the enjoyment :-) Hint: even if it’s not
geometric, it certainly is a “Solver”, of a [SHIFT]’ed type…

 ,

Choose any combination from the available digits on the right which sum matches the target on the
left, repeating until there’s no more digits left (YOU WIN) or there aren’t possible combinations (YOU
LOSE). Use R/S to proceed, back-arrow to delete digits. The game will ask you to try again and will
keep the count of the scores.

 ,

Finall Disclaimer.-

With “just” an EE background the author has had his dose of relatively special functions, from college
to today. However not being a mathematician doesn’t qualify him as a field expert by any stretch of the
imagination. Therefore the descriptions that follow are mainly related to the implementation details,
and not to the general character of the functions. This is not a mathematical treatise but just a
summary of the important aspects of the project, highlighting their applicability to the HP-41 platform.

Note: Make sure that revision “O2” (or higher) of the Library#4 module is installed.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 12 of 198 January 2016

Getting Started: Accessing the Functions.

There are about 240+ functions in the SandMath Module. With each of the main two pages containing
its own function table, this would only allow to index 128 functions - where are the others and how can
they be accessed? The answer is called the “Multi-Function” groups.

Multi-Functions ΣF# and ΣF$ provide access to an entire group of sub-functions, grouped by their
affinity or similar nature. The sub-functions can be invoked either by its index within the group using
ΣF#, or by its direct name, using ΣF$. This is implemented in such a way that they are also
programmable, and can be entered into a program line using a technique called “non-merged
functions”.

You may already be familiar with this technique, originally developed by the HEPAX programmers. In
the HEPAX there were two of those groups; one for the XF/M functions and another for the HEPAX/A
extensions. The PowerCL Module also contains its own, and now the SandMath joins them – this time
applied to the mathematical extensions, particularly for the Special Functions group.

A sub-function catalog is also available, listing the functions included within the group. Direct execution
(or programming if in PRGM mode) is possible just by stopping the catalog at a certain entry and
pressing the XEQ key. The catalog behaves very much live the native ones in the machine: you can
stop them using R/S, SST/BST them, press ENTER^ to move to the next “sub-section”, cancel or
resume the listing at any time.

As additional bonus, the sub-function launcher ΣF$ will also search the “main” module FAT if the sub-
function name is not found within the multi-function group – so the user needn’t remember where a
specific function sought for was located. In fact, ΣF$ will also “find” a function from any other plugged-
in module in the system, even outside of the SandMath module.

Main Launcher and Dedicated (Secondary) Launchers.

The Module’s main launcher is [ΣFL]. Think of it as the trunk from which all the other launchers stem,
providing the branches for the different functions in more or less direct number of keystrokes. With a
well-thought out logic in the functions arrangement then it’s much easier to remember a particular
function placement, even if its exact name or spelling isn’t know, without having to type it or being
assigned to any key.

Despite its unassuming character, the ΣFL prompt provides direct access to many functions. Just press
the appropriate key to launch them, using the SandMath Overly as visual guide: the individual functions
are printed in BLUE, with their names set aside of the corresponding key. They become active when the
“ΣF: _” prompt is in the display.

 , or

Besides providing direct access to the most common Special Functions, ΣFL will also trigger the
dedicated function launchers for other groups. Think of these groupings as secondary “menus” and
you’ll have a good idea of their intended use. The following keys activate the secondary menus:

[A], activates the STAT/PRB menus.
[H] and [O], activate the Hankel and Carlson groups launchers respectively
[0] , activates the FRC (Fractions) launcher; [,] (Radix) activates the LastFunction
[SHIFT] switches into the hyperbolic choices; pressing it twice enables the second overlay.
[ALPHA] and [PRGM] activate the ΣF$ and ΣF# sub-functions launchers respectively
[USER] activates the TVM$ launcher (latest addition to the module)
[<-], back-arrow cancels it or returns to it from a secondary menu.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 13 of 198 January 2016

As it occurs with standard functions, the name of the launched function will be shown on the display
while you hold the corresponding key – and NULLED if kept pressed. This provides visual feedback on
the action for additional assurance.

This is a good moment to familiarize yourself with the [ΣFL] launcher. Go ahead and try it, using it also
in PRGM mode to enter the functions as program lines. Note that when activating ΣF$ you’ll NOT need
to press [ALPHA] a second time to spell the sub-function name (unlike standard functions like COPY, or
XEQ). This saves keystrokes as you can start spelling the function name directly. You still need to press
[ALPHA] to terminate the sequence.

Direct-access function keys:

[A]: Stat/Prob MENUS
[B]: Euler’s Beta Function
[C]: Digamma (PSI)
[D]: Rieman’s Zeta Function
[E]: Gamma Natural log
[F]: One over Gamma
[G]: Euler’s Gamma Function
[H]: Hankel’s Launcher
[I]: Bessel I(n,x)
[J]: Bessel J(n,x)
[SHIFT]: Hyperbolics Launcher
[K]: Bessel K(n,x)
[L]: Bessel Y(n,x)
[M]: Lambert’s W
[SST]: Incomplete Gamma
[N]: Root Finder
[O]: Carlson Launcher
[R]: Exponential integral
[S]: Numeric integral
[X]: Polygamma (PsiN)
[V]: Cosine Integral
[W]: Spherical Y(n,x)
[Z]: Sine Integral
[=]: Spherical J(n,x)
[?]: Incomplete Beta
[0]: Fractions Launcher
[R/S]: View Mantissa

[,]: Activates the Last Function [USER]: Time Value of Money launcher, TVM$
[ALPHA]:Sub-function Alpha launcher, ΣF$ [PRGM]: Sub-function Index
 [ON]: Turns the calculator OFF [<-]: Cancels out to the OS or retruns from 2nd.

 Launcher, ΣF#

A green “H” on the overlay prefixing the function name represents the Hyperbolic functions. This also
includes the Hyperbolic Sine and Cosine integrals, in addition to the three “standard” ones. Using the
[SHIFT] key will toggle between the direct and inverse functions. Pressing [<-] will take you back to
the main ΣF: prompt.

Typically the secondary launchers have the possible choices in their prompt; we’ll see them later on.
The STAT menu differs from the others in that it consists of two line-ups toggled with the [SHIFT] key
– providing access to 10 functions using the keys in the top-row directly below the function symbol.
The Fractions functions are encircled by a red line on the overlay, at the bottom and left rows of the
keyboard. They include the fraction math, plus a fraction Viewer and fraction/Integer tests. The Hankel
and Carlson launchers present their choices in their prompts, and will be covered in a dedicated
section later in the manual.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 14 of 198 January 2016

Appendix 0.- The “Hyper-SHIFT” keyboard. (HYP”)

The available room in the auxiliary banks has proven useful to extend the HYP launcher beyond the
strictly hyperbolic functions. Presing the [SHIFT] key twice activates the “hyper-SHIFT” mode; and then
repeat pressings of [SHIFT] will toggle between the normal and hyper-Shift modes:

 ----------

The hyper-SHIFT extensions are mainly about adding a SHIFTED HYP mode with a full keyboard of
“assignments”, like those for functions assigned by MKEYS to the HYP prompt choices.

The picture below shows the function map for the [HYP] and [SHIFT-HYP] launchers (HYP”). As it’s
now customary, the [SHIFT] key will toggle between these two, and the back arrow will return to the
main ΣFL launcher.

Note that this arrangement includes both main- and sub-functions in the same second-layer keyboard.
This is a very convenient way to circumvent the inability to directly assign sub-functions to keys. Later
on in the manual we’ll see dedicated launchers for other subfunctions in the CARLSON and HANKEL
sections – completing the round.

[A]: Prime Factors
[B]: Discrete Hartley Transform
[C]: Curve Fitting
[D]: Rieman’s Zeta (Borwein)
[E]: Poly-Logarithm
[F]: Fourier Series
[G]: Inverse Gamma
[H]: Inverse Hyp SINE
[I]: Inverse Hyp COS
[J]: Inverse Hyp TAN
[SHIFT]: Toggles Hyp Launchers
[K]: Days between Dates
[L]: Cubic Equation Roots
[M]: Chebyshev Approximation
[SST]: ATAN2 (Complex argument)
[N]: INPUT data in registers
[O]: Taylor Series
[P]: Arithmetic-Geometric Mean
[<-]: Cancels out to [ΣFL]
[Q]: Probability Distribution Function
[R]: Generalized Exponential Integral
[S]: Generalized Error Function
[T]: Inverse Error Function
[U]: Cumulative Probability Function
[V]: Hyperbolic Sine Integral
[W]: Whittakert Function M
[X]: Lobachesvsky function
[Y]: Inverse Cumulative Probability
[Z]: Hyperbolic Sine Integral
[=] Clausen function
[?] Straight Line Equation
[:] Reg Maximum [Spc] Register Sort
[;] Stack Sort [R/S] Ceiling function

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 15 of 198 January 2016

This implementation effectively supersedes the MKEYS approach, respecting the default keyboard (no
need to toggle USER mode) and without the extra KA registers consumption. Note also that the HYP”
keyboard is compatible with the SandMath Overlay - of which finally real-life units were made!.

The “Last Function” functionality.

The latest releases of the SandMath and SandMatrix modules include support for the “LASTF”
functionality. This is a handy choice for repeat executions of the same function (i.e. to execute again
the last-executed function), without having to type its name or navigate the different launchers to
access it.

The implementation is not universal – it only covers functions invoked using the dedicated launchers,
but not those called using the mainframe XEQ function. It does however support two scenarios: (a)
functions in the main FATs, as well as (b) those sub-functions from the auxiliary FATs. Because the
latter group cannot be assigned to a key in the user keyboard, the LASTF solution is especially useful in
this case. The following table summarizes the launchers that have this feature:

Module Launchers LASTF Method
SandMath 3x3+ ΣFL, HYP, FRC, RCL# Captures sub/fnc id#
revision “M” ΣF$ _ Captures sub/fnc NAME
 ΣF# _ _ _ Captures sub/fnc id#
revision “N” FCAT (XEQ’) Captures sub/fnc id#

Note that the Alphabetical launcher ΣF$ will switch to ALPHA mode automatically. Spelling the function
name is terminated pressing ALPHA, which will either execute the function (in RUN mode) or enter it
using two program steps in PRGM mode by means of the ΣF# function plus the corresponding index
(using the so-called non-merged approach). This conversion happens entirely automatically.

The LASTF operation is also supported when excuting a sub-function from within the FCAT
enumeration, using the [XEQ] hot-key - which is very handy for those with elusive spelling. Another
new enhancement is the display of the sub-function names when using the index-based launcher ΣF# -
which provides visual feedback that the chosen function is the intended one (or not). This feature is
active in RUN mode, when entering it into a program, and when single-stepping a program execution -
but obviously not so during the standard program runs.

LASTF Operating Instructions

No separate function exists - The Last Function feature is triggered by pressing the radix key (decimal
point - the same key used by LastX) while the launcher prompts are up. This is consistently
implemented across all launchers supporting the functionality in the three modules (SandMath,
SandMatrix and PowerCL) – they all work the same way.

When this feature is invoked, it first briefly shows “LASTF” in the display, quickly followed by the last-
function name. Keeping the key depressed for a while shows “NULL” and cancels the action. In RUN
mode the function is executed, and in PRGM mode it’s added as a program step if programmable, or
directly executed if not programmable.

The functionality is a two-step process: a first one to capture the function id#, and a second that
retrieves it, shows the function name, and finally parses it. All launchers have been enhanced to store
the appropriate function information (either index codes or full names) in registers within a dedicated
buffer (with id# = 9). The buffer is maintained automatically by the modules (created if not present
when the calculator is ‘switched ON), and its contents are preserved while it is turned off (during “deep
sleep”). No user interaction is required.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 16 of 198 January 2016

If no last-function information yet exists, the error message “NO LASTF” is shown. If the buffer #9 is
not present, the error message is “NO BUF” instead.

Appendix 1.- Launcher Maps.

The figures below provide a better overview, illustrating the hierarchy between launchers and their
interconnectivity. For the most part it is always possible to return to the main launcher pressing the
back arrow key, improving so the navigation features – rather useful when you’re not certain of a
particular function’s location.

The first one is the Main SandMath Launcher.

The first mapping doesn’t show all the direct execute function keys. Use the SandMath overlay as a
reference for them (names written in BLUE aside the functions).

Note that ΣFL$ requires pressing [ALPHA] a second time in order to type the sub-function name.

And here’s the Enhanced RCL MATH group:

Here all the prompts expect a numeric entry. The two top rows keys can be used as shortcuts for 1-10.
Note that No STK functionality is implemented – even if you can force the prompt at the IND step.
Typically you’ll get a “DATA ERROR” message - Rather not try it :-)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 17 of 198 January 2016

Function index at a glance.

And without further ado, here’s the list of functions included in the module. First the functions in the
lower page – basic extensions that will be used in more complex routines later on.

Name Description Input Author
0 -SNDMTH 3x3 TAYLOR sub-function Auxiliary usage Ángel Martin
1 2^X-1 Powers of 2 Value in X JM Baillard
2 Σ1/N Harmonic Numbers N in X Ángel Martin
3 ΣDGT Sum of mantissa digits Number in X Ángel Martin
4 ΣN^X Geometric Sums N in Y, value in X Ángel Martin
5 AINT Alpha Integer Part Value in X Frits Ferwerda
6 ATAN2 Dual-argument ATAN Values in Y,X Ángel Martin
7 BS>D _ _ Base to Decimal Base in X, string in Alpha George Eldridge
8 CBRT Cubic Root Value in X Ángel Martin
9 CEIL Ceil function Value in X Ángel Martin

10 CHSY by X CHSYX Exp. In Y, argument in X Ángel Martin
11 CROOT Cubic Equation Roots Coeffs. In Stack Ángel Martin
12 D>BS _ _ Decimal to Base Base in Y, value in X HP Co.- Ken Emery
13 D>H Dec to Hex Decimal value in X William Graham
14 DERV _ Function Derivatives Step size, point in Y,X Greg McClure
15 E3/E+ 1,00X Number in X Ángel Martin
16 FLOOR Floor Function Argument in X Ángel Martin
17 GEU Euler's Constant none Ángel Martin
18 GMSLVR _ Geometric and TVM Solvers Prompts for function Nelson F. Crowle
19 H>D Hex to Dec Hex string in Alpha William Graham
20 HMS* HMS Multiply by scalar Arguments in Y and X Tom Bruns
21 LASTF Calles Last Function used Uses data in buffer#9 Ángel Martin
22 LOGYX LOG b of X Base in Y, argument in X Ángel Martin
23 MKEYS _ Mass Key Assgn. Prompts Y/N/Cancel HP Co.
24 CF2V _ Continued Fractions Initial value, point in Y,X Greg McClure
25 QREM Quotient Reminder Arguments in Y and X Ken Emery
26 QROOT 2nd. Degree Roots Coeffs. In Z, Y and X Ángel Martin
27 QROUT Ouput Roots Shows results in Stack Ángel Martin
28 R>P Complete R-P Arguments in Y and X Tom Bruns
29 R>S Rectangular to Spherical Arguments in Z, Y, and X Ángel Martin
30 S>R Spherical to Rectangular Arguments in Z, Y, and X Ángel Martin
31 STLINE Straight Line from Stack Data points in {T,Z,Y,X} Ángel Martin
32 VMANT View Mantissa Argument in X. Hold key to see Ken Emery
33 Σ^123 _ Sums of integer powers Exponent in Y, terms in X Martin - Kaarup
34 X^3 X^3 Argument in X Ángel Martin
35 X=1? Is X 1? Argument in X Nelson F. Crowle
36 X=YR? Is X~Y? (rounded) Arguments in Y and X Ángel Martin
37 X>=0? is X>=0? Argument in X Ángel Martin
38 X>=Y? is X>=Y? Arguments in Y and X Ken Emery
39 Y^1/X Xth. Root of Y Arguments in Y and X Ángel Martin
40 Y^^X Extended Y^X Arguments in Y and X Ángel Martin
41 PRGM _ Program Generator Formula entered in Alpha Nelson F. Crowle
42 -FRC _ Fraction Math Launcher Prompts for function Ángel Martin
43 D>F Decimal to Frac Fractional number in X Frans de Vries
44 F+ Fraccion Addition Fractions in stack Ángel Martin
45 F- Fraction Substract Fractions in stack Ángel Martin

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 18 of 198 January 2016

Name Description Input Author
46 F* Fraction Multiply Fractions in stack Ángel Martin
47 F/ Fraction Divide Fractions in stack Ángel Martin
48 FRC? is X fractional? Argument in X Ángel Martin
49 INT? Is X Integer? Argument in X Ángel Martin

50 -HYP _ Hyberbolics Launcher Prompts for function Ángel Martin

51 HACOS Hypebolic ACOS Argument in X Ángel Martin
52 HASIN Hyperbolic ASIN Argument in X Ángel Martin
53 HATAN Hyperbolic ATAN Argument in X JM Baillard
54 HCOS Hyperbolic COS Argument in X Ángel Martin
55 HSIN Hyperbolic SIN Argument in X Ángel Martin
56 HTAN Hyperbolic TAN Argument in X JM Baillard
57 -RCLIO _ Extended Recall Prompts for function Ángel Martin
58 AIRCL _ _ ARCL Integer Part Prompts for Reg# Ángel Martin
59 RCL^ _ _ Recall Power Prompts for Reg# Ángel Martin
60 RCL+ _ _ Recall Add Prompts for Reg# Ángel Martin
61 RCL- _ _ Recall Subtract Prompts for Reg# Ángel Martin
62 RCL* _ _ Recall Multiply Prompts for Reg# Ángel Martin
63 RCL/ _ _ Recall Divide Prompts for Reg# Ángel Martin

Next are the functions in the Upper Page – a tad more involved and getting into the High Level Math
fields. Some are FOCAL routines with MCODE headers, and most use functions from the lower page.

Name Description Input Author
0 -HL MATH+ Displays "RUNNING…" n/a Ángel Martin
1 1/GMF Reciprocal Gamma Cont..Frc. argument in X JM Baillard
2 ΣFL Function Launcher _ Prompts for function Ángel Martin
3 ΣF$ _ Sub-function Launcher by Name Prompts for Name Ángel Martin
4 ΣF# Sub-function Launcher by index _ _ _ Prompts for Index Ángel Martin
5 BETA Beta Function arguments in Y and X Ángel Martin
6 CHBAP _ Chebyshev's Approximation Prompts for FName & Data JM Baillard
7 CI Cosine Integral argument in X JM Baillard
8 DHST Discrete Hartley Transform Driver for DHT JM Baillard
9 EI Exponential Integral argument in X Ángel Martin

10 ENX Generalized Exponential Integrals Order in Y, argument in X JM Baillard
11 ERF Error Function Argument in X JM Baillard
12 FFOUR Fourier Series Prompts for Data Ángel Martin
13 FINTG _ Numerical Integration Prompts for FName HP Co.
14 FLOOP Auxiliary function Under prgm control HP Co.
15 FROOT _ Solution of f(x)=0 Prompts for FName HP Co.
16 GAMMA Gamma Function (Lanczos) Argument in X Ángel Martin
17 HCI Hyperbolic Cosine Integral Argument in X JM Baillard
18 HGF+ Generalized Hypergeometric Funct. Data in stack and registers JM Baillard
19 HSI Hyperbolic Sine Integral Argument in X JM Baillard
20 IBS Bessel In Function Order in Y, argument in X Ángel Martin
21 ICBT Incomplete Beta Function Arguments in Z, Y, and X JM Baillard
22 ICGM Incomplete Gamma Function Arguments in Y and X JM Baillard
23 IERF Inverse Error function Argument in X Ángel Martin
24 IGMMA Inverse Gamma Argument in X Ángel Martin
25 JBS Bessel Jn Function Order in Y, argument in X Ángel Martin
26 KBS Bessel Kn Function Order in Y, argument in X Ángel Martin

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 19 of 198 January 2016

Name Description Input Author
27 LINX Polylogarithm Order in Y, argument in X Ángel Martin
28 LNGM Logarythm Gamma Function Argument in X Ángel Martin
29 LOBACH Lobachevsky Function Argument in X Ángel Martin
30 PSI Digamma Function Argument in X Ángel Martin
31 PSIN Polygamma Order in Y, argument in X JM Baillard
32 SI Sine Integral Argument in X JM Baillard
33 SJBS Spherical J Bessel Order in Y, argument in X Ángel Martin
34 SYBS Spherical Y Bessel Order in Y, argument in X Ángel Martin
35 TAYLOR _ Taylor Polynomial order 10 Prompts for FName Martin-Baillard
36 WL0 Lambert W Function Argument in X Ángel Martin
37 YBS Bessel Yn Order in Y, argument in X Ángel Martin
38 ZETA Zeta Function (Direct method) Argument in X Ángel Martin
39 ZETAX Zeta Function (Borwein) Argument in X JM Baillard
40 -PB/STS _ Displays STAT menu choices Prompts for function Ángel Martin
41 %T Total Percentual Arguments in Y and X Ángel Martin
42 CORR Correlation Coefficient Data in ΣREG registers JM Baillard
43 COV Sample Covariance Data in ΣREG registers JM Baillard
44 "CURVE" Curve Fitting (AECROM) Prompts for data Nelson F. Crowle
45 EVEN? is X Even? Argument in X Ángel Martin
46 GCD Greatest Common Divisor Arguments in Y and X Ángel Martin
47 LCM Least Common Multiple Arguments in Y and X Ángel Martin
48 LR Linear Regression Data in ΣREG registers JM Baillard
49 LRY LR Y-value Data in ΣREG registers JM Baillard
50 NCR Combinations Arguments in Y and X Ángel Martin
51 NPR Permutations Arguments in Y and X Ángel Martin
52 ODD? Is X Odd? Argument in X Ángel Martin
53 PDF Probability Distribution Function µ in Z, σ in Y, x in X Ángel Martin
54 PFCT Prime Factorization in Alpha Argument in X Ángel Martin
55 PRIME? Is X Prime? Argument in X Jason DeLooze
56 RAND Random Number None / Time module Håkan Thörgren
57 RGMAX Block Maximun Control word in X JM Bailalrd
58 RGSORT Register Sort Control word in X JM Baillard
59 RGSUM Register Sum Control word in X JM Baillard
60 SEEDT Stores Seed for RNDM Argument in X Håkan Thörgren
61 ST<>Σ Exchange STK & ΣREG Data in stack and ΣREG Nelson F. Crowle
62 STSORT Stack Sort Data in Stack David Phillips
63 TVM$ _ Time Value of Money Launcher Prompts for options Ángel Martin

Functions in blue font are all in MCODE. Functions in black font are MCODE entries to FOCAL
programs. Pink and Yellow backgrounds denote new and upgraded in latest revisions.

(*) The best way to access FCAT is through the main launcher [ΣFL] , then pressing [SHIFT] ENTER^ (“N”)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 20 of 198 January 2016

Next come the sub-functions within the Special Functions Group – deeply indebted to Jean-Marc’s
contribution (but not the only section in the module). Note that there are four sections within this
auxiliary FAT – you can use the FCAT hot keys to navigate the groups.

Index# Name Description Input Author
0 -SP FNC Cat header - does FCAT none Ángel Martin
1 #BS Aux routine, All Bessel Under program control Ángel Martin
2 #BS2 Aux routine 2nd. Order, Integers Under prgm control Ángel Martin
3 Airy Functions Ai(x) & Bi(x) AIRY Argument in X JM Baillard
4 Associated Legendre fnct. 1st kind ALF Arguments in Z, Y, and X JM Baillard
5 Inverse Lambert W AWL Argument in X Ángel Martin
6 DAWSON Dawson integral Argument in X Martin-Baillard
7 Debye functions DEBYE Order in Y, argument in X Martin-Baillard
8 Hypergeometric function HGF Data in stack and registers JM Baillard
9 HK1 Hankel1 Function Order in Y, argument in X Ángel Martin

10 HK2 Hankel2 Function Order in Y, argument in X Ángel Martin
11 HNX Struve H Function Order in Y, argument in X JM Baillard
12 ITI Integral of IBS Order in Y, argument in X Ángel Martin
13 ITJ Integral of JBS Order in Y, argument in X Ángel Martin
14 JNX1 Bessel Jn for large arguments Order in N, argument in X Keith Jarret
15 Ber & Bei functions KLV1 Order in Y, argument in X JM Baillard
16 KLV2 Ker & Kei functions Order in Y, argument in X JM Baillard
17 Kummer Function KUMR Arguments in Z, Y, and X Ángel Martin
18 Lerch Transcendent function LERCH Arguments in Z, Y, and X JM Baillard
19 Logarythmic Integral LI Argument in X Ángel Martin
20 LNX Struve Ln Function Argument in X JM Baillard
21 Lommel s1 function LOMS1 Arguments in Z, Y, and X JM Baillard
22 Lommel s2 function LOMS2 Arguments in Z, Y, and X JM Baillard
23 RCWF Regular Coulomb Wave Function Arguments in Z, Y, and X JM Baillard
24 Regularized hypergeometric function RHGF Data in stack and registers JM Baillard
25 SHK1 Spherical Hankel1 Argument in X Ángel Martin
26 SHK2 Spherical Hankel2 Argument in X Ángel Martin
27 SIBS Spherical IBS Order in Y, argument in X Ángel Martin
28 Toronto function TMNR Arguments in Z, Y, and X JM Baillard
29 Weber and Anger functions WEBAN Order in Y, argument in X JM Baillard
30 WHIM Whittaker M function Arguments in Z, Y, and X Ángel Martin
31 WL1 Lambert W1 Argument in X Ángel Martin
32 ZOUT Output Complex to ALPHA Im in Y, re in X Ángel Martin
33 -ELLIPTIC Section Header none n/a
34 AJF Aux for JEF Under program control JM Baillard
35 BRHM Area of cyclic quadrilateral Four sides in stack JM Baillard
36 CLAUS Clausen Function Argument in X JM Baillard
37 CRF Carlson Integral 1st. Kind Arguments in Z, Y, and X JM Baillard
38 CRG Carlson Integral 2nd. Kind Arguments in Z, Y, and X JM Baillard
39 CRJ Carlson Integral 3rd. Kind Arguments in stack {X,Y,Z,T} JM Baillard
40 CSX Fresnel Integrals, C(x) & S(x) Argument in X JM Baillard
41 ELIPE Complete Elliptic Intg. 2nd. Kind Argument in X Ángel Martin
42 ELIPF Incomplete Elliptic Integral Arguments in Y and X Ángel Martin
43 ELIPK Complete Elliptic intg. 1st. Kind Argument in X Ángel Martin
`44 EPER Perimeter of Ellipse Semi-axis in Y and X Ángel Martin
45 HERON Area of Triangle (Heron formula) Sides in Z, Y, X JM Baillard
46 JEF Jacobian Elliptic functions Arguments in Y and X JM Baillard
47 LEI1 Legendre Elliptic Integral 1st. Kind Arguments in Y and X JM Baillard

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 21 of 198 January 2016

48 LEI2 Legendre Elliptic Integral 2nd. Kind Arguments in Y and X JM Baillard
49 LEI3 Legendre Elliptic Integral 3rd. Kind Arguments in Y and X JM Baillard
50 Point-to-Point Distance PP2 Data points in Stack Ángel Martin
51 Surface Area of an Ellipsoid SAE Semi-axis in Y, Y, and X JM Baillard
52 Theta Functions (1,2,3,4) THETA Index in Z, arguments in Y,X Martin-Baillard
53 THV Tetrahedron Volume Edges stored in {R01-R06} JM Baillard

The following section groups the factorial functions, circling back from the special functions into the
number theory field - a timid foray to say the most.

index# Name Description Input Author
54 -FACTORIAL Section Header None n/a

55 AGM Arithmetic-Geometric Mean Arguments in Y and X Ángel Martin
56 AGM2 Modified AGM Arguments in Y and X Ángel Martin
57 APNB Apery Numbers Order in X JM Baillard

58 BN2 Bernouilly Numbers Order in X Ángel Martin
59 CPF Cumulative probability (µ,σ) µ in Z, σ in Y, x in X Ángel Martin
60 Generalized Error Function ERFN Order in Y, argument in X JM Baillard
61 FFCT Falling Factorial Order in Y, argument in X Ángel Martin
62 ICPF Inverse Cumulative Prob. Argument in X Ángel Martin
63 LAYX Generalized Laguerre Functions Arguments in Z, Y, and X Ángel Martin

64 LOGHF Logarithm Hyper-Factorial Argument in X Ángel Martin

65 LOGMF Logarithm Multi-Factorial Repeat in Y, argument in X JM Baillard
66 MFCT Multi-Factorial Repeat in Y, argument in X JM Baillard
67 NPRML Number Primorials Order in X Ángel Martin
68 POCH Pochhammer symbol Order in Y, argument in X Ángel Martin
69 PRML Prime PrImorials Order in X Ángel Martin
70 PSD Poisson Standard Distribution Parameters in Y and X Ángel Martin
71 QTNL Quantile (Standard Normal ICP) Argument in X Ángel Martin
72 Super Factorial SFCT Argument in X JM Baillard
73 XFCT Extended Factorial Argument in X Ángel Martin

The next two sections take us into the Transforms and Approximation theory, plus several new
additions related to number means and other topics:

index# Name Description Input Author
74 -TRANSFORM Section Header none n/a
75 ^LIST Input Data in List Control word in X Ángel Martin
76 ANUMDL ANUM with Deletion Value in Alpha HP Co.
77 b*e Array size from cntl. word Bbb.eee in X Ángel Martin
78 b<>e index swapping bb.eee in X Ángel Martin
79 CDAY Calendar Day Julian/Gregorian in X Ángel Martin
80 CdT Aux for CHBAP Under program control JM Baillard
81 CHB Chebyshev Poyin.1st. Kind Cntl. Word in Y, point in X Ángel Martin
82 CHB2 Chebyshev Polyn. 2nd. Kind Cntl. Word in Y, point in X Ángel Martin
83 CHBCF Chebyshev's Coefficients Data in R11, R12 and X JM Baillard
84 CRVF Curve Fitting (AECROM) Under program control Nelson F. Crowle
85 D% Difference Percent Arguments in Y and X Ángel Martin
86 DAYS Days between Dates Dates in Y and X HP Co.
87 DHT Discrete Hartley transform Data in X and registers JM Baillard
88 dPL First derivative of Polynomial Cntl. Word in Y, point in X Ángel Martin
89 IN Input Data in Registers First register in X Ángel Martin

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 22 of 198 January 2016

90 INPUT Data input as ALPHA Lists Contril word in X Ángel Martin
91 JDAY Julian Day Number Date in X (MM,DDYYYY) Ángel Martin
92 OUT Output Data from Registers Cntl. Word in X Ángel Martin
93 PDEG Polyn degree from control word Cntl. Word in X JM Baillard
94 PL Polynomial Evaluation Cntl. Word in Y, point in X Ángel Martin
95 -/+ Calculates (Y-X)/(Y+X) Arguments in Y and X Ángel Martin
96 EECC Ellipse Eccentricity Semi-axis in X,Y Ángel Martin
97 EQT Curve Equation Curve id# in X Ángel Martin
98 LRX Linear Regression Abcissa Y-Value in X Ángel Martin
99 Y/N? Prompts for Yes/No none PANAME ROM

100 CIRCL Radius and Triangle Area 3-points data in R01-R06 Ángel Martin
101 dB+ Decibel Addition dB values in Y and X Ángel Martin
102 GHM Geometric-Harmonic Mean Values in X, Y Greg McClure
103 AMEAN Registers Arithmetic Mean Control word in X Ángel Martin
104 HMEAN Registers Harmonic Mean Control word in X Ángel Martin
105 GMEAN Registers Geometric Mean Control word in X Ángel Martin
106 PMEAN Generalized p-Mean Control word in X Ángel Martin
107 PNEXT Next Prime Initial number in X Poul Kaarup
108 PTWIN Twin Primes Initial number in X Peter Platzer
109 DSP? Display Settings none Ángel Martin
110 KAPR Kaprekar Sequences N in Y, number in X JM Baillard
111 MANTXP Mantissa & Exponent Argument in X David Yerka
112 VMOD Vector Module x, y,z in stack Ángel Martin
113 VXA Vector Cross Product v1 in stack, V2 in alpha Ángel Martin
114 V*A Vector Dot Product V1 in stack, V2 ni alpha Ángel Martin
115 REV Module Revision none Ángel Martin
116 FCAT _ Sub-Function Catalog Has hot-keys Ángel Martin

The Sub-Function Catalog.

 FCAT provides usability enhancements for admin and housekeeping. It invokes the sub-function
CATALOG,

with hot-keys for individual function launch and general navigation. Users of the POWERCL
Module will already be familiar with its features, as it’s exactly the same code – which in fact resides in
the Library#4 and it’s reused by both modules and the SandMatrix as well.

The hot-keys and their actions are listed below:

[R/S]: halts the enumeration
[SST/BST]: moves the listing one function up/down
[SHIFT]: sets the direction of the listing forwards/backwards
[XEQ]: direct execution of the listed function – or entered in a program line
[ENTER^]: moves to the next/previous section depending on SHIFT status
[<-]: back-arrow cancels the catalog

One limitation of the sub-functions scheme that you’ll soon realize is that, contrary to the standard
functions, they cannot be assigned to a key for the USER keyboard. Typing the full name (or entering
its index at the ΣFL# prompt) is always required. This can become annoying if you want to repeatedly
execute a given sub- function.

The LAST Function implementation certainly minimizes this issue for repeat executions of the last
sub-function called, without a dedicated key assignment required. Another work-around consists of
writing a micro-FOCAL program with just the sub-function as a single pair of program lines, and then
assign it to the key of choice. Not perfect but it works.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 23 of 198 January 2016

 2. Lower-Page Functions in detail



The following sections of this document describe the usage and utilization of the functions included in
the SandMath_44 Module. While some are very intuitive to use, others require a little elaboration as to
their input parameters or control options, which should be covered here. Reference to the original
author or publication is always given, for additional information that can (and should) also be
consulted.

2.1.1. Elementary Math functions

Even the most complex project has its basis – simple enough but reliable, so that it can be used as
solid foundation for the more complex parts. The following functions extend the HP-41 Math function
set, and many of them will be used either as MCODE subroutines or directly in FOCAL programs.

 Function Description Author
 2^X-1 Self-descriptive, faster and better precision than FOCAL Ángel Martin
[*] Σ1/N Harmonic Number H(n) Ángel Martin

 Σ^123 _ N in X, Prompts for exponent Martin - Kaarup

[*] ΣN^X Geometric Sums Ángel Martin

 ATAN2 Two-argument arctangent (complex argument) Ángel Martin
[*] CBRT Cubic root (main branch) Ángel Martin
[*] CEIL Ceiling function of a number Ángel Martin
[*] CHSYX Multiple CHS by Y Ángel Martin
 E3/E+ Index builder Ángel Martin
[*] FLOOR Floor function of a number Ángel Martin
 GEU Euler-Mascheroni constant Ángel Martin
[*] LOGYX Base-Y Natural logarithm of X Ángel Martin
 QREM Quotient Remainder Ken Emery
[*] X^3 Cube power of X Ángel Martin
[*] Y^1/X x-th root of Y Ángel Martin
[*] Y^^X Very large powers of X (result >= 1E100) Ángel Martin
 YX^ Modified Y^X (does 0^0=1) JM Baillard

• 2^X-1 provides a more accurate result for smaller arguments than the FOCAL equivalents. It

will be used in the ZETAX program to calculate the Zeta function using the Borwein algorithm.

• Σ1/N calculates the Harmonic number of the argument in X, that is the sum of the
reciprocals of the natural

 numbers (which excludes zero) lower and equal to n. It will be used
in the calculation of the Kelvin functions and the Bessel functions of the second kind, K(n,x)
and Y(n,x).

 Example:

 calculate H(5) and H(25). Use the main ΣFL launcher and the LastF functionality.

 5, ΣFL [SHIFT] [F] => 2.283333333
 25, ΣFL , [,] => 3.815958178

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 24 of 198 January 2016

• Σ^123 provides a convenient grouping for several functions that calculate the sum of
integer powers directly based on the corresponding formulas. The number of terms to sum is
expected to be in the X- register, and the exponent is entered as the function prompt. The
exponents can be 1 (linear sum using the triangular formula), 2 (sum of squares using the
pyramidal formulas) or 3 (sum of cubes also using the pyramidal formulas). Any input larger
than 3 will also revert to case=3. An input of zero will calculate the sum of mantissa digits for
the number in X, same as function ΣDGT described later on.

Example:

 Calculate the sum of the first 10 natural numbers and their squares and cubes:

10, Σ^123 _ , plus “1” at the prompt quickly returns: 55.00000000
LASTX, Σ^123 _ , “2” => 385.0000000
LASTX, Σ^123 _ , “3” => 3,025.000000

Note that this function is programmable, and that in a program the value of the exponent is
expected to be entered in the next program line following Σ^123 – i.e. it also uses the “non-
merged” approach.

• ΣN^X Calculates a generalized value of the Faulhaber’s formula for integer values of x. –

The few first integer values of x have explicit formulas for the result (which are used in the
function Σ^123 described abobe) , but that’s not the case for a general value - which can
also be non-integer. Obviously for x=-1 this function returns identical results than Σ1/N, albeit
slower due to the additional complexity of the definition of the term.

Example: Check the triangular (x=1) and pyramidal (x=2) formulas for n=10 – which are
particular cases of the Faulhaber’s Formula, involving Binomial coefficients and Bernoulli’s
numbers. See the link below for details: http://en.wikipedia.org/wiki/Faulhaber%27s_formula

10, ENTER^, 1, ΣFL [SHIFT] [A] => 55.00000000
10, ENTER^, 2, ΣFL [,] => 385.0000000

And using the convention B(1) = 0.5 the formula is:

Which could be programmed using a few of the SandMath functions, albeit it would be considerably
slower due to the impact of the Zeta algorithms (part of Bernoulli’s) – kicking in for n>4.

• CHSYX is related to the same subject, and in general relevant to the summation of
alternating series – It can be regarded as an extension of CHS but dependent of the number in
X. Its expression is:

 CHS(y,x)= y*(-1)^x, and thus changing the sign of Y when the number in X is odd.

http://en.wikipedia.org/wiki/Faulhaber%27s_formula�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 25 of 198 January 2016

• ATAN2 is the two-argument variant of arctangent. Its expression is given by the following
definitions:

Example:

 Calculate ATAN2(π, 2π) using the main ΣFL launcher.

 PI , PI , 2 , * , ΣFL [SHIF]-[SHIFT] [SST] => 1.107148718

Those amongst you with a penchant for complex variable would no dobut recognize this as the
principal value of the argument of the logarithm of a complex number.

• E3/E+ does just what its name implies: adds one to the result of dividing the argument in x
by one-thousand. Extensively used throughout this module and in countless matrix programs,
to prepare the element indexes.

• FLOOR and CEIL . The floor and ceiling functions map a real number to the largest previous

or the smallest following integer, respectively. More precisely, floor(x) = [x] is the largest
integer not greater than x and ceiling(x) =]x[is the smallest integer not less than x.

The SandMath implementation uses the native MOD function, through the expressions:

CEIL (x) = [x – MOD(x, -1)]; and FLOOR (x) = [x – MOD(x, 1)].

• GEU is a new constant added to the HP-41: the Euler-Mascheroni constant, defined as the

limiting difference between the harmonic series and the natural logarithm:

The numerical value of this constant to 10 decimal places is: γ = 0.5772156649… The stack lift
is enabled, allowing for normal RPN-style calculations. It appears in formulas to calculate the Ψ
(Psi) function (Digamma) and the Bessel functions of 2nd. Kind, amongst others.

• LOGYX is the base-b Logarithm, defined by the expression below where the base b is
expected to be in register Y, and the argument in register X.

Example

: verify that 5.55 = Log[2, 2^(5.55)] using 2^X-1 and LOGXY:

5.55, 2^X-1 , 1, + , 2, X<>Y , LOGYX => 5.55000000

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 26 of 198 January 2016

• QREM Calculates the Remainder “R” and the Quotient “Q” of the Euclidean division between
the numbers in the Y (dividend) and X (divisor) registers. Q is returned to the Y registers and
R is placed in the X register. The general equation is: Y = Q X + R, where both Q and R are
integers. Note that if the dividend is smaller than the divisor the function will return zero for
the quotient, and the remainder will be the divisor itself

Example:

 calculate the remainder and quotient of dividing 27 over 4.

27, ENTER^, 4, ΣF$ “QREM” => X=3 (remainder); Y= 6 (quotient)

Since we used the Alpha-Launcher in this example, we can take advantage of the LASTF
feature to repeat the operation with swapped values:

4, ENTER^, 27, ΣFL [,] => X=4 ; Y=0

• CBRT calculates the cubic root of a number. Note that this could also be done using the
mainframe function Y^X with Y=1/3 for positive values of X, but unfortunately it results in
DATA ERROR when X<0 – and therefore the need for a new function.

Obviously it follows that CBRT(-x) = - CBRT(x), for x>0

• Y^1/X and X^3 are purely shortcut functions, which clearly are equivalent to
 { 1/X, Y^X }, and to { X^2, LASTx, * } respectively - but with additional precision due to
the 13-digit intermediate calculations. Besides it does away with the pesky (and totally
unjustified) issue present with negative numbers as base in Y^X.

Example:

 verify in two different ways that the cubic root of (-3)^3 is indeed -3.

 3 , CHS , X^3 , CBRT => -3.000000000
 3 , CHS , X^3 , 3 , Y^1/X => -3.000000000

• Y^^X is used to calculate powers exceeding the numeric range of the calculator, simply

returning the base in X and the exponent in Y. The result is shown in ALPHA in RUN mode.-
For instance calculate 85^69 to obtain:

• XFCT is an extended-range factorial, capable of displaying results over the standard numeric
range of th calculator. Like Y^^X above, it returns the mantissa to X and the exponent to
the Y-register. This function resides in the secondary FAT, and therefore needs to be called
using any of the launchers. The implementation is just a particular case of the super-factorial,
with the repeat factor p=1. This will be described in the corresponding section later on.

Example

: to calculate 70! and 120! just type: (using FIX 6 for display formatting)

 70, ΣF$ “XFCT” => 1.197857 E100
 120, ΣFL [,] => 6.689503 E198

The full value of the mantissa is left in the X register.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 27 of 198 January 2016

• ΣDGT is a small divertimento useful in pseudo-random numbers generation. It simply returns

the sum of the mantissa digits of the argument – at light-blazing speed using just a few
MCODE instructions. More about random numbers will be covered in the Probability/Stats
section later on.

Example:

 calculate the sum of all digits of the HP-41’s rendition of pi:

 PI, XEQ “ΣDGT” => 40.000000000

• YX^ is a modified form of the native Y^X function, with the only difference being its

tolerance to the 0^0 case – which results in DATA ERROR with the standard function but here
returns 1. This has practical applications in FOCAL programs where the all-zero case is just to
be ignored and not the cause for an error.

Note: due to not enough FAT entries being available, YX^ has been removed from the FAT as an
independent entry. Its functionallity is still available (and indeed used by some FOCAL routines in the
module) under the “stealth” mode of launcher function -FRC# when used in program mode - even if
in theory it is non-programmable, but certainly you know how to go around that…

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 28 of 198 January 2016

2.1.2. Number Displaying and Coordinate Conversions.

A basic set of base conversions and diverse number displaying functions round up the elementary set:

 Function Description Author
 AINT A fixture: appends integer part of X to ALPHA Frits Ferwerda
 DSP? Shows current decimal digits setting Ángel Martin
 HMS/ HMS Division by scalar Tom Bruns
 HMS* HMS Multiplication by scalar Tom Bruns
[ΣF$] MANTXP Mantissa and Exponent of number David Yerka
[*] P>R Modified Polar to Rectangular, <) in [0, 360[Tom Bruns
[*] R>P Modified Rectangular to Polar, <) in [0, 360[Tom Bruns
[*] R>S Rectangular to Spherical Ángel Martin
[*] S>R Spherical to Rectangular Ángel Martin
[ΣF] VMANT Shows full-precision (10-digit) mantissa Ken Emery

• DSP? (also in the secondary FAT) returns in X the number of decimal places currently set in
the display mode 0 regardless whether it’s FIX, SCI , or END. Little more than a curiosity, it can
be used to restore the initial settings under program control after changing them for displaying
or formatting purposes.

• AINT elegantly solves the classic dilemma to append an index value to ALPHA without its
radix and decimal part - eliminating the need for FIX 0, and CF 29 instructions, taking extra
steps and losing the original calculator settings. Note that HP included function AIP in the
Advantage module, and the CCD has ARCLI to do exactly the same.

• MANTXP and VMANT are related functions that deal with the mantissa and exponent parts
of a number. MANTXP places the mantissa in X and the exponent in Y, whereas VMANT
shows the full mantissa for a few instants before returning to the normal display form - or
permanently if any key is pressed and held during such time interval, similar to the HP-42S
implementation of “SHOW”.

• R>P and P>R are modified versions of the mainframe functions R-P and P-R. The
difference lies in the convention used for the arguments in Polar form, which here varies
between 0 and 360, as opposed to the –180, 180 convention in the mainframe.

Example:

 convert the point [-1, -1] to the modified polar coordinates and back to rectangular:

 DEG, 1, CHS, ENTER^, R>P => 1.414213562
X<>Y => 225.0000000 (and not -135)

 X<>Y, P-R => original point

(*) Note that due to not enough FAT entries being available, the function P>R has been removed from
revision “P”. You can use the native function P-R to get the exact same results.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 29 of 198 January 2016

• R>S and S>R contine with the coordinate conversion theme. This pair of functions can be
used to change between rectangular and spherical coordinates.

The convention used is shown in the figure
below, defining the origin and direction of
the azimuth and polar angles as referred to
the rectangular axis: { r, phi, theta } <-> {
x, y, z }

The SandMath implementation makes use of
the fact that with the appropriate selection
of origins, dual P-R conversions are
equivalent to Spherical, and vice-versa.

Example:

 convert the rectangular point [1, 2, 3] to spherical coordinates, and then back to
rectangular:

3, ENTER^, 2, ENTER^, 1, R>S => r = 3.741657386 (*)
RDN => phi = 0.640522313
RDN => theta = 1.107148718
RDN, RDN, S>R => original point in stack.

(*) You can also use function VMOD in the secondary FAT to check the modulus result. Its
value should be slightly more accurate, as it uses direct math routines not based on [TOPOL].

• HMS* and HMS/ complement the arithmetic handling of numbers in HMS format, adding
to the native HMS+ and HMS- pair. They multiply or divide the HH.MMSSSS value in Y by an
scalar in X. As it’s expected, the result is also put in HMS format as well.

Example:

 calculate the triple of 2 hours, 45 minues and 25 seconds

2,4525, ENTER^, 3, XEQ “HMS*” => 8.161499999

That is 8 hours, 16 minutes and 15 seconds almost exactly.

This function is useful in surveying calculations, as a shortcut of the standard approach involving
conversion to decimal format prior to the operation. Note that to multiply or divide two numbers
given in HMS format you need to convert them both to rdecimal form using HR, perfrom the
operation and convert the result back to HMS format to end.

(**) Note that due to not enough FAT entries being available, the function HMS/ has been removed
from revision “P”. You can use the sequence 1/ X and HMS* instead to get the exact same results.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 30 of 198 January 2016

Number base conversions.-

 The following functions are available in the SandMath:

 Function Description Author
 BS>D _ _ Base to Decimal, promting version Ángel Martin

02 BININ “02” in prompt, then enter binary number HP Co.
08 OCTIN “08” in prompt, then enter octal number HP Co.
16 HEXIN “16” in prompt, then enter hex number HP Co.
nn BT Any other, base in X and string in Alpha George Eldridge

[*] D>H Value in X William Graham
[*] H>D Hex String in Alpha William Graham
[*] D>BS _ _ Decimal to Base, prompting version. Ángel Martin

02 BINVIEW Value in X, “02” in prompt HP Co.
08 OCTVIEW Value in X, “08” in prompt HP Co.
16 HEXVIEW Value in X, “16” in prompt HP Co.
nn T>BS _ _ Value in X, base in prompt Ken Emery
-nn TB Base in Y, value in X (with negative sign) George Eldridge

 D>BS (Decimal to Base) has become a launcher function in version 4x4. The main prompt expects
the base from 2 to 36, and depending on the input value the execution will be diverted to a dedicated
function: either to BINVIEW, OCTVIEW and HEXVIEW for binary, octal and hex cases respectvely - or
to the general-purpose T>BS itself. The prompt can be filled using the two top keys as shortcuts, from
1 to 10 (A-J), or the numeric keys 0-9.

• Note that the original argument (decimal value) is left in X unaltered, so you can use D>BS
repeated times changing the base to see the results in multiple bases without having to re-
enter the decimal value. The result is left in the display for BINVIEW, OCTVIEW and HEXVIEW
and in both the display and ALPHA for all other bases.

• Note also that using a negative value for the input in X forces the usage of the focal routine TB
from the PPC ROM instead; with the base placed automatically in the Y regster by the function
prior to the call. So here you have a choice interesting for comparison purposes and for
completion sake.

 BS>D has the reverse functionality, to convert the entered values to decimal. It is also a launcher
function, and depending on the entered base at the prompt it will automatically trigger dedicated
functions BININ, OCTIN, and HEXIN for binary, octal and hex cases as above. Any other base will first
input the base in X and then call the FOCAL routine BT from the PPC ROM – just remember that this
one expects the string value already in Alpha.

• BT and TB are a tad slower than the MCODE alternatives but the valid data ranges are larger

than with any of the other methods – which makes them interesting enough to keep around. In
all cases the result is left in the X register after the conversion. Because their results are shown
in the display and also left in ALPHA, you can chain them to end with the same decimal number
after the two executions.

If you enter zero or one at the prompt, the execution toggles to its counterpart function - and back to it
with those prompt values again. This is a convenient way to save key assignments and access the
related functionality from a single location. Note as well that there are no FAT entries for the six
dedicated functions used behind the scenes; the SandMath implementation automatcally uses the code
borrowed from the Advantage pac, but here it is located in the fourth bank of the lower page.

Let’s see an example to illustrate the usage. Computer science student Octavius Alhexander wants to
calculate the conversion of decimal number 123 into the three main bases and also base 12; and then
convert the results back to decimal to check to accuracy of the results.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 31 of 198 January 2016

 In all cases we frst we type 123 in X, followed by repeated executions of D>BS:

 , then the prompt with the base value results:

02 -> , 08 ->

16 -> , 12 ->

For the reverse calculation you’ll need to re-enter the corresponding base value at the base prompts,
once these have beed triggered by the main BS>D function:

, where we fill the prompt with the desired base.

In RUN mode the maximum base allowed is 36 – and the custom error message “BASE>36” will be
shown if exceeded (note that larger bases would require characters beyond “Z”).

When BINVIEW, OCTVIEW and HEXVIEW fall short the execution is automatically transferred to T>BS.
Then the maximum decimal value to convert depends on the destination base, since besides the math
numeric factors it’s also a function of the Alpha characters available (up to “Z”) and the number of
them in the display (length <=12). For b=16 the maximum is 99,999 E9, or 0x5AF2D4E08800

T>BS is an enhanced version of the original function, also included in Ken Emery’s book “MCODE for
Beginners”. The author added the PRGM-compatible prompting, as well as some display trickery to
eliminate the visual noise of the original implementation. Also provision for the case x=0 was added,
trivially returning the character “0” for any base.

Both D>BS and BS>D are programmable. In PRGM mode the prompt is ignored and the base is
expected to be in the stack, either in the Y register for TB to use, or in the X register for BT. In this
case using zero or one for the base will result in “DATA ERROR”. Additional base restrictions apply in
program mode, as follows: B<=25 for BT, and b<=19 for TB.

Direct Decimal <> Hexadecimal Conversion.

Because of its importance in computer science, the dec to hexadecimal conversions have dedicated
MCODE functions in the SandMath, D>H and H>D . Use them to convert the number in X to its
Hex value in Alpha, and vice-versa. Both functions are mutually reversed, and H>D does an stack lift
as well.

The maximum number allowed is 0x2540BE3FF or 9,99999999 E9 decimal - much smaller than with
T>BS, so there’s a penalty to pay for the convenience.

These functions were written by William Graham and published in PPCJ V12N6 p19, enhancing in turn
the initial versions first published by Derek Amos in PPCCJ V12N1 p3.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 32 of 198 January 2016

Details on the dedicated Number Conversions.

The following paragraphs are based on the original Advantage Manual, describing further details on the
six functions embedded into the SandMath. Six functions are provided for canverting numbers between
decimal values and the equivalent binary, octal, and hexadecimal values, The figure below illustrates
the action of these six functions.

Valid Input Ranges for Data

• The binary input for BININ must be 0's and 1's; ten digits maximum. This is extended up to
twelve digits max for BS>D in program mode (running BT)

• The decimal input for BINVIEW must be an integer from 0 through 1,023. Non-integers are
truncated and the absolute value is used. Beyond that limit the execution is transferred to
T>BS, which will allow integers up to 4,095.

• The octal input for OCTIN must be digts from 0 through 7; ten digits maximum. This is
extended to fourteen oct chars for BS>D in program mode (running BT)

• The decimal input for OCTVIEW must be an integer forn 0 through 1,073,741,823. Non-
integers are truncated and the absolute value is used. Beyond that limit the execution is
transferred to T>BS, which will allow integers up to 8,589,934,587.

• The hexadecimal input for HEXIN must be digit from 0 fhrough 9 and lettersA through F; eight
digits maximum. This is extended to thirteen hex chars for BS>D in program mode (BT).

• The decimal input for HEXVIEW must be an integer from 0 through 4,294,967,295. Non-
integers are truncated and the absolute value is used. Beyond that limit the execution is
transferred to T>BS, which will allow integers up to 99,999 E9.

Instructions.

• The "VIEW" functions convert the display of the (decimal) value in the X-regster, (The stack
continues to hold the decimal version.) Press <- to display the X-register again.

• The current FIX format determines the number of digits displayed between commas of the

non-decimal number.

• The "IN" functions are prefix functions: first you execute the function, thenl you key in your
value. Press [ENTER^] to see the result.

• To abort an "IN" function press [ALPHA][ALPHA]. An "IN" function executed in a program will

halt that running program.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 33 of 198 January 2016

2.1.3. First, Second and Third degree Equations.

A MCODE implementation of these offers no doubt the ultimate solution, even if it doesn’t involve any
high level math or sophisticated technique. The Stack is used for the coefficients as input, and for the
roots as output. No data registers are used.

 Function Description Author
[*] STLINE Calculates straight line coefficients from two data points Ángel Martin
[*] QROOT Calculates the two roots of the equation Ángel Martin
 QROUT Displays the roots in X and Y Ángel Martin
[*] CROOT Calculates the three roots of the equation Ángel Martin
 CVIETA Driver program for CROOT Ángel Martin

• STLINE is a simple function to calculate the straight line coefficients from two of its data

points, P1(x1,y1) and P2(x2,y2). The formulas used are:

Y = ax +b, with: a= (y2-y1)/(x2 –x1), and b = y1 – a x1

It is trivial to obtain the root once a and b are known, using: x0 = -b/a

Example

: Get the equation of the line passing through the points (1,2) and (-1,3)

3, ENTER^, -1, ENTER^, 2, ENTER^, 1, STLINE => Y: 2,500; X: -0,500
and its root is left in register Z: RDN, RDN => 5,000

 (*) will be shown in RUN mode only

• QROOT . The general forms of the

Quadratic Equation is:

 with a#0 .

Given the quadratic equation above, QROOT calculates its two solutions (or roots). You need to input
the three coefficients into the stack registers: Z, Y, X using: a, ENTER^, b, ENTER^, c

The roots are obtained using the well-known formula: X1,2 = -b/2a +- sqrt[(-b/2a)^2 – c/a]

Depending on the sign of the discriminant (i.e. the argument of the square root) the result will be real
or complex roots. If the discriminant is positive then the roots are real, and their values x1 and x2 will
be left in Y and X registers upon execution. Register Z will contain a non-zero value, which can be used
in program mode to determine the case.

Example:

 Calculate the roots of the equation: x^2 + 2x -3 =0

1, ENTER^, 2, ENTER^, 3, CHS, QROOT => x1= 1, x2= -3

In RUN mode the SandMath will show both values in the display, separated by the ampersand sign.
Moreover, should the values be integers then the representation will omit the superfluous decimal
places:

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 34 of 198 January 2016

If the discriminant is negative, then the roots z1 and z2 are complex and conjugated (symmetrical over
the X axis), with Real and Imaginary parts defined by:

Re(Z) = -b/2a z1 = Re(z) + i Im(z)
Im(Z) = sqrt[abs((-b/2a)^2 –c/a)] z2 = Re(z) – i Im(z)

Upon execution reg-Z will be zero (used in Programs), Im(z) will be left in Y and Re(z) will be left in X.
In RUN mode the display will show the first root in a composite format showing one of the roots.

Example: Calculate the roots of the equation: x^2 + x + 1 = 0

1, ENTER^, ENTER^, QROOT => Re(z) = -0.500000000
RDN => Im(z) = 0.866025404

• CROOT The general forms of the Cubic Equation is:,

 with a#0

Given the cubic equation above, CROOT calculates the three solutions (or roots). You need to input
the four coefficients in the stack registers T, Z, Y, X using:

a, ENTER^, b, ENTER^, c, ENTER^, d, ENTER^

 CROOT uses the well-known Cardano-Vieta formulas to obtain the roots. The highest order
coefficient doesn’t need to be equal to 1, but errors will occur if the first term is zero (for obvious
reasons). The SandMath implementation does reasonably well with multiple roots, but sure enough you
can find corner-cases that will make it fail - yet not more so than an equivalent FOCAL program.
Appendix 2 lists the code, as well as an equivalent FOCAL program to compare the sizes (much shorter,
but surely much slower and with data registers requirements

Both functions can return real or complex roots. If the roots are complex, the functions will flag it in the
following manners:

1. QROOT will clear the Z register, indicating that X and Y contain the real and imaginary parts of
the two solutions. Conversely, if Z#0 then X and Y contain the two real roots.

2. CROOT will leave the calculator in RAD mode, indicating that X and Y contain the real and
imaginary parts of the second and third roots. The real root will always be placed in the Z
register. Conversely, if the calculator is set in DEG mode then registers Z,Y, and X have the
three real roots.

Example1:

 Calculate the three solutions of the equation: x3 + x2 + x + 1 = 0

1, ENTER^, ENTER^, ENTER^ , CROOT  Z: -1,000; Y: 1,000; X: 1 E-10

, Shown as rounded number for the real part.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 35 of 198 January 2016

Example 2:

- Calculate the roots of the equation: ƒ(x) = 2x3 − 3x2 − 3x + 2.

2, ENTER^, -3, ENTER^, ENTER^, 2, CROOT -> Z: 0,500; Y: -1,000; X: 2,000

From the final prompt you know all roots are real, since the two last roots are real and the first one
must always be real in a cubic equation.

The value in Z blinks briefly in the display before the final prompt above is presented; use RCL Z (or
RDN, RDN) to retrieve it. No user registers are used.

 QROUT outputs the contents of the X and Y registers to the display, interpreted by the value in Z to
determine whether there are tow real roots or the Real & Imaginary parts of the complex roots. It will
be automatically invoked by QROOT (all cases) and by CROOT (real roots) when they are executed in
RUN mode. Note that CROOT will not display the (first) real root, which will be located in Z.

 CVIETA below is a driver program for CROOT, including the prompts for the equation coefficients.
The results are placed in the stack, following the same conventions explained above. See the program
listing showcasing the use of a few SandMath functions.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 36 of 198 January 2016

Appendix 2.- CROOT equivalent FOCAL program, replaced now with an all-MCODE implementation.

01 LBL "CVIETA" 64 2
02 -AMC MATH "Running" message 65 / imaginary part
03 R^ 66 RCL 01 cbrt(+x-R3/2)
04 ST/ T (0) a'2/a'3 in T 67 RCL 03 cbrt(-x-R3/2)
05 ST/ Z (1) a'1/a'3 in Z 68 +
06 / 69 2
07 STO 00 a0 = a'0 / a'3 70 /
08 RDN 71 CHS
09 STO 01 a1 = a'1 / a'3 72 RCL 02 a2/3
10 RDN a2 = a'2 / a'3 73 - real part
11 3 74 ,
12 / 75 STO T (0) flag it as Complex
13 STO 02 a2/3 76 RDN Z=0 indicates it
14 X^3 a2^3/27 77 QROUT
15 ST+ X (3) 2*a2^3/27 78 STO 01
16 RCL 01 a1 79 X<>Y
17 RCL 02 a2/3 80 STO 02
18 * a1*a2/3 81 RTN
19 - 2*a2^3/27 - a1*a2/3 82 LBL 01 all real roots
20 RCL+ (00) Showing off… :-) 83 DEG
21 2 84 LASTX
22 / 85 CHS
23 STO 03 a0/2 + a2^3/27 - a1*a2/6 86 SQRT
24 X^2 (a0/2 + a2^3/27 - a1*a2/6)^2 87 ST+ X (3)
25 RCL 01 a1 88 X#0?
26 RCL 02 a2/3 89 1/X
27 X^2 a2^2/9 90 RCL 03 a0/2 + a2^3/27 - a1*a2/6
28 3 91 ST+ X (3) a0 + 2*a2^3/27 - a1*a2/3
29 * a2^2/3 92 CHS
30 - a1-a2^2/3 93 *
31 STO 01 a1-a2^2/3 94 ACOS
32 3 95 3
33 / 1/3 (a1 - a2^2/3) 96 /
34 X^3 1/27 (a1 - a2^2/3)^3 97 STO 03
35 + 1/27 (a1 - a2^2/3)^3 + (a0/2 + a2^3/27 - a1*a2/6 98 LASTX
36 X<=0? 99 E3/E+
37 GTO 01 yes, all real roots 100 STO 05 1,003
38 SQRT complex roots 101 RCL 01 a1-a2^2/3
39 ENTER^ 102 3
40 ENTER^ RPLX 103 / a1/3-a2^2/9
41 RCL 03 a0/2 + a2^3/27 - a1*a2/6 104 CHS a2^2/9 - a1/3
42 - 105 SQRT
43 CBRT 106 ST+ X (3)
44 STO 01 cbrt(+x-R3/2) 107 STO 04 2*SQR(a2^2/9 - a1/3)
45 X<>Y 108 LBL 08
46 CHS 109 RCL 03
47 RCL 03 a0/2 + a2^3/27 - a1*a2/6 110 COS
48 - 111 RCL 04
49 CBRT 112 *
50 STO 03 cbrt(-x-R3/2) 113 RCL 02 a2/3
51 + 114 -
52 RCL 02 a2/3 115 "X"
53 - 116 AIRCL Alpha integer REG
54 "X1" 117 5 05
55 ARCL X (3) 118 "|-="
56 AVIEW 119 ARCL X(3)
57 STO 00 real root 120 AVIEW
58 RCL 01 cbrt(+x-R3/2) 121 STO IND 05
59 RCL 03 cbrt(-x-R3/2) 122 120
60 - 123 ST+ 03
61 3 124 ISG 05
62 SQRT 125 GTO 08
63 * 126 END

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 37 of 198 January 2016

2.1.4. Additional Tests: Rounded and otherwise.

Ending the first section we have the following additional test functions:

 Function Description Author
[*] X=1? Is X (exactly) equal to 1? Nelson F. Crowle
[*] X>=Y? Is X equal to or greater than Y? Ken Emery
[*] X>=0? Is X equal to or greater than zero? Ángel Martin
[*] X=YR? Rounded Comparison Ángel Martin
[F] FRC? Is X a fractional number? Ángel Martin
[F] INT? Is X an integer number? Ángel Martin
 EVEN? Is X an even integer? Ángel Martin
 ODD? Is X an odd integer? Ángel Martin
 ZOUT Combines the values in Y and X into a complex result Ángel Martin

They follow the general rule, returning YES / NO in RUN mode, and skipping a program line if false in a
program. Their criteria are self-explanatory for the first three. These functions come very handy to
reduce program steps and improve the legibility of the FOCAL programs.

• X>=Y? compares the values in the X and Y registers, skipping one line if false.

• X>=0? compares with zero the value in the X register, skipping one line if false.

These functions are arguably “missing” on the mainframe set; a fact partially corrected with the indirect
comparison functions of the CX model (X>=NN?), but unfortunately not quite the same. On the other
hand they work as two standard comparisions in series, like X#0? followed by X>0?

• X=1? is a quick and simple way to check whether the value in X equals one. As usual,
program execution skips one step if the answer is false.

• X=YR? establishes the comparison of the rounded values of both X and Y, according to the
current decimal digits set in the calculator. Use it to reduce the computing time (albeit at a loss
of precision) when the algorithms have slow convergence or show oscillating results for larger
number of decimals.

• INT? and FRC? are two more test functions which criteria is the integer or fractional nature
of the number in X. Having them available comes very handy for decision branching in FOCAL
programs. The Fractions section of the module is the natural placement for them.

• EVEN? and ODD? test the divisibility by 2 of the number in X, i.e. whether it is an even or
an odd number. For non-integer values the fractional part will be ignored in the test.

• ZOUT has been used in FOCAL programs in the SandMath, - Its most interesting features are
perhaps displaying integer values (in either real or imaginary parts) without any decimals; as
well as omitting them when equal to zero (showing “Z=0” if both are null).

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 38 of 198 January 2016



2.2.1. Fraction Arithmetic and Displaying.

A rudimentary set of fraction arithmetic functions is included in the SandMath, including the four basic
operations plus a fraction viewer and two test functions.

 Function Description Author
[*] -FCR Fractions Launcher Ángel Martin
[F] D>F Calculates a fraction that gives the number in X Frans de Vries
[F] F+ Fraction addition Ángel Martin
[F] F- Fraction subtraction Ángel Martin
[F] F/ Fraction multiplication Ángel Martin
[F] F* Fraction division Ángel Martin
[F] FRC? Is X a fractional number? Ángel Martin
[F] INT? Is X an integer number? Ángel Martin

 D>F is the key function within this group. Shows in the display the smallest possible fraction

 that
results in the decimal number in X, for the current display precision set. Change the display precision as
appropriate to adjust the accuracy of the results.

This means the fraction obtained may be different depending on the settings, returning different
results. For example, the following approximations are found for π:

π ~ 104348/33215 in FIX 9, FIX 8 and FIX 7
π ~ 355/113 in FIX 6, FIX 5 and FIX 4
π ~ 333/106 in FIX 3
π ~ 22/7 in FIX 2, FIX 1 and FIX 0

This function was written by Frans de Vries, and published in DataFile, DF V9N7 p8. It uses the same
algorithm as the PPC ROM “DF” routine.

As per the fraction arithmetic functions, there’s not much to say about them – apart from the fact that
they use the four stack levels to enter both fractions components (the inputted values are expected to
be all integers), and return the numerator and denominator of the result fraction in registers Y and X
respectively. In RUN mode the execution continues to show the fraction result in ALPHA, according to
the currently set number of decimals (see below).

The fraction arithmetic functions can be used in chained calculations, there’s no need to re-enter the
intermediate results, and the Stack enabled makes unnecessary to press ENTER^. Notice that fractions
are entered using the Numerator first.

To re-calculate the fraction after changing the decimal settings just press the divide key, followed by
D>F to re-generate the fraction values.

For example calculate 2/7 over 4/13, then add 9/17 to the result.

2, ENTER^, 7, ENTER^, 4, ENTER^, 13, F/ , 9 ENTER^, 17, F+  347/238 in FIX 6 mode.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 39 of 198 January 2016

Needless to say the fractional representation display will not be produced in PRGM mode, but it’ll have
a silent execution instead.

Note that the fraction math functions operate on integer numbers in the stack, returning also the
numerator and denominator as integers. To get the decimal number just execute / to divide them.

In fact that’s exactly what the functions do in RUN mode: upon completion the fraction is “converted”
to a decimal number, then D>F presents the final output. That’s why the display settings determine
the accuracy of the conversions, even if it’s not obviously seen.

This has the advantage that the result is always reduced to the best possible fit. For instance, when
calculating 2/4 plus 18/24 in program mode – with the four values in the stack – the result will be 120
in Y and 96 in X (thus 120/96). However on RUN mode (or SST’ing the program) will show the reduced
fraction:

A good way to check that the result is expressed in irreducible form is pressing GCD, verifying that the
result is indeed 1; try it out if you’re curious.

If you want to see the reduced result from a program execution you’ll need to add program steps to
perform the division and add a conversion to fraction after the fraction-math operation step. The code
snippet below describes this (see lines 10 and 11):

01 *LBL "TEST"
02 2
03 ENTER^
04 4
05 ENTER^
06 18
07 ENTER^
08 24
09 F+
10 /
11 D>F
12 END

 INT? and FRC? are two more test functions which criteria is the integer or fractional nature of the
number in X. Having them available comes very handy for decision branching in FOCAL programs. The
Fractions section of the module is the natural placement for them.

The answer is YES / NO depending on whether the condition is true or false. In program mode the
following line is skipped it the test is false.

Note: Make sure that revision “O2” (or higher) of the Library#4 module is installed.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 40 of 198 January 2016



2.3.1. Hyperbolic Functions.

Yes there are many unanswered questions in the universe, but certainly one of them is why, oh why,
didn’t HP-MotherGoose provide a decent set of MCODE hyperbolic functions in the (otherwise pathetic)
MATH-PAC, and worse yet -adding insult to injury- how come that error wasn’t corrected in the
Advantage ROM?

For sure we’ll never know, so it’s about time we move on and get on with our lives – whilst correcting
this forever and ever. The first incarnation of these functions came in the AECROM module; I believe
programmed by Nelson F. Crowle, a real genius behind such ground-breaking module - but it was also
somehow limited to 10-digit precision. The versions in the SandMath all use internally13-digit routines.

 Function Description Author
[*] -HYP Hyperbolic Launcher Ángel Martin
[H] HSIN Hyperbolic Sine Ángel Martin
[H] HCOS Hyperbolic Cosine Ángel Martin
[H] HTAN Hyperbolic Tangent JM Baillard
[H] HASIN Inverse Hyperbolic Sine Ángel Martin
[H] HACOS Inverse Hyperbolic Cosine Ángel Martin
[H] HATAN Inverse Hyperbolic Tangent JM Baillard

The use of function launchers permits convenient access to these six functions without having to assign
them to any key in USER mode. Efficient usage of the keyboard, which can double up for other
launchers or the standard USER mode assignment if that’s also required. Combining the ΣFL and the
SHIFT keys does the trick in a clean and logical way.

 and inverses:

The formulas used are well known and
don’t require any special consideration to
program.

The SINH code is also used as a
subroutine for the Digamma function.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 41 of 198 January 2016

The direct functions are basically exponentials,
whilst the inverses are basically logarithms.

Both cases are well covered with the mainframe
internal math routines without any need to worry
about singularities or special error handling.

For all hyperbolic functions the input value is expected in X, and the return value will also be left in X.
The original argument is saved in LASTx. No data registers are used.

Examples:

Complete the table below, calculating the inverses of the results to compare them with the original
arguments. Use FIX 9 to see the complete decimal range.

 HMKEYS assigns -HYP to the [SHIFT] key for convenience

x HSIN HASIN HCOS HACOS HTAN HATAN
1 1,175201194 1,000000000 1,543080635 1,000000000 0,761594156 0,761594156

1,001 1,176744862 1,001000000 1,544256608 1,001000000 0,762013811 1,001000000
0.01 0,010000167 0,010000000 1,000050000 0,009999958 0,009999667 0,010000000

0.0001 0,000100000 0,000100000 1,000000005 0,000100000 0,000100000 0,000100000
10 11013,23287 10,00000000 11013,23292 10,00000000 0,999999996 10,00271302

By now you’ve become an expert in the HYP launcher and for sure appreciate its compactness – lots of
keystrokes!

With a couple of exceptions it’s a100% accuracy to 10 decimal places – and really the only sore point is
in the point 0.001 for HACOS. But don’t worry, there’s no bugs creating havoc here – it’s just the
nature of the beast, bound to occur with the limited precision (even using 13-digits) in the Coconut
CPU.

No wonder you’re going to repeat the same table for the trigonometric functions and see how it stacks
up, right?

While you’re at it, go ahead and calculate the power of two of the square root, pressing:

 FIX 9 , 2 , SQRT , X^2 , but don’t call HP to report a bug!

For very small arguments the accuracy of SINH and COSH will also start showing incorrect digits.
However HTAN (and HATAN) use an enhanced formula that will hold the accuracy regardless of how
small the argument is.

Note: Make sure that revision “O2” (or higher) of the Library#4 module is installed.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 42 of 198 January 2016



The SandMath Module includes a set of functions written to extend the native RCL functionality –
mainly in the direct math operations missing when compared to the STO equivalents, but also
increasing its versatility and ease of use. There are five new RCL Math functions, all connected to the
native RCL function behind the scenes to access them in a convenient and useful way:

 Function Description Author
[*] RCL” _ _ RCL Math Launcher Ángel Martin
[RC] RC+ _ _ RCL Addition Ángel Martin
[RC] RC- _ _ RCL Subtraction Ángel Martin
[RC] RC* _ _ RCL Multiply Ángel Martin
[RC] RC/ _ _ RCL Division Ángel Martin
[RC] RC^ _ _ RCL Power Ángel Martin
[RC] AIRCL _ _ ARCL integer Part of number in Register nn Ángel Martin

2.4.1. Individual Recall Math functions.

The new five RCL Math functions cover the range of four arithmetic operations (like STO does) plus a
new one added for completion sake. The functions would recall the number in the register specified by
the prompt, performing the appropriate math using the value in register X as first argument and the
recalled number as the second argument.

Design criteria for these were:

1. should be prompting functions
2. should support indirect addressing (SHIFT)
3. should utilize the top 2 rows for index entry shortcut.

The first condition is easy to implement in RUN mode, as it’s just a matter of selecting the appropriate
prompting bits in the function MCODE name - but it gets very tricky when used under program mode.
This has been elegantly resolved using a method first used by Doug Wilder, by means of using the
program line following the instruction as the index argument. Somewhat similar to the way the HEPAX
implemented it, although here there’s some advantages in that the length of the index argument
doesn’t need to be fixed, dropping leading zeroes and even omitting it altogether if it’s zero (assuming
the following line isn’t a numeric one which could be misinterpreted).

The indirect addressing is actually quite simple, as it simply consists of an offset added to the register
number in the index. All the function code must do is remove it from the entry data provided by the
OS, and the task is done. The offset value is hex 80, or 128 decimal. We’ll revisit this when discussing
the RCL launcher.

And the third objective is provided “for free” by the OS as well, no need for extra code at all – just
using the appropriate prompting bits in the function’s name. But there is however an important
limitation if the implementation is done using the standard prompting approach: Stack arguments are
not supported – as they are more involved than the indirect addressing. The SandMath uses a
customary implementation that replaces the standard one, and offers support for the Stack registers, in
direct and indirect forms.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 43 of 198 January 2016

2.4.2. The Extended RCL and prompt Lengthener.

The Standard RCL has been extended to support the input of the math keys – triggering the five
functions described above. Besides that, also the [EEX] key can be used for a prompt lengthener to
three fields for registers over 99. This prompt extension however is effectively limited to the range
R100 to R111 – because from R112 and above the index is interpreted by the OS either as stack
registers (112 to 127) or as indirect register addresses (from 128 and above) instead.

The table below (borrowed from the AMC_OS/X Manual) shows the correspondence between the
extended arguments and the actual registers used. Note that:

• In the range 102-111 the display is showing the conventions used for the LBL instructions, but
the actual registers are correct.

• In the range 112-127 the registers used are the status registers

 instead of memory data
registers. This is what we take advantage of to key in status registers as arguments.

• From 128 and up the instruction changes to indirect indexing. This is due to the way indirect
addresses are built by the OS; adding hex 0x80 to the register number. This scheme is also
applicable th the status registers!

The prompt lengthener is meant to be used with the following functions: STO, RCL, X<>, LBL and
GTO. It however can also be invoked during other prompts (like SF, CF, FS?) which obviously have
none or partial practical application for it, and that will typically generate the NONEXISTENT error
message.

Example:

 Store 5 in register R101, and 55555,000 in register R5.

With the new prompt lengthener we can do this without indirect addressing, as follows:
5, STO , EEX , 0 , 1 and then: 55555, STO 5

Then execute RCL” IND 101 (press RCL”, SHIFT, EEX , 0 , 1)--> to obtain 55555,00 in X

 Argument Shown: Argument Shown: Argument Shown:
 100 00 112 T 124 b
 101 01 113 Z 125 c
 102 A 114 Y 126 d
 103 B 115 X 127 e
 104 C 116 L 128 IND 00
 105 D 117 M 129 IND 01
 106 E 118 N 130 IND 02
 107 F 119 O 131 IND 03
 108 G 120 P 132 IND 04
 109 H 121 Q 133 IND 05
 110 I 122 |- 134 IND 06
 111 J 123 a 135 IND 07

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 44 of 198 January 2016

The keyboard mapping for [RCL] is as follows – nothe the standard group (first four choices) and the
extensions provided by the SandMath:

• Numeric keypad (or Top rows) to perform the standard RCL
• [,] radix key for Stack arguments
• [SHIFT] for Indirect register addresses
• Back arrow to cancel out.

• [EEX] for the prompt lengthener to three places
• Math keys (+, -, / , *, and ^) to invoke the RCL Match functions
• [ALPHA] to invoke the AIRCL function
• [CHS] key to disable/enable the Floating FIX, described further below
• [XEQ] key to return to the main launcher ΣFL

Program Usage.

The Recall Math functions are fully programmable. When entered in a program you’d ignore the
prompts, and the program step following it will be used to hold the register number to be used by the
prompt when the program runs. This technique is known as “non-merged” functions, to work-around
the limitation of the OS – Too bad we can’t use the Byte Table locations wasted by eG0bEEP and W”
instead! This method is used in several functions of the SandMath module, like the RCL math functions
just described.

Therefore when used in a program, the corresponding RCL# math function will prompt for a register
number but (contrary to the STO math case) it won’t be part of the same program step. You still need
to manually add the reg# in an independent program line following the RCL# function.

Notice also that indirect addressing is supported by this scheme: just add hex 80 (that is decimal 128)
to the register number you want to use as indirect register. As simple as that! So for instance “RC+
IND 25” will be entered as the following two program lines: RC+, followed by 153.

The same rule applys to the Stack registers – which are also usable in program mode. For instance
“RC+ Z” = RC+ followed by 113; and “RC+ IND Z” = RC+ followed by 141 (that is: 113+128).

Pressing [ALPHA] at the RCL prompt invokes function AIRCL _ _. This will in turn prompt for a data
register number, and once filled it’ll append the integer part of the value stored in that register to the
ALPHA register – thus equivalent to what AINT does with the x register.

The I/O_Service Interrupt

The technique used here takes advantage of the I/O_SVC interrupt (polling point). Because it uses the
native RCL function it doesn’t require any key assignments nor the USER mode to be active to work –
this functionality is always available with the SandMath plugged in.

Furthermore, the prompt lengthener using the EEX shortcut is available for any prompting function,
witrh either two-digit prompt (like STO, VIEW, X<>, etc.) or one digit prompt (like FIX, ENG, SCI,
TONE). The CAT and XEQ functions are excluded,

 thus this scheme is fully compatible with the
OS/X extensions from the AMC_OS/X module or the CCD Module.

Lastly, the standard 1-digit prompt for functions like FIX, SCI, ENG, TONE, etc. will automatically show
two fields for a 2-digit input (or three if you press EEX at this point). Refer to the synthetic
programming manuals for practical applications of the combinations above and beyond the standard.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 45 of 198 January 2016

2.4.3. The dynamic display mode: A Floating FIX.-

Later calculator models like the HP-35S offer a display mode (called FIX ALL) that automatically shows
values with all the meaningful decimal places, i.e. excluding the trailing zeros. This is not only a
cosmetic arrangement; its main value is to always have all needed information shown without having to
adjust the FIX to see whether more decimal digits are relevant – and to not show the trailing zeros
we’d get if chose the more strict FIX 9 setting required to make sure all the information was there.

The idea of a dynamic FIX mode (later coined as Floating FIX) can be implemented using the I/O_SVC
interrupt as well, simply showing the number in X using a FIX setting that matches the relevant number
of decimal digits – all done after the result is placed there.

So from a conceptual perspective it’s relatively simple: the core is a routine to inspect the mantissa and
exponent, and figure out the required FIX – which obviously needs to be confined to [0, 9] as per the
numeric range of the calculator. Then we use the I/O_SVC event to display the result with that FIX – all
without changing the actual display setting (FIX, ENG, SCI – and number of places will not be altered).

Under those assumptions:

- integers values are shown in FIX 0
- PI is shown in FIX 9
- Numbers between 1 E-10 and 1 E10 are dynamically shown
- Numbers equal to and smaller than 1 E-10 are displayed in SCI mode
- Numbers equal to or larger than 1 E10 are displayed in SCI mode
- Also in SCI form the mantissa will only show the relevant digits.

The Floating FIX mode is turned off by default. You need to use function –RCLIO and answer “Y” to its
prompt to turn it on. In fact, this setting affects all functionality that uses the I/O_SVC interrupt
methodology, thus the RCL math and prompt lengtheners will also be affected by the selection.

This setting is stored as a flag in the header of Buffer#9 – the SandMath buffer. It’ll be remembered
when you switch the calculator OFF and ON, but will be gone in case of Memory Lost or if the buffer is
erased. Make sure you power-cycle the calculator when plugging the SandMath on the CL.

Formulas used – A general algorithm.

Numbers on the 41 platform are represented by the following convention, " s | abcdefghij | xyz ", with
one digit for the mantissa sign, 10 digits for the mantissa, one for the exponent sign and two for the
exponent. This enables a numeric range between +/- 9,999999999 E99, with a "whole" around zero
defined by the interval]-1E-99, 1 E99[

Let z# = number of mantissa digits equal to zero, starting from the most significant one (i.e. from
PT=3 to PT=12). Then the fix setting to use is a function of the number in X , represented as follows:

1. If number >=1 (or x="0") - Let XP = value of exponent (yz). Then we have:

 FIX = max { 0 , [(9-z#) + XP] }

2. If number < 1 (or x="9") - Let |XP| = (100 – xyz) . Then we have:

 FIX = min { 9 , [(9-z#) + |XP|] }

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 46 of 198 January 2016

Implementation Details – a MCODE digression.

Here are some gory details for the MCODE-inclined folks – feel free to ignore completely if this is not
your cup of tea.

Taking advantage of the I/O_SVC Interrupt is not easy to implement, even if conceptually simple. For
starters, one needs to keep in mind that the event is triggered after the operations have occurred –
thus is not to be mistaken with a code break during

 the execution.

Then there is also the fact that a constant polling of the I/O_SVC will introduce noticeable overhead on
the system performance, thus one needs to carefully choose the instances and scenarios where the
supplemental code is to be run. Doing it too often will cause annoying delays, but missing some will
result in an inconsistent or incomplete implementation of the added functionality.

To make it more complicated, this technique is also used by other modules that the implementation
here needs to be compatible with. Not an easy task; you probably know that the ZENROM and the CCD
Module are not compatible, and that the AECROM takes over all the attention to maintain the results in
the chosen unit (Foot, meters, inch fractions).

The criteria followed by the SandMath is full compatibility with the AMC_OS/X and CCD-style modules,
regardless of the order they are plugged in the machine. That’s why the criteria needs to go to lower-
level conditions (like pending addresses in the RTN stack and keycodes for the pressed keys) instead
og more general events, like parsing OS routines.

Here’s the conditional tree used to qualify I/O events into triggering points in the SandMath.

General conditions:

1. Is Alpha ON? - Ignore if true.
2. Is the 1st. RTN address from the OS ROM_0 / ROM_1? - Ignore if False.

Conditions for the Floating FIX mode:

3. Is the message flag ON? - Ignore if true.
4. Is the 1st. RTN address = 00F0 [NFRPU], or 0CCA [STO], or 10DA [AJ]? - Ignore if False

Conditions for the RCL Math and Prompt Lengtheners

5. Is the 1st. RTN adr = 0CDE [PAR110]? - Mid term of a 2-digit prompt when True
a. Further check on keycode to exclude XEQ, replace it otherwise.

6. Is the 1st. RTN adr = 0D22 [PARA05]? – Mid term of a 1-digit prompt when True
a. Further check on keycode to exclude CAT, replace it otherwise

7. Is the 1st. RTN adr = 0DC4 [IND20] ? IND prompt situation when True
a. Is the 2nd. RTN adr = 122E [RCL]? – Replace the first adr when True (IND 1_ _)

Say what?, Not a Fool-Proof result !

One last word about the expected results:- This is a good example of the additional difficulty arising
from the afterthought nature of a task that would be basically simple had it been done integrated into
the OS. Coming from behind the OS to supplement/complement its doings is not the best way to
implement this functionality, which ideally belongs to the OS displaying routines instead. Thus you’ll
find some instances when the Floating FIX mode won’t kick in, like using STO and then numeric keys
(but note that it does work using the top-two rows, A-J).

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 47 of 198 January 2016

I have tested the outcome of all functions within the SandMath, modifying some of them to make sure
that they provide the triggering conditions for the Floating mode to operate. With other modules the
implementation may have some glitches, depending on how their functions were written.

There is currently a limitation for some functions when you execute them using the LASTFunction
method, so be aware of that as well.

Appendix 3.- A trip down to Memory Lane. From the HP-41 User’s Handbook.-

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 48 of 198 January 2016

Note: Make sure that revision “O2” (or higher) of the Library#4 module is installed.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 49 of 198 January 2016



These functions are taken from the GJM Module recently released by Greg McClure, based on the
seminal work from Jean-Marc Baillard (see web pages http://hp41programs.yolasite.com/derive.php
and http://hp41programs.yolasite.com/contfrac.php)

Being a full MCODE solution this new method benefits from the MCODE accuracy and speed, while still
maintaining the flexibility provided by a user-defined function in the usual form of a FOCAL program. In
this regard it’s very similar to the SOLVE and INTEGRATE approach (more on those later in the
manual), only that the implementation uses a much simplified structure – that doesn’t require custom
buffers or other techniques.

 Function Description Author
 DERV Function 1st. and 2nd. Derivatives Greg McClure
 CF2V Continued Fractions Evaluation Greg McClure
 XQRTN Auxiliary function to Return to MCODE Martin-McClure

2.5.1. Function Derivatives.

The DERV function calculates the 1st and 2nd derivatives of a global function defined by the user (and
thus visible via Catalog 1). The function needs to be continuous thru the range around the value at
which the derivatives of the function are desired. The program uses data registers {R00-R04} as
follows: R00 and R01 to sum the term evaluations obtained by the formula used; R02 is used for the
value sent to the user program, R03 is the saved step size, and R04 to contain the counter (which goes
from 0 to 10).

Besides the user function name in ALPHA, the program takes two input values: the point where the
derivatives are to be evaluated, and the step size to use for the derivative evaluation formula (this is
the distance between points sampled). When developing this program, many formulas were available
to use… this program uses the 10-point formulas developed by Jean-Marc Baillard. It takes a bit longer
than the formulas used by the PPC module, but the accuracy is far better. The PPC module FD
program does have one advantage: it finds a one-sided formula (useful in case of discontinuity at a
point) - however it does not do a 2nd derivative calculation.

The formulas used are as follows: - f(x+k.h) is denoted fk to simplify these expressions -

df/dx = (1/2520.h).[2100.(f1 - f-1) - 600.(f2 - f-2) + 150.(f3 - f-3) - 25.(f4 - f-4) +
+ 2.(f5 - f-5)] + O(h10)

d2f/dx2 = (1/25200.h2).[-73766 f0 + 42000.(f1 + f-1) - 6000.(f2 + f-2) + 1000.(f3 + f-3)
 - 125.(f4 + f-4) + 8.(f5 + f-5)] + O(h10)

These are exact for any polynomial of degree < 11

The implementation of DERV also makes use of an auxiliary function, XQRTN (described below). It is
NOT designed to be used in the user function created, which only need RTN or END to terminate the
FOCAL code that defines them. Why then is XQRTN needed? The operating system normally does not
allow returning to MCODE from FOCAL programs. So to overcome this restriction DERV jumps to a
mini-FOCAL program that contains XQRTN to execute the user function and return back to the DERV
MCODE after doing a real RTN.

http://hp41programs.yolasite.com/derive.php�
http://hp41programs.yolasite.com/contfrac.php�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 50 of 198 January 2016

All this is transparent to the user, who needs only to provide the function name in ALPHA and the input
values in the Y- and X- registers as described above. The execution ends with the fisrt derivative value
in X and R00, and the second derivative value in Y and R01.

Example 1.

Let’s say we want to find the derivative of f(x) = sin(x) at x=1. First we need to create a Global label
program to define the function (as it cannot use mainframe function names). Note that RAD can be
removed if manually set before executing DERV:

01 LBL “AA”
02 RAD
03 SIN
04 END

Let’s try a step value of .03 (so the points sampled will be (.85, .88, .91, …, 1.12, 1.15).

Type: .03, ENTER^, 1, ALPHA, “AA”, ALPHA, XEQ “DERV“ => “RUNNING...“

On return, both R00 and X contains 0.540302302 (the actual 1st. derivative is 0.54032306) and R01
and Y contains -0.841470900 (the actual 2nd derivative is -0.841470985).

Testing the sine function for other values and step sizes is easy if you use the explicit derivatives,
f’(sin(x)) = cos(x), and f’’(cos(x)) = -sin(x), that is to say, you can test the values obtained by this
program for this example by taking the cos(x) and –sin(x) for the actual 1st and 2nd derivative values.

Example 2.-

Calculate f '(1) & f "(1) for: f(x) = exp(-x2)

We program the function using any global LBL , 6 characters or less

01 LBL "T"
02 X^2
03 CHS
04 E^X
05 RTN

If we choose h = 0.03 as step-size we type:

0.03 ENTER^, 1, ALPHA “T” ALPHA, XEQ “DERV” -> “RUNNING...“

f '(1) = -0.735758961 the exact value is -0.735758882

X<>Y
f "(1) = 0.735757408 ; the exact value is 0.735758882

Choosing the best h-value is not easy but h ~ 0.03 "often" produces good results. Be aware that
unfortunately the better step-size for the first derivative may not be a good one for the second and
vice-versa.

For further information on this subject you should also refer to the TAYLOR approximation chapter of
this manual, which includes examples of function derivatives up to order 10 as a collateral application
of the TAYLOR formulas around the point of expansion.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 51 of 198 January 2016

2.5.2. Continued Fractions

Continued Fractions are expressions of the form:

The use of + in the denominator indicates that the remainder of the terms actually are part of that
denominator. So the above expression means B(0) + A(1) / [B(1) + A(2) / [B(2) + A(3) / […]]].

This can be mathematically abbreviated as B(0) + [A(1), A(2), A(3), … ; B(1), B(2), B(3), …] which will
be used here. The number of expressions may or may not be infinite.

Many values are easily expressed as continuous fractions. Some examples are:

Tanh(x) = [X, X2,X2, X2, … ; 1, 3, 5, 7, …]

Pi = [4, 12, 32, 52, 72, … 1, 2, 2, 2, 2, …] (one of MANY representations of Pi)

1 / (e-1) = [1, 1, 1, 1, … ; 2, 2, 2, 2, …] (again one of MANY representations of e)

The simpler form of continuous fractions often used are expressions with A(n)=1, therefore of the
form: B(0)+1/(B(1)+) 1/(B(2)+)… 1/(B(n)+)…

mathematically abbreviated as [B(0); B(1), B(2), B(3), …]. For example:

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, …]

Some expressions are not so easily represented in this form. For example:

Pi = [3; 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, …] (there is no pattern to express the next B(N)].

The CF2V function is designed to calculate a continued fraction value. It requires a user created
subroutine that calculates A(n) and B(n) for n >= 1. The function makes X available in R01 and n
available in R02 for this program, and expects A(n) in stack register X and B(n) in stack register Y on
completion of the user subroutine. The subroutine must be callable by a global label (of up to 7
characters). The program uses R00 thru R04.

To execute CF2V, put the value of B(0) in stack register Y, and the value of evaluation point x in stack
register X; then put the name of the routine that calculates both A(N) and B(N) into the alpha register.
Execute CF2V to evaluate the continued fraction.

Here is an example of use of CF2V. Let’s say we want to evaluate the Tanh function mentioned above.
We would create the following program in memory (assume we use the label TT):

01 LBL “TT” 08 LBL 01
02 RCL 02 ; get n from R02 09 - ; (n–1) in X
03 1 ; Is it 1? 10 RCL 02 ; get n again
04 X#Y? 11 + ; (2n–1) in X
05 GTO 01 ; No, skip to LBL 01 12 RCL 01
06 RCL 01 ; B(1) = 1 in Y, A(1) = x in X 13 X^2 ; B(n) = (2n – 1) in Y,
07 RTN 14 END ; A(n) = x^2 in X

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 52 of 198 January 2016

To evaluate Tanh(1) with B(0)=0 enter the following:

0 , ENTER^, 1 , ALPHA, “TT”, ALPHA and execute CF2V. -> “RUNNING…”

The answer of 0.761594156 (assuming FIX 9) is displayed in a few seconds. The value returned should
be accurate to at least 9 significant digits.

Try 0, ENTER^ 2 (to evaluate Tanh(2)), execute CF2V, answer is 0.964027580.

If you want to see the estimates as they are calculated, just put a VIEW 00 statement at the beginning
of routine “TT”.

A more interesting example might be the Incomplete Gamma functions. As you know the following
relationship applies for three Gamma functions:

Continued fractions exist for both lower and upper functions:

Since this requires two variables, we need to store variable a in R05 before running each continued
fraction value. Here are sample programs for calculating A(n) and B(n):

01 LBL “UIG” ;Upper Incomplete Γ 19 LBL 01
02 RCL 02 ; get counter (n) 20 X<>Y ; Calculate (n+x-1) where n=2N-1
03 1 21 ST+ X
04 X#Y? ; If not 1, skip 22 1
05 GTO 01 23 -
06 RCL 01 ; Calculate (1+x-a) 24 RCL 01
07 + 25 +
08 RCL 05 26 RCL 05
09 - ; We now have B(1) 27 - ; We now have B(N)
10 LBL 00 ; Get A(1) 28 STO Y ; Save due to next calculation
11 RCL 01 ; Calculatexae-x 29 RCL 05 ; Calculate n(a-n) where n = N-1
12 RCL 05 30 RCL 02
13 Y^X 31 1
14 RCL 01 32 -
15 CHS 33 STO Z
16 E^X 34 -
17 * ; We now have A(1) 35 * ; We now have A(n)
18 RTN 36 RTN

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 53 of 198 January 2016

37 LBL “LIG” ;Lower Incomplete Γ
38 RCL 02 ; Get counter (n)
39 1
40 X#Y?
41 GTO 02
42 RCL 05 ; We now have B(1)
43 GTO 00 ; Get A(1) and exit
44 LBL 02
45 RCL 02 ; Get n
46 EVEN?
47 GTO 03
48 1 ; Odd N handling
49 - ; Calculate nx 50 -
50 2 ;where n=(N-1)/2
51 /
52 RCL 01
53 * ; We now have A
54 GTO 04

55 LBL 03 ; Even N handling
56 2 ;Calculate –(a+n) x
57 / ; where n = N/2-1
58 1
59 -
60 RCL 05
61 +
62 RCL 01
63 *
64 CHS ; We now have A(n)
65 LBL 04 ; Calculate a+n
66 RCL 05 ;where n = N-1
67 RCL 02
68 1
69 -
70 + ; We now have B(n)
71 X<>Y ; B(n) in Y, A(n) in X
72 END

Let’s calculate (3,4) and (3,4).

Since B(0) is always 0 then we enter (for a=3 and x=4):

ALPHA, “UIG”, ALPHA, 3, STO 05, 0, ENTER^, 4 and XEQ “CF2V”. You should get 0.476206611.

Now do:

ALPHA, “LIG”, ALPHA, 0, ENTER^, 4 and XEQ “CF2V”. You should get 1.523793388

which agrees with the value we’d obtain using ICGM (described elsewhere in the manual) except for
the very last decimal place.

The sum of these values should be (3) = 2.0; and it is 1.999999999, which is close enough!

If for some reason the calculation takes too long to wait for (all depends on what A(n) and B(n) are)
the program can be stopped by pressing R/S. It is stopped somewhere in the user created routine.
Register 00 will contain the last value calculated for the continued fraction, register 02 is the number of
loops performed to that point.

The idea for this program comes from Jean-Marc Baillard (in fact the TANH example is from his
documentation), but usage is slightly different (he puts the name of the routine to execute in R00, here
that register is used for the solution), and my routine is MCODE instead of FOCAL. I use R03 for C(n)
and R04 for D(n) in using the Modified Lentz formula for continued fraction evaluation.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 54 of 198 January 2016



What good is a math–related module without a Triangle solver application? Never too basic to be non-
important, especially if it can be tucked away in an auxiliary bank and doesn’t take the customary set of
FAT entries – FAT space is always at a premium. As of revision 3x3 of the SandMath the AECROM
“TRIA” is included, which can arguably be considered the best Triangle solver ever written for the 41.
And it is incorporated into a new single function that acts as consolidated launcher for it and the other
two geometric solvers. All improved with 13-digit math routines and other usability enhancements.

2.6.1. The three geometric solvers

CIRCLE: different geometric properties of a circle segment.
SARR: Slope, Angle, Rise and Run – also connects to the Triangle solver.
TRIA: Knowing three elements it resolves the other 3 unknown and the area.

Notice that GMSLVR can be launched directly from the mail [ΣFL] launcher, using the EEX key as
shortcut.

 , and then:

Upon selecting the desired solver, an information message is shortly shown on the display while the
key is held depressed, followed by “NULL” if kept pressed to cancel the action. If not, then the initial
execution of the chosen solver starts always by presenting the default menu of choices – which can
always be recalled by pressing the menu option, on the [E] key

It’s important to mention that these three are FOCAL programs (albeit quite unusual and also stealth to
the FAT) triggering the different choices for these solvers as local labels; therefore the top row keys
should not have any key assignments for this approach to work. Note also that the USER mode will be
activated automatically by the function.

Rather than attempt to explain these functions let’s refer to the original AECROM user’s manual for a
first-hand and inimitable description of their functionality.

1. [%<)] = SARR- SLOPE, ANGLE, RISE & RUN SOLVER

The SARR solver computes slopes, angles, rise and run. Your HP-41 must be in USER mode and, if you
have anything assigned to the top row of keys, you need to clear those assignments.

Example:

 The slope of a line is 0.776. What is the angle between the line and level?

Solution: In USER mode, press [XEQ] “GMSLVR”, [C] (i.e. SARR), then (assumes no keys assigned):
0.776 [A] [B] -> 37.8115 (DEG).

When you execute SARR and switch to USER mode, the keys in the top row take on new meanings. To
see these new meanings press the [E] key in the top row at any time. The calculator shows you the
menu:

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 55 of 198 January 2016

The first four keys in the top row represent the values SLope, ANgle, RIse, and RuN, and the fifth key
calls the menu. Pressing one of the first four keys can mean either "take the value in the X-register as
an input" or "calculate a value," depending on when you press it. When you key in a value and press
one of the first four keys, the HP-41 takes it as an input. But immediately following an input, pressing
one of the first four keys means "compute this value."

In the above example, the only known value was the slope, which is all you need to know to solve for
the angle. You simply keyed in the slope (0.776 [A]) and solved for the angle [B]).

To solve for anyone of the four unknowns, you need to input knowns according to the following table.

Slope Run and Rise, or Angle·
To Solve for: You need to input:

Angle Run and Rise, or Slope
Rise Run, and Angle or Slope
Run Rise, and Angle or Slope

IMPORTANT RULE: Always key in your knowns from right to left in the menu.

Example

: The center riser on a triangular roof truss is four feet high and the length from one end of
the truss to the midpoint is 22 feet. What is the slope of the roof?

Solution: This solution assumes you have already pressed [XEQ] “GMSLVR”, [C]

Now press [E] to view the menu and 22 [D], 4 [C], [A]. The answer is 0.1818.

Example:

 With a theodolite, you measured the angle of an imaginary line going from the top of a tree
to the ground at a distance of 5.749924998 m (*) from the base of the tree to be 57 degrees. How tall
is the tree?

Assuming you just completed the previous example, press
(remember: you need to be in USER mode, and also in DEG
mode for this example). Then 5.749924998 [D], 57 [B].

[C] will give you the answer (8.854108050 m).

In the above example, you are solving for the Rise given
the Run and the angle (57 degrees). Notice that when you
key in a number before you press a key in the top row, the
calculator takes it as an input. But when you press one of
the top row keys without first keying in a number, the HP-
41 calculates that value based on the numbers you've just
keyed in.

(*) Converted from the original feet value in the manual.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 56 of 198 January 2016

2. [<>] = TRIA - THE TRIANGLE SOLVER.

From SARR, you can press [SHIFT] [d] to execute the TRIA solver, or you can use [XEQ] “GMSLVR”,
[A] (i.e. TRIA). TRIA helps you solve all the characteristics of any triangle given three defining
quantities for that triangle. Here's a picture of an arbitrary triangle with its angles and sides labeled:

The sides are labeled in a counterclockwise order around the triangle and the angles are numbered
according to the opposite side. This is the way that TRIA expects a triangle to be oriented. To call up
the TRIA menu execute the function GMSLVR, then [A]. Remember, the calculator must be in USER
mode. You will see the menu on the left:

 -----

The first three keys in the left-side menu represent the three sides of the triangle, “AR” shows that
using the [D] key you can solve for the AREA of a triangle and the “M” shows you that the [E] key
brings up the menu at any time.

Now press [] [e]. You will see the menu on the right side. This is the shifted menu of TRIA. This menu
shows you that by using the shifted top row keys ([] [a], [] [b], and [] [c]), you can input or solve
for any of the three angles of a triangle. Plus, the “^S” selection executes SARR (described before),. So
remember, the TRIA function has two menus. The [E] key calls up the unshifted menu, and [] [e] calls
the shifted menu.

TRIA has fairly specific rules for inputting the three knowns that define a triangle. Once the triangle is
oriented similar to the previous diagram (sides labeled counterclockwise), the known values need
to be input in counterclockwise order around the triangle as follows:

SSS S1, S2, S3
Knowns Suggested input order

ASA A3, S2, A1
SAS S1, A3, S2
SAA S1, A3, A1
SSA S1, S2, A1

Example 1

: Solve for all the unknown sides, unknown angles, and the area of the following triangle:

Solution: 5.3 [A], 3.1 [B], 83 [] [c]. Then press
[] [a] to solve for A1 (64.9903), [] [b] to solve
for A2 (32.0097), [C] to solve for S3 (5.8048),
and [D] to solve for AREA (8.1538).

Once you have input the three defining knowns
of a triangle, you can change one or two values
at a time to see how the other lengths are
affected.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 57 of 198 January 2016

Example 2

: Given the following triangle with three known sides, calculate all the angles and the area of
the triangle.

 Solution: This is a S S S problem, so the input
order is S1, S2, S3. With 4.24 as S1:

A1 = 20.44°, A2 = 46.25°, A3 = 113.31°, and
AREA = 17.07.

Here are the keystrokes: 4.24 [A], 8.77 [B],
11.15 [C], [] [a], [] [b], [] [c], [D].

Example 3

: Given the triangle below (left side) with two known angles and one known side, calculate
the unknowns. Solution: This is an ASA problem, thus the input order is A3, S2, A1. With 15 as S2,
press 65 [] [c], 15 [B], 75 [] [a]. Then press [A] to see S1 (22.54), [C] to see S3 (21.15), [] [b] to
see A2 (40°), and [D] to see the area (153.22).

Example 4

: Calculate the unknown characteristics of the triangle above (right side). Solution: This is a
SSA problem, so the input order is S1. S2. A1. Once you have input this problem the calculator displays
the warning “ANGL.SIDE.SIDE”, indicating that this combination of inputs can result in more than one
solution. The calculator solves for the case where A2 is acute.

The keystrokes to input the triangle are 435.7 [A], 452.9 [B], 67 [] [a]. After the calculator displays
“ANGL.SIDE.SIDE”. you can solve for the unknowns:

73.11 =A2; 39.89 =A3; 303.58 = S3; 63.280.40 = AREA

Moving between SARR and TRIA.

Pressing the [][d] key from the TRIA menu will execute the SARR function, and pressing [] [d] from
SARR will execute TRIA. Data are transferred between the two functions as follows: When going from
TRIA to SARR. S1 becomes RUN and S2 becomes RISE. The slope and angle are calculated accordingly.

When going from SARR to TRIA. RUN becomes SI, RISE becomes S2, and A3 is set to 90.

If you transfer between SARR and TRIA using the [XEQ] “GMSLVR” ... process, all the data are cleared.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 58 of 198 January 2016

3. [()] = CIRC - THE CIRCLE SOLVER

The CIRC solver allows you to calculate properties of a circle and a sector of that Circle from a known
radius and central angle. Like the SARR and TRIA cases, the CIRC solver is menu driven. The following
diagram shows you some of the properties of a circle that can be calculated using CIRC:

Important: The radius (Rd). the sector angle (AN<), and the X- distance (Xd) are the only allowed
inputs. You can also calculate the circumference (CI) of the circle, the area (AR) of the circle, the
segment area (SG), and the sector area (ST).

Three menus are available for CIRC. To view each menu, execute the function ([XEQ] “GMSOLVR” [B])
and press the [E], [][e], and [J] keys.

 ----

The menu that comes up when you press the [E]
key tells you the meanings of the top row keys, the
menu on the [][e] key applies to the shifted top
row, and the [J] menu tells you the meanings of the
keys in the second row.

Example 1

: Calculate the diameter, area, and circumference of a circle with a radius of 10.0. Also,
calculate the arc length, chord length, chord rise, sector area, and segment area of a sector in that
circle with a central angle of 30 degrees.

Solution: With USER mode on and the display set to FIX 4, press GMSLVR, [B] (i.e. CIRC),
[E] 10 [A] 30 [B]. Then ...

diameter [][a] 20.0000
To calculate Press Result: _

area [F] 314.1593
circumference [][c] 62.8319
arc length [][b] 5.2360
chord length [C] 5.1764
chord rise [][d] 0.3407
sector area [H] 26.1799
segment area [G] 1.1799

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 59 of 198 January 2016

Example 2

: Calculate the rise (YR) at X = 1.8. Solution: 1.8 [D] [I] (0.1774)

Notice that the only values you can input are the radius (RA on the [A] key), the central angle (AN on
the [B] key), and the X-distance (XDIS on the [D] key). These values must be knowns if you wish to
calculate any properties that depend upon them.

Geometric Solvers Implementation Details.-

This section has some comments on the integration to the SandMath - Ignore it altogether if you’re not
interested in what’s going on under the hood.

Adding the AECROM geometric solvers to the SandMath has been an exercise of discovery and
patience. The first due to the appreciation of the ingenuity used by the original developers to integrate
the MCODE accuracy and speed to a basically FOCAL-driven data input process, which relies on the
user flag 22 (DATA Entry flag) as trigger for known / unknown elements.

As mentioned at the beginning of this section, there are three FOCAL programs, which account for all
the possible menu selections made in the three launchers – that is a total of 30 choices. The uncanny
thing about those programs is that for every one and each of them, the same instruction is always
executed – and that instruction is nothing less that the AECROM header function itself.

How then does the function know which option is called up for? The answer lies in the actual program
pointer position of the calling step, thus the relative location of the code was of utmost importance –
which accounts for the patience part, as I had to move and shift large sections of code to
accommodate for the demanding requirements of the FOCAL newcomers.

So there were just about 180 words in the main bank in total, but what a tricky thing to adjust for on
an already-packed module with interdependencies across three banks and two pages...

Fortunately the bulk of the code is the MCODE for GMSLVR itself, which has been conveniently located
in bank-3 of the lower page – briefly “coming up” to the main bank for the partial key sequence
prompts, and every time the execution exits to the FOCAL program.

I got partial vindication by consolidating the three FOCAL drivers into a single launcher, which
furthermore allowed the removal of the three FAT entries (TRIA, SARR, and CIRC) – a definitive plus
given that the FAT was already full. You can explore those programs switching to PRGM mode during
their execution (in-between entries, standard procedure).

You probably have noticed that I changed the text presented by the different menus to a less-busy
version of the same. Perhaps more importantly, I also swapped the [D] and [][d] actions in the TRIA
solver, so now the unshifted [D] calculates the Area. This provides consistency to the [][d] key, as the
“gate” to interconnect SARR and TRIA on both cases. Subtle differences, probably just a matter of
taste.

As a side effect of the modification, only one function (MANTXP) was removed from the main FAT; it
has been placed into the auxiliary FAT of the upper page. Hope you agree it was a small price to pay
for such a rewarding addition – definitely worth the extra effort.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 60 of 198 January 2016



Putting a second yellow ribbon around the box, from revision “M” the SandMath also includes the new
TVM$ solver functionality - taken from the just released TVM ROM. This is an all-MCODE
implementation of the classic functions that rivals with the HP-12C implementation in speed and
accuracy – use it to solve for any of the five money variables with the other four known: N, I, PV, PMT,
and FV.

2.6.2. The Time Value of Money solver.-

First of all, accessing the TMV$ solver is also possible using a dedicated entry in the ΣFL launcher –
just press the [USER] key directly at its prompt; thus no need to go through the GMSLVR function
even if for consistency reasons it’s also included there. The direct way saves keystroke pressings;
therefore it’s the recommended approach.

Also important to know is that to input the data, TVM$ expects the value already in X before calling
the corresponding menu choice. This is reversed from the geometric solvers, which first present the
prompt with the menu choices for informational purposes (not a launcher).

The same option key is used to either input the variable value or to calculate it based on the other four.
This duality is possible by relying on the status of the user flag 22 (the data entry flag) to determine
whether it’s an input or a calculation action: UF 22 set means input, whereas UF 22 clear means
calculation.

Remember that to actually set the satus of flag 22, you need to press a key on the numeric pad, i.e.
the digits 0-9, the Radix or EEX keys. Any other key will not activate it, in particular RCL, CHS and
ENTER^ - so you need to work around those cases as appropriate when a new value is to be entered.

TVM$ will clear UF 22 upon completion of the command (either inputting or calculating) – this enables
a repeat calculation of different values just by pressing each menu choice in sequence.

After the input or calculation is done, a message will show the result value for the variable chosen. If
the value is an integer number then decimal settings in the calculator will be ignored for further clarity.

Not shown in the main menu are the following actions:

• B/E (key [J]) – use it to toggle between BEGIN / END modes. A message is displayed to
inform of the selected mode, and it also toggles UF 00 annunciator in the display as a reminder
of the currently selected mode.

• SHOW (keys [F] to [I]) – use it to sequentially review the current values of each of the Money

variables: N, I, PV, PMT, and FV. For additional consistency with the data entering approach,
both B/E and SHOW will also clear UF 22 upon completion.

Rather than attempt to explain the usage and complete functionality let’s borrow the section from the
HP-41 Advantage’s Pac user’s manual – a superb vintage document that avoids re-inventing the wheel.
Bear in mind that whereas the FOCAL version relies on the local keys within the program, the SandMath
implementation uses the TMV$ launcher options for each value input – this is the main difference
between both implementations.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 61 of 198 January 2016

The TVM program solves different problems involving time, money, and interest - the compound-
interest functions. The following variables can be inputs or results.

• N = the number of compounding periods or payments. (For a 30-year loan with monthly
payments, N = 12 x 30 = 360.)

• I = the periodic interest rate as a percent. (For other than annual compounding, this

represents the annual percentage rate divided by the number of compounding periods per
year. For instance, 9% annually compounded monthly equal 9 / 12 = 0 75%)

• PV = the present value. (This can also be an initial cash flow or a discounted value of a series

of future cash flows.) Always occurs at the beginning of the first period.

• PMT = The periodic payment,

• FV = The future value. (This can also be a final cash flow or a compounded value of a series of
cash flows.) Always occurs at the end of the Nth period.

You can specify the timing of the payments to be either at the end of the compounding period (End
mode) or at the beginning of the period (Begin mode). Begin mode sets flag 00. Ending payments are
common in mortgages and direct-reduction loans; beginning payments are common in leasing.

Equation

Where i is the periodic interest rate as a fraction (i = I/100),

p = 1 in Begin mode or 0 in End mode.

Valid Input Values for Data

Use a cash-flow diagram to determine what your cash-flow inputs are and whether to specify them as
positive or negative. The cash-ftow diagram is just a time-line divided into time periods. Cash flows
(transactions) are indicated by vertical arrows: an upward arrow is positive for cash received, while a
downward arrow is negafive for cash paid out.

For example, the six-period time line on the left shows a $20 cash outflow initially and a $50 cash
inflow at the end of the fourth period. (Begn mode cannot be used in calculating PV or FV.) The five-
period time line on the right shows a $1,000 cash outflow initially and a $100 inflow at the end of each
period, ending with an additional #1,000 inflow at the end of the fifth period.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 62 of 198 January 2016

Instructions.

• The program TVM will solve for any one of the variables N, I, PV, PMT, or FV given the other
three or four, which must include either N or I. The order of entry is unimportant. lf you use
only four variables, then the fifth must equal zero. All variables are set to zero when you first
run TVM or clear the financial data, so you do not have to enter a zero in these cases.

• You should clear the financial data before beginning a completely new calculation; otherwise,

previous data that is not overwritten will be used (i.e., for the fourth, unused variable),

• Remember to specify cash inflows (arrow up) as positive values and cash outflows (arrow
down) as negative values. The results are also given as positive ox negative, indicating inflow
or outflow.

• Check that the payment mode is what you want. If you see the flag 00 annunciator (a small 0

below the main display line), then Begin mode is set. If not, End mode is set. To change the
mode, press [J] (a toggle). The display will then show what you have just set: BEGIN MODE or
END MODE. The default is End-mode (flag 00 clear).

• Remember that the interest rate must be consistent with the number of compounding periods.

(An annual percentage rate is appropriate only if the number of compounding periods also
equals the number of years.)

• You might want to set the display format for two or three decimal places (FIX 2 / 3).

This menu will show you which key corresponds to
which function in TVM. Press to recall this menu to the
display at any time. This will not disturb the program in
any way.

To clear the menu at any time, press [<-]. This shows
you the contents of the X-register, but does not end
the program. You can perform caIculations, then recall
the main menu by pressing 0. (However, you do not
need to clear the program's display or recall the menu
before performing calculations.)

Remarks

This program uses local Alpha labels (as explained in the owner's manual fox the HP-41) assigned to
keys [A]- [E], and their shifted counterparts (except [][c]) and [J]. These local assignments are
overridden by any User-key assignments you might have made to these same keys, thereby defeating
this program. Therefore be sure to clear any existing User-key assigments of these keys before using
this program, and avoid redefining these keys in the future within possible.

The financial varlable keys will only store a value if you enter it from the keyboard. If, for example, you
recall a value from a register then press a variable key, the program wil calculate that variable instead
of storing the recalled value. To store a value that was placed in the X-register by some other means
than actually keying it in, press [STO] before pressing the variable key.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 63 of 198 January 2016

Examples

Example 1.-

 A borrower can afford a $650.00 monthly payment on a 30-year, 14.25% mortgage. How
much can he borrow? The first payment is made one month after the money is loaned. (This requires
End mode.)

Using the TVM$ solver, we’ll input the known variables first, and then use the unknown function key to
obtain the result:

650, CHS TVM$, [D] “PMT=-650“
Input Keys Result

14.25, ENTER^, 12, / TVM$, [B] “I=1.1875“
30, ENTER^, 12, * TVM$, [A] “N=360”
0 TVM$, [E] “FV=0”
 TVM$, [C] “PV=53,955.91959“

Example 2.-

 How much money must be set aside in a savings account each quarter in order to
accumuIate $4,000 in 3 years? The account earns 11% interest, compounded quarterly and deposits
begin immediately

 TVM$, [J] “BEGIN MODE“ (sets flag 00)
Input Keys Result

11, ENTER^, 4, / TVM$, [B] “I=2.7500“
3, ENTER^, 4, * TVM$, [A] “N=12”
4000 TVM$, [E] “FV=4,000”
0 TMV$, [C] “PV=0

TMV$, [D] “PMT=-278,223688”

Notice that when you press a key after keying in a value, the calculator stores that value in the
indicated variable (equivalent to STO into the register). However, when you press it without first keying
in a value, the calculator computes a value for the indicated variable.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 64 of 198 January 2016

Programming Information.

The calculation for N, PV, PMT and FV all use a direct formula based on the values for the other four
variables. TVM$ uses 13-digit math routines for extended precision, thus the accuracy should in theory
be better than the FOCAL programs used elsewhere (like the Advantage’s own TVM).

The calculation for the interest rate uses an iterative method to solve the non-explicit equation. This is
done applying Newton’s formula for the successive estimations of the solution, starting with the
following initial value:

i0 = [abs(PV + n*PMT + FV)]1/n

The function’s derivative for Newton’ s formula is calculated using the expression:

f ’ (i) = (PMT / i2) * [(1+i)
-n - 1] + n * [PMT (1 + ip)/i – FV] * (1+i)

-(n+1)

During the calculation the display shows a blinking message, shortly followed by the calculated result:

 and then:

Data Registers.

The usage of data registers in TVM$ is compatible with the other FOCAL programs in the Advantage
Pac (“TVM”) and in the PPC ROM (“FI”). This is convenient if you want to use them interchangeably
to compare the speed and accuracy of the different implementations. You can see the current contents
with the RCL function and the top row keys as arguments, from 01 to 05 as follows:

N – R01
I – R02
PV – R03
PMT – R04
FV - R05

When you call TVM$ it first makes a copy of the contents of these data registers into the stack, and
uses those values for the calculations. Upon completion the obtained result is stored in the
corresponding register and left in the X register as well.

Using TVM$ in Programs.

Notice that TVM$ is designed to be used interactively – but it can also be entered in a program
utilizing the merged functions scheme, whereby the specific option is specified as an index (or
argument) in the next program step following TMV$. This will be taken as the “function argument of
the argument in Rnn”, always assuming it is a calculation action and not data input (regardless of the
current status of UF 22). Simply use STO for storing the values in a program.

The valid values for this argument line are logically 0 to 10, corresponding to the same indexes used in
the register allocation and local keys within the menu. Had TVM$ been a sub-function, and therefore
already using 2 steps in a program (ΣF# plus index), you’d appreciate the fact that it’d take three
program lines (and 5 bytes) to access to any of the financial sub-routines! This compounded scheme is
nothing short of amazing, if you ask me…

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 65 of 198 January 2016

3. Upper-Page Functions in detail.

.

It’s time now to move on to the second page within the SandMath – holding the Special Functions and
the Statistical and Probability groups. Let’s see first the Statistical section – easier to handle and of
much less extension; and later on we’ll move into high-level math, taking advantage of the extended
launchers and additional functionality described in the introduction of this manual.

Statistical Menu - Another type of Launcher.

Pressing [ΣFL] twice will present the STAT/PROB functions menu, allowing access to 10 functions using
the top row keys [A]-[J]. Two line-ups are available, toggled by the [SHIFT] key:

[ΣΣ] Default Lineup: Probability [ΣΣ]

Shifted Lineup: Linear Regression

 -----

Key Function Description Author
[MN] MN _ Means Launcher Ángel Martin
[SD] SDEV Sample Standard Deviation HP Co.
[CV] COV Sample Covariance JM Balliard
[C] NCR Combinations of N elements taken in groups of R Ángel Martin
[P] NPR Permutations of N elements taken in groups of R Ángel Martin

[LR] LR Linear Regression a,b so that Y = aX + b JM Baillard
[ab] L1 Shows equation Y = aX + b Ángel Martin
[R] CORR Sample Correlation Coefficient JM Baillard
[X] LRX Gets estimated X-result for ordinate in X Ángel Martin
[Y] LRY Gets estimated Y-result for abccisa in X JM Baillard

Extended Register Means – Seven Means to an End.

But there’s more to this menu that what meets the eye: choosing “MN:” in the first “screen” will not
(yet) directly execute the mainframe MEAN function, but it’ll trigger a new menu grouping the newest
additions to the SandMath module – meet the seven means of the data sea…

 < ----- >

• First of, there’s the mainframe MEAN function, which uses the data set as defined by ΣREG.

• Then there are four additional means that use a set of data registers to hold the data. These
functions take the data set control word in the X-register as input, which format is ‘bbb.eee”
signifying the beginning and end of the registares block. The functions are: AMEAN, GMEAN,
HMEAN, and PMEAN.

• Finally there are three functions that calculate Duplex means using the values in the X and Y

registers as input. These are AGM, AGM2, and GHM, and use the chars 1/2/3 respectively to
invoke.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 66 of 198 January 2016

The “SHIFTED” screen provides a convenient launching point for several more functions, amongst them
the new additions on Prime finders. See the table below for a complete review of both screens:

Key Function Description Author
[A] AMEAN Arithmetic Mean of Rbbb - Reee Ángel Martin
[G] GMEAN Geometric Mean of Rbbb - Reee Ángel Martin
[H] HMEAN Harmonic Mean of Rbbb - Reee Ángel Martin
[M] MEAN Sample (arithmetic) MEAN (as per ΣREG) Hp Co.

[P] PMEAN Generalized p-Mean of Rbbb - Reee Ángel Martin
[1] AGM Arithmetic-Geometric Mean of X,Y Ángel Martin
[2] AGM2 Modified AGM of X,Y Ángel Martin
[3] GHM Geometric-Harmonic Mean of X,Y Greg McClure

[0] CIRCL Circle Radius and Triangle Area from 3 points Ángel Martin
[1] Σ1/N Harmonic Number Ángel Martin

[N] ΣN^X Generalized Sum of Powers Ángel Martin

[D] dPL Polynomial Derivative (Coeffs in Rbbb – Reee) Ángel Martin
[P] PL Polynomial Evaluation (Coeffs. In Rbbb – Reee) Ángel Martin
[W] PTWIN Next Twin Primes (after value in X) Peter Platzer
[X] PNEXT Next Prime (after value in X) Poul Kaarup

[Σ] Σ^123 _ Sum of integer powers Martin - Kaarup

Finally, the functions listed in the following table are also in the same category – even if they’re not in
the dedicated launchers (although some are in the general SandMath keyboards, see the overlays for
details.- Some of them are plain catch-up, with the aim to complete the set of basic functions. Some
others are a little more advanced, reaching into the high level math as well.

 Function Description Author
[*] %T Compound Percent of x over y Ángel Martin
 D% Delta Percent Ángel Martin
 EVEN? Tests whether x is an even number Ángel Martin
 ODD? Tests whether x in an odd number Ángel Martin
[*] PDF Normal Probability Density Function Ángel Martin
 CPF Cumulative Normal Probability Function Ángel Martin
 ICPF Inverse Cumulative Probability Function Ángel Martin
 QNTL Quantiles – particular case of ICPF for σ=1, µ=0 Ángel Martin

[*] PFCT Prime Factorization Ángel Martin
[*] PRIME? Primality Test – finds one factor Jason DeLooze
[*] RAND Random Number from Seed (in buffer) Håkan Thörgren
[*] RGMAX Maximum in a register block JM Baillard
[*] RGSORT Sorts a block of registers Hajo David
 RGSUM Sums a block of registers JM Baillard
[*] SEEDT SEED with Timer Håkan Thörgren
[*] ST<>Σ ΣREG exchange with Stack Nelson F. Crowle

[*] STSORT Stack Sort David Phillips

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 67 of 198 January 2016

Alea jacta est… { SEED , RAND }

It’s a little known fact that the SandMath module also uses a buffer to store the current seed

 used for
random number generation. The buffer id# is 9, and it is automatically created by SEEDT or RAND
the first time any of them is executed; and subsequently upon start-up by the Module during the
initialization steps using the polling points.

• SEEDT will take the fractional part of the number in X as seed for RNG, storing it into the
buffer. If x=0 then a new seed will taken using the Time Module – really the only real random
source within the complete system.

• RAND will compute a RNG using the current seed, using the same popular algorithm

described in the PPC ROM - and incidentally also used in the CCD module’s function RNG.

Both functions were written by Håkan Thörngren, an old-hand 41 programmer and MCODE expert -
and published in PPC V13N4 p20

• PRIME? Determines whether the number in the X register is Prime (i.e. only divisible by itself
and one). If not, it returns the smallest divisor found and stores the original number into the
LASTX register. PRIME? Also acts as a test: YES or NO are shown depending of the result in
RUN mode. When in a program, the execution will skip one step if the result is false (i.e. not a
prime number), enabling so the conditional branching options.

This gem of a function was written by Jason DeLooze, and published in PPCCJ V11N7 p30.

Example program:

- The following routine shows the prime numbers starting with 3, and using diverse
Sandbox Math functions.

01 LBL “PRIMES” 05 PRIME? 09 INCX
02 3 06 VIEW X <yes> 10 GTO 00
03 LBL 00 07 X#Y? <no> 11 END
04 RPLX 08 LASTX

See other examples later in the manual, relative to prime factorization programs.

• PNEXT Will find the next prime number after the value in X. The original number is saved in
LastX and the result is left in x.

• PTWIN Will find the next twin primes after the value in X, that is two prime numbers p1 and
p2 such that p2 = p1 + 2. The initial value will be saved in LastX and the second of the twins
p2 is placed in X, so you can repeat the execution for the next twin pair.

• DSP? (in the secondary FAT) returns in X the number of decimal places currently set in the

display mode 0 regardless whether it’s FIX, SCI , or END. Little more than a curiosity, it can be
used to restore the initial settings after changing them for displaying or formatting purposes.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 68 of 198 January 2016

Combinations and Permutations – two must-have classics.

Nowadays it would be unconceivable to release a calculator without this pair in the function set – but
back in 1979 when the 41 was designed things were a little different. So here there are, finally and for
the record.

• NPR calculates Permutations, defined as the number of possible different arrangements of N
different items taken in quantities of R items at a time. No item occurs more than once in an
arrangement, and different orders of the same R items in an arrangement are counted
separately. The formula is:

• NCR calculates Combinations, defined as the number of possible sets or N different items
taken in quantities or R items at a time. No item occurs more than once in a set, and different
orders of the same R items is a set are not counted separately. The formula is:

The general operation include the following enhanced features:

• Gets the integer part of the input values, forcing them to be positive.
• Checks that neither one is Zero, and that n>r
• Uses the minimum of {r, (n-r)} to expedite the calculation time
• Checks the Out of Range condition at every multiplication, so if it occurs its determined as soon

as possible
• The chain of multiplication proceeds right-to-left, with the largest quotients first.
• The algorithm works within the numeric range of the 41. Example: nCr(335,167) is calculated

without problems.
• It doesn't perform any rounding on the results. Partial divisions are done to calculate NCR, as

opposed to calculating first NPR and dividing it by r!

Provision is made for those cases where n=0 and r=0, returning zero and one as respective results.
This avoids DATA ERROR situations in running programs, and is consistent with the functions
definitions for those singularities.

Note as well that there is no final rounding made to the result. This was the subject of heated debates
in the HP Museum forum, with some good arguments for a final rounding to ensure that the result is an
integer. The SandMath implementation however does not perform such final “conditioning”, as the
algorithm used seems to always return an integer already. Pls. Report examples of non-conformance if
you run into them.

Example

: Calculate the number of sets from a sample of 335 objects taken in quantities of 167:

Type: 335, ENTER^, 167, XEQ “NCR“ -> 3,0443587 99

Example:

 How many different arrangements are possible of five pictures, which can be hung on the
wall three at a time:

Type: 5, ENTER^, 3, XEQ “NPR“ -> 60,00000000

The execution time for these functions may last several seconds, depending on the magnitude of the
inputs. The display will show “RUNNING…” during this time.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 69 of 198 January 2016

Linear Regression – Let’s not digress.

The following four functions deal with the Linear Regression, the simplest type of the curve fitting
approximations for a set of data points. They complement the native set, which basically consists of
just MEAN and SDEV.

 Function Description Author
[ΣΣ] CORR Correlation Coefficient of an X,Y sample JM Baillard
[ΣΣ] COV Covariance of an X,Y sample JM Baillard
[ΣΣ] LR Linear Regression of an X,Y sample JM Baillard
[ΣΣ] LRY Y- value for an X point JM Baillard

Linear regression is a statistical method for finding a straight line that best fits a set of two or more
data pairs, thus providing a relationship between two variables. Using the well-known method of least
squares, LR will calculate the slope A and Y-intercept B of the linear equation: Y = Ax + B.

The results are placed in Y and X registers respectively. When executed in RUN mode the display will
show the straight-line equation, similar to the STLINE function described before.

Example

: find the y-intercept and slope of the linear approximation for the data set given below:

X 0 20 40 60 80
Y 4.63 5.78 6.61 7.21 7.78

Assuming all data pairs values have been entered using Y-value, ENTER^, X-value , Σ+ ; we type:

XEQ “LR” -> 0,038650000 and X<>Y ->4,856000000 producing the following output in FIX 2:

As to the remaining functions, COV calculates the sample covariance. CORR returns the correlation
coefficient, and LRY the linear estimate for the function at the given point.

For the same sample still in the calculator’s memory, we obtain the values:

Covariance = 38.65; CORR=0.987954828; LRY=4.894184454 (using Corr value as X)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 70 of 198 January 2016

Single and Duplex Means (to an end).

In the means department there is a very complete selection of choices: arithmetic, geometric and
harmonic means are calculated on a set if data registers controlled by the control word “bbb.eee” in X –
i.e. beginning and end registers, and *not* the statistical registers as defined by ΣREG ! . Also a
generalized exponential mean is available using the same syntax.

The AMEAN, GMEAN , and HMEAN functions calculate the means of multiple values stored in data
registers. Entering the control word describing the register set in X and executing AMEAN, GMEAN, or
HMEAN will result in that mean being put into X (and the control word saved in LastX). So, for
example, to get one of these means for values in registers 10 thru 15, put 10.015 in X and execute the
appropriate mean function.

But there is more: The PMEAN function is also available for a generalized power mean function. The
power “p” is put into Y and the control word in X, and the Generalized Power Mean is calculated for the
values pointed to by the control word. The PMEAN formula is:

For p=0 this would normally lead to a problem. However the limit for this expression as p -> 0 yields
the Geometric Mean, so when p=0, the GMEAN function code is used.

From the above formula you can see that p=1 yields the Arithmetic mean, and p=-1 yields the
Harmonic mean. However fractional and other negative values can be used, and you will notice that as
p becomes infinite (positive), the mean tends to be the MAX value of the numbers. As p becomes
infinite (negative), the mean tends to be the MIN value of the numbers.

With the exception of the AMEAN function, all values used in the registers must be non-zero positive
values. Otherwise a “DATA ERROR” condition will occur.

Let’s move now to the duplex means on a pair of numbers placed in X and Y registers: the Arithmetic-
Geometric mean AGM and the Harmonic-Geometric mean HGM. An interesting definition of the mean
of two values occurs when combining Arithmetic, Geometric, and Harmonic means.

• The Arithmetic-Geometric mean is a special value, defined as the common limit of A =
AMean(A,B) and B = GMean(A,B) repeated until A-B = 0.

• The Geometric-Harmonic mean is defined as the limit of A = GMean(A,B) and B = HMean(A,B)
repeated until A-B = 0.

AGM calculates the Arithmetic-Geometric Mean, whilst GHM calculates the Geometric-Harmonic mean.
As an interesting note, AM(A,B) >= AGM(A,B) >= GM(A,B) >= GHM(A,B) >= HM(A,B).

What happened to the Arithmetic-Harmonic mean? That is simply the Geometric mean in disguise,
thus no need for such function. Finally, note that taking p=0.5 in the PMEAN function (on two
registers) will NOT yield the AGM (and -0.5 will NOT yield the GHM) unless, of course, the register
values are identical! It is not that simple to get those values, and the power value required changes
depending on the two values chosen for AGM or GHM.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 71 of 198 January 2016

Ratios, Sorting and Register Maxima.

• %T and D% (in the secondary FAT) are miniature functions to calculate the percent of a
number relative to another one (its reference), and the delta percentual between the numbers
in Y(reference) and X(new value). The formulas are:

 %T(y,x) = 100 x / y ; D% = 100 (x-y) /x

Example: the relative percent of 4 over 25 is 16%.- You type: 25, ENTER^, 4, XEQ “%T”
Example: the delta percentual of a change from 85 to 75 is –11,765%

• GCD and LCM are fundamental functions also inexplicably absent in the original function

set. They are short and sweet, and certainly not complex to calculate. The algorithms for these
functions are based on the PPC routines GC and LM – conveniently modified to get the most
out of MCODE environment.

If a and b are not both zero, the greatest common divisor of a and b can be computed by using
least common multiple (lcm) of a and b:

Examples: GCD(13,17) = 1 (primes), GCD(12,18) = 6; GCD(15,33) = 3
Examples: LCM (13,17) = 221; LCM(12,18) = 36; LCM(15,33) = 165

• RGSORT sorts the contents of the registers specified in the control number in X, defined as:
bbb,eee, where “bbb” is the begin register number and “eee” is the end register number. If
the control number is positive the sorting is done in ascending order, if negative it is done in
descending order. This function was written by HaJo David, and published in PPCCJ V12N5
p44.

• STSORT sorts in descending order the contents of the four stack registers, X, Y, Z and T.

Obviously no input parameters are required. This function was written by David Phillips, and
published in PPCCJ V12N2 p13

• RGMAX finds the maximum within a block of consecutive registers – which will be placed in
X, returning also the register number to Y. The register block is defined with the control word
in X as input, with the same format as before: bbb.eee.

• RGSUM is a handy and super-fast way to calculate the sum of the data registers specified by

the control word bbb.eee in X. It was written by Jean-Marc Baillard.

• ST<>Σ exchanges the contents of five statistical registers and the stack (including L). Use it
as a convenient method to review their values when knowing their actual location is not
required.

• ODD? And EVEN? are simple tests to check whether the number in X is odd or even. The
answer is YES / NO, and in program mode the following line is skipped it the test is false. The
implementation is based on the MOD function, using MOD(x,2) = 0 as criteria for evenness.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 72 of 198 January 2016

(Normal) Probability Distribution Function. { PDF }

In probability theory, the normal (or Gaussian) distribution is a continuous probability distribution that
has a bell-shaped probability density function, known as the Gaussian function or informally as the bell
curve:

The parameter μ is the mean or expectation (location of the peak) and σ^2 is the variance. σ is known
as the standard deviation. The distribution with μ = 0 and σ^2 = 1 is called the standard normal
distribution or the unit normal distribution

 PDF expects the mean and standard deviation in the Z and Y stack registers, as well as the argument
x in the X register. Upon completion x will be saved in LASTx, and f(µ,σ,x) will be placed in X. It has
an all-MCODE implementation, using 13-digit routines for increased accuracy.

PDF is a function borrowed from the Curve Fitting Module, which contains others for different
distribution types. With the Normal distribution being the most common one, it was the logical choice
to include in the SandMath.

The figures above show both the density functions as well as the cumulative probability function for
several cases. The Error function ERF in the SandMath can be used to calculate the CPF – no need to
apply brute force and use PDF in an INTEG-like scenario, much longer to obtain or course. The
relation to use is:

Example program:

 The routine below calculates CPF. Enter μ, σ, and x values in the stack.

01 LBL “CPF” 08 /
02 RCL Z 09 ERF
03 - 11 INCX
04 X<>Y 12 2
05 / 13 /
06 2 14 END
07 SQRT

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 73 of 198 January 2016

Cumulative Probability Function and its Inverse. { CPF , ICPF , QNTL }

Since revision 2x2 the SandMath includes a few functions to calculate the cumulative probability and its
inverse – both for the standard and general cases (any standard deviation and mean) of a Normal
Distribution.

The direct function is CDF , which basically employs the Error function erf with the appropriate
adjustment factors as described in the previous example. The inverse function is ICPF , which benefits
from a native implementation of the inverse Error Function ierf (more about this later).

The expression used is, conversely:

x = µ + σ sqr(2) . ierf [2 P(x,µ,σ) - 1]

where x = ICPF and P(x,µ,σ)= CPF, programmed as shown in the listing at
the left - a very simple FOCAL program that directly relies on IERF to do all
the work. Note that the stack is expected to contained the three parameters
defining the distribution.

Both CPF and ICPF require the mean in Z, the standard deviation in Y, and the argument in X. You
can use the fact that they are inverse from each other to verify the results.

The third function is QNTL , which basically is a particular case for ICPF – for the Standard Normal,
with σ=1 and µ=0. It is calculated with an iterative approach using the Halley method to converge to
the result. Obviously the results should be equivalent to ICPF with the standard parameters inputted.

Halley’s method uses the following expression to calculate the successive approximations to the root:

where our function in this case is f(x) = [CPF(x) – Value], thus we take advantage of the fact:
f ‘(x) = PDF and f “(x) = -k f ‘(x); thus the above expression gets simplified considerably.

Examples.

 Which argument yields a probability of 75% for a Standard Normal distribution?

a) Using ICPF: 0, ENTER^, 1, ENTER^, 0.75, ΣF$ “ICPF” -> 0,674489750
b) Using QNTL: 0.75, ΣF$ “QNTL” -> 0,674489750

What is the cumulative probability for the argument obtained in the previous example?

Type: 0, ENTER^, 1, RCL Z, ΣF$ “CPF”, -> 0,750000000

The accuracy is quite good, also holding up well across the entire range of values for both ICPF and
QNTL – thanks to the thorough implementation of IERF, and to the iterative Halley approach
employed. Execution speed is much faster for ICPF than for QNTL, but this one is more accurate for
arguments in the vicinity of 1.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 74 of 198 January 2016

Poisson Standard Distribution. { PSD }

 PSD is another Statistical function, which calculates the Poisson Standard Distribution

. In probability
theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the
probability of a given number of events occurring in a fixed interval of time and/or space if these
events occur with a known average rate and independently of the time since the last event

A discrete stochastic variable X is said to have a Poisson distribution with parameter λ>0, if for k = 0,
1, 2, ... the probability mass function of X is given by:

Its inputs are k and λ in stack registers
X and Y. PSD’s result is the probability
corresponding to the inputs.

Example 1.-

Calculate the probability mass function for a Poisson
distribution with parameters: l=4, k=5

4, ENTER^, 5, ΣF$ “PSD”
Returns: 0.156293452

Example 2

: do the same for l=10 and k=10

10, ENTER^, ΣF$ “PSD”
(or ΣFL , [,] – “LastF”)
Returns: 0.125110036

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 75 of 198 January 2016

And what about prime factorization? { PFCT }

Function PFCT will do a very fast and simple prime factorization of the number in X, using PRIME?
To look for the successive divisors until 1 is found. PFCT uses the ALPHA registers to present the
results, grouping the repetitions of a given factor in its corresponding exponent.

For example, for x=126 the three prime factors are 2, 3, and 7, with 3 repeated two times:

For large numbers or when many prime factors exist, the display will scroll left to a maximum length of
24 characters. This is sufficient for the majority of cases, and only runs into limiting situations in very
few instances, if at all – remember that exceeding 24 characters will shift off the display the left
characters first, that is the original number - which doesn’t result into any data loss.

Obviously prime numbers don’t have any other factors than themselves. For instance, for x=17777
PFCT will return:

, which indeed is hardly debatable.

Note that only the last two prime factors found will be stored in Y and Z, and that the original number
will remain in X after the execution terminates. A more capable prime factorization program is available
in the SandMATRIX module, using the matrix functions of the Advantage and Advanced Matrix ROMs to
save the solutions in a results matrix. See the appendices for a listing of the program used in the
SandMath and the more comprehensive one.

Shown on the left there’s an even simpler version, that doesn’t
consolidate the multiple factors – which will aggravate the length
limitation of the ALPHA registers of 24-chrs max. The core of the action
is performed by PRIME?, therefore the fast execution due to the
MCODE speed.

See the appendix in the next pages, with both the actual code for PFCT
in the SandMath , and for PRMF - a more capable implementation using
the Matrix functions from the HP Advantage to store the prime factor
and their repetition indexes – really the best way to present the results.

For that second case the function PF>X restores the original argument
from the matrix values. Also function TOTNT is but a simple extension,
using the same approach.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 76 of 198 January 2016

Appendix 4. Enhanced Prime factor decomposition.

The FOCAL programs listed below are for PFCT – included in the SandMath – and PRMF, a more
capable implementation that uses the Matrix functions from the HP Advantage (or the SandMatrix
ROM). For sure a matrix is a much better place than the ALPHA register to hold that information – as is
done in PFCT. The drawback is of course the execution speed, much faster in PFCT.

• PRMF stores all the different prime factors and their repetition indices in a (n x 2) matrix. The
matrix is re-dimensioned dynamically each time a new prime factor is found, and the repetition
index is incremented each time the same prime factor shows up.

• PF>X is the reverse function that restores the original number from the values stored in the

matrix.

• TOTNT (Totient function) is but a simple extension, also shown in the listings below.

PRMF, PC>X and TOTNT are included in the Advanced MATRIX ROM.

Below is the program listing for PFCT, as implemented in the SandMath:

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 77 of 198 January 2016

Below is the Enhanced version, allowing for any number of different prime factors and repetition indices
– all stored in a (n x 2) matrix file in extended memory, “PRMF”.

Note how the program structure is basically the same, despite the addition of the matrix handling.
Since the Advantage module is required we’ve used AIP instead of AINT, totally interchangeable as
they’re basically the same function.

1 LBL "PRMF" 46 RCL 00
2 "PRMF" 47 MSR+
3 2 48 RDN
4 E3/E+ 49 ST/ L
5 MATDIM 50 LASTX
6 CLX 51 DIM?
7 MSIJA 52 INCX
8 RDN 53 MATDIM
9 CF 00 54 X<> Z

10 INT 55 MSR+
11 ABS 56 FS?C 00 was it prime?
12 PRIME? 57 GTO 01 yes, wrap up
13 SF 00 58 X<>Y no, swap things
14 MSR+ 59 GTO 05 and do next PF
15 X=1? 60 LBL "PF>X "
16 GTO 01 61 SF 04
17 FS?C 00 if prime, we're done 62 SF 10
18 GTO 01 63 "PRMF"
19 STO 01 save for grouping 64 LBL 01
20 ST/ L 65 E
21 LASTX reduced number 66 FC? 10
22 LBL 05 67 MSR+
23 E 68 STO 00 re-build the number
24 STO 00 reset counter 69 MSIJA
25 RDN 70 CLA
26 LBL 00 71 LBL 06
27 RCL 01 previous prime factor 72 MRR+
28 X<>Y 73 FC? 04
29 PRIME? 74 AIP
30 SF 00 75 MRR+
31 X#Y? different PF? 76 FC? 04
32 GTO 02 YES 77 X=1?
33 ISG 00 increase counter 78 GTO 04
34 NOP SAME pf 79 "|-^"
35 FS?C 00 was it prime? 80 AIP
36 GTO 03 skip if Prime 81 LBL 04
37 ST/ L 82 Y^X
38 LASTX 83 ST* 00
39 GTO 00 84 FC? 10
40 LBL 03 85 "|-*"
41 RCL 00 86 FC? 10
42 MSR+ 87 GTO 06
43 GTO 01 88 RCL 00
44 LBL 02 NEW pf 89 PROMPT
45 STO 01 90 END

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 78 of 198 January 2016

Curve Fitting at its best. { CURVE , CRVF , EQT }

Perhaps few other subjects have been so thoroughly covered and repeatedly implemented on
programmable calculators as Curve Fitting. Certainly the 41 is no exception to this, see the excellent
examples from the Advantage Module and the PPC ROM, or the standard-setting macro-program from
W. Kolb on the same subject.

Revision 3x3 of the SandMath includes the excellent implementation of the Curve Fitting functions from
the AECROM – enhanced to use 13-digit math routines. Both the CURVE program (in FOCAL) and the
CRVF function (MCODE) are included in their entirety. With them you can make fast and convenient
curve fitting calculations to 16 different curve types, choosing the best fit amongst them based on the
correlation coefficients obtained.

The following paragraphs are extracted from the AECROM Users manual - by itself an excellent work,
perfect complement to the world-class programming that went into the Module. They should provide
enough information to get you going. It’s only after some consideration that I decided to include them,
both begging forgiveness and asking permission - you’re encouraged to consult the original manual,
available at: http://www.hp41.org/LibView.cfm?Command=View&ItemID=581

The AECROM Curve Fitter.

With the AECROM program "CURVE" you can fit an unlimited number of data pairs (x,y) to sixteen
different curves. "CURVE” will automatically determine which of the sixteen curves best fits the supplied
data or you can specify the curve to fit. Once the data has been fit to a curve, "CURVE” will return
predicted y-values for x-values you supply.

A menu-driven program.

The program "CURVE" is menu driven, that is, it redefines the meanings of the top row of keys and
those new meanings can be shown in the display above the keys. In order to use "CURVE," you must
set your calculator to USER mode (press [USER] to turn on the word USER in the display) and you must
clear any global assignments on the top row of keys.

Press XEQ “CURVE” and the top row of keys takes on the following meanings:

[A] -(AD): Accumulate an (x,y) Data pair.
[B] -(FIT): Fit the Data to the curve specified in register 00 (curve number 0 -15)
[C] –(y=): Calculate a y-value on the current curve for an input x.
[D] -(BST): Find the BeST fit (of the sixteen available curves) for the current data.
[E] -(ME): Bring up this Menu.
[SHIFT] [a]-: Remove an (x,y) Data pair (for error corrections).

The Sixteen curves

The sixteen curves available and their equations' are listed below according to curve number.

0. LINEAR: y = a + bx
1. RECIPRCL (reciprocal of linear): y = 1 / (a + bx)
2. HYPERBLA (hyperbola): y = a + b/x
3. REClP HYP (reciprocal of hyperbola): y = x / (ax+b)
4. POWER: y = ax^b
5. MOD PWER (modified power): y = a b^x
6. ROOT: y = a b^1/x
7. EXPONENL (exponential): y = a e^(bx)

http://www.hp41.org/LibView.cfm?Command=View&ItemID=581�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 79 of 198 January 2016

8. LOGRTHMC (logarithmic): y = a + b x LNx
9. LIN HYP (linear hyperbolic): y = a + bx + c/x
10. 2 ORD HY (second order hyperbolic): y = a + b/x + c/(x^2)
11. PARABOLA: y = a + bx + c(x^2)
12. LIN EXPN (linear exponential): y = ax/(b^x)
13. NORMAL: y = a e"(((~-b)~2)/c)
14. LOG NORM (log normal): y = a e^(((b-LNx)^2)/c)
15. CAUCHY: y = l/(a(x+b)"2 + c)

Data Register usage.

In order to run the "CURVE program (or use the CRVF function), you need to have 56 registers
available for data storage ([XEQ] "SIZE 056). Registers 00 to 07 (below) are the ones that contain the
information pertaining to the curve fit. Registers 08 to 55 (listed on page 55) contain the accumulated
data information required to fit data to the sixteen curves.

R00 - Curve number (0 to 15)
RO1 -a
R02 - b
R03 - c
R04 - RR (coefficient of determination)
R05 - RR corrected (for comparing curves of different orders)
R06 - Best RR corrected so far
R07 - Rest curve number so far

Executing the CURVE program clears all data registers in the HP-41.

Example 1 : Finding the Best Fit

As a genetic engineer, you recently completed an experiment dealing with algae growth under varying
levels of radiation. The experiment yielded nine data pairs, which after scaled and rounded to one
significant digit, looked like this:

Radnt. 1 3 3 4 5 5 8 10 11
Growth 5 7 10 9 9 11 12 10 13

Which curve best fits these nine data pairs?

Solution: (Assumes FIX 4)

 XEQ “CURVE” AD,FIT,Y=,BST,ME
Keystrokes Display

 5, ENTER^, 1, [A] 1.0000
 7, ENTER^, 3, [A] 2.0000
10, ENTER]^, 3 [A] 3.0000
 9, ENTER^, 4, [A] 4.0000
 9, ENTER^, 5, [A] 5.0000
11, ENTER^, 5, [A] 6.0000
12, ENTER^, 8, [A] 7.0000
10, ENTER^, 10 [A] 8.0000
13, ENTER^, 11,[A] 9.0000
[E] AD,FIT,Y=,BST,ME
[D] LINEAR_. RECIPRCL_, HYPERBLA_, … CAUCHY_, LIN EXPN_

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 80 of 198 January 2016

By pressing the [D] key, you told the CURVE program to determine which of the sixteen curves fits this
data best. The calculator displays each curve name as it is fitting the data to that curve. When the
search is completed, the name LIN EXPON_ is shown in the display to indicate that the data fits best to
a linear exponential curve.

The equation for the LIN EXPON curve is y= ax/(b^x), and the values for "a" and "b" are stored in
registers 01 and 02, respectively. If you press RCL 01, you will see 4.3859, which is the calculated
value for "a." RCL 02 will show you 1.1476, which is "b."

Goodness of Fit

The coefficient of determination, [RR], is stored in register 04. As you know, this number is a score
ranging from 0 to 1 that tells you how well your data fits to the specified curve. A score of 1 tells you
that every data point falls exactly on the curve specified by a. b, c, and the curve's equation. If you
press [RCL] 04, you should see the value 0.8767, which is RR for the previous example.

The value for RR just described is dependent upon the number of data points in your sample and upon
the number of coefficients (a, b, and c) that are estimated for a given curve. For this reason, RR is not
often a good tool for comparing curves. However, a corrected version of RR, one that isn't dependent
upon sample size or number of coefficients, has been provided (stored in register 05) for use when
comparing different curves.

Example 2: Predicting Y at a given X.

As a metallurgist, you are testing a new additive to an alloy. This additive influences the strength of the
alloy and this influence varies according to the percentage of the additive in the alloy. In tensile
strength experiments, you measured failure points in wires of different additive percentages. The
following table of scaled data was produced:

Additive % Failure/Scale Additive % Failure/Scale
0 1.00 4.0 4.165

0.5 1.131 4.5 4.629
1.0 1.079 5.0 4.811
1.5 1.354 5.5 5.577
2.0 1.382 6.0 5.391
2.5 2.350 6.5 4.735
3.0 3.767 7.0 4.618
3.5 3.945

Input the data and find the best fit. Use the failure variables as the values of y and the percentages as
the x's. Then, based on this best fit curve, find the scaled failure point for a wire with an additive
percentage of 4.3.

Solution:

 The best fit is the NORMAL curve or NORMAL distribution (the equation is y = a e^(((x-
b)^2) + c). The values for a, b, and c, are: 5.173, 6.234, and -19.175 respectively. Once you have
determined this to be the curve, to get the y-value a t x = 4.3 press: 4.3 [E], [C]. That value is 4.256.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 81 of 198 January 2016

Displaying the Equations for Curve Fitting Programs { EQT }

As there was plenty of available space in the module, I decided to include this routine to complement
the Curve Fitting program in the SandMath (CURVE). The routine EQT will write in Alpha the actual
equation which reference number is in the X register, ranging from 0 to 15 as per the table below:

0. Linear
1. Reciprocal
2. Hyperbola
3. Reciprocal Hyperbola
4. Power
5. Modified Power
6. Root
7. Exponential
8. Logarithmic
9. Linear Hyperbolic
10. 2nd. Order Hyperbolic
11. Parabola
12. Linear Exponential
13. Normal
14. Log Normal
15 Cauchy

Note that EQT does not perform any
calculations, thus it’s just an embellishing
addition to CURVE.

The original FOCAL program listing (on
the right) was first published in the
AECROM manual, and it’s reproduced
here practically unaltered.

The implementation in the SandMath is done in MCODE, much longer in size (about 350 bytes in total)
but possible to tuck away in a second bank – where the space for it was available.

The short FOCAL program below will show the 16 curve types sequentially:

01 LBL “CURVES”
02 0.015 16 types in total
03 LBL 00 loop head
04 EQT (ΣF# 097)
05 AVIEW show text
06 PSE pause
07 ISG X next type
08 GTO 00 loop back
09 END done

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 82 of 198 January 2016

A few more Geometry Functions.

 Function Description Author
[Σ$] PP2 2D Distance between 2 points Ángel Martin
[Σ$] VMOD 3D Vector Module Ángel Martin
[Σ$] VXA 3D Cross Product Ángel Martin
[Σ$] V*A 3D Dot Product Ángel Martin
[Σ$] CIRCL Radius of Circle / Area Triangle from 3 points Ángel Martin
[Σ$] HERON Area of a Triangle using its sides JM Baillard
[Σ$] BRHM Area of cyclic quadrilateral JM Baillard
[Σ$] THV Tetrahedron Volume JM Baillard

This is the small set of geometry functions in the SandMath – just a token to glimpse at the subject,
not a comprehensive implementation. The SandMatrix and Vector Analysis modules contain many more,
as well as a full-featured 3D-Vector Calculator (see overlay below). The Vector Analysis ROM is just a
4k module that can be used independently from the SandMath, but sure it’s a powerful complement for
these specific subjects.

Distance between two points. { PP2 }

The Euclidean distance between two points p and q is the length of the line segment connecting them.
In the Euclidean plane, if p = (p1, p2) and q = (q1, q2) then the distance is given by

 PP2 expects the coordinates of the two points stored in the stack, (y1,x1), (y2,x2) in T,Z,Y, and X
(or vice-versa). The distance will be placed in X upon completion.

Example:

 Calculate the distance between the points a(-3,5) and b(6,-2) from the figure below:

Type: 5, ENTER^, -3, ENTER^, -2, ENTER^, 6, ENTER^,

ΣF$ “PP2” -> 11.40175425

Note: A similar function exists in the 41Z module –
ZWDIST, which basically calculates the same thing, albeit
done in a complex-number context.

3D Vector Modulus (Magnitude) { VMOD }

With the 3 coordinates stored in the stack registers Z,Y, and X, VMOD calculates the vector modulus.
The result is returned in X, but the stack is otherwise unchanged. The initial x-coordinate is saved in
LastX, so you can restore the original vector using X<> L

Example:

 Calculate the magnitude of vector V = [1 –3 4]

Type: 4, ENTER^, -3, ENTER^, 1, ΣF$ “VMOD” -> 5.099019514

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 83 of 198 January 2016

3D Dot and Cross products. { V*A , VXA }

Here the first vector is stored in stack registers X,Y,Z, and the second in ALPHA registers M,N,O.
Obviously having an auxiliary function like ST<>A will come handy – such is available in the
AMC_OS/X module. You can also use STO M, STO N, and STO O for each coordinate.

VXA returns the result coordinates in the Stack, replacing the initial values. ALPHA is unchanged.
V*A returns the result value in X, the rest of the stack and ALPHA are unchanged.

Examples. Calculate the cross and dot products between: V1 = [1 2 3] and V2 = [4 5 6]

Type: 6, ENTER^, 5, ENTER^, 4, ENTER^, ST<>A
and 3, ENTER^, 2, ENTER^, 1, ENTER^, ΣF$ “V*A” -> 32.00000000

Then use X<> L, to restore the initial value, and ΣF$ “VXA” -> -3.000000000

Use RDN twice to see the result vector is: V1 x V2 = [-3 6 -3]
Remember also that the cross product is not commutative, thus (V1 x V2) = - (V2 x V1).

Here’s a way to check your results in WolframAlpha:
http://www.wolframalpha.com/input/?i=cross+product

http://www.wolframalpha.com/input/?i=cross+product�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 84 of 198 January 2016

Circles, Triangles and Tetrahedrons. { CIRCL , HERON , BRHM , THV }

A short reminder section - to reflect the popularity of these topics so common in the early days of
programmable calculators. See JM Baillard’s pages on the subjects posted at:
http://hp41programs.yolasite.com/polygon.php and http://hp41programs.yolasite.com/heron.php

• CIRCL calculates the radius of a circle passing thru three data points, using the point x,y
coordinates. The values are expected to be stored in R01-R07. Besides that, it’ll also return in
the Y-register the area of the circumscribed triangle defined by the three points.

Example: Calculate the radius of the circle passing thru P(5,1), Q(6,2), and R(5,3)

The results are:

ΣF$ “CIRCL” => r= 1,000000000,
X<>Y => A= 1,000000000

Note that you can use the routines IN or INPUT
available in the auxiliary FAT to populate the registers
automatically. The input sequence starts with the
abccisa of P1 in R01.

• HERON calculates the area of a triangle knowing its three sides, using Heron’s formula. Just

enter the sides values in the stack, and execute the function (located in the auxiliary FAT). The
result is stored in X, with the original side saved in LastX. The rest of the stack is unchanged.

Let the triangle ABC with 3 known sides { a , b , c } and s = (a+b+c)/2 the semi-perimeter

Heron's formula is: Area = [s(s-a)(s-b)(s-c)]1/2

Example:
Type: 2, ENTER^, 3, ENTER^, 4, ΣF$ "HERON" => Area = 2.904737510

 a = 2, b = 3, c = 4

 Note: the function CIRCL described above makes use of the HERON formula internally after it
 first calculates the triangle sides from the point coordinates.

• BRHM is related to it, but the calculation for the area of the cyclic quadrilateral - using
Brhamagupta’s formula. Just enter the four values in the stack and execute the function (in the
secondary FAT). The result is stored in X, with the original side saved in LastX. The rest of the
stack is unchanged.

Let a, b, c, and d be its sides lengths, and the semi-perimeter
s = (a + b + c + d)/2 .The area A of the cyclic quadrilaterais:

A = [(s-a).(s-b).(s-c).(s-d).]1/2

Example:

 a = 4 , b = 5 , c = 6 , d = 7

 Type: 4, ENTER^, 5, ENTER^, 6, ENTER^, 7,
ΣF$ "BRHM" => Area = 28.98275349

http://hp41programs.yolasite.com/polygon.php�
http://hp41programs.yolasite.com/heron.php�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 85 of 198 January 2016

• THV calculates the volume of a tetrahedron using Francesca’s formula - with edges values

stored in registers R01 to R06. - provided that the edges a , b , c intersect at the same vertex
and the edges d , e , f are respectively opposite to the edges a , b , c - thus a and d (
respectively b and e , c and f) must be non-coplanar.

Here too you can use IN or INPUT to conveniently store those values in the registers, see DHST
description section for details.

Example1:

 a = 3 b = 5 c = 7 d = 6 e = 8 f = 4

Store these 6 numbers into R01 thru R06
then: ΣF$ "THV" => V = 8.426149773 - The exact value is sqrt(71) , all digits correct.

Example2

: a = 120 b = 160 c = 153 d = 25 e = 39 f = 56

Store these 6 numbers into R01 thru R06 ,
Then: ΣF$ "THV" => V = 8,063.999998 - the exact result is 8,064

The second tetrahedron is a heronian tetrahedron: the edges lengths, the faces areas & the volume are
all integers. So not even the 13-digit math routines return exact results in difficult cases like example2.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 86 of 198 January 2016



Quick recap: a summary table of the different factorial functions available in the SandMath.-

 Function Description Author
[Σ$] APNB Apery Numbers JM Baillard
[Σ$] BN2 Bernouilli Numbers Ángel Martin
[Σ$] MFCT Multifactorial JM Baillard
[Σ$] LOGMF Logarithm Multifactorial Ángel Martin
[Σ$] SFCT Superfactorial JM Baillard
[Σ$] XFCT Extended FACT JM Baillard
[Σ$] POCH Pochhammer symbol Ángel Martin
[Σ$] FFCT Falling factorial Ángel Martin

Large numbers in a calculator like the HP-41 represent a challenge. Not only the limited numeric range
becomes a problem, but also the 10-digit accuracy limits the practical application of the field.
Nevertheless the few functions that follow contribute to add further examples of the ingenuity and
what’s possible using this venerable platform.

This was the last section added to the SandMath in revision “E”. It also required compacting the few
gaps available, and transferring some code to the last available space in the Library#4 module. Make
sure you have matching revision of those two!

The functions in the table above operate only on integers, i.e. no extension to real numbers using
GAMMA. Below is a 3D visualization of one of such extensions, the Hyperfactorial from WolframWorld:

The figure on the left shows a plot of the four
functions on the real line (Fibonacci in blue,
double factorial in red, superfactorial in green,
hyperfactorial in purple).

Don’t expect quantum leaps in number theory
here; it is after all one of the most difficult
branches of mathematics – despite its initial
unassuming appearance.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 87 of 198 January 2016

 Pochhammer symbol: Rising and falling empires. { POCH , FFCT }

In mathematics, the Pochhammer symbol introduced by Leo August Pochhammer is the notation (x)n,
where n is a non-negative integer. Depending on the context the Pochhammer symbol may represent
either the rising factorial or the falling factorial as defined below. Care needs to be taken to check
which interpretation is being used in any particular article.

The symbol x(n) is used for the rising factorial (sometimes called the "Pochhammer function",
"Pochhammer polynomial", "ascending factorial", "rising sequential product" or "upper factorial"):

The symbol (x)n is used to represent the falling factorial (sometimes called the "descending factorial",
"falling sequential product", or "lower factorial"):

These conventions are used in combinatory. However in the theory of special functions (in particular
the hypergeometric function) the Pochhammer symbol (x)n is used to represent the rising factorial.
Extreme caution is therefore needed in interpreting the meanings of both notations !

The figures below show the rising (left) and falling (right) factorials for n={0,1,2,3,4}, and -2<x<2

Function POCH calculates the rising factorial. It expects n and x to be in the Y and X registers
respectively (i.e. the usual convention). For large values of n the execution time may be very long – you
can hit any key to stop the execution at any time.

The falling factorial is related to it (a.k.a. Pochhammer symbol) by :

The usual factorial n! Is related to the rising factorial by: n ! = 1(n)

Whereas for the falling factorial the expression is: n ! = (n)n

Examples

: Calculate the rising factorial for n=7, x=4, and the falling factorial for n=7, x=7

7, ENTER^, 4, ΣF$ “POCH” -> 604.800,0000,
7, ENTER^, 7, CHS, ΣF$ “POCH”, 7, XEQ “CHSYX” -> 5.040,000000

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 88 of 198 January 2016

Multifactorial, Superfactorial and Hyperfactorial. { MFCT , SFCT , HFCT }

This section covers the main extensions and generalizations of the factorial. There are different ways to
expand the definition, depending on the actual sequences of numbers used in the calculation.

The double factorial of a positive integer n is a generalization of the usual factorial n!, defined by:

Even though the formulas for the odd and even double factorials can be easily combined into:

The double factorial is a special case of the multifactorial, which uses the same formula but with
different “steps”: subtracting “k” (instead of “2”) from the original number, thus:

where the products run through positive integers. Obviously for k=1 we have the standard FACT.
One can define the k-th factorial, denoted by n!(k) recursively for non-negative integers as:

Another extension to the factorial is the Superfactorial. It doesn’t use any step-size as variant, rather
it follows a similar formula but using the factorial of the numbers instead of the numbers themselves:

Both the multifactorial and (specially)
the superfactorial will exceed the
calculator numeric range rather quickly,
so the SandMath functions use a
separate mantissa and exponent
approach, using registers X and Y
respectively.

Nevertheless the functions will put up a
consolidated (combined) representation
in the display, using the letter “E” to
separate both amounts. Make sure to
adjust the FIX settings as approriate:

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 89 of 198 January 2016

Examples:

Calculate the multi- and superfactorials given below:

2345 !! !! !! type: 6, ENTER^, 2345, “MFCT” ->

1234 !! !! ! type: 5, ENTER^, 1234, “MFCT” ->

Sf(41) type: 41, ΣF$ "SFCT" ->

Sf(100) type: 100, ΣFL, [,]" ->

To complete this trinity of factorials – Occasionally the hyperfactorial

of n is considered. It is written
as H(n) and defined by:

The figures below show a plot for both the hyperfactorial and its logarithm – itself a convenient scale
change very useful to avoid numeric range problems. Note that they’re extended to all real arguments,
and not only the natural numbers – also called the “K-function”.

See below a couple of simple FOCAL program to calculate the hyperfactorial (which runs beyond the
numeric range dramatically soon!) and its logarithm written by JM Baillard. Understandably slow and
limited as these programs are, you can visit his web site for a comprehensive treatment using
dedicated MCODE functions for the many different possible cases.

01 LBL "HFCT" 07 * 01 LBL "LOGHF" 07 *
02 1 08 DSE Y 02 0 08 +
03 LBL 01 09 GTO 01 03 LBL 01 09 DSE Y
04 RCL Y 10 END 04 RCL Y 10 GTO 01
05 ENTER^ 05 ENTER^ 11 END
06 Y^X 06 LOG

Example

: calculate the Hyper-factorial of 23:

23, ΣF$ "LOGHF", 10, X<>Y, Y^^X =>

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 90 of 198 January 2016

Logarithm Multi-Factorial. { LOGMF }

The product of all odd integers up to some odd positive integer n is often called the double factorial of
n (even though it only involves about half the factors of the ordinary factorial, and its value is therefore
closer to the square root of the factorial). It is denoted by n!!. For an odd positive integer n = 2k - 1, k
≥ 1, it is

 A common related notation is to use multiple exclamation points to denote a multifactorial, the product
of integers in steps of two (n!!), three (n!!!), or more. The double factorial is the most commonly used
variant, but one can similarly define the triple factorial (n!!!) and so on. One can define the k-th
factorial, denoted by n!(k), recursively for non-negative integers as:

The figures below show the plots for X!! (right), a comparison with log(abs(gamma)) (red)
versus log(abs(doublegamma)) (green). – left.

Using the Logarithm is helpful to deal with large arguments, as these functions go beyond the
calculator numeric range very quickly. Also ran out of space in the module to have more than one
function on this subject, thus LOGMF was chosen given its more general-purpose character.

The implementation is thru an all-MCODE function, yet execution times may be large depending on the
arguments.

LOGMF may also be used to compute factorials, use n=1 and then E^X on the result. Obviously the
accuracy won’t be the greatest, but it’s a reasonable compromise

Examples:

 2 ENTER^ , 100 ΣF$ "LOGMF" -> Log (100 !!) = 79.53457468
 999 ENTER^, 123456, ΣFL, [,] -> Log (123456 ! !) = 578.0564932

Stack Input Output
Y n /
X x LGMF(x)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 91 of 198 January 2016

Appendix 5.- Primorials – a primordial view. { NPRML , PPRML }

Welcome to the intersection between factorials and prime numbers...

In number theory primorial is a function from natural numbers to natural numbers similar to the
factorial function, but rather than multiplying successive positive integers, only successive prime
numbers are multiplied. The name "primorial", attributed to Harvey Dubner, draws an analogy to
primes the same way the name "factorial" relates to factors.

There are two conflicting definitions that differ in the interpretation of the argument: the first interprets
the argument as an index into the sequence of prime numbers (so that the function is strictly
increasing), while the second interprets the argument as a bound on the prime numbers to be
multiplied (so that the function value at any composite number is the same as at its predecessor).

The figures below plot both definitions, comparing their shape and slopes:-

Prime primorial (left plot): For the nth prime
number pn the primorial pn# is defined as the
product of the first n primes (where pk is the
kth prime number):

Natural primorial (right plot): In general, for a
positive integer n such a primorial n# can also
be defined, namely as the product of those
primes ≤ n.

The FOCAL programs below can be used to calculate both flavors of primorials. Note the primordial
(pun intended) role of function PRIME?, which effectively makes this a simple application as opposed
to a full-fledged program from the scratch.

Examples: Calculate both primorials for the first 20 natural numbers.

See the solutions on the table next page.

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 92 of 198 October 2015

Table of primorials
n n# pn pn#
0 1 no prime 1
1 1 2 2
2 2 3 6
3 6 5 30
4 6 7 210
5 30 11 2310
6 30 13 30030
7 210 17 510510
8 210 19 9699690
9 210 23 223092870

10 210 29 6469693230
11 2310 31 200560490130
12 2310 37 7420738134810
13 30030 41 304250263527210
14 30030 43 13082761331670030
15 30030 47 614889782588491410
16 30030 53 32589158477190044730
17 510510 59 1922760350154212639070
18 510510 61 117288381359406970983270
19 9699690 67 7858321551080267055879090
20 9699690 71 557940830126698960967415390

01 LBL "NPRML"
02 ABS
03 INT
04 E
05 X>Y?
06 RTN
07 X<>Y
08 LBL 00
09 PRIME?
10 GTO 01
11 X<> L
12 GTO 03
13 LBL 01
14 ST* Y
15 LBL 03
16 DSE X
17 GTO 00
18 X<>Y
19 RTN

01 LBL "PPRML"
02 ABS
03 INT
04 E
05 X>Y?
06 RTN
07 STO Z
08 LBL 00
09 INCX
10 PRIME?
11 GTO 01
12 X<> L
13 GTO 00
14 LBL 01
15 ST* Z
16 DSE Y
17 GTO 00
18 RCL Z
19 END

Both routines only use the stack – no data registers or user flags are used. Clearly the numeric range
will again be the weakest link, reaching it for n=54 for PPRML and n=251 for NPRML.

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 93 of 198 October 2015

Apéry Numbers. { APNB }

In mathematics Apéry's numbers were defined by Roger Apéry in his proof of irrationality of the Apery’s
constant, - ζ(3) -, and are defined by the following sums of binomial coefficients:

There’s an expression based on the Generalized Hypergeometric Function (will be covered later in the
manual), which is the one used in the SandMath – albeit in an independent MCODE function, thus not
calling HFG+ Said formula is:

 An

A short FOCAL program using this formula is listed below:

01 LBL "APNB" 07 STO 06 13 4
02 CHS 08 STO 07 14 PI
03 STO 01 09 X<>Y 15 INT
04 STO 02 10 - 16 1
05 1 11 STO 03 17 HGF+
06 STO 05 12 STO 04 18 END

They are also given by the recurrence equation:

The fisrt few are: 1, 5, 73, 1445, 33001 (see Sloane's A005259)

Their values grow very large quickly, therefore exceeding the 41 numeric range for n>=67. The
technique used has been to split the result in mantissa and exponent, same as it was described for the
extended factorials sections seen earlier in the manual.

The user instructions are simply to input the index n in X, and call APNB with the sub-function
launcher ΣF$. The result will by placed in stack registers Y (exponent) and X (mantissa), as well as
shown as an ALPHA message in RUN mode.

Examples:

68, ΣF$ "APNB" -> A67 = 5,08229 E100

Shown as follows in RUN mode:

Other Examples:

 41, ΣF$ "APNB" -> A41 = 4.944386782 E59
 100, ΣF$ "APNB" -> A100 = 2.824655679 E149
 329, ΣF$ "APNB" -> A329= 1.990511251 E499

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 94 of 198 October 2015

Kaprekar Routine. { KAPR }

The Kaprekar routine is an algorithm discovered in 1949 by D. R. Kaprekar for 4-digit numbers, but
which can be generalized to k-digit numbers. To apply the Kaprekar routine to a number n, arrange the
digits in descending (n') and ascending (n'') order. Now compute K(n)=n'-n'' (discarding any initial 0s)
and iterate, where K(n) is sometimes called the Kaprekar function. The algorithm reaches 0 (a
degenerate case), a constant, or a cycle, depending on the number of digits in k and the value of n.
The list of values is sometimes called a Kaprekar sequence, and the result K(n) is sometimes called a
Kaprekar number.

The SandMath includes a generic implementation for n digits. Simply enter the number of digits in the
Y- register, and the initial number in the X- register. The program will show the partial results until a
cyclic sequence is determined. The resulting elements of that sequence will be stored in data registers,
and the control word is left in X so you can use OUT to show their values.

STACK INPUT OUTPUT
X N0 bbb.eee

Example1

: n = 6 & N0 = 918682

 6, ENTER^, 918682 ΣF$ "KAPR" => {N0, N1, N2,} and finally 24.030 (in 4mn02s)

Therefore we eventually end up with a 7-number cycle in registers {R24, , R30} namely:

 { 851742 , 750843 , 840852 , 860832 , 862632 , 642654 , 420876 }

Example2:

 n = 5 & N0 = 4 which will be read "00004" since n = 5

 5 , ENTER^, 4 , ΣF$ “KAPR” >>>> 15.018 (in 61 seconds)

The 4-number cycle is in registers R15 thru R18: { 62964 , 71973 , 83952 , 74943 }

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 95 of 198 October 2015

Synergy in action: A glimpse of what’s ahead:

“Relationship between common special functions”. Taken from John Cook’s web site:
http://www.johndcook.com/special_function_diagram.html

Note: Make sure that revision “N” (or higher) of the Library#4 module is installed.

http://www.johndcook.com/special_function_diagram.html�

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 96 of 198 October 2015

.

A word about the approach. The Hyper-Geometric Function as a generic function generator (or “the
case of the chameleon function in disguise”).

Special functions are particular mathematical functions which have more or less established names and
notations due to their importance in mathematical analysis, functional analysis, physics, or other
applications, frequently as solutions to differential equations. There is no general formal definition, but
the list of mathematical functions contains functions which are commonly accepted as special. Some
elementary functions are also considered as special functions.

The implementations described in this manual do nothing but scratching the surface (or more
appropriately, “gingerly touching it”) of the Special Functions field, where one can easily spend several
life-times and still be just half-way through.

Implementing multiple special functions in a 41 ROM

 is clearly challenged by the available space in
ROM, the internal accuracy and the speed of the CPU. It is therefore understandable that more
commonality and re-usable components identified will make it more self-contained and powerful,
overcoming some of the inherent design limitations.

The Generalized Hyper-geometric function is one of those rare instances that works in our favor, as
many of the special functions can be expressed as minor variations of the general case. Indeed there
are no less than 20 functions implemented as short FOCAL programs, really direct applications of the
general case - saving tons of space and contributing to the general consistency and common approach
in the SandMath.

We have Jean-Marc Baillard to thank for writing the original HGF+, the Generalized Hyper-geometric
function - real cornerstone of the next two sections. The SandMath has an enhanced MCODE
implementation that optimizes speed and accuracy thanks again to internal usage of 13-digit OS
routines. The reuse made of it more than pays off for its lengthy code.

A few examples will illustrate this:-

Naturally this is not the case for any special function, and even when there’s such an expression it may
be more appropriate to use the direct definition instead – or an alternative one – for the
implementation. This is the case of the Bessel functions, which use the series expansion approach in
the SandMath; the Gamma function using the Lanczos formula, etc.

With that said, let’s delve into the individual functions comprising the High-Level Math group. First off
come those more frequently used so that they have gained their place in the ROM’s main FAT. Looking
at the authorship you’ll see the tight collaboration between JM and the author, as stated in the opening
statements of this manual.

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 97 of 198 October 2015

3.3.1. Gamma function and associates.

Let’s further separate these by logical groups, depending on their similarities and applicability. The first
one is the GAMMA and related functions: 1/GM, PSI, PSIN, LNGM, ICGM, BETA, and ICBT – all of
them a Quantum leap from the previous functions described in the manual, both in terms of the
mathematical definition and as it refers to the required programming resources and techniques.

 Function Description Author
[ΣF] 1/GMF Reciprocal Gamma (Continuous fractions) JM Baillard

[ΣF] BETA Euler’s Beta function Ángel Martin
[ΣF] GAMMA Euler’s Gamma function (Lanczos) Ángel Martin
[ΣF] ICBT Incomplete Beta function JM Baillard
[ΣF] ICGM Incomplete Gamma function JM Baillard
 IGMMA Inverse Gamma function Ángel Martin

[ΣF] LNGM Logarithm Gamma function Ángel Martin
[ΣF] PSI Digamma (Psi) function Ángel Martin
[ΣF] PSIN Polygamma function JM Baillard

In mathematics, the Gamma function (represented by the capital Greek letter Γ) is an extension of the
factorial function, with its argument shifted down by 1, to real and complex numbers.

If n is a positive integer, then

showing the connection to the
factorial function.

For a complex number z with positive
real part, the Gamma function is
defined by

Things become much more
interesting in the negative semi-
plane, as can be seen in the plot on
the right for real arguments.

The Gamma function has become standard in pocket calculators, either as extended factorials or as
proper gamma definition. It’s already available in the HP-11C and of course on the 15C, and that has
continued to today’s models. Implementing it isn’t the issue, but achieving a reasonable accuracy is the
challenge.

A popular method uses the Stirling approximation to compute Gamma. This is relatively simple to
program, but its precision suffers for small values of the argument. A version suitable for calculators is
as follows:

Valid for Re(z)>0, and with reasonable precision when Re(z)>8.

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 98 of 198 October 2015

For smaller values than that it’s possible to use the recurrence functional equation, taking it to the
“safe” region and back-calculating the result with the appropriate adjusting factor:

Incidentally, this method can be used for any approximation method, not only for Stirling’s.

The method used on the SandMath is the Lanczos approximation, which lends itself better to its
implementation and can be adjusted to have better precision with careful selection of the number of
coefficients used. For complex numbers on the positive semi-plane [Re(z)>0], the formula used is as
follows:

Although the formula as stated here is only valid for arguments in the right complex half-plane, it can
be extended to the entire complex plane by the reflection formula,

An excellent reference source is found under http://www.rskey.org/gamma.htm, written by Viktor T.
Toth.

Let’s mention that this method yields good enough a precision that doesn’t require using the functional
equation to adjust it for small values of the argument. The obvious advantage is that without the
required program loop, the execution time is shorter and constant for any input. This becomes of
extreme importance when Gamma is used as a subroutine of more complex cases, like the Bessel J and
I functions – where the cumulative additional time is very noticeable.

q 0 =
 75122.6331530

 q 1 =
 80916.6278952

 q 2 =
 36308.2951477

 q 3 =
 8687.24529705

 q 4 =
 1168.92649479

 q 5 =
 83.8676043424

 q 6 =
 2.5066282

http://www.rskey.org/gamma.htm�

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 99 of 198 October 2015

Appendix 6.- Accuracy comparison of different Gamma implementations.

The tables below provide a clear comparison between three methods used to calculate the Gamma
function:

1. Lanczos formula, with k=6
2. Continuous fractions, and
3. Windschitl (Stirling).

Each of them implemented using both standard 10-digit and enhanced 13-digit precision routines.

The results clearly show that the best implementation is Lanczos, and that the 13-digit routines provide
a second order of magnitude improvement to the accuracy, or in other words: that it cannot
compensate for the deficiencies of the used method. We’re lucky in that the more accurate method is
faster that the second best, albeit not as fast as Stirling’s.

Obviously the extrapolation from integer case to the general case for the argument is assumed to
follow the same trend, albeit not shown in the summary tables.

Standard 10-digit Implementation
Reference Lanczos (k=6) Continuous Fractions Windschitl (Stirling)

(x-1) ! x Result error Result error Result err
1 1 1,000000001 1E-09 1,000000001 1E-09 1,000000012 1,2E-08
1 2 1 0 1,000000001 1E-09 1,000000012 1,2E-08
2 3 2 0 2,000000001 5E-10 2,000000024 1,2E-08
6 4 5,999999999 -1,66667E-10 6,000000002 3,33333E-10 6,000000071 1,18333E-08
24 5 24,00000001 4,16667E-10 24 0 24,00000028 1,16667E-08
120 6 120 0 120 0 120,0000014 1,16667E-08
720 7 720,0000008 1,11111E-09 720,0000001 1,38889E-10 720,0000087 1,20833E-08
5040 8 5040,000002 3,96825E-10 5040 0 5040,00006 1,19048E-08
40320 9 40320,00003 7,44048E-10 40319,99999 -2,4802E-10 40320,00048 1,19048E-08

 362880 10 362880,0002 5,51146E-10 362879,9998 -5,5115E-10 362879,9988 -3,30688E-09
3628800 11 3628800,001 2,75573E-10 3628800,018 4,96032E-09 3628800,05 1,37787E-08
39916800 12 39916799,99 -2,50521E-10 39916800,01 2,50521E-10 39916800,9 2,25469E-08

479,001,600 13 479001599,5 -1,04384E-09 479001598,3 -3,549E-09 479001580,2 -4,1336E-08
6,227,020,800 14 6227020803 4,81771E-10 6227020798 -3,2118E-10 6227020957 2,52127E-08

Enhanced 13-digit Implementation
Reference Lanczos (k=6) Continuous Fractions Windschitl (Stirling)

(x-1) ! x Result error Result error Result error
1 1 1 0 1 0 1 0
1 2 1 0 1,000000001 1E-09 1 0
2 3 2 0 2 0 1.999999999 -5E-10
6 4 6 0 6.000000004 6,66667E-10 5.999999997 -5E-10
24 5 24 0 24 0 23.99999999 -4,16667E-10
120 6 120 0 120 0 120,0000014 1,16667E-08
720 7 720 0 720 0 719.9999996 -5,55556E-10
5040 8 5040 0 5039,9999990 -1,9841E-10 5,039.999998 -3,96825E-10
40320 9 40320 0 40,320.00001 2,48016E-10 40,319.99998 -4,96032E-10
362880 10 362880 0 362880 0 362,880 0
3628800 11 3628800 0 3628800 0 3,628,800 0
39916800 12 39916800 0 39916800 0 39,916,799.99 -2,50521E-10

479,001,600 13 479001600 0 479001600 0 479,001,599.8 -4,17535E-10
6,227,020,800 14 6227020800 0 6227020800 0 6,227,020,800 0

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 100 of 198 October 2015

3.3.2. Reciprocal Gamma function. { 1/GMF }

The reciprocal Gamma function is the function

where Γ(z) denotes the Gamma function. Since the
Gamma function is meromorphic and nonzero
everywhere in the complex plane, its reciprocal is
an entire function. The reciprocal is sometimes
used as a starting point for numerical computation
of the Gamma function, and a few software
libraries provide it separately from the regular
Gamma function.

Taylor series expansion around 0 gives

The SandMath however uses the expression based in continuous fractions, according to which:

 Γ(x) = [x^(x-1/2)] sqrt(2π) exp [-x + (1/12)/(x +
 + (1/30)/(x + (53/210)/(x +(195/371)/(x + ...))))]

Comparing the results obtained by GAMMA (using Lanczos) and continuous fractions it appears that
the precision is generally better in the Lanczos case – which also happens to be faster due to its
polynomial-like form and the absence of loops to adjust the result for smaller arguments.

Note the special case for x=0, which is not a pole for this function but it is a singularity for all the
others that used the common subroutines – therefore the dedicated check in the routine listing.

3.3.3. (Lower) Incomplete Gamma function. { ICGM }

In mathematics, the upper and the lower incomplete gamma functions are respectively as follow:

There is a connection with Kummer's confluent hypergeometric function, when the real part of z is
positive - which is the expression used to program it in the SandMath.

The Upper

 incomplete Gamma function can be easily obtained from the relationship:

Examples
 1.2, ENTER^, 1.7, XEQ “ICGM” -> 0.697290898

 : 3, ENTER^ , 4, XEQ "ICGM" -> 1.523793389

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 101 of 198 October 2015

3.3.4. Log Gamma function. { LNGM }

Many times is easier to calculate the Logarithm of the Gamma function instead of the main Gamma
value. This could be due to numeric range problems (remember that the 41 won’t support numbers
over E100), or due to the poles and singularities of the main definition.

The SandMath uses the Stirling approximation to compute LogGamma, as given by the following
expression (directly obtained from stirling’s formula in page 95):

This approximation is also good to more than 8 decimal digits for z with a real part greater than 8. For
smaller values we’ll use the functional equation to extend it to the region where it’s accurate enough
and then back-calculate the result as appropriate.

The picture on the left shows the
LogGamma function for positive
arguments. Interestingly it has a negative
results region between 1 and 2 – so it
isn’t always positive.

Note also the asymptotic behavior near
the origin – due to the Gamma function
pole.

The implementation on the SandMath uses the analytical continuation to calculate LogGamma for
arguments smaller than 9, including negative values

. Obvious problems (like the poles at negative
integer) will yield DATA ERROR messages, but outside that the approximation should hold.

since: Γ (z+n) = Γ(z) * Σ(z+i) | i=1,2..n

it follows: Ln Γ (z+n) = Ln Γ(z) + Ln [Σ(z+i) | i=1,2..n]

Notice also that the same error will occur when trying to calculate LogGamma when Gamma is
negative, which occurs between even-negative numbers and their immediately lower (inferior) one –
see the plot in page 27).

 1000, XEQ "LNGM" yields ln[Γ(1000)] = 5.905,220423
Example:

 therefore Γ(1000) = 4.02387 102564

See the following link for a detailed description of another implementation (using Lanczos for both
cases) to calculate Gamma and LogGamma on the 41 by Steven Thomas Smith:
http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=941

An excellent implementation of Gamma and related functions for the 41 is available on the following
link, written by Jean-Marc Baillard (very complete and detailed):
http://www.hpmuseum.org/software/41/41gamdgm.htm

http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=941�
http://www.hpmuseum.org/software/41/41gamdgm.htm�

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 102 of 198 October 2015

3.3.5. Digamma and Polygamma functions. { PSI , PSIN }

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

It is the first of the polygamma functions.

Its relationship to the harmonic
numbers is shown in that for natural
numbers:

where Hn is the n'th harmonic number,
and γ is the Euler-Mascheroni constant.

As can be seen in the figure above plotting the digamma function, it’s an interesting behavior showing
the same poles and other singularities to worry about. It should be possible to find an approximation
valid for all the definition range of the function.

It has been implemented on the SandMath using the formulas derived from the called Gauss digamma
theorem, although further simplified in the following algorithm:

programmed as: u^2{[(u^2/20-1/21)u^2 + 1/10]u^2 –1}/12 – [Ln u + u/2],

The implementation also makes use of the analytic continuation to take it to arguments greater than 9
(same as it’s done for LogGamma), using the following recurrence relation to relate it to smaller values
- which logically can be applied for negative arguments as well, as required.

Examples

 1, XEQ “PSI” -> Psi(1) = -0.577215665 (opposite of Euler's constant)
: PI, XEQ "PSI" -> Psi(π) = 0.977213308

 -7.28, XEQ “PSI” -> Psi(-7.28) = 4.651194216
-1234.5, XEQ “PSI” -> Psi(-1234.5) = 7.118826276

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 103 of 198 October 2015

The Polygamma Function { PSIN }

In mathematics, the polygamma function of order m is a meromorphic function on C and defined as the
(m+1)-th derivative of the logarithm of the gamma function:

For m=o the expression holds, where ψ(0) = ψ(z) is the digamma function and Γ(z) is the gamma
function. They are holomorph on C – {0}. At all the negative integers these polygamma functions have
a pole of order m + 1. The function ψ(1)(z) is sometimes called the trigamma function.

The polygamma function satisfies the follwing Recurrence relation:

and the following Reflection formula:

The SandMath implements the FOCAL program written by JM Baillard. The asymptotic expansion of the
Psi-function is derived n times and the recurrence relation is used for values lower then 8 to achieve a
good accuracy in the result. Note also that it uses ALPHA and the stack, but no data registers.

The figure below shows the graphis for the first few values on m , color coded as follows:
Blacik: n=0; Red: n=1; Yellow n=2; Green: n=3...

Examples

.- Calculate Digamma(-1.6) Trigamma(-1.6) Tetragamma(-1.6) Pentagamma(-1.6)

 0. ENTER^, -1.6, XEQ "PSIN" -> Digam(-1.6) = -0.269717877 [Psi(-1.6)]
 1. ENTER^ ,-1.6, XEQ "PSIN" -> Trigam(-1.6) = 10.44375936
 2. ENTER^, -1.6, XEQ "PSIN" -> Tetragam(-1.6) = -22.49158811
 3. ENTER^, -1.6, XEQ "PSIN" -> Pentagam(-1.6) = 283.4070827

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 104 of 198 October 2015

3.3.6. Inverse Gamma function. { IGMMA }

Not to be confused with the reciprocal, the inverse gamma function is a bit of an elusive one in terms
of literature and references – perhaps due to a relatively small applicability.

From a theoretical point of view however, it represents an interesting challenge, which in the SandMath
has been resolved with an iterative calculation approach – making use of the Digamma function directly
in the Newton method.

Let Γ(x) = Val, the value for which a suitable argument x is sought. Thus the function to find a root is
f(x) = [Γ(x) – Val], and applying Newton’s method to calculate the successive approximations:

but in this case: f(x) / f ‘(x) = 1 / Ψ(x); which simplifies considerably the calculation.

The only remaining aspect is that of the initial approximation, x0. We have used that formula provided
by D. Cantrell, which involves the Lambert W function as well:

Approx Inv Gamma or AIG(x) = L(x) / W[L(x) / e] + ½,
Letting L(x) = ln[(x+c)/Sqrt(2π)], with c ~= 0.036534

See reference: http://mathforum.org/kb/thread.jspa?messageID=342551

Even if this initial calculation takes longer than, say using the Logarithm or a polynomial approximation
of Gamma (DataFit), the benefits of a more accurate initial value are fewer number of iterations, and
therefore shorter total execution times. See below a tabulated comparison of the execution times, using
the two initial approaches:

x Direct (David Cantrell) DataFit (Gerson Barbosa)
1.0 2.370024 2.9339976
1.5 15,4800000 17,6000040
2.0 17,96998 17.219989
2.5 11.85998 17.469972
3.0 10.98 17.66
3.5 10.36008 15.289992
4.0 10.47996 14.72004
4.5 10.179972 15.17004
5.0 10.110024 14.7900024
10 9.34992 14.230008
15 8.740008 13.86
20 9.36 14.349996

Naturally this approach requires a good implementation of both Gamma and Psi, which is the case with
the SandMath. Clearly the challenging region is going to be the negative axis, where Gamma has all the
singularities and thus the calculation will have some difficult times to obtain the result for values near
the origin, even returning negative arguments (!).

Example

: calculate the non-integer argument that yields Γ(x) = 2

Type: 2, XEQ “IGMMA” -> 0,442877396
To check it simply: XEQ “GAMMA” -> 2,000000001

http://mathforum.org/kb/thread.jspa?messageID=342551�

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 105 of 198 October 2015

The programs below show the two versions of the implementation – very similar in the approach, but
with a different initial estimation, which makes a difference as shown in the table from previous page.
Note that in the SandMath case the calculation of the L(x) factor is done in MCODE – which increases
accuracy and saves bytes in the main bank.

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 106 of 198 October 2015

3.3.7. Euler’s Beta function. { BETA }

The beta function, also called the Euler integral of the first kind, is a special function defined by

The beta function was studied by Euler and Legendre and was given its name by Jacques Binet.
The most common way to formulate it refers to its relation to the Gamma function, as follows:

As a graphical example, the picture below shows B(X,0.5) for values of x between –4 and 4. As it’s
expected, the same Gamma problem points are inherited by the Beta function.

The implementation on the SandMath
makes no attempt to discover new
approaches or utilize any numeric
equivalence: it simple applies the definition
formula using the Gamma subroutine.
Obvious disadvantages include the reduced
numeric range – aggravated by the
multiplication of gamma values in the
numerator.

Execution time corresponds to three times
that of the Gamma function, plus the small
overhead to perform the Alpha Data
checks and the arithmetic operations
between the three gamma values.

3.3.8. Incomplete Beta Function. { ICBT }

The incomplete beta function, a generalization of the beta function, is defined as:

For x = 1, the incomplete beta function coincides with the complete beta function. The relationship
between the two functions is like that between the gamma function and its generalization the
incomplete gamma function. And it’s also given in terms of the Hypergeometric function the expression
by:

Examples:

 Calculate B(0.7; π, e) and B(0.4; 21; 40)

Type: PI, 1, E^X, 0.7, XEQ “ICBT“ -> 0.029623046
 21, ENTER^, 40, ENTER^, 0.4, XEQ “ICBT“ -> 4.8989756-18

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 107 of 198 October 2015

3.3.9. Bessel functions and Modified.

The next logical group comprises the Bessel functions – and Spherical variants.

 Function Description Author
[ΣF] IBS Bessel I(n,x) of the first kind Ángel Martin
[ΣF] JBS Bessel J(n,x) of the first kind Ángel Martin
[ΣF] KBS Bessel K(n,x) of the second kind Ángel Martin
 SIBS Spherical Bessel i(n,x) Ángel Martin
[ΣF] SJBS Spherical Bessel j(n,x) Ángel Martin
[ΣF] SYBS Spherical Bessel y(n,x) Ángel Martin
[ΣF] YBS Bessel Y(n,x) of the second kind Ángel Martin
[Σ$] JNX1 Bessel J for large arguments (integer orders only) Keith Jarret

The SandMath Module includes a set of functions written with the harmonic analysis in mind,
specifically to facilitate the calculation of the Bessel functions in their more general sense: for any real
number for order and argument.

Bessel functions of the First kind – I(n,x) and J(n,x)

The formulae used are as follows:

Where Γ denotes the Gamma function.

These expressions are valid for any real number as order, although there are issues for negative
integers due to the singularities in the poles of the gamma function - as there’s always a term for which
(m+n+1) equals zero or negative integers, all of them being problematic.

To avoid this, we use the following expression for negative integer orders:

Whilst: I-α(x) = Iα(x), for every real number order.

This definition is also valid for negative values for X, as there’s no singularity for any x value.

The SandMath implementation uses a recurrence formula instead of the one shown above. It has the
clear advantage of not having to calculate Gamma for each term in the sum, contributing to a much
faster and robust algorithm.

The iterative relationships are as follows:

J(n,x) = Σ{U(k)|k=1,2…} * (x/2)n / Γ(n+1), where:
U(k) = - U(k-1) * (x/2)^2 / k(k+n), with U(0) = 1.

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 108 of 198 October 2015

The graphics below plot the Bessel functions of the first kind, Jα(x), and their modified, Iα(x), for
integer orders α=0,1,2,...

Note that for large values of the argument, the order or both these algorithms will return incorrect
results for J(n,x). This is due to the alternating character of the series, which fools the convergence
criteria at premature times and fouls the intermediate results. Unfortunately there isn’t an absolute
criteria for validity, but a practical rule of thumb is to doubt the result if (n+x) it greater than 20.

Bessel functions of the Second kind – K(n,x) and Y(n,x)

The formulae used are as follows:

These expressions are valid for any real number as order – with the same issues as the first kind
functions above when the order is integer. To avoid the singularities and to reduce the calculation time,
the following expressions are used for integer orders

:

π Yn(x) = 2[γ + Ln x/2] Jn(x) – Σ{(-1)k fk(n,x)} – Σ{gk(n,x)}

2 Kn(x) = (-1)n+1 2 [γ + Ln x/2] In(x) + (-1)n Σ{ fk(n,x)} + Σ{(-1)k gk(n,x)}

where γ is the Euler–Mascheroni constant (0.5772...), and:

gk(n,x) = (x/2)2k-n (n-k-1)! / k! ; k=0,1,2,…(n-1)

fk(n,x) = (x/2)2k+n [H(k) + H(n+k)] / [k! (n+k)!] ; k=0,1,2,…..

and H(n) is the harmonic number

, defined as: H(n) = Σ(1/k) | k = 1,2,.. n

Where: Y–n(x) = (-1)nY n (x), and K–n (x) = Kn(x)

(*) note that for x<0, Y(n,x) and K(n,x) are complex numbers.

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 109 of 198 October 2015

The graphics below plot the Bessel functions of the second kind, Yα(x), and their modified, Kα(x), for
integer orders α=0,1,2,...

Not

e
that
KN
BS

and
YN
BS
are
FO

CAL
pro
gra
ms

that use dedicated MCODE functions specially written for the calculations (#BS and #BS2). Their
entries are located in the sub-functions FAT, thus won’t be shown in the main CAT listings – in case you
wonder about their whereabouts.

Getting Spherical, are we?

The spherical Bessel functions jn and yn, and are (very closely) related to the ordinary Bessel functions
Jn and Yn by:

Which graphical representation (naturally very JBS-ish looking) is show below:

Notice that there really isn’t any Spherical i(n,x) properly defined – but there’s one in the SandMath just
the same, using the same relationship as for j(n.x) and y(n,x).

Once again, remember than as (n+x) increases the accuracy of the results decreases

 – specially for
J(n,x), Y(n,x) and the spherical counterparts, where the returned value can be completely incorrect if
(n+x) > 20 (a practical rule, not an absolute criterion).

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 110 of 198 October 2015

Programming Remarks.

The basic algorithms use the summation definition of the functions, calculating the successive values of
the sum until there’s convergence for the maximum precision (10 decimal places on the display).
Therefore the execution time can take a little long – a fact that becomes a non-issue on the CL. Or
when using 41-emulator programs, like V41, setting the turbo mode on.

There are different algorithms depending on whether the order is integer or not

. This speeds up the
calculations and avoids running into singularities (as mentioned before).

Note that for integer indexes the gamma function changes to a factorial calculation, which benefits
from faster execution on the calculator. Non-integer orders utilize the special MCODE function,
GAMMA, with shorter execution times than equivalent FOCAL programs – but still longer than FACT
when integers.

Besides that, for integer orders the execution time is further reduced by calculating simultaneously
the tw o infinite sums involved in the first kind and the second kind terms. This assumes that the
convergence occurs at comparable number of terms, which fortunately is the case - given their relative
fast convergence.

Note that in order to obtain similar expressions for both Yn and Kn – and so getting simpler program
code - we can re-write Kn as follows:

(-1)n+1 2 Kn(x) = 2 [γ + Ln x/2] In(x) – Σ{ fk(n,x)} – (-1)n Σ{(-1)k gk(n,x)}

Dedicated MCODE Functions.

To further reduce the execution time of the programs, two dedicated functions have been written,
implemented as MCODE routines as follows:

Function Flag 00 Clear Flag 00 Set

#BS Σ Uk(n,x), |k=0,1,2… where Uk =- Uk-1 * (x/2)^2 / k(k+n)
#BS2 Σ{fk(n,x)} |k=0,1,2… or: Σ{gk(n,x)} |k=0,1,…(n-1)

The first function #BS is used equally in the calculation of the first kind and the second kind of non-
integer orders.

Function Integer Non-integer
JBS #BS
IBS
YBS 2x #BS2 #BS
KBS

As it was said before, the summation will continue until the contribution of the newer term is negligible
to the total sum value. All calculations are done using the full 13-digit precision of the calculator. No
rounding is made until the final comparison, which is done on 10-digit values.

From the definition above it’s clear that #BS coincides with either Jn(x) or In(x) depending on the
status of the CPU flag 9, and for positive orders. The functions JBS and IBS are just MCODE
extensions of #BS that set up the specific settings prior to invoking it, and (depending on the signs of
the orders and the arguments) possibly adjust the result after it’s completed.

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 111 of 198 October 2015

The second function

 #BS2 is only used for second kind functions with integer orders. It’s a finite sum,
and not an infinite summation. Its contribution to the final result grows as the function order increases.
Its main goal was to reduce execution time as much as possible, derived from the speed gains of
MCODE versus FOCAL.

The definition of fk(n,x) is as follows:

f k(n,x) = {(x/2)2k+n / [k! (n+k)!] } [H(k) + H(n+k)] ; k=0,1,2…

The definition of gk(n,x) is as follows:

gk(n,x) = (x/2)2k-n (n-k-1)! / k! ; k=0,1,…(n-1)

Despite GAMMA’s execution time being reasonably fast, it is noticeably longer than that of the
Factorial for integer indexes – therefore #BS2 will use FACT instead for integer orders.

The Harmonic Numbers H(n) are obtained using another SandMath function as subroutine, Σ1/N. You
see that the internals of #BS2 perform quite an involved procedure, utilizing multiple resources within
the SandMath module.

Furthermore, #BS2 is called twice

 within the FOCAL program to calculate KBS or YBS – once for the
first, infinite summation and a second time for the second, finite sum. The status of User Flag 00
controls the calculation made. That was done to save one FAT entry, when the limiting factor was the
maximumm nuber of functions per page (i.e. 64 functions). Now they have been pushed even further
off, to the secondary FAT used for the sub-functions group.

Bessel Function Summed Functions by #BS2 Flag 00 Flag 01

Yn(x)
gk(n,x) Set Set

 fk(n,x) Clear

Kn(x)
(-1)k * gk(n,x) Set

Clear
(-1)k * fk(n,x) Clear

Note also that for integer orders there are two infinite summations involved for the Bessel functions of
the second kind – as calculating the 1st. kind function is also required. This is done simultaneously
within #BS2 when user flag 02 is set,

 as both series converge in very similar conditions (i.e. with the
same number of terms).

Main functions: IBS, JBS, KBS, and YBS.

The first kind pair (IBS and JBS) are entirely written in MCODE – including exception handling and
special cases. This is the only version known to the author of a full-MCODE implementation on the 41
platform, and it is however a good example of the capabilities of this machine.

No data registers are used – but both the stack and the Alpha registers are used. The number of terms
required for the convergence is stored in register N upon termination.

The second kind pair (KBS and YBS) is implemented using a FOCAL driver program for the auxiliary
functions #BS and #BS2 (in the secondary FAT). Notably more demanding than the previous two,
their expressions require additional calculations that exceed the reasonable MCODE capabilities.

Although they’re not normally supposed to be used outside of the Bessel program, #BS and #BS2
could be called independently. Both use the same input parameters: index in Y and half of the
argument in X. Pay close attention to the status of user flags 00 and 01 as they directly influence their
result.

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 112 of 198 October 2015

Examples:

J(1,1) = 0,440050586 I(1,1) = 0,565159104
J(-1,-1) = 0,440050586 I(-1,-1) = -0,565159104
J(0.5,0.5) = 0,540973790 I(0.5,0.5) = 0,587993086
J(-0.5, 0.5) = 0,990245881 I(-0.5,0.5) = 1,272389647

Y(1,1) = -0,781212821 K(1,1) = 0,601907230
Y(-1,2) = 0,107032431 K(-1,2) = 0,139865882
Y(0.5,0.5) = -0,990245881 K(0.5,0.5) = 1,075047604
Y(-0.5,0.5) = 0,540973790 K(-0.5,0.5) = 1,075047604

Error Messages:

Note that the functions will return a “DATA ERROR” message when the solution is a complex number,
like J(-0.5, -0.5) or I(-0,5, -0.5). There’s no way around that save in some particular cases of the order.
You can always use the versions available in the 41Z Module for full complex range coverage.

“OUT OF RANGE”, occurs when the calculator numeric range is exceeded. This typically occurs for large
indexes, during the power exponentiation step.

“ALPHA DATA” indicates alphabetic data in registers X or Y. May also trigger “DATA ERROR”.

Iterative Method for large arguments. { JNX1 }

The FOCAL program JNX1 is also available in the secondary FAT for cases involving large values of
the arguments and (integer) orders. It uses the relations:

 Jn-1(x) + Jn+1(x) = (2n/x) Jn(x)

The execution time is substantially longer than the direct approach, but as an additional benefit JNX1
will also calculate J(0,x) in addition, leaving this value in the Y-register upon completion.

Example: J3(100) = 7.628420178 10 -2

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 113 of 198 October 2015

Appendix 7.- FOCAL program used to calculate the Bessel Functions of the second kind. As you can
see it’s just a simple driver of the MCODE functions, with the additional task of orchestrating the logic
for the different cases.

Note the usage of the sub-functions from the auxiliary FAT , as well as other SandMath functions.

01 LBL "KBS" 51 LBL 02 orden,argument swapped
02 SF 01 52 CF 02 defaul t case
03 GTO 00 53 X<0? is it negative?
04 LBL "YBS" 54 SF 02 negative order
05 CF 01 55 ABS remember this fact!
06 LBL 00 56 STO 01 abs(n)
07 X=0? 57 ,
08 RTN single case x=0 58 STO 00 reset counter
09 2 59 STO 02 and partial sum
10 / HALFX 60 RDN
11 STO 03 x/2 61 X=0? skip i f n=0
12 X<>Y swap things 62 GTO 06
13 STO 01 n 63 CF 00 selects #B2
14 INT? is it integer order? 64 SPFC# Σ[gk(n,x)] |k=0,1…(n-1)
15 GTO 02 yes, divert to section 65 2 #BS2
16 CHS -n 66 CHS
17 X<>Y x/2 67 STO 02
18 RAD 68 RCL 01 abs(n)
19 SPFC# Multi-Function Launcher 69 LBL 06
20 1 Recurrence Sum #BS 70 RCL 03 x/2
21 CHS -J(-n,x) 71 SF 00 selects #B1
22 STO 02 partia l resul t 72 SPFC# Σ[fk(n,x)] |k=0,1,2…
23 RCL 01 n 73 2 #BS2
24 RCL 03 x/2 74 ST- 02 partial result
25 SPFC# Multi-Function Launcher 75 RCL 03
26 1 Recurrence Sum #BS 76 LN
27 STO 00 save J(n,x) here - used by Hankel 77 GEU
28 FC? 01 is KBS? 78 +
29 GTO 01 yes , skip 79 RCL* showing off ! :-)
30 RCL 01 n 80 ST+ X(3)
31 PI 81 ST+ 02 partial result
32 * 82 RCL 02
33 COS 83 FS? 01 is i t YBS?
34 * 84 GTO 04 yes , cut the chase
35 LBL 01 85 RCL 01 abs(n)
36 RCL 02 partia l resul t 86 E
37 + 87 + INCX
38 RCL 01 n 88 CHSYX (-1)^n+1 * result
39 PI 89 2
40 * 90 / HALFX
41 SIN 91 GTO 03
42 / 92 LBL 04
43 FS? 01 is YBS? 93 PI
44 GTO 03 94 /
45 2 95 FC? 02 was negative order?
46 / HALFX 96 GTO 03 no, skip correction
47 PI 97 RCL 01 abs(n)
48 * 98 CHSYX
49 CHS 99 LBL 03
50 GTO 03 100 STO 02 final result

101 END

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 114 of 198 October 2015

3.3.9. Riemann Zeta function. { ZETA , ZETAX }

Perhaps one of the most-studied functions in mathematics, it owes its popularity to its deep-rooted
connections with prime numbers theory. Not having an easy approximation to work with, its
implementation on the 41 will be a bit of a challenge – mainly due to the very slow convergence of the
series representation used to program it. Be assured that this numeric calculation won’t help you prove
the Riemann hypothesis (and collect the $1M prize) – so adjust your expectations accordingly.

The Riemann zeta function is a function of complex argument s that analytically continues the sum of
the infinite series

 or the integral form:

The Riemann zeta function satisfies the functional equation

valid for all complex numbers s (excluding 0 and 1), which relates its values at points s and 1−s.

The plots below of the real Zeta function show the negative side with some trivial zeros, as well as the
pole at x=1.

The direct implementation in the SandMath module uses the alternative definitions shown below, in a
feeble attempt to get a faster convergence (which in theory it does although not very noticeably given
the long execution times involved). The summations are called the Dirichlet Lambda and Eta functions
respectively.

Go ahead and try ZETA with FIX 9 set in the calculator – you’ll see the successive iterations being
shown for each additional term, until the final result doesn’t change. Be aware than MCODE or not, it’ll
take a very long time for small arguments, approaching infinite as x approaches zero.

For values lower than 1 we make use of the following
relationship – a sort of “reflection formula” if you wish.

The interesting fact about this is how it has been
implemented: if x<1 then the MCODE function branches to
a FOCAL program that (as part of the calculations) calls the
MCODE function after doing the change: x = (1-x), which
obviously is >1.

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 115 of 198 October 2015

Really the direct method isn’t very useful at all, and it’s more of an academic implementation without
practical value except comparison purposes. The Borwein algorithm provides an iterative alternative to
the direct method, with a much faster convergence even as a FOCAL program, and more comfortable
treatment. It is implemented in the SandMath as a courtesy of JM Baillard, in the function ZETAX.

For example, using ZETAX to calculate Ζ(1.001) returns the correct solution 1,005.577289 in a few
seconds! See the appendices for a FOCAL listing of the program if interested.

Examples.-

Complete the table below for ζ(x), using both the direct method and the Borwein algorithm. Use the
result in WolframAlfa as reference to also determine their respective errors.

x ζ(x) Direct error Borwein error
-5 -0,0039682539682 -0,003968254 8,0136E-09 -0,003968254 8,0136E-09
5 1,036927755 1,03692775 -4,96019E-09 1,036927755 -1,38255E-10
3 1,202056903 1,20205676 -1,19096E-07 1,202056903 -1,32764E-10
2 1,6449340668482 n/a n/a 1,644934066 -5,15644E-10

1,1 10,58444846 n/a n/a 10,58444847 4,77115E-10

We see that not only is the Borwein algorithm faster and more capable in range, but also their results
are more accurate than the direct approach; MCODE or not, 13-digit internal subroutines
notwithstanding.

Note: The following links to the MAA and the (now defunct) Zetagrid make fascinating reading on the
Zeta zeros current trends and historic perspective – make sure you don’t miss them!
http://www.maa.org/editorial/mathgames/mathgames_10_18_04.html
http://www.zetagrid.net/

http://www.maa.org/editorial/mathgames/mathgames_10_18_04.html�
http://www.zetagrid.net/�

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 116 of 198 October 2015

Appendix 8.- Putting Zeta to work: Bernoulli numbers. { BN2 }

In mathematics, the Bernoulli numbers Bn are a sequence of rational numbers with deep connections
to number theory. The values of the first few Bernoulli numbers are

 B0 = 1, B1 = ±1⁄2, B2 = 1⁄6, B3 = 0, B4 = −1⁄30, B5 = 0, B6 = 1⁄42, B7 = 0, B8 = −1⁄30.

If the convention B1=−1⁄2 is used, this sequence is also known as the first Bernoulli numbers; with the
convention B1=+1⁄2 is known as the second Bernoulli numbers. Except for this one difference, the first
and second Bernoulli numbers agree. Since Bn=0 for all odd n>1, and many formulas only involve
even-index Bernoulli numbers, some authors write Bn instead of B2n.

The Bernoulli numbers were discovered around the same time by the Swiss mathematician Jakob
Bernoulli, after whom they are named, and independently by Japanese mathematician Seki Kōwa.
Seki's discovery was posthumously published in 1712 in his work Katsuyo Sampo; Bernoulli's, also
posthumously, in his Ars Conjectandi of 1713. Ada Lovelace's note G on the analytical engine from
1842 describes an algorithm for generating Bernoulli numbers with Babbage's machine. As a result, the
Bernoulli numbers have the distinction of being the subject of the first computer program.

There are several (or rather many!) algorithms and approaches to
the calculation of Bn. In this particular example we’ll use the
expression based on the Riemann’s Zeta function, according to
which the values of the Riemann zeta function satisfy

 n ζ(1 − n) = −Bn

for all integers n≥0. The expression n ζ(1 − n) for n = 0 is to be
understood as the limit of x ζ(1 − x).) when x->0.

The FOCAL program on the right shows the implemented SandMath
code. As you can see it is a super-short application of the ZETA
function, even if it’s used for negative arguments, Obviously we’ve
single-cased the troublesome points to avoid execution times
unreasonably long, but apart from that it’s quite generic in its
approach. It also uses a few others SandMath functions as additional
bonus.

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 117 of 198 October 2015

3.3.10. Lambert W function. { WL0 , WL1 , AWL }

This section deals with the implementation of the Lambert W function. Oddly enough its definition is
typically given as the inverse of another function, as opposed to having a direct expression. This makes
it a bit backwards-looking initially but in fact it is significantly easier to implement than the Riemann
Zeta seen before.

The Lambert W function, named after Johann Heinrich Lambert, also called the Omega function or
product log, is the inverse function of f(w) = w exp(w) where exp(w) is the natural exponential
function and w is any complex number. The function is denoted here by W.

For every complex number z:

The Lambert W function cannot be expressed in
terms of elementary functions. It is useful in
combinatory, for instance in the enumeration of
trees.

It can be used to solve various equations
involving exponentials and also occurs in the
solution of delay differential equations.

The Taylor series of W0 around 0 can be found using the Lagrange inversion theorem and is given by:

where n! is the factorial. However, this series oscillates between ever larger positive and negative
values for real z>~0.4, and so cannot be used for practical numerical computation.

The W function may be approximated using Newton's method, with successive approximations to w =
W(z) (so z = w ew) being:

The implementation in the SandMath uses this iterative method to solve for W(z) the roots of its
functional equation, given the functions argument z. An important consideration is the selection of the
initial estimations. For that the general practice is to start with Ln(x) as lower limit, and 1+Ln(x) as
upper value.

Another aspect of the W function is the existence of two branches. The second branch is defined for
arguments between –1/e and 0, with function values between –1 and –infinite.

The “lower” branch is also available in the SandMath as the function WL1. In fact the MCODE
algorithm is the same one, with just different initial estimations depending on the branch to calculate!.

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 118 of 198 October 2015

Example 1

: calculate W for x=5

5, WL0 -> “RUNNING…”, followed by 1,326724665

We can use the inverse Lambert function AWL to check the accuracy of the results, simply executing it
after WL0 and comparing with the original argument. Note the AWL will be seen later on, in the
Secondary FAT (Sub-functions) group. This it requires ΣF$ to call it, not XEQ.

5, WL0 , ΣF$ “AWL” -> 4,999999998; an error of err= 4 E-10

where ΣF$ can be called using the main launcher: [ΣFL], [ALPHA]

Example 2

.- calculate the Omega constant, ω = W(1)

1, WL0 => “RUNNING…” , followed by 0,567143290

Example 3

: Calculate both branches of W for x=-1/2e

1, E^X, CHS, ST+ X, 1/X, WL0 -> W0 (-1/2e) = -0,231960953
 LASTX, ΣF$ “WL1“ -> W-1(-1/2e) = -2,678346990

And here’s a 3D representation of the
complex Lambert to end this section with a
graphical splash. Enough to make you want
to start using your 41Z Module, isn’t it?

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 119 of 198 October 2015

3.4. Remaining Special Functions in the Main FAT.

The third and last chapter of the Special functions in the main FAT comprises other Hyper-geometric
derived functions, plus one notable exception not easy to associate: LINX

 Function Description Author
[ΣF] CI Cosine Integral JM Baillard
[ΣF] EI Exponential Integral JM Baillard
[ΣF$] LI Logarithmic Integral Ángel Martin
[RF] ELIPF Eliptic Integral Ángel Martin
[ΣF] ERF Error Function JM Baillard
[H] HCI Hyperbolic Cosine Integral JM Baillard
 HGF+ Generalized Hyper-geometric Function JM Baillard
[H] HSI Hyperbolic Sine Integral JM Baillard
 LINX Polylogarithm function Ángel Martin
[ΣF] SI Sine Integral JM Baillard

Notable examples of “multi-purposed function” are also the Carlson Integrals, themselves a generator
for several other functions like the Elliptic Integrals. More about these later on, in the corresponding
sections of the manual.

The unsung hero: HGF+

If we’re to believe that behind a great man there is often an even greater woman, then the greatest
idea behind all these functions is the implementation of the Generalized Hyper-geometric function. A
general-purpose definition requires the use of data registers for the parameters (a1... am) and (b1, ...
bn) , and expects the argument x in the X register, with the number of parameters m and n stored in Z
and Y, for the generic expression:

mFp(a1,a2,....,am ; b1,b2,....,bp ; x) =
= Σk=0,1,2,..... [(a1)k(a2)k.....(am)k] / [(b1)k(b2)k.....(bp)k] . xk/k!

• If m = p = 0 , HGF+ returns exp(x)
• The program doesn't check if the series are convergent or not.
• Even when they are convergent, execution time may be prohibitive: press any key to stop
• Stack register T is saved and x is saved in the L-register.
• R00 is unused.
• Alpha registers {M,N,O,P} are used and then cleared.

The original HGF+ was written by Jean-Marc Baillard. Only small changes have been made to the
version in the SandMath, optimizing the code for 13-digit accuracy and checking for ALPHA DATA in all
registers used, as well as for the argument x.

 Function Description Author
[ΣF] WL0 Lambert’s W - main branch Ángel Martin
 WL1 Lambert’s W – secondary branch Ángel Martin
[ΣF] ZETA Riemann’s Zeta – direct method Ángel Martin
 ZETAX Riemann’s Zeta – Borwein algorithm JM Baillard

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 120 of 198 October 2015

3.4.1. Exponential Integral and associates. { EI , CI , SI , LI }

The first sub-section covers the Exponential, Logarithmic, Trigonometric and Hyperbolic integrals.
They’re all calculated using their expressions using the Generalized Hyper-geometric function, in a clear
demonstration of the usefulness or the adopted approach.

For real nonzero values of x, the exponential integral Ei(x) is defined as:

Integrating the Taylor series for exp(t) and extracting the logarithmic singularity, we can derive the
following series representation for real values:

where we substitute the series by its Hyper-Geometric representation:

Σ{ x^k / k k!} = x * 2F2(1, 1 ; 2, 2; x)

The logarithmic integral has an integral representation defined for all positive real numbers by the
definite integral:

The function li(x) is related to the exponential integral Ei(x) via the equation:

 which is the one used to program it in the SandMath module.

Examples:

 1.4, XEQ "EI" -> Ei(1.4) = 3.007207463 or: [ΣF], [R]
 1.4, ΣFL$ "LI" -> Li(1.4) = -0,144991005

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 121 of 198 October 2015

LI is the Logarithm Integral,

 also a quick application of the EI function, using the formula:

Li(x) = Ei [(ln(x)].

Note how LI starts as a MCODE functions that transfers into the FOCAL code calculating EI, so strictly
speaking it’s a sort of “hybrid” natured function.

The different trigonometric and hyperbolic integral definitions and their relations with the Hyper-
Geometric funcion (for the relevant integral in the definition) are as follows:

x * 1F2(1/2; 3/2, 3/2; -x2/4) x * 1F2(1/2 ; 3/2 , 3/2 ; x2/4)

-(x2/4) 2F3(1, 1 ; 2, 2, 3/2 ; -x2/4) (x2/4) 2F3(1, 1 ; 2, 2, 3/2 ; x2/4)

Examples:

1.4, XEQ "SI" -> Si(1.4) = 1.256226733 - or: [ΣF], [Z]
1.4, XEQ "CI" -> Ci(1.4) = 0.462006585 - or: [ΣF], [V]
1.4, XEQ "HSI" -> Shi(1.4) = 1.561713390 - or: [ΣF], [SHIFT], [Z]
1.4, XEQ "HSI" -> Chi(1.4) = 1.445494076 - or: [ΣF], [SHIFT], [V]

The figure below shows the function plots for Si and Ci for 0<X<15.

Nota also that even if support for complex arguments is not covered by the SandMath, the following
relation between the Exponential and Trigonometric Integrals is available:

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 122 of 198 October 2015

Generalized Exponential Integrals. { ENX }

The exponential integral may also be generalized to

which can be written as a special case of the
(upper) incomplete gamma function:

We also have:
E0(x) = (1/x).exp(-x) and
En(0) = 1/(n-1) if n > 1

However the SandMath uses the implementation developed by JM Baillard, using a series expansion for
x<- 1.5, and continuous fractions for x > 1,5 – as shown below:

and:

Examples:

Calculate ENX for x=1.4 and n ={0,2,100}

0, ENTER^, 1.4 XEQ "ENX" -> E0(1.4) = 0.176140689
 2, ENTER^, 1.4 XEQ "ENX" -> E2(1.4) = 0.0838899263
 100, ENTER^, 1.4 XEQ "ENX" -> E100(1.4) = 0.0024558006

Examples

: Calculate ENX for x=2 and n=3, and for x=n=100.

 3, ENTER^, 2, XEQ "ENX" -> E3(2) = 0.03013337978
 100, ENTER^, XEQ "ENX" -> E100(100) = 1.864676429 E-46

Note that we can use ENX to “reverse-calculate” UICGM – the upper incomplete gamma, which
obviously should satisfy the equation shown in the ICGM section: LICGM(s,x) + UICGM (s,x)= Γ(s)

01 LBL “UICGM” 10 1
02 X<>Y 11 -
03 CHS 12 CHS
04 1 13 Y^X
05 + 14 *
06 X<>Y 15 END
07 ENX
08 RCL 00 A short and simple program does it, just type:
09 RCL 01 n, ENTER^, x, XEQ “UICGM”

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 123 of 198 October 2015

3.4.2. Errare humanum est. { ERF , ERFN }

In mathematics, the error function (also called the Gauss error function) is a special function (non-
elementary) of sigmoid shape, which occurs in probability, statistics and partial differential equations.
Its definition and the expression based on the Hyper-geometric function (via ascending series) are
given in the table below:

erf x = (2x/π1/2) exp(-x2) 1F1(1, 3/2 ; x2)

The complementary error function, denoted erfc, is defined as : erfc = 1 – erf (x)

Both functions are shown below for an overview.

Generalized Error Functions. { ERFN }

Some authors discuss the more general functions:

Notable cases are:

• E0(x) is a straight line through the origin, E(0,x) = x/e. sqrt(p)
• E1(x) is the equation (1 − e^x)/sqrt{p) - gray curve
• E2(x) is the error function, erf(x). - red curve
• green curve: E3(x); blue curve: E4(x); and gold curve: E5(x).

Examples

: Calculate the first four error functions for x=.5 and x=0.9, comparing E(2,x) to the results
obtained by ERF.

x erf1 erf2 erf3 erf4 erf delta
0.5 0.221991303 0.520499878 1.641511206 6.687094868 0.520499878 0.000000000
0.9 0,334807217 0,796908213 2,589816366 10,839692051 0,796908213 0.000000000

Note that because ERFN is located in the auxiliary FAT, you need to use ΣF$ to execute it (or
alternatively ΣF# 061, its corresponding sub-function index).

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 124 of 198 October 2015

Appendix 9a.- Inverse Error Function.- coefficients galore…

The inverse error function can be defined in terms of the Maclaurin series

Where c0 = 1 and

This really is a bear to handle, requiring quite a number of coefficients to be calculated for good
accuracy result. Moreover, that calculation involves a lot of registers to store the values – since there
isn’t any iterative approach based on recursion.

The expression below is definitely too inaccurate (only three or four digits are correct) to deserve a
dedicated MCODE function:

A paper from 1968 by A. Strecok lists the first 200 coefficients of a power series that represents the
inverse error function. While using this approach it became clear that at least 30 of them are needed for
a 10-digit accuracy for 0< x < 0,85. This only gets worse as x approaches 1, getting into a clear
example of the “law of diminishing results”.

A better method for the vicinity of 1 is probably to use an asymptotic expansion, such as:

A combination of both approaches would seem to be the best compromise, depending on the
argument. . Typing the 30 coefficients is not fun however, thus the best is no doubt to use a data file in
X-Memory to keep them safe.

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 125 of 198 October 2015

Appendix 9b.- ierf Revisited: CUDA Library. { IERF }

The author reportedly went ahead and implemented the Strecok method using the entire 200
coefficients set, both in 10-digit and 13-digit formats. Without a doubt this was an extravaganza and a
bit of an insane task, which unfortunately didn’t yield satisfactory results despite the resulting huge
code stream – not to mention the painstakingly error-prone programming! Adding insult to injury, the
13-digit version showed worse accuracy than the 10-digit one, which should be explained by a
coincidental benefit of the rounding – confirming that 13 digits is not enough of an improvement for
the region near 1.

In case you’re interested and want to see by yourself, the IERF ROM is available for download on
request – probably a double record of both the most boring ROM ever produced, and the one with
fewest functions (only eight in an 8k footprint!)

So for a while the only practical alternative was to use an iterative calculation (using Halley or Newton
methods), which would yield acceptable accuracy (better than the failed approach above), even if the
calculation time increases exponentially with the proximity to 1

Further research however uncovered the paper by Michael Giles, referring to yet another polynomial
approximation - but much more tractable, and certainly suitable for implementation in the SandMath.
This is known as the CUDA Library, and both a single and a double precision are published in the
following references (for the paper itself and the source code):

http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf
http://gpucomputing.net/?q=node/1828

The final SandMath implementation is entirely a MCODE function (very fast!) that uses the single
precision approximation for the central region, and the double precision for the upper end region,
determined by the condition: -Ln(1-x^2) < 6.25, that is: x^2 > 1 – exp(-6.25) ~= 0,998069546

Examples.-

 Using ERF and IERF complete the table below. Note the relative error column (Delta),
indicating the more than reasonable accuracy of both functions combined, both in the central and
extreme regions equally.

x ierf erf Delta
0.000100000 0.000088623 0.000100000 0.000000000E+00
0.001000000 0.000886227 0.001000000 0.000000000E+00
0.010000000 0.008862501 0.010000000 0.000000000E+00
0.100000000 0.088855991 0.100000000 0.000000000E+00
0.200000000 0.179143455 0.200000000 0.000000000E+00
0.300000000 0.272462715 0.300000000 0.000000000E+00
0.400000000 0.370807159 0.400000000 0.000000000E+00
0.500000000 0.476936276 0.500000000 0.000000000E+00
0.900000000 1.163087154 0.900000000 0.000000000E+00
0.995000000 1.984872613 0.994999999 -1.005025097E-09
0.999500000 2.461266226 0.999500001 1.000500222E-09
0.999950000 2.867761312 0.999950001 1.000049974E-09
0.999995000 3.227792264 0.999995000 0.000000000E+00
0.999999500 3.554139637 0.999999501 1.000000472E-09
0.999999950 3.854657923 0.999999951 1.000000133E-09
0.999999995 4.134484326 0.999999994 -1.000000088E-09

http://people.maths.ox.ac.uk/gilesm/files/gems_erfinv.pdf�
http://gpucomputing.net/?q=node/1828�

SandMath_44 Manual - Version 4x4, revision “P5”

(c) Ángel M. Martin Page 126 of 198 October 2015

3.4.3. How many logarithms, did you say? { LINX }

 LINX calculates the polylogarithm function, (also known as Jonquière's function) a special function
defined by the infinite sum, or power series:

Only for special values of the order s does the polylogarithm reduce to an elementary function such as
the logarithm function. The above definition is valid for all complex orders s and for all complex
arguments z with |z| < 1; it can be extended to |z| ≥ 1 by the process of analytic continuation.

For particular cases, the polylogarithm may be expressed in terms of other functions (see below).
Particular values for the polylogarithm may thus also be found as particular values of these other
functions. For integer values of the polylogarithm order, the following explicit expressions are known:

The SandMath implementation is an MCODE function that uses direct series summation, adding terms
until their contribution to the sum is negligible. Convergence is very slow, especially for small
arguments. Its usage expects n to be in register Y and x in register X. The result is saved in X, and X is
moved to LastX.

The program below gives a FOCAL equivalent – note the clever programming done by JM Baillard to
only perform Y^X once per term, which reduces the execution times significantly.

01 LBL "LIN"
02 STO 01
03 X<>Y
04 STO 02
05 1
06 STO 03
07 CLX
08 STO 00

09 LBL 01
10 RCL 01
11 RCL 03
12 *
13 STO 03
14 ISG 00
15 CLX
16 RCL 00

17 RCL 02
18 Y^X
19 /
20 +
21 X#Y?
22 GTO 01
23 END

Examples.- Calculate the Di- and Tri-logarithms of 0.7; Li(2, 0.5) and Li(3, 0.7);

2, ENTER^, 0.7, XEQ “LINX” => 0,889377624
3, ENTER^, 0.7, XEQ “LINX“ => 0,780063934

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 127 of 198 January 2016

3.4.4. Clausen and Lobachevsky Functions. { CLAUS , LOBACH }

Very closely related to each other by just a change of variable, but implemented in the SandMath using
different approaches in independent programs, for a better coverage – allowing comparison between
both.

In mathematics, the Clausen function was introduced by Thomas Clausen (1832), and is defined by
the following integral:

 or:

The expression on the right is a more general definition valid for complex s with Re s >1. This
definition may be extended to all of the complex plane through analytic continuation – however it’s not
practical for programming, as thousands of terms would be required to return accurate results if we
used this formula.

Integrating by parts gives: Cl2(x) = -x Ln (2 sin (x/2)) + 2 §0
x/2 (u / tan u) du

which using the series expansion for [x / tan x], (expressed using the Bernoulli numbers B2n), can be
written by a sum of the integration of the terms – a much easier approach to say the least. We’ll use
the ZETA function to calculate B2n for n>3, thus we have all tools required for the task.

Graphically we see a nice slanted shape compared
to the trigonometric functions, also notice that
they are periodic functions, with period = π

Some special values include Cl2(π/4) = G
(Catalan’s constant, ~ 0.915 965 594…)

The Lobachevsky function Λ or Л is essentially the same function with a change of variable:

although the name "Lobachevsky function" is not quite historically accurate, as Lobachevsky's formulas
for hyperbolic volume used the slightly different function:

We have also: L(µ) = (1/2) Im [Li2 (exp(2i.µ))] ; where Li2 = dilogarithm function.

Using the same method explained above, the expression to program becomes:

Λ(µ) = -2.µ ln | 2.µ | + 2.µ + Σk=1,2,...(-1)k-1/(2k+1)! [B2k/(2k)] (2.µ)2k+1

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 128 of 198 January 2016

 LOBACH has an all-MCODE implementation – also motivated by the need to locate the code in a
secondary bank, where FOCAL is not supported. This provides a fast execution, even if the M-code
length more than doubles the equivalent FOCAL program (there’s a lot to say about how efficient
FOCAL code is!). See JM Baillard’s page for the FOCAL code at:
 http://hp41programs.yolasite.com/lobachevsky.php

Because the expression programmed is truncated to 8 terms, the Bernoulli numbers have been hard-
coded in the code, so there’s no need to use ZETA as subroutine. The accuracy of this approach
appears to be good enough within the 9 decimal digits resolution of the machine.

 CLAUS uses a more general approach, actually calculating as many terms as needed until their
contribution to the partial sum is negligible. It is however limited to arguments in the interval [0, 2π].
Note that CLAUS will read the input in the set angular mode, but it will change it to DEG (!).
The code is taken from JM Baillard’s page, at:
 http://hp41programs.yolasite.com/clausen.php

Examples.

 Calculate both Clausen and Lobachevsky’s functions for the three arguments given in the
table below, and compare their relative results. Use the LOBACH result as reference, obtaining the
adjusted value for Cl2(2x)/2 using CLAUS - i.e. Cl2(2x) / 2 = Λ (x)

 x Cl2(2x) / 2 Lobach(x) delta

π/3 0.33831387 0.338313869 -2.95584E-09
0.15 0.330783505 0.330783505 0

6 out of range -0.445441712 n/a

As you can see for small arguments the results are identical – this is because for those cases
calculating ZETA is not required for CLAUS either, thus both programs use pretty much the same code.

Execution time tends to infinity as x tends to 2π. This routine produces DATA ERROR if x = 0, but f(0)
= 0. Note also that CLAUS will change the angular mode to DEG, thus you need to make sure it’s set
back in the appropriate mode before calling LOBACH (!)

Home assignment:

so they both have the same amplitude and frequency.

- Being curious about their similar shapes, calculate the differences between the
Lobachevsky function and an equivalent Sine, say f(x) = G. sin (2x), where G = Catalan’s constant,

http://hp41programs.yolasite.com/clausen.php�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 129 of 198 January 2016

Function Approximations.

 Function Description Author
[ΣFL$] CHB, CHB2 Chebyshev Polynomials Tn and Un Ángel Martin
[ΣFL$] CHBCF Chebyshev Coefficients JM Baillard
 CHBAP Chebyshev’s Approximation JM Baillard
[ΣFL$] CdT Auxiliary for CHBAP JM Baillard
 TAYLOR Taylor Polynomial of order 10 and Approximation Martin - Baillard
 FFOUR Fourier coefficients for (x) Ángel Martin
 DHST Discrete Hartley Symmetrical Transform JM Baillard

In mathematics, approximation theory is concerned with how functions can best be approximated with
simpler functions, and with quantitatively characterizing the errors introduced thereby. Note that what
is meant by best and simpler will depend on the application. A closely related topic is the approximation
of functions by generalized Fourier series, that is, approximations based upon summation of a series of
terms based upon orthogonal polynomials.

One problem of particular interest is that of approximating a function in a computer mathematical
library, using operations that can be performed on the computer or calculator (e.g. addition and
multiplication), such that the result is as close to the actual function as possible. This is typically done
with polynomial or rational (ratio of polynomials) approximations.

The objective is to make the approximation as close as possible to the actual function, typically with an
accuracy close to that of the underlying computer's floating point arithmetic. This is accomplished by
using a polynomial of high degree, and/or narrowing the domain over which the polynomial has to
approximate the function. Narrowing the domain can often be done through the use of various addition
or scaling formulas for the function being approximated. Modern mathematical libraries often reduce
the domain into many tiny segments and use a low-degree polynomial for each segment.

Optimal polynomials

Once the domain and degree of the polynomial are defined, the polynomial itself is chosen in such a
way as to minimize the worst-case error. That is, the goal is to minimize the maximum value of |P(x)-
f(x)|, where P(x) is the approximating polynomial and f(x) is the actual function.

Left figure: Error between optimal polynomial
and log(x) (red), and Chebyshev
approximation and log(x) (blue) over the
interval [2, 4]. Vertical divisions are 10−5.
Maximum error for the optimal polynomial is
6.07 x 10−5.

Right figure: Error between optimal polynomial
and exp(x) (red), and Chebyshev
approximation and exp(x) (blue) over the
interval [−1, 1]. Vertical divisions are 10−4.
Maximum error for the optimal polynomial is
5.47 x 10−4.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 130 of 198 January 2016

In the graphs above, note that the blue error function is sometimes better than (inside of) the red
function, but sometimes worse, meaning that it is not quite the optimal polynomial. Note also that the
discrepancy is less serious for the exp function, which has an extremely rapidly converging power
series, than for the log function.

Chebyshev Approximation. { CHBAP , CHBCF , CdT }

One can obtain polynomials very close to the optimal one by expanding the given function in terms of
Chebyshev polynomials and then cutting off the expansion at the desired degree. This is similar to the
Fourier analysis of the function, using the Chebyshev polynomials instead of the usual trigonometric
functions.

If one calculates the coefficients Ci in the Chebyshev expansion for a function:

and then cuts off the series after the T_N term, one gets an Nth-degree polynomial approximating f(x).

The reason this polynomial is nearly optimal is that, for functions with rapidly converging power series,
if the series is cut off after some term, the total error arising from the cutoff is close to the first term
after the cutoff. That is, the first term after the cutoff dominates all later terms. The same is true if the
expansion is in terms of Chebyshev polynomials. If a Chebyshev expansion is cut off after T_N, the
error will take a form close to a multiple of T_{N+1}. The Chebyshev polynomials have the property
that they are level – they oscillate between +1 and −1 in the interval [−1, 1]. T_{N+1} has N+2 level
extrema. This means that the error between f(x) and its Chebyshev expansion out to T_N is close to a
level function with N+2 extrema, so it is close to the optimal Nth-degree polynomial.

After this introduction we’re better equipped to use the functions and programs included in the
SandMath related to approximation. The first three are related to the Chebyshev approximation:

If f is a function defined over [-1,+1] and if n is a positive integer, the Chebyshev coefficients {c0, c1,
............, cn} may be computed by the formula:

 cj = [2/(n+1)] Σ{ cos [180° j (k+1/2)/(n+1)] f { cos [180° (k+1/2)/(n+1)]}}
 | k=0,1,...,n if j # 0

 cj = [1/(n+1)] Σ{ cos [180° j (k+1/2)/(n+1)] f { cos [180° (k+1/2)/(n+1)]}}
 | k=0,1,...,n if j = 0

If f is defined over [a,b], we make the change of variable u = (2x -a-b)/(b-a)

 CHBCF expects a,b stored in R11 and R12, the function name in ALPHA, and the desired number of
coefficients to calculate in X. After it’s done the control word for the coefficients is returned to X (in the
form bbb.eee), and the coefficients are stored in the corresponding registers. The execution time will
be very long

 (recommended to use TURBO mode on V41 or the CL).

 CHBAP obtains the approximation of the function using these coefficients calculated by CHBCF. It
uses the status of flag 01 to control whether the function or its first derivative will be approximated,
with all the data stored in R11, R12, the coefficients and the argument x in X.

Obviously CHBAP requires that the coefficients have been calculated previously, but repeated
estimations can be calculated using the same coefficients with no further need to re-calculate them
every time. Setting user flag 06 will allow you to call CHBAP directly, which will do the coefficients
calculations (invoking CHBCF internally) saving you the additional step,

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 131 of 198 January 2016

CHBCF is located in the secondary FAT, thus you need to use ΣFL$ [or alternatively ΣFL# 080]. You
need to make sure that enough number of registers are available to store the results, setting SIZE =
19+n for n coefficients.

 CdT is a MCODE auxiliary function to expedite CHBAP execution. It is also in the secondary FAT, but
typically you’ll have no need to call it separately.

Example

: f(x) = 1/(x2+x+π) and [a,b] = [2,5]

Which is easily programmed as follows:

01 LBL “FF” 05 PI
02 ENTER^ 06 +
03 X^2 07 1/X
04 + 08 END

Store “FF“ in ALPHA; 2 in R11; and 5 in R12 (interval begin and end points).
Type 10, ΣF$ “CHBCF” -> 18,028 (after 5 minutes! on a normal-speed 41)

This is the control word that indicates that the coefficients are stored as follows:

R18 = c0 = 0.061130486 R24 = c6 = 0.000001210
R19 = c1 = -0.038060320 R25 = c7 = 0.000000410

 R20 = c2 = 0.008422922 R26 = c8 = -0.000000170
 R21 = c3 = -0.001522665 R27 = c9 = 0.000000042
 R22 = c4 = 0.000227407 R28 = c10 = -0.000000008
 R23 = c5 = -0.000025750

Note: you can use the program “OUT” (also included in the secondary FAT) to review and output those
results. Use SF 21 if you want the display to halt after each value, resuming with R/S.

Example

.- Let’s now evaluate f(3) & f ‘(3) using CHBAP and flag 01 to select the case:

First we set flag 06 to bypass the data entry prompts, then we store the control word (bbb.eee) in R13

CF 01, 3, XEQ “CHBAP” -> 0.066043252
SF 01, 3, XEQ “CHBAP” -> -0.030531990

If you’re missing automation you’ll be glad to know there is some. Rather than a different driver
program, CHBAP doubles as one when flag 06 is clear, triggering the data entry prompts which drive
the data entry. At the prompt “a^b^N=?” enter the three values separated by ENTER^, then R/S.

After a long time the coefficients are calculated and the program prompts: “X=?”, your chance to
input the point for the approximation. Repeat this last step as needed by entering the value, then R/S.

The accuracy of the approximation depends on the number of coefficients used - Choosing a larger n-
value would give a better precision – but will also increase the calculation time.

The Chebyshev polynomials are useful to approximate f(x) if f is very complicated - like the planetary
positions, but it's also interesting to use these programs to evaluate the derivative f'(x), where the
results are often more accurate than those given by other numerical differentiation methods.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 132 of 198 January 2016

Chebyshev Polynomials. { CHB , CHB2 }

Integral part of the approximation is the calculation of the Chebyshev polynomials, which is done
internally in the CdT function. The SandMath also includes separate functions to calculate Tn(x) and
Un(x), the first and second kind respectively.

The Chebyshev polynomials of the first and second kinds are defined by the recurrence relations:

There are also explicit expressions, based on different approaches to defining them: trigonometric,
square roots, and even an expression using the Hypergeometric Function

The MCODE functions are CHB for Tn(x) and CHB2 for Un(x), both are located in the secondary FAT
and thus require ΣF$ to execute them. Note that the iterative method is used, slower but more
accurate for small values of the argument – and that it also returns both P(n,x) in N and P(n-1, x) in M

Examples:
7, ENTER^, 0,314, ΣF$ “CHB1” -> -0.786900700 in X & N, and 0.338782777 in M

 Calculate T7(0,314) and U7(0.314)

7, ENTER^, 0.314, ΣF$ “CHB2” -> -0.582815681 in X & N, and 0.649952293 in M

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 133 of 198 January 2016

Taylor Series and Polynomials. { TAYLOR }

In mathematics, a Taylor series is a representation of a function as an infinite sum of terms that are
calculated from the values of the function's derivatives at a single point. The concept of a Taylor series
was formally introduced by the English mathematician Brook Taylor in 1715. If the Taylor series is
centered at zero, then that series is also called a Maclaurin series, named after the Scottish
mathematician Colin Maclaurin, who made extensive use of this special case of Taylor series in the 18th
century.

It is common practice to approximate a function
by using a finite number of terms of its Taylor
series. Taylor's theorem gives quantitative
estimates on the error in this approximation. Any
finite number of initial terms of the Taylor series
of a function is called a Taylor polynomial.
The Taylor series of a function is the limit of that
function's Taylor polynomials, provided that the
limit exists. A function may not be equal to its
Taylor series, even if its Taylor series converges
at every point. A function that is equal to its
Taylor series in an open interval (or a disc in the
complex plane) is known as an analytic function.

The Taylor series of a real or complex-valued
function ƒ(x) that is infinitely differentiable in a
neighborhood of a real or complex number a is
the power series:

where n! denotes the factorial of n and ƒ(n)(a) denotes the n-th derivative of ƒ evaluated at the point a.
The derivative of order zero ƒ is defined to be ƒ itself and (x − a)^0 and 0! are both defined to be 1.
In the case that a = 0, the series is also called a Maclaurin series.

Establishing an analogy with the Chebyshev approximation, one would notice that here the
approximation is made using certain coefficients affecting the Taylor polynomials terms, which are
simpler versions than Chebyshev’s – basically x^n for the McLaurin case. Thus it’s intuitively
understandable that a similarly good approximation (i.e. with small enough error) will require a larger
number of Taylor terms to accomplish it.

Numerically however we’re faced with the problem to calculate all the function derivatives of a given
function. This is approached using the Taylor Expansion, using the notion of small increments of both
the function and the argument to estimate the derivatives

. Let h be that small increment, then The
Taylor expansion of a function f in a point near the center is

f(a+h) = f(a) + h f '(a) + h^2 f ''(a) / 2! + + h^n f(n)(a) / n! +

Given a function f(x), we seek approximations of a1 = f'(a) , a2 = f''(a)/2! ,, an = f(n)(a)/n!

The SandMath implementation is a direct application of JM Baillard’s method, using a 10-degree
polynomial to approximate the derivatives. This theoretically provides perfect accuracy for polynomials
of degree <= 10, but in practice - due to roundoff-errors - the precision decreases as k increases and
the estimation of a degree >10 is often very doubtful.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 134 of 198 January 2016

Because of the internal structure of the SandMath, TAYLOR was split into two distinct parts. The first
part is a FOCAL program that calculates all the values for f(a+h) and f(a-h). The second is an MCODE
version of all the remaining code. The main reason to do that was not simply to accelerate the
calculation and increase the accuracy with 13-digit OS routines, - which it certainly does in both
accounts - but to place the code in the second bank of the lower page, which is where the space was
available.

Formulae and Methodology.

The formulas used are as follows:

Let a= center of the series; F = f(a), and:

A= f(a+h)-f(a-h); B= f(a+2h)-f(a-2h); C= f(a+3h)-f(a-3h); D= f(a+4h)-f(a-4h); E= f(a+5h)-f(a-5h)
G =f(a+h)+f(a-h); H= f(a+2h)+f(a-2h); I= f(a+3h)+f(a-3h); J= f(a+4h)+f(a-4h); K= f(a+5h)+f(a-5h)

then we have:

 h . f'(a) ~ (2100 A - 600 B + 150 C - 25 D + 2 E) / 2520
 h^2 . f"(a) ~ (-73766 F + 42000 G - 6000 H + 1000 I - 125 J + 8 K) / 25200
 h^3 . f"'(a) ~ (-70098 A + 52428 B - 14607 C + 2522 D - 205 E) / 30240
 h^4 . f(4)(a) ~ (192654 F - 140196 G + 52428 H - 9738 I +1261 J - 82 K) / 15120
 h^5 . f(5)(a) ~ (1938 A - 1872 B + 783 C - 152 D + 13 E) / 288
 h^6 . f(6)(a) ~ (-233244 F + 184110 G - 88920 H + 24795 I -3610 J + 247 K) / 4560
 h^7 . f(7)(a) ~ (-378 A + 408 B - 207 C + 52 D - 5 E) / 24
 h^8 . f(8)(a) ~ (462 F - 378 G + 204 H - 69 I + 13 J - K) / 3
 h^9 . f(9)(a) ~ (42 A - 48 B + 27 C - 8 D + E) / 2
 h^10 f(10)(a) ~ (-252 F + 210 G - 120 H + 45 I - 10 J + K)

To understand where all this comes from, we write the polynomial p(x) = a0 + a1.x + + a10.x^10
so that it takes the same values as f for x = 0; x = +/- 1; x = +/-2 , , and x = +/-5. With
this we get a 11 x 11 linear system to solve, which requires finding the inverse of a "Vandermonde"
matrix like the one shown below:

[[1 0 0…….. 0]
 [1 1 1…….. 1]
 [1 -1 1 -1…..…. 1]
 [1 2 4………. 1024]
 [1 -2 4 -8 ...……….. 1024]
 .
 [1 5 25 125…. 5^10]
 [1 -5 25 -125 ..….. (-5)^10]]

Once the coefficients are calculated we can evaluate the 10-degree Taylor Polynomial as a check to
verify the accuracy of the approximation. Note that this accuracy will decrease as the argument chosen
to evaluate it gets further away from the “center”, i.e. the value “a” used to generate them – which
intuitively can be explained by the need of more terms of the polynomial, certainly more than the 10
available to us.

Let’s see a couple of examples of utilization. The first one using f(x) = e^x , perhaps the best-
behaved non-rational function. We’ll use TAYLOR twice to obtain the coefficients around a=0 and a=1,
then evaluate the resulting polynomials (T0 and T1) for x=1, x=2, and x=3 in each case.

After programming the function as: { 01 LBL EXP, 02 E^X, 03 RTN }, let’s use h=0.2 as step-size for
the derivative approximations. For the first case then you type:

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 135 of 198 January 2016

 ALPHA , “EXP”, ALPHA - to enter the program name in the Alpha register; followed by:
0.2, ENTER^, 0, XEQ “TAYLOR” -> #5… #4… #3… #2… #1… “RUNNING…”

and for the second case (the program name is still in ALPHA):

0.2, ENTER^, 1, XEQ “TAYLOR” -> #5… #4… #3… #2… #1… “RUNNING…”

The display shows the progress in the calculations, with the first phase obtaining the 5 pairs of value
functions, followed by the approximation of the coefficients. When it’s complete (in shorter time that
expected due to the MCODE speed advantage), the execution stops with the first four coefficients in
the stack, and all ten of them stored in registers R01 to R10.

In these particular cases the results are summarized in the table below, together with the exact values
and the accuracy of the estimations – which deteriorates as the order of the derivative increases.

RG# T1 Approx. T1 Exact T1 delta T0 Approx. T0 Exact T0 delta

R01 2.718281828 2.718281828 0.000000000 0.999999999 1 -0.000000001
R02 1.359140927 1.359140914 0.000000010 0.499999994 0.5 -0.000000012
R03 0.453046958 0.453046971 -0.000000029 0.166666691 0.166666667 0.000000144
R04 0.113261624 0.113261743 -0.000001051 0.04166676 0.041666667 0.000002232
R05 0.022652373 0.022652349 0.000001059 0.008333231 0.008333333 -0.000012240
R06 0.003775805 0.003775391 0.000109658 0.001388497 0.001388889 -0.000282240
R07 0.00053928 0.000539342 -0.000114955 0.000198548 0.000198413 0.000680399
R08 0.000066832 0.000067418 -0.008692041 0.000025386 0.000024802 0.023546488
R09 0.000007608 0.000007491 0.015618742 0.000002726 0.000002756 -0.010885341
R10 0.000001031 0.000000749 0.376502003 -0.000000003 0.000000276 -1.010869565

The exact values for T1 are: ak = e / k! ; and for T0 are: ak = 1/ k!

To evaluate the resulting Taylor polynomial simple press “E” in user mode (or R/S right after the
previous steps), and input the argument at the prompt “X=?” , then R/S again. Repeat as needed.

Here are the results of our example:

 Eval Exact delta
T1 (1) 2.718281828 2.71828183 0
T1 (2) 7.389056096 7.3890561 -4.06006E-10
T1 (3) 20.0855858 20.0855369 2.43359E-06

T0 (1) 2.718281828 2.71828183 0
T0 (2) 7.388834562 7.3890561 -2.99818E-05

T0 (3) 20.06646854 20.0855369 -0.000949359

Final Remarks.-

Choosing the increment h between 0.1 and 0.2 is "often" a good choice. The program employs the
same h-value for all the derivatives, but a good choice for f'(x) may be a bad choice for f'''(x), and the
same issue appears for all the derivatives. See JM Baillard’s FOCAL application where h is independently
adjusted modified per derivative order, which achieves higher accuracy in the results.

http://hp41programs.yolasite.com/taylor.php

Note that registers R00 thru R09 may be used by the subroutine to program f(x).

http://hp41programs.yolasite.com/taylor.php�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 136 of 198 January 2016

Appendix 10.a.- Derivatives of the Gamma function. -

Let’s see a practical usage of the Taylor approximation applied to the calculation of numerical
derivatives of a function. Let’s choose the Gamma function for the example, and attempt to calculate its
first few derivatives in the point x=2

Programming the function as follows;

 { 01 LBL “G”, 02 GAMMA, 03 END }

And using a step size h=0.2 we obtain
the following results for x=2 with
TAYLOR:

0.2, ENTER^, 2, XEQ “TAYLOR”, “G”

And don’t forget to multiply each term
by n! to obtain the value of the derivative.

But how accurate are these results? We can expect a progressive loss of accuracy as the order of the
derivative increases, so let’s try to check the first three derivatives for the example. Taking advantage
of the Digamma (Ψ) function definition, we’ll use the following relationships to verify the results
obtained by TAYLOR:

 ;

If you have no access to WolframAlpha,
these expressions can be programmed
using the SandMath functions PSI and
PSIN, see the program listings on the
right.

All programs take the derivative order in Y
and the point in X as arguments.

Obviously the “exact” results will be
affected by the inaccuracies and limitations
of the functions used, but nevertheless the
approach is good to see the methodology.

Setting your expectatons properly is
important: this will not be the most
accurate method for the calculation of the
derivatives, but it is still interesting to say
the least.

h=0,2 f(x) = Γ(x)
x=2 TAYLOR error % "Exact"

R00 1.000000000 0.0000 1.000000000
R01 0.422783681 0.0000 0.422784335
R02 0.411840666 0.0000 0.411840331
R03 0.081600700 0.0003 0.081576919
R04 0.074236920
R05 -0.000478249
R06 0.011260925
R07 0.001763926
R08 0.001763926
R09 -0.001727311
R10 0.000897564

01 LBL "G" 01 LBL "G3"
02 GAMMA 02 STO 05
03 RTN 03 2
04 LBL "G1" 04 X<>Y
05 GAMMA 05 PSIN
06 LASTX 06 STO 06
07 PSI 07 E
08 * 08 RCL 05
09 END 09 PSIN

10 3
01 LBL "G2" 11 *
02 STO 05 12 RCL 05
03 E 13 PSI
04 X<>Y 14 *
05 PSIN 15 LASTX
06 RCL 05 16 X^3
07 PSI 17 +
08 X^2 18 RCL 06
09 + 19 +
10 RCL 05 20 RCL 05
11 GAMMA 21 GAMMA
12 * 22 *
13 END 23 END

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 137 of 198 January 2016

Fourier Series. { FFOUR , FOURN }

In mathematics, a Fourier series decomposes periodic functions or periodic signals into the sum of a
(possibly infinite) set of simple oscillating functions, namely sines and cosines (or complex
exponentials). The study of Fourier series is a branch of Fourier analysis.

The partial sums for ƒ are trigonometric polynomials. One expects that the functions ΣN ƒ approximate
the function ƒ, and that the approximation improves as N tends to infinity. The infinite sum

is called the Fourier series of ƒ. The Fourier series does not always converge, and even when it does
converge for a specific value x0 of x, the sum of the series at x0 may differ from the value ƒ(x0) of the
function. It is one of the main questions in harmonic analysis to decide when Fourier series converge,
and when the sum is equal to the original function.

FFOUR Calculates the Fourier coefficients for a periodic function F(x), defined as:

with the following characteristics:

- centered in x = x0
- with period 2L on an interval [x0, x0+2L]
- with a given precision for calculations (significant decimal places)

FFOUR is a rather large FOCAL program, despite having a MCODE FAT entry. It calculates all integrals
internally, not making use of general-purpose numeric integrators like INTEG, IG, etc – so it’s totally
self-contained.

The function must be programmed in main memory under its own global label. The program prompts
for the function name, the first index to calculate, and the number of desired coefficients.

The program also calculates the approximate value of the function at a given argument applying the
summation of the terms, using the obtained coefficients:

To use it simply enter the value of x and press “E” (XEQ E) with user mode on – this assumes that no
function is assigned to that key. The approximation will be more correct when a sufficient number of
terms is included. The goodness is also dependent on the argument itself.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 138 of 198 January 2016

Example: calculate the first six coefficients for f(x) = x^2, assuming:

a period T = 2π, centered in x0 = 0. As it’s known,

X^2 = 4/3 π^2 + Σ{ 4 cos(nx) /n^2 - 4π sin(nx) /n } |n=0,1,…

Using an accuracy of 6 decimal places the program returns the following results:

a0 = 13,1595 b0 = 0
a1 = 4 b1 = -12,566
a2 = 1 b2 = -6,2830
a3 = 0,4444 b3 = -4,1888
a4 = 0,250 b4 = -3,1415
a5= 0,160 b5 = -2.513

Pressing [E] will calculate an estimation of the function for the argument in X, using the fourier temrs
calculated previously. In this case:

X=5, XEQ [E] -> f(x) = 23,254423
X=1, XEQ [E] -> f(x) = -0,154639, which obviously misses the point.

Typically the functions used are related to the harmonic analysis though. Here’s an nteresting one, the
“Christmas-Tree” function and its Fourier representation for different number of terms.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 139 of 198 January 2016

Appendix 10b.- Fourier Coefficients by brute force.

Since the coefficients are basically integrals of the functions combined with trigonometric functions,
nothing (besides common sense) stops us from using INTEG to calculate them. This brute force
approach is just a work-around, considering the time requirements for the execution – but it can be
useful to calcuate a single term randomly, as opposed to the sequential approach used by FFOUR.

So here the idea is to calculate the n-th. Coefficient independently, which responds to the following
definig equation:

Notice that the module SIROM
(‘Solve and Integrate” ROM) contains
not only FROOT and FINTG, but
also the program FOURN in its “-
APPLIED” section – so you can use
that 4k rom instead of the Advantage
– that’ll also save you from having to
type in the program.

Simply enter the information asked at
the prompts, including the precision
desired (number of decimal digits),
function name and its chosen period
(2π).

The screenshot below shows the
ILPER output of the process:

Using this program we’ll calculate the coeffcients for the 7th and 9th terms for f(x) = x^2.

a7 = 0.081633, b7 = -1,795196; and:
a9 = 0,049383, b9 = -1,396263

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 140 of 198 January 2016

Discrete Hartley Transform. { DHST , DHT , INPUT }

A discrete Hartley transform (DHT) is a Fourier-related transform of discrete, periodic data similar to
the discrete Fourier transform (DFT), with analogous applications in signal processing and related
fields. Its main distinction from the DFT is that it transforms real inputs to real outputs, with no
intrinsic involvement of complex numbers. Just as the DFT is the discrete analogue of the continuous
Fourier transform, the DHT is the discrete analogue of the continuous Hartley transform, introduced by
R. V. L. Hartley in 1942.

Definition and Properties.

Formally, the discrete Hartley transform is a linear, invertible function H : Rn -> Rn (where R denotes
the set of real numbers). The N real numbers x0,, xN-1 are transformed into the N real numbers
H0, ..., HN-1 according to the formula:

 , k=1,2,.. (N-1)

The combination [Cos (z) + sin (z)] is sometimes denoted Cas(z), with the well-known expression
based on the double-angle formula:

The transform can be interpreted as the multiplication of the vector (x0,, xN-1) by an NxN matrix;
therefore, the discrete Hartley transform is a linear operator. The matrix is invertible; the inverse
transformation, which allows one to recover the xn from the Hk, is simply the DHT of Hk multiplied by
1/N. That is, the DHT is its own inverse (involutary), up to an overall scale factor.

The DHT can be used to compute the DFT

, and vice versa. For real inputs xn, the DFT output Xk has a
real part (Hk + HN-k)/2 and an imaginary part (HN-k - Hk)/2. Conversely, the DHT is equivalent to
computing the DFT of xn multiplied by 1+i, then taking the real part of the result.

Implementation details.

The SandMath includes DHT, written by JM Baillard to calculate the transform for both vectors in R
n
, as

well as for matrices of order (nxm). The transformation is strictly symmetrical, thus all coefficients are
divided by sqrt(n*m)

. – so DHT[DHT(A)] = A – but for small round-off errors as usual.

 DHT is an all-MCODE function, with the considerable speed advantage over equivalent FOCAL
counterparts. The transform elements are expected to be stored in data registers before DHT is
executed. Their existence is checked, but there’s no check for Alpha Data – which will trigger a DATA
ERROR condition. The transform results will be stored in a block of registers same size of the input
data, and located right following the last element of the initial elements.

Input parameters for DHT are:

- the dimension of the vector/matrix in R00,
- the data elements stored in registers [R01 to Rm.n], and
- the index of the result element in X - use zero for all as a convenient shortcut.

A few auxiliary programs are also provided for the data entry and review of the results – which can be
a tedious process for relatively large size vectors or matrices. These are as follows:

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 141 of 198 January 2016

 IN and OUT , to sequentially enter or review a block of registers:

• Enter the initial register index for IN, then proceed with all required entries and terminate
with a “blank” R/S to end the sequence. Control word bbb.eee is in X upon termination.

• Input the control word in X in the form bbb.eee, and OUT will display all registers
sequentially. Use flag 21 to control the display prompt (set) or not (clear).

 INPUT / ^LIST , to enter a set of coefficients in a List, using the ALPHA register.

• Simply type the control word in X, and ΣF$ “INPUT”. Use ENTER^ to separate the list entries
while you’re in data entry mode, terminating with R/S.

• Entries can be negative or positive, integer or fractional – the only limitation is no “E” character

(for exponents) is possible in this mode – use IN instead.

• Remember also the maximum length is limited to 24 characters, including the blank spaces in
between the entries. Use it repeated times with smaller range if this limit is expected to be
insufficient for the complete list.

Note that INPUT is a FOCAL program that drives its MCODE heart, i.e. ^LIST –originally written for
the Polynomial Data entry in the Polynomial ROM and later modified for Matrix Input as well.

INPUT also uses ANUMDL under the hood, to read the numeric values from the ALPHA string,
deleting them in a loop repeated as many times as elements on the list. All these functions reside in
the Library#4 ROM, so only FAT pointers are added to the SandMath.

Let’s see a couple of examples from JM’s web page: http://hp41programs.yolasite.com/hartley.php

Example1: One-dimensional data.

 Let A be the vector: A = [1 2 4 7] ; here, n = 4 & m = 1

Input the data elements using INPUT (ideally suited to this type of integer data) , and review the
results using OUT:

1,004, ΣF$ “INPUT” -> “^_ “ 1, ENTER^, 2, ENTER^, 4, ENTER^, 7, R/S
4, STO_00, 0, ΣF$ “DHT” -> 7.0000 (value of b1)
5.008, ΣF$ “OUT” -> [R05 R06 R07 R08] = [7 -4 -2 1] listed sequentially

Example2: Two-dimensional data
 [3 5 6]]

. Let [M] be the 2x3 matrix defined by: [[1 2 4]

Repeating the same process as above:- Note that for two-dimensional cases, the elements are
introduced in column

 order (!).

1.006, ΣF$ “INPUT“ -> “^_ “ 1, ENTER^, 3, ENTER^, 2, ENTER^, 5, ENTER^, 4, ENTER^, 6, R/S
2.003, STO_00, 0, ΣF$ “DHT” -> 8.573214097 (value of b1)
7.012, ΣF$ “OUT” -> R07 to R12 listed sequentially, as show below:

B = [[8.5732 -2.8978 -0.7765] rounded to 4 decimals.
 [-2.8577 -0.1494 0.5577]]

If you copy {R07 R12} to {R01 R06} and press 0, ΣF$ “DHT” again, you'll get the elements of
the original matrix [M] with a mean error of about 3 E-9

http://hp41programs.yolasite.com/hartley.php�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 142 of 198 January 2016

A driver program for DHT. { DSHT }

Revision “N” of the SandMath includes many small enhancements and improvements in several areas,
as well as DSHT ; an all-new driver program for DHT – which has been moved to the secondary FAT.

With DSHT the data entry is automated with prompts under program control, so the user needs not to
remember the parameters before hand.

The dimension can be either an integer number or a 2-column matrix. There’s no need to use “,001”
for the second dimension in the one-dimensional case. It’s however important to remember that for 2-
dimensional data the element entry and output are made in COLUM order, as opposed to other matrix
applications.

DSHT is a FOCAL program, despite its MCODE appearance in the FAT. The execution may be stopped
and resumed in single-step mode if so desired. The program listing is shown below.

Note how the auxiliary functions need to be used after the INT? conditional tests – due to their multi-
line structure. The program has the 4-byte GTO jumps pre-compiled so there are no LBL 00 steps.

The sub-function b*e is also available in the auxiliary FAT. It simply calculates the product of the
integer part of a number by its fractional part – normalized to three decimal digits. It is therefore the
matrix dimension in this case.

Note that both b*e and b<>e (which swaps the begin/end formats) have lower-case letters in their
names, but despite that fact you should use upper letters when spelling them at the ΣF$ prompt.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 143 of 198 January 2016

 

This section of the manual covers many other functions included in the Sub-functions group, with
entries located in the secondary (hidden) FAT (go ahead and review the accessibility information from
the introduction for a quick refresher if needed). Let’s use the Carlson and Hankel launchers as
grouping criteria.-

3.5.1. Elliptic Integrals and associates. { RF , RJ , RG , ELIPE/F/K }

The first sub-function launcher is the Carlson group. It’s loosely centered on the Elliptic integrals, plus
related functions. The launcher prompt is activated by pressing [O] at the main ΣFL prompt, and offers
the following 14 choices – in two line-ups controlled by the [SHIFT] key. Note the different leadings on
each screen, keeping the choices constant regardless:

The table below shows in the first column the letter used for each of the functions within this group:

[CR] Function Description Author
[E] ELIPE Comlpete Elliptic intg. 2nd. kind Ángel Martin
[F] ELIPF Incomplete Elliptic Integral 1st. kind Ángel Martin
[K] ELIPK Complete Elliptic intg. 1st. kind Ángel Martin
[C] CRF Carlson Integral 1st. Kind JM Baillard
[J] CRJ Carlson Integral 3rd. Kind JM Baillard
[1] LEI1 Incomplete Legendre Integral of 1st. kind (F) Ángel Martin
[2] LEI2 Incomplete Legendre Integral of 2nd. Kind (E) Ángel Martin
[3] LEI3 Incomplete legendre Integral of 3rd. kind (Π) Ángel Martin

[C] CSX Fresnel Integrals, C(x) & S(x) JM Baillard
[G] CRG Carlson Integral 2nd. Kind JM Baillard
[J] JEF Jacobi Elliptic Integrals JM Baillard
[F] ALF Associated Legendre function 1st. kind - Pnm(x) JM Baillard
[L] LOBACH Lobachesvki function Ángel Martin
[U] CLAUS Clausen integral JM Baillard
[W] WHIM Whittaker M function JM Baillard
[Y] DEBYE Deby function Martin-Baillard

 AIRY Airy Functions Ai(x) & Bi(x) JM Baillard
 TWEBAN Weber and Anger functions JM Baillard

In general the Incomplete Elliptic Functions are calculated using the Carlson Integrals, whereas the
Complete Elliptic functions use the Arithmetic-Geometric approach (standard and modified). The AGM
method is much faster - more about this will be discussed in this chapter.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 144 of 198 January 2016

The Elliptic Integrals.

In integral calculus, elliptic integrals originally arose in connection with the problem of giving the arc
length of an ellipse. They were first studied by Giulio Fagnano and Leonhard Euler. Modern
mathematics defines an "elliptic integral" as any function f which can be expressed in the form

where R is a rational function of its two arguments, P is a polynomial of degree 3 or 4 with no repeated
roots, and c is a constant.

The most common ones are the incomplete Elliptic Integrals of the first, second and third kinds.
Besides the Legendre form given below, the elliptic integrals may also be expressed in Carlson
symmetric form – which has been the basis for the implementation in the SandMath – completely
based on the JMB_MATH ROM.

The incomplete elliptic integral of the first kind F is defined as:

which can also be expressed in terms of the Carlson Symmetric form RF, resulting in:

 ELIPF is implemented as a MCODE function which simply calls CRF with the appropriate input
parameters. All the heavy lifting is thus performed by CRF, which together with CRJ do all the hard
work in the calculation for the Elliptic Integrals of first, second and third kinds.

The figure below shows the first and third kinds in comparison:

This is a perhaps a good moment to define the Carlson symmetric forms. The Carlson symmetric forms
of elliptic integrals are a small canonical set of elliptic integrals to which all others may be reduced.
They are a modern alternative to the Legendre forms. The Legendre forms may be expressed in terms
of the Carlson forms and vice versa.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 145 of 198 January 2016

The Carlson Symmetric Elliptic integrals of the First and Third kinds

 are defined as:

 CRF and CRJ are the SandMath functions that calculate their values. They are located in the
auxiliary FAT. Their arguments x,y,z are expected to be in the corresponding stack registers, and the
result will be placed in X-Reg upon completion.

The term symmetric refers to the fact that, in contrast to the Legendre forms, these functions are
unchanged by the exchange of certain of their arguments. The value of RF is the same for any
permutation of its arguments, and the value of RJ is the same for any permutation of its first three
arguments.

The Carlson Symmetric Elliptic integral of the 2nd. Kind

is defined as:

 CRG in the SandMath is calculated using the following expression involving CRF and CRJ:

2.RG(x;y;z) = z.RF(x;y;z) - (x-z)(y-z)/3 RD(x;y;z) + (x.y/z)1/2

with RD(x;y;z) = RJ(x;y;z;z)

Examples

4 ENTER^, 3 ENTER^, 2 ΣF$ "CRF"  RF(2;3;4) = 0.584082842
4 ENTER^, 3 ENTER^, 2 ΣF$ "CRG"  RG(2;3;4) = 1.725503028

. Calculate RF(2;3;4),, and RG(2;3;4)

Examples.

4 ENTER^, 3 ENTER^, 2 ENTER^, 1 ΣF$ "CRJ"  RJ(1;2;3;4) = 0.239848100
7 ENTER^, 4 ENTER^, 2 ENTER^, 1 [ΣFL] [,]  RJ(1,2,4,7) = 0.147854445

 Calculate RJ(1;2;3;4) and RJ(1;2;4;7).

Where the second call was made using the last-function shortcut.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 146 of 198 January 2016

Complete and Incomplete Legendre Forms. { LEI1 , LEI2 , LEI3 }

In mathematics, the Legendre forms of elliptic integrals are a canonical set of three elliptic integrals to
which all others may be reduced. Legendre chose the name elliptic integrals because the second kind
gives the arc length of an ellipse of unit semi-minor axis and eccentricity k - the ellipse being defined
parametrically by

In modern times the Legendre forms have largely been supplanted by an alternative canonical set, the
Carlson symmetric forms described before. Nevertheless the SandMath also includes LEI1, LEI2, and
LEI3 - three FOCAL programs based on the Carlson formulas to calculate them. Here are the
definitions again.-

The incomplete elliptic integral of the first kind is defined as,

 , calculated with LEI1 (or with ELIPF)
the second kind as

 , calculated with LEI2

And the third kind as

 , calculated with LEI3

Note also that the respective complete

 elliptic integrals are easily obtained by setting the value of the
amplitude, Φ (the upper limit of the integrals), to π/2.

The formulas used to calculate them are as follows:

E = sin (Φ). RF (cos2(Φ); 1-m.sin2(Φ); 1) - (m/3) sin3(Φ). RJ (cos2(Φ); 1-m.sin2

P = sin (Φ). RF (cos

(Φ); 1)

2(Φ); 1-m.sin2(Φ); 1) - (n/3) sin3(Φ). RJ (cos2(Φ); 1-m.sin2(Φ); 1 ;
 1 + n.sin2

Stack input of the three are the amplitude Φ in Y and the argument in degrees in X . – and LEI3 also
expects the characteristic n in Z. The result is always returned to X.

(Φ))

Examples:

 in DEG mode (!) calculate F(0.7; 84), E(0.7; 84), and P(0.9; 0.7; 84).-

 0.7, ENTER^, 84, ΣF$ "LEI1" -> F (84° | 0.7) = 1.884976271
 0.7, ENTER^, 84, ΣF$ "LEI2" -> E (84° | 0.7) = 1.184070048
 0.9, ENTER^, 0.7, ENTER^, 84, ΣF$ "LEI3" -> P (0.9; 84° | 0.7) = 1.336853616

Obviously we could have used ELIPF for the first case – which has a slightly faster execution and
yields the same result.

Note that LEI1 uses data registers {R00 - R03}, and LEI2/3 also use R04.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 147 of 198 January 2016

Application Examples. { SAE , ELP , -+/ , EECC }

The following two examples should illustrate the applicability of these special functions in the geometry
subjects related to ellipses and ellipsoids – and therefore provide some context to their origins and
development.

Example 1.-

 Surface Area of an Ellipsoid. { SAE }

 SAE is a direct application of the Carlson Symmetrical Integral of second kind, CRG, used to calculate
the surface aerea of an escalene ellipsoid (i.e. not of revolution):

which formula is:

Area = 4π.RG(a2b2 , a2c2 , b2c2)

with c < b < a

Example: a=2, b=4, c=9 -> A= 283.4273843

Example 2.-

 Ellipse parameters. { EECC , -/+ }

A related magnitud appearing in formulas related to ellipses is the ratio (a-b)/(a+b), sometimes
squared. There’s no “proper name” for this parameter (unlike eccentricity) – but regardless the sub-
funcion -/+ (appropriately also without a proper name) in the Auxiliary FAT (the very last one in the
catalog) is available to compute it using the values in Y and X registers.

Example: for Y=1 and X=3, -/+ returns –0.5

Using this function we will be able to re-write the ELIPK program from page 161 as follows:

01 LBL “ELIPK
02 SQRT
03 1
04 X<>Y
05 -/+ (ΣF#095)
06 RCL X
07 1
08 AGM (ΣF#056)
09 4

10 *
11 1/X
12 PI
13 *
14 X<>Y
15 1
16 +
17 *
18 END

 Function Description Author
 SAE Surface Area of an ellipsoid Ángel Martin
 ELP Perimeter of a ellipse Ángel Martin
 EECC Ellipse Eccentricity Ángel Martin
 -+/ Calculates (Y-X)/(Y+X) Ángel Martin

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 148 of 198 January 2016

Example 3.-

 Perimeter of the Ellipse. { ELP }

For an ellipse with semi-major axis a and semi-minor axis b and eccentricity e , the complete elliptic
integral of the second kind is equal to one quarter of the perimeter C of the ellipse measured in units
of the semi-major axis . In other words:

, with:

or more compactly in terms of the incomplete integral of the second kind E(Φ, k), as:

Function ELP is available in the auxiliary FAT. It is a FOCAL program like the one listed below, which
calculates the perimeter from the semi-axis values input in Y and X stack registers – a sweet and short
application of the Elliptic Integrals at work. Note how the (pesky) input conventions are observed: the
parameter k needs to be squared!

Where we have also put EECC to work as a nice shortcut for the calculations, and one of the nice
things it does is making sure the larger semi-axis is used as denominator, regardless of its location in
the stack (either X- or Y- register).

Note as well that no data registers are used with this scheme.

Example:

 calculate the perimeter for a=3 and b=2

3, ENTER^, 2, ΣF$ “ELP” -> 15.86543959

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 149 of 198 January 2016

Jacobi Elliptic functions. { JEF , AJF }

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions, and auxiliary theta
functions, that are of historical importance. Many of their features show up in important structures and
have direct relevance to some applications (e.g. the equation of a pendulum). They also have useful
analogies to the functions of trigonometry, as indicated by the matching notation sn for sin. They were
introduced by Carl Gustav Jakob Jacobi (1829).

Definition as inverses of elliptic integrals

There is a simpler, but completely equivalent definition, giving the elliptic functions as inverses of the
incomplete elliptic integral of the first kind. Let

Then the elliptic functions sn(u,m), cn(u,m), and dn(u,m) are given by:

sn (u,m) = sin (Φ) , cn (u,m) = cos (Φ) , and

Here, the angle Φ is called the amplitude. On occasion, dn(u) = Δ(u) is called the delta amplitude. In
the above, the value m is a free parameter, usually taken to be real, 0 ≤ m ≤ 1, and so the elliptic
functions can be thought of as being given by two variables, the amplitude Φ and the parameter m.

The elliptic functions can be given in a variety of notations, which can make the subject unnecessarily
confusing. Elliptic functions are functions of two variables. The first variable might be given in terms of
the amplitude φ, or more commonly, in terms of u given below. The second variable might be given
in terms of the parameter m, or as the elliptic modulus k, where k2 = m, or in terms of the modular
angle α, where m = sin2

 α.

Formulae and Methodology.

The SandMath implementation is based on the Gauss transformation, with the formulas used being:

With m' = 1-m , let µ = [(1-sqrt(m')/(1+sqrt(m')]2

 and v = u/(1+sqrt(µ)] , we have:

 sn (u | m) = [(1 + sqrt(µ)) sn (v | µ)] / [1 + sqrt(µ) sn2 (v | µ)]
 cn (u | m) = [cn (v | µ) dn (v | µ)] / [1 + sqrt(µ) sn2 (v | µ)]
 dn (u | m) = [1 - sqrt(µ) sn2 (v | µ)] / [1 + sqrt(µ) sn2

 (v | µ)]

These formulas are applied recursively until µ is small enough to use.

The program calculates the three functions simultaneously, returning the result in the stack registers X
[sn], Y [cn], and Z [dn]. The input parameters are the amplitude m, and the argument u – expected in
Y and X respectively before calling JEF.

Two functions are included in the SandMath, JEF and AJF. The main program is JEF, which can be used
to calculate the results for any value of the amplitude m (*). AJF is a MCODE funtion used to speed up
the calculations, applicable when the amplitude lies between 0 and 1. You could use AJF directly in this
case, since JEF does nothing but calling it in that circumstance.

(*) If m < -9999999999 the program can give wrong results.

http://en.wikipedia.org/wiki/Elliptic_modulus�
http://en.wikipedia.org/wiki/Modular_angle�
http://en.wikipedia.org/wiki/Modular_angle�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 150 of 198 January 2016

Example 1-

 Evaluate sn (0.7 | 0.3) cn (0.7 | 0.3) dn (0.7 | 0.3)

 0.3, ENTER^, 0.7, ΣF$ "JEF" -> sn (0.7 | 0.3) = 0.632304776
RDN -> cn (0.7 | 0.3) = 0.774719736

 RDN -> dn (0.7 | 0.3) = 0.938113640

Example 2

 - Likewise for x=0.7 and amplitudes { 1, 2, -3 }

sn (0.7 | 1) = 0.604367777 sn (0.7 | 2) = 0.564297007 sn (0.7 | -3) = 0.759113421
cn (0.7 | 1) = 0.796705460 cn (0.7 | 2) = 0.825571855 cn (0.7 | -3) = 0.650958382
dn (0.7 | 1) = 0.796705460 dn (0.7 | 2) = 0.602609138 dn (0.7 | -3) =1.651895746

Example 3.-

 Let’s verify the inverse relationship between the Jacobi Elliptic functions and the Elliptic
Integral – for a given elliptic modulus (k) that will remain constant in both cases. The expression to
verify can be written as:

 Φ = asin (sn [k ; F (k | Φ)]

Let’s use the values Φ = 84 and k =0.7 - We start by obtaining the value of F:

 0.7, ENTER^, 84, ΣF$ "ELIPF" => F (84° | 0.7) = 1.884976271

Then we use this intermediate result (and the initial parameter) as input for JEF as follows:

0.7, X<>Y, ΣF$ "JEF" => sn (0.7 | F(84° | 0.7) = 0.994521895

And finally get the arc sine of the sn value to recover the original amplitude:

ASIN => 84.00000002

Which matches the initial value with an accuracy of E-8.

Final remarks on the Jacobi Elliptic functions.

Note the interesting role of the parameter m as it moves from 0 to 1. The condition m=0 causes the
functions to become the same as the trigonometric sin and cos, whereas in the other extreme for m=1
they become the hyperbolic tanh and sech. In more proper terms, these functions are doubly periodic
generalizations of the trigonometric functions satisfying:

sn (v | 0) = sin v ; cn (v | 0) = cos v ; and dn (v | 0) = 1
sn (v | 1) = tanh v ; cn (v | 0) = sech v ; and dn (v | 1) = sech v

The figures in next page represent three intermediate stages; observe the tendency as the elliptic
modulus k varies towards both ends of the range. Quite a remarkable behavior showing how the
interrelationships amongst seemingly unrelated topics appear.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 151 of 198 January 2016

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 152 of 198 January 2016

(Jacobian) Theta Functions. { THETA }

There are several closely related functions called Jacobi theta functions, and many different and
incompatible systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob
Jacobi) is a function defined for two complex variables z and τ, where z can be any complex number
and τ is confined to the upper half-plane, which means it has positive imaginary part. It is given by the
formula:

The SandMath uses the following definitions as per JM Baillard, with q = e-pi K'/K (0<= q < 1)

 Theta1(x;q) = 2.q1/4 Σk>=0 (-1)k qk(k+1) sin(2k+1)x
 Theta2(x;q) = 2.q1/4 Σk>=0 qk(k+1) cos(2k+1)x
 Theta3(x;q) = 1 + 2 Σk>=1 qk*k cos 2kx
 Theta4(x;q) = 1 + 2 Σk>=1 (-1)k qk*k cos 2kx

Use the function THETA to calculate any of these, with the function index in Z, and the two arguments
(q, x) in Y and X. The result is returned in X.

Stack Input Output
T n# n#
Y q q
X x Theta(n,q,x)

Example:

 Compute Theta1(x;q) , Theta2(x;q) , Theta3(x;q) , Theta4(x;q) for x = 2 ; q = 0.3

1, ENTER^, 0.3, ENTER^, 2, ΣF$ "THETA" -> 1.382545289
2, ENTER^, 0.3, ENTER^, 2 ΣF$ [,] (LastF) -> -0.488962527
3, ENTER^, 0.3, ENTER^, 2, ΣF$ [,] (LastF) -> 0.605489938
4, ENTER^, 0.3, ENTER^, 2, ΣF$ [,] (LastF) -> 1.389795845

The picture below shows the Theta functions 1-2 (on the left) and 3-4 (right) for a range of x between
[-5,5] and a second argument y kept constant. Note the similar shapes between cn with T1,T2, as well
as sn with T3,T4

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 153 of 198 January 2016

Airy Functions. { AIRY }

For real values of x, the Airy function of the first kind is defined by the improper integral

which converges because the positive and negative parts of the rapid oscillations tend to cancel one
another out (as can be checked by integration by parts).

The Airy function of the second kind, denoted Bi(x), is defined as the solution with the same amplitude
of oscillation as Ai(x) as x goes to −∞ which differs in phase by π / 2:

The expressions used to program them are again based on HGF+, as follows:

Ai(x) = [3 -2/3 / Γ(2/3)] 0F1(; 2/3; x3/9) - x [3 -1/3 / Γ(1/3)] 0F1(; 4/3; x3/9)

Bi(x) = [3 -1/6 / Γ(2/3)] 0F1(; 2/3 ; x3/9) + x [3 1/6 / Γ(1/3)] 0F1(; 4/3 ; x3/9)

The figure below shows Ai and Bi plotted for -15 < x < 5

REGISTERS: R00 thru R04
FLAGS: none

Example:

 0.4 ΣF$ "AIRY" -> Ai(0.4) = 0.254742355 ; or: [ΣFL], [O], [Y]
 X<>Y -> Bi(0.4) = 0.801773001

Stack Input Output
Y n/a Bi(x)
X x Ai(x)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 154 of 198 January 2016

Fresnel Integrals. { CSX }

Fresnel integrals, S(x) and C(x), are two transcendental functions named after Augustin-Jean Fresnel
that are used in optics. They arise in the description of near field Fresnel diffraction phenomena, and
are defined through the following integral representations:

The function CSX will calculate both S(x) and C(x) for the argument in X, returning the results in Y and
X respectively. It is a short FOCAL program that uses (yes you guessed it) the Generalized Hyper-
geometric function, according to the expressions:

S(x) = (π x3/6) 1F2(3/4 ; 3/2 , 7/4 ; -π2 x4/16), and

C(x) = x 1F2(1/4 ; 1/2 , 5/4 ; -π2 x4/16)

The figure below shows both functions plotted for 0<x<5

REGISTERS: R00 thru R04
FLAGS: none

Examples:

1.5 ΣF$ "CSX" -> C(1.5) = 0.445261176 X<>Y, S(1.5) = 0.697504960
 4 ΣF$ "CSX" -> C(4) = 0.498426033 X<>Y, S(4) = 0.420515754

Or: [ΣFL], [O], [C]

Stack Input Output
Y n/a S(x)
X x C(x)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 155 of 198 January 2016

Weber and Anger functions. { WEBAN }

In mathematics, the Anger function, introduced by C. T. Anger (1855), is a function defined as

The Weber function introduced by H. F. Weber (1879), is a closely related function defined by:

 If ν is an integer

 then Anger functions Jν are the same as Bessel functions Jν, and Weber functions
can be expressed as finite linear combinations of Struve functions (Hn and Ln).

With n and x in the stack, WEBAN will return both J(n,x) and E(n,x) in the Y and X stack registers
respectively.

The figures below show four of these functions for 4 orders(0, 0.5, 1, and 1,5) – Anger on the left
plots, and Weber on the right. [Check: J(0,0) = 1, and E(0,0) = 1]

Note that WEBAN will return both values to the stack.

REGISTERS: R00 thru R06
FLAGS: none

Example:

 2 , SQRT, PI, ΣF$ "WEBAN" -> E(sqrt(2), π) = - 0.315594385
 X<>Y -> J(sqrt(2), π) = 0.366086559

Alternatively: [ΣFL], [O], [W] using the main launcher instead.

Stack Input Output
Y n J(n,(x)
X x E(n,x)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 156 of 198 January 2016

3.5.2. Hankel, Struve, and similar functions.

The second sub-function launcher is the Hankel group. It’s loosely centered on the Hankel functions,
plus related sort. The launcher prompt is activated by pressing [H] at the main ΣFL prompt, and offers
the following 14 choices – in two line-ups controlled by the [SHIFT] key. Note the different leadings on
each screen, keeping the choices constant regardless:

The table below shows in the first column the letter used for each of the functions within this group:

[HK] Function Description Author
[1] HK1 Hankel1 Function Ángel Martin
[2] HK2 Hankel2 Function Ángel Martin
[W] WL0 Lambert W0 Ángel Martin
[H] HNX Struve H Function JM Baillard
[L] LOMS1 Lommel s1 function JM Baillard
[R] LERCH Lerch Transcendental function JM Baillard
[T] TMNR Toronto function JM Baillard
[K] KLV Kelvin Functions 1st kind JM Baillard

[1] SHK1 Spherical Hankel1 Ángel Martin
[2] SHK2 Spherical Hankel2 Ángel Martin
[W] WL1 Lambert W1 Ángel Martin
[H] LNX Struve Ln Function JM Baillard
[L] LOMS2 Lommel s2 function JM Baillard
[R] RCWF Regular Coulomb Wave Function JM Baillard
[T] THETA Theta functions JM Baillard
[K] KLV2 Kelvin Functions 2nd. kind JM Baillard

Here we finally find both branches of the Lambert W function, WL0 and WL1, described previously in
the manual, as well as a convenient selection of other (loosely) related sub-functions.

So your several choices in terms of launchers are as follows:-

a) Function WL0 in main FAT

XEQ “WL0”, the ordinary method
[ΣFL], [M], shortcut using the main launcher
ΣF$ “WL0”, since ΣF$ also finds functions in the main FAT
[ΣFL], [ALPHA], “WL0”

b) Functions W0L and W1L in secondary FAT

[ΣFL], [H], [W] [ΣFL], [H], [SHIFT], [W]
ΣF# 031, ΣF# 032
ΣF$ “WL0” ΣF$ “WL1”
[ΣFL], [ALPHA], “WL0” [ΣFL], [ALPHA], “WL1”

Now that’s what I’d call both a digression and multiple ways to skin this cat.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 157 of 198 January 2016

Hankel functions – yet a Bessel third kind. { HK1 , HK2 }

Another important formulation of the two linearly independent solutions to Bessel's equation are the
Hankel functions Hα(1)(x) and Hα(2)(x), defined by:

where i is the imaginary unit. These linear combinations are also known as Bessel functions of the third
kind, and it’s just an association of the previous two kinds together.

This definition allows for relatively simple programming only using the real-domain Bessel programs –
assuming the individual results for J and Y are not complex. The small program in the next page shows
the FOCAL code to just drive the execution of both JBS and YBS, piercing them together via ZOUT (or
ZAWIEW in the 41Z module).

Getting Spherical, are we? { SHK1 , SHK2 }

Finally, there are also spherical analogues of the Hankel functions, as follows:

The FOCAL programs below list the simple code snippets to program the three pairs of functions just
covered, as follows:

1. Hankel functions, HK1 and HK2
2. Spherical Bessel functions, SJBS and SYBS
3. Spherical Hankel functions, SHK1 and SHK2.

Note the symmetry in the code for the spherical programs, making good use of the stack efficiency
derived from the utilization of the MCODE JBS function.

The plots on the left show the Spherical
Hankel-1 function for orders 1 and 2, for
a short range of the argument x.
Explicitly, the first few are

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 158 of 198 January 2016

Calculate H1, H2, SH1, and SH2 for the following values in the table:

Examples.-

Arguments H1 H2 SH1 SH2 n x
1 1 Z=0,440-J0,781 Z=0,440+J0,781 Z=0,301-J1,382 Z=0,301+J1,382
1 -1 DATA ERROR

0.5 1 Z=0,671-J0,431 Z=0,671+J0,431 Z=0,552-J0,979 Z=0,552+J0,979
0.5 0.5 Z=0,541-J0,990 Z=0,541+J0,990 Z=0,429-J2,608 Z=0,429+J2,608
-0.5 1 Z=0,431+J0,671 Z=0,431-J0,671 Z=0,959+J0,111 Z=0,959-J0,111
-0.5 -1 DATA ERROR

Shortcut: [ΣFL],[H], [1] [ΣFL],[H], [2] [ΣFL],[H],[SHIFT],[1] [ΣFL],[H],[SHIFT],[2]

Where we see that for negative arguments (integer and non-integer orders both), the result of the
Bessel function of the second kind is itself a complex number, therefore the DATA ERROR message.
Note also the symmetric nature of the values for each of the function pairs, H1 with H2, and SH1 with
SH2.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 159 of 198 January 2016

Struve functions. { LNX , HNX }

Struve functions are solutions y(x) of the non-homogenous Bessel's differential equation:

Struve functions H(n,x), and Modified Struve Functions L(n,x), have the following power series forms:

The figure below shows a few Struve functions or integer order, n=1 to 5; for –10<x<10

Struve functions of any order can be expressed in terms of the Generalized Hypergeometric function
1F2 (which is not the Gauss Hypergeometric function 2F1). – This is the expression used in the
SandMath implementation:

in other words, referred to the Rationalized

 Generalized Hypergeometric function (which with such a
long name it definitely must be a formidable function… but it’s just the same divided by Gamma)

Hn(x) = (x/2)n+1 1F~
2(1 ; 3/2 , n + 3/2 ; - x2/4)

Ln(x) = (x/2)n+1 1F~
2(1 ; 3/2 , n + 3/2 ; x2/4)

Examples:

 Compute H(1.2 , 3.4) and L(1.2 , 3.4)

 1.2 ENTER^, 3.4 ΣF$ "HNX" -> H(1.2 , 3.4) = 1.113372657
 1.2 ENTER^, 3.4 ΣF$ "LNX" -> L(1.2 , 3.4) = 4.649129471

Alternatively: [ΣFL], [H], [H] for HNX, and: [ΣFL], [H], [SHIFT], [H] for LNX

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 160 of 198 January 2016

Lommel functions. { LOMS1 , LOMS2 }

The Lommel differential equation is an inhomogeneous form of the Bessel differential equation:

Two solutions are given by the Lommel functions sμ,ν(z) and Sμ,ν(z), introduced by Eugen von Lommel
(1880),

where Jν(z) is a Bessel function of the first kind, and Yν(z) a Bessel function of the second kind.

Using the Generalized Hypergeometric function the expressions for s1(m,n,x) is:

s(1)

m,n(x) = xm+1 / [(m+1)2 - n2] 1F2 (1 ; (m-n+3)/2 , (m+n+3)/2 ; -x2/4)

LOMS1 and LOMS2 calculates s1(m,n,x) and s2(m,n,x). Here are the specifics:

DATA REGISTERS: R00 thru R09: temp
Flags Used: F01

Example:

 2 SQRT, 3 SQRT, PI ΣF$ "LOMS1" -> s1[sqrt(2), sqrt(3), π) = 3.003060384
 2 SQRT, 3 SQRT, PI ΣF$ "LOMS2" -> s2[sqrt(2), sqrt(3), π) = 9.048798662

alternatively: [ΣFL], [H], [L] for s1; and [ΣFL], [H], [SHIFT]. [L] for s2

Stack Input Output
Z m /
Y n /
X x s1 / s2

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 161 of 198 January 2016

Lerch (Transcendent) Function. { LERCH }

In mathematics, the Lerch zeta-function, sometimes called the Hurwitz–Lerch zeta-function, is a special
function that generalizes the Hurwitz zeta-function and the polylogarithm. It is named after Mathias
Lerch.

The Lerch zeta-function L and a related function, the Lerch Transcendent Φ

, are given by:

Special cases

.- The Lerch Transcendent generates other special functions as particular cases, as it’s
shown in the table below:

The Hurwitz zeta-function

The Legendre chi function

The Riemann zeta-function
The polylogarithm

The Dirichlet eta-function

The figures below depict the representation for x, given the other two constant.

The SandMath implementation LERCH is for the Lerch Transcendent function. It is a short MCODE
routine originally written as a FOCAL routine by Jean-Marc Baillard, which calculates the series terms
and adds them until they don’t have a contribution to the final result. It is a slow converging series, and
therefore the execution time can be rather long (at normal CPU speeds).

Data input follows the usual conventions for the stack registers, entering x as the last parameter (in
register X) – despite the written form:

Examples:-

PI ENTER^ , 0.6 ENTER^ , 0.7 ΣF$ "LERCH" - > Φ (0.7 ; π ; 0.6) = 5.170601130
3 ENTER^, -4.6 ENTER^ , 0.8 ΣF$ "LERCH" -> Φ (0.8 ; 3 ; -4.6) = 3.152827048

Alternatively: [ΣFL], [H], [R] using the main launcher instead.

Stack Input Output
Z s T
Y a T
X x Φ(x,s,a)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 162 of 198 January 2016

Kelvin Functions. { KLV1 , KLV2 }

In applied mathematics, the Kelvin functions of the first kind -Ber(ν,x) and Bei(ν,x) - and of the Second
kind – Ker(ν,x) and Kei(ν,x) - are the real and imaginary parts, respectively, of

 for the 1st. Kind for the 2nd. Kind.

These functions are named after William Thomson, 1st Baron Kelvin.

For integers n, Bern(x) and Bein(x) have the following series expansion

and

The figure below shows Ber(n,x) and Ker(n,x) for the first 4 integer orders and real arguments:

Ber(n,X), Bei(n,x), Ker(n,x) and Kei(n,x) are available in the SandMath, implemented as FOCAL
programs written by JM Baillard. Both values are calculated simultaneously by KLV(2), and left in X,Y
registers as follows:

Stack Input Output Output
Y n bei(n,x) kei(n,x)
X x ber(n,x) ker(n,x)

Examples:

2 SQRT, PI, ΣF$ "KLV1" -> ber (sqrt(2), π) = -0.674095951
 X<>Y -> bei (sqrt(2), π) = -1.597357210

2, SQRT, PI, ΣF$ "KLV2" -> ker (sqrt(2), π) = 0.025901894
 X<>Y -> kei (sqrt(2), π) = 0.089242867

alternatively: [ΣFL], [H], [K] for KLV1 and: [ΣFL], [H], [SHIFT], [K] for KLV2

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 163 of 198 January 2016

Kummer Function. { KUMR }

Kummer's equation has two linearly independent solutions M(a,b,z) and U(a,b,z).

Kummer's function of the first kind M (also called Confluent Hypergeometric function) is a generalized
hypergeometric series introduced in (Kummer 1837), given by

Where a(n) is the rising factorial, defined as:

The figures below depict two particular cases for {a=2, b=3} and {a=-2, b=-3}

The SandMath implementation is got to be one of the simplest application ot HGF+ possible, which
still renders acceptable accuracy to the results

DATA REGISTERS:

a – R00; b – R01

Examples:

Compute M(2; 3; -π) and M(2; 3; π)

 2 ENTER^ , 3 ENTER^ , PI CHS, ΣF$ "KUMR" -> M(2;3;-π) = 0.166374562
 2 ENTER^ , 3 ENTER^ , PI ΣFL [,] -> M(2;3;π) = 10,24518011

Alternatively: [ΣFL], [H], [SHIFT], [K] using the main launcher instead

Stack Input Output
Z a /
Y b /
X x M(a;b;x)
L / x

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 164 of 198 January 2016

Associated Legendre Functions. { ALF }

In mathematics, the Legendre functions P(λ), Q(λ) and associated Legendre functions Pμ(λ) and Qμ(λ)
are generalizations of Legendre polynomials to non-integer degree. Associated Legendre functions are
solutions of the Legendre equation:

where the complex numbers λ and μ are called the degree and order of the associated Legendre
functions respectively. Legendre polynomials

are the associated Legendre functions of order μ=0.

These functions may actually be defined for general complex parameters and argument:

The figures below give a couple of graphical plots for the Legendre Polynomials:

REGISTERS: R00 thru R05
FLAGS: /

Examples:

 0.4 ENTER^, 1.3 ENTER^ , 0.7 ΣF$ "ALF" -> P1.3|0.4(0.7) = 0.274932821
 -0.6 ENTER^ , 1.7 ENTER^ , 4.8 ΣFL, [,] -> P1.7|-0.6(4.8) = 10.67810281

Alternatively: [ΣFL], [H], [SHIFT], [L] using the main launcher instead.

Stack Input Output
Z m /
Y n /
X x P(n,m.x)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 165 of 198 January 2016

Generalized Laguerre Functions. { LAYX }

In mathematics, the Laguerre functions are generalizations of Associated Laguerre polynomials to non-
integer degree. Generalized Laguerre functions are solutions of the generalized Laguerre differential
equation:

In the SandMath they have been implemented as a direct application example of the Kummer function
described before, through the following expression:

 Ln(a)(x) = M(-n, α+1, x) [Γ(n+α+1) / Γ(n+1) * Γ(α+1)]

The FOCAL program listig is shown on the right, note how the parameters for KUMR are stored in
registers R01 and R02, and that GAMMA maintains the stack values intact.

REGISTERS: R00 thru R02
Inputs are a, n and X in the Stack

Example1

: Calculate L [sqr(7), sqr(2), π]

 7, SQRT, 2, SQRT, PI, ΣF$ “LAYX” => -0.133847230

Example 2

: Calculate L [1.4, 7, π]

1.4, ENTER^, 7, ENTER^, PI, ΣF$ “LAYX” => 1.688893432

Note that this function is very closely related to the Associated Laguerre Polynomials LANX, available in
the SandMatrix module – where n is restricted to integer values. Using the same example it returns:

1.4, ENTER^, 7, ENTER^, PI, ΣV$ “LANX” => 1.688893513

which is closer to the WolframAlpha result:

Stack Input Output
Z α /
Y n /
X x L(a,n.x)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 166 of 198 January 2016

Whittaker Function. { WHIM }

In mathematics, a Whittaker function is a special solution of Whittaker's equation, a modified form of
the confluent hypergeometric equation introduced by Whittaker (1904) to make the formulas involving
the solutions more symmetric.

Whittaker's equation is

It has a regular singular point at 0 and an irregular singular point at ∞. Two solutions are given by the
Whittaker functions Mκ,μ(z), Wκ,μ(z), defined in terms of Kummer's confluent hypergeometric functions
M and U by

The graphics below show both functions for the particular case k=2 and m=0.5

DATA REGISTERS: R00 thru R02:
Flags: none.

Example:

 2, SQRT, 3, SQRT , PI, ΣF$ "WHIM" -> W(sqrt(2), sqrt(3), π) = 5.612426206

Stack Input Output
Z K /
Y µ /
X x W(k,m,x)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 167 of 198 January 2016

Toronto Function. { TNMR }

In mathematics, the Toronto function T(m,n,r) is a modification of the confluent hypergeometric
function defined by Heatley (1943) as

Which to untrained eyes just appears to be a twisted cocktail of the Kummer function, adding the
exponential to the mix and scaling it with Gamma.

DATA REGISTERS: R00 thru R04:
Flags: none.

Example:

 2, SQRT, 3, SQRT , PI, ΣF$ "TMNR" -> T(sqrt(2), sqrt(3), π) = 0.963524225

Alternatively: [ΣFL], [H], [T] using the main launcher instead

Stack Input Output
Z m /
Y n /
X r Τ (m,n,r)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 168 of 198 January 2016

3.5.3. Orphans and dispossessed.

The last group of sub-functions include those not belonging to any particular launcher – for no other
particular reason that there’s no more available space in the ROM. – Keep in mind that the only (dual)
way to execute them is using the ΣFL# or ΣFL$ launchers.

 Function Description Author
[ΣFL] -SP FNC Section header - does FCAT Ángel Martin
[ΣFL] #BS Aux routine, All Bessel Ángel Martin
[ΣFL] #BS2 Aux routine - 2nd. kind, Integer orders Ángel Martin
[ΣFL] AMG2 Modified Arithmetic-geometric Mean Ángel Martin
[ΣFL] AWL Inverse Lambert Ángel Martin
[ΣFL] PDEG Polynomial Degree JM Baillard
[ΣFL] LI Logarithmic Integral Ángel Martin
[ΣFL] PSD Poisson Standard Distribution Ángel Martin
[ΣFL] dPL Polynomial first derivative Ángel Martin
[ΣFL] DAYS Days between dates (MM,DDYYYY in X,Y) HP Co.
[ΣFL] JDAY Julian Day number of a Date (MM,DDYYYY in X) Ángel Martin
[ΣFL] CDAY Date for a Julian day number (day number in X) Ángel Martin

Let’s tackle the simpler ones on the list first.

• –SP FNC simply provides the index-zero shortcut for FCAT. It invokes the sub-function
CATALOG,

with hot-keys for individual function launch and general navigation. Users of the
POWERCL Module will already be familiar with its features, as it’s exactly the same code –
which in fact resides in the Library#4 and it’s reused by both modules.

• #BS and #BS2 are auxiliary functions used in the FOCAL programs for the Bessel functions

of 2nd Kind, KBS and YBS. They were explained in more detail in the Bessel Functions
paragraph. Feel free to ignore them, as they’re not intended for stand-alone use.

• AWL is the Inverse Lambert W function

, an immediate application of the W definition
involving just the exponential – but with additional accuracy using the MCODE 13-digit routines
in the OS. AWL = W * exp(W)

• LI is the Logarithm Integral,

 also a quick application of the EI function, using the formula:
Li(x) = Ei[(ln(x)] (see description for EI earlier in the manual). Note how LI starts as a
MCODE functions that transfers into the FOCAL code calculating EI, so strictly speaking it’s a
sort of “hybrid” natured function.

• DAYS is taken from the HP Securities Pac. It calculates the number of days between two
dates – using a 30-day month standard in financial calculations. The input format is
MM,DDYYY, with the later date in Y and the earlier in X. The result is returned to the X-reg.

Example: Calculate the number of days elapsed between July 21st, 1959 and May 21st, 2014:
5.212014, ENTER^, 7.211959, ΣF$ “DAYS” => 20,014.00000

• JDAY and CDAY are reciprocal date functions to convert a given date into the Julian day

number and back to the calendar date. Use flag 00 to select either Julian or gregorian
calendars in the conversions. The date format is also MM.DDYYYY regardless of the time
module settings if there’s one.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 169 of 198 January 2016

Example: the date May 21st, 2014 corresponds to 2,456,799 (Gregorian calendar) or 2,456,812
(Julian calendar) day numbers.

You can also use JDAY to calculate the elapsed number of days between two dates – simply
converting both to their Julian day numbers and subtracting them. If you do that you’ll notice a
small discrepancy (18 days) between this approach and the resuts from DAYS – which leads
me to believe that DAYS has some different convention, but unfortunately it appears to be a
stealth function, as there is no documentation for it at all in the Securities Pac manual.

These two functions are based on the PPC routines JC and CJ – ported to an all-MCODE
implementation to make effective use of the available ROM space in the secondary banks. The
formulas used are as follows (see PPC ROM manual for details):

JDN = int { int [[D + int(367 x) - int(x)] - 0.75 * int(x)] - 0.75 * int[int(x)/100) } +
 + 1,721,115; where: X = Y + (M-2.85) / 12

Let N = JDN - 1,721,119
C = int {(N-0.2(/36,524.25]

if Gregorian: N ' = N + C - int(C) – or if Julian: N' = N + 2

Y' = int[(N' -0.2) / 365.25]; N" = N' - int(365.25 * Y']
M' = int[(N" - 0.5) / 30.6]; D = int [N" - 30.6 * M' + 0.5]

Decibel Addition. { dB+ }

The decibel (dB) is a logarithmic unit used to express the ratio between two values of a physical
quantity, often power or intensity. One of these quantities is often a reference value, and in this case
the decibel can be used to express the absolute level of the physical quantity, as in the case of sound
pressure. The number of decibels is ten times the logarithm to base 10 of the ratio of two power
quantities,[1] or of the ratio of the squares of two field amplitude quantities [2]. One decibel is one
tenth of one bel, named in honor of Alexander Graham Bell.

[1] Power quantities

When referring to measurements of power or
intensity, a ratio can be expressed in decibels
by evaluating ten times the base-10 logarithm
of the ratio of the measured quantity to the
reference level. Thus, the ratio of a power
value P1 to another power value P0 is
represented by LdB, that ratio expressed in
decibels,[19] which is calculated using the
formula below:

[2] Field quantities

When referring to measurements of field
amplitude, it is usual to consider the ratio of
the squares of A1 (measured amplitude) and
A0 (reference amplitude). This is because in
most applications power is proportional to the
square of amplitude, and it is desirable for the
two decibel formulations to give the same
result in such typical cases. Thus, the following
definition is used:

The function dB+ calculates the result of adding or subtracting two values in X and Y expressed in
decibels. The result is also a dB value. Use a negative sign in X for subtractions.

Examples

5 dB – 3 dB = 0.670765667 dB
: 3 dB + 5 dB = 7.124426028 dB

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 170 of 198 January 2016

A few polynomial functions follow next

.-

You should refer to the SandMatrix module for a more comprehensive coverage of this subject.

• PDEG is a simple but useful routine to get the polynomial degree from the control word in X,
in the form bbb.eee. It is used by INPUT, and obviously we have: degree = (eee – bbb). As
an additional bonus, PDEG also leaves in LastX the address of the next free register, eee+1.

• PL and dPL are full-fledged MCODE functions used to evaluate polynomials and to
calculate the first derivative of a polynomial, which coefficients are stored in data registers. It
requires the control word (bbb.eee) in Y, and the evaluation point x in X.

Example

: evaluate and calculate the derivative of P(x) = 5x^3 – 4 x^2 -3 in x=2

First we input the coefficients in registers R00 to R03, using INPUT:

0,003, ΣF$ “INPUT”, followed by “5, ENTER^, 4, CHS, ENTER^, 0, ENTER^, 3, CHS, R/S”

This leaves the control word in X, thus we just enter the evaluation point and call the
appropriate functions, as shown below:

2, ENTER^, ΣF$ “PL” => 21.0000
RDN, 2 ΣF$ “DPL” (*) => 44.0000

(*) Note how the function name is spelled using upper–case letters

The FOCAL programs shown below were written by JM Baillard. They perfrom the same tasks, and are
provided for your sheer enjoyment – and as an example of how efficient FOCAL can be, specially with a
4-stack register pile and the capability to use indirect addressing.

Consider that the minimalistic programs below have an equivalence of abour 150 bytes in MCODE, by
the time you’re done with the error handling and math syntax to use the OS routines. However the
speed advantage - and the ability to locate the code in a secondary bank – are well worth the effort.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 171 of 198 January 2016

Arithmetic-Geometric Mean - Revisited { AGM }

In mathematics, the arithmetic–geometric mean (AGM) of two positive real numbers x and y is defined
as follows: First compute the arithmetic mean of x and y and call it a1. Next compute the geometric
mean of x and y and call it g1; this is the square root of the product xy:

Then iterate this operation with a1 taking the place of x and g1 taking the place of y. In this way, two
sequences (an) and (gn) are defined:

These two sequences converge to the same number, which is the arithmetic–geometric mean of x and
y; it is denoted by M(x, y), or sometimes by agm(x, y).

Stack Input Output
Y a0 Z
X b0 agm(a0,b0)
L - b0

Note that “DATA ERROR” will be triggered when one of the arguments is negative (but not if both are).

Example 1:

To find the arithmetic–geometric mean of a0 = 24 and g0 = 6, simply input:

24, ENTER^, 6, ΣF$ “AGM”  13,45817148

Example 2. Gauss Constant.

The reciprocal of the arithmetic–geometric mean of 1 and the square root of 2 is called Gauss's
constant, after Carl Friedrich Gauss. Calculate it using AGM:

2, SQRT, 1, ΣF$ “AGM”  1,198140235; 1/X  0,834626842

A piece of trivia: the Gauss constant is a transcendental number, and appears in the calculation of
several integrals such as those below:

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 172 of 198 January 2016

Example 3.- Complete Elliptic Integral of 1st Kind.

Using AGM it’s a convenient way to calculate the Complete Elliptic Integral of the first kind, ELIPK (k),
by means of the following relationship (where M(x,y) represents the AGM):

where K(k) is the Complete Elliptic Integral of the first kind:

As usual the conventions used for the input parameters get in the way – so paying special attention to
this, we can re-write the expresion using the In

complete Elliptic Integral instead, as follows:

ELIPF { π/2 | (a-b)/(a+b) } = π (a+b) / 4 AGM(a,b), which is the same as:

ELIPF { π/2, [(a-b)/(a+b)]^2 } = π (a+b) / 4 AGM(a,b)

The idea is to find two values a,b derived from the argument: x = [(a-b)/(a+b)]^2

The easiest approach is to choose a=1, and therefore: b= [1-sqr(x)] / [1+sqr(x)]

Here’s the FOCAL program used for the calculation.- Note the first step needed to get the square root
of the argument, to harmonize both conventions used.

1 LBL "ELIPK" 7 E 13 4 19 E
2 SQRT 8 + 14 * 20 +
3 E 9 / 15 1/X 21 *
4 X<>Y 10 RCL X 16 PI 22 END
5 - 11 E 17 *
6 LASTX 12 AGM 18 X<>Y

And here are some results, compared to the values obtained using ELIPF. As you can expect, the
execution is substantially faster using the AGM approach.

x ELIPK(x) ELIPF (π/2, x) % Delta
0.1 1.612441348 1.612441348 0
0.2 1.659623599 1.659623598 6.02546E-10
0.3 1.713889448 1.713889447 5.83468E-10
0.4 1.777519373 1.777519371 1.12516E-09
0.5 1.854074677 1.854074677 0
0.6 1.949567749 1.949567749 0
0.7 2.075363134 2.075363135 -4.81843E-10
0.8 2.257205326 2.257205326 0
0.9 2.578092113 2.578092113 0

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 173 of 198 January 2016

Modified Arithmetic-Geometric Mean { AGM2 }

We’ve seen the relationship between the complete Elliptic integral of first kind (ELIPK) and the AGM
largely facilitates the calculation. Would it be possible to calculate the complete Elliptic of 2nd. Kind
(ELIPE) using a similar approach, and if so how? As it turns out there is a way – involving the Modified
AGM as described below. First we define a sequence of triples as follows:

Defining now the modified arithmetic-geometric mean (AGM2) of two positive numbers x and y as the
common limit of the descending sequence {Xn} and the ascending sequence {Yn}, with X0 = x and
y0=y (and z0=0)

The expressions we’re interested in are those linking the Complete Elliptic integrals of first and second
kind with the regular AGM and this newly defined AGM2. As it turns out both expressions exist, and are
given below:

Where M(t) is the regular AGM(1, t) and N(t) the modified AGM2(1, t); and where {β, γ} are two
positive numbers whose squares sum to one: β^2 + γ^2 = 1. In particular the equations hold if (in
violation of the assumptionm otherwise imposed) γ^2 = -1 - which implies β^2 = 2, facilitatating the
calculation even more.

So there we have it, both complete integrals can be obtained using the AGM and AGM2 functions, an
iterative and fast convergent algorithm that can be easily implemented on the SandMath. Once AGM
and AGM2 are available it’s easy to write ELIPK and ELIPE – see the method used in the example
quick FOCAL program below:

01 LBL “KK”
02 CHS
03 1
04 +
05 SQRT
06 STO O
07 1
08 AGM
09 ST+ X
10 1/X
11 PI

12 *
13 RTN

14 LBL “EK”
15 XEQ “KK”
16 RCL 07
17 X^2
18 1
19 AGM2
20 *
21 END

(*) See Article by Semjon Adlag, http://www.ams.org/notices/201208/rtx120801094p.pdf

http://www.ams.org/notices/201208/rtx120801094p.pdf�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 174 of 198 January 2016

Appendix.- Mutual inductance of two coaxial circular coils.

01 LBL "MIND"
02 "R1=?"
03 PROMPT
04 STO 06
05 "R2=?"
06 PROMPT
07 STO 07
08 LBL 00
09 "d=?"
10 PROMPT
11 LBL C
12 STO 05
13 RCL 07
14 RCL 06
15 *
16 4
17 *
18 RCL 06
19 RCL 07
20 +
21 X^2
22 RCL 05
23 X^2
24 +
25 /
26 STO 05
27 ELIPK (ΣFL# 43)
28 STO 08
29 RCL 05
30 ELIPE (ΣFL# 41)
31 STO 09
32 E
33 RCL 05
34 2
35 /
36 -
37 RCL 08
38 *
39 RCL 09
40 -
41 PI
42 *
43 8 E-7
44 *
45 RCL 06
46 RCL 07
47 *
48 RCL 05
49 /
50 SQRT
51 *
52 "MI="
53 ARCL X
54 PROMPT
55 GTO 00
56 END

This example shows a practical utilization of functions
ELIPK and ELIPE to calculate the mutual inductance
between two coaxial circular coils or radius r1 and r2,
separated a distance “d”. The example is taken from
page# 83 of the NASA SP-42 document, “Space
Resources and Space settlements”.

Note the conventions used in the definition, especially
for the “k” parameter – not squared!

Test cases: with r1=0.2, r2=0.25

1. d= 0.1 -> MI = 2,48787E-7
2. d= 0.2 -> MI = 1,23957E-7

These results are in henries.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 175 of 198 January 2016

(Second) Debye Function. { DEBYE }

The First and Second Debye functions are defined by the expressions below:

These functions are named in honor of Peter Debye, who came across them (with n = 3) in 1912 when
he analytically computed the heat capacity of what is now called the Debye model.

The formula used for the second function, for n positive integers and X>0 is:

DEBYE is now implemented as a MCODE function that uses the same algorithm developed by JM
Baillard in his FOCAL program (see: http://hp41programs.yolasite.com/debye.php

Therefore no data registers are needed, but ALPHA is used for scratch. The original argument x is
preserved in LASTx, and the order n is left in Y – so you can chain calculations with other arguments.
Note that the convergence is relatively slow so it’ll take its time to come up with the result. You can
press any key at any time to abort the calculations.

3 ENTER^, 0.7 , ΣF$ "DEBYE" -> DB(0.7 ; 3) = 6.406833597
Example:

Alternatively: [ΣFL], [O], [SHIFT], [Y] using the main launcher instead

Note: The sum of both integrals is a possible (albeit indirect and not trivial) way to calculate the first
Debye function with the aid of the Rieman Zeta function:

Stack Input Output
Y n n
X x db(n,x)
L - x

http://hp41programs.yolasite.com/debye.php�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 176 of 198 January 2016

Dawson Integral. { DAWSON }

The Dawson function or Dawson integral (named for John M. Dawson) is either:

or:

DAWSON computes F(x) by a series expansion:

F(x) = e -x^2 [x + x3/3 + x5/(5*2!) + x7/(7*3!) +]

The figures below show both functions in graphical form:

Here as well this function is fully implemented as a MCODE routine, which mimics the same algorithm
used by JM Baillard in his excellent FOCAL routine (see: http://hp41programs.yolasite.com/dawson.php

Stack Input Output
X x D+(x)
L - x

Examples:

 1.94, ΣF$ "DAWSON" -> F(1.94) = 0.3140571659
 10, ΣFL, [,] -> F(10) = 0.05025384716
 15, ΣFL, [,] -> F(15) = 0.03340790676

For x > 15 , there will be an OUT OF RANGE condition.

For large arguments the execution is rather slow, taking a couple of seconds even with TURBO mode
on V41 - so be patient! – Pressing any key will abort the execution as usual.

http://hp41programs.yolasite.com/dawson.php�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 177 of 198 January 2016

Regularized Generalized Hypergeometric Function { HGF+ }

In mathematics, a generalized hypergeometric series is a power series in which the ratio of successive
coefficients indexed by n is a rational function of n. The series, if convergent, defines a generalized
hypergeometric function, which may then be defined over a wider domain of the argument by analytic
continuation

We’ve already described the pivotal role of this function in the multiple ways it’s used to calculate many
of the special functions – but so far haven’t used it by itself. Let’s complete the description with a few
examples, all taken from JM Baillard web pages as it’s already become customary.

The first remark is about the parameter entry. Being a generalized function, it takes a variable number
of arguments, which are to be stored in the corresponding data registers – starting with R01. The total
number of arguments is specified by the function’s indexes “m” and “p” , as they are provided in the
function’s name: mFp. Besides those, register R00 is reserved for the principal argument “x”.

The usage requires m, p, and x in the Stack – in registers Z, Y, and X respectively.

Stack Input Output
Z m Last k-val
Y +/- p 1st. term
X x mFp

The second remark is the dual character of the implementation: it can compute either the standard or
the regularized

 function (the latter has all the coefficients divided by products of the Gamma function).
The option is indicated by the sign in the second parameter “p”, in the Y register: positive for the
standard, and negative for the reguralized.

Example1:

 Calculate 3F4(1, 4, 7 ; 2, 3, 6, 5 ; π) and 3F4 ~ (1, 4, 7 ; 2, 3, 6, 5 ; π)

1,007, ΣF$ “INPUT” -> 1, ENT^. 4. ENT^, 7 ENT^, 2 ENT^, 3 ENT^, 6 ENT^, 5 ENT^, R/S

3 ENTER^, 4 ENTER^, PI, XEQ "HGF+" -> 3F4(1, 4, 7 ; 2, 3, 6, 5 ; π) = 1.631019643
3 ENTER^, -4 ENTER^, PI, XEQ "HGF+" -> 3F4 ~ (1, 4, 7; 2, 3, 6, 5 ; π) = 0.0002831631328

 Example 2:

 Calculate 2F2(1, 4; -2, -5; 0.1)

 1 STO 01, 4 STO 02, -2 STO 03, -5 STO 04
 2 ENTER^, -2 ENTER^, 0.1, XEQ "HGF+" -> 2F2~ (1, 4 ; -2, -5 ; 0.1) = 0.01289656888

Notes:

• If m = p = 0 , HGF+ returns exp(x)
• The function code doesn't check if the series are convergent or not.
• Even when they are convergent, execution time may be prohibitive: press any key to stop
• It first checks that for register Rm+p existence
• The SandMath implementation of HGF+ checks for alpha data
• Contents of stack register T is preserved, and saved in register L (LastX)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 178 of 198 January 2016

Hyper-geometric Functions. { HGF , RHGF }

HGF and RHGF are the ordinary and the Regularized Hyler-geometric functions. The are a particular
case of the Generalized version (see nprevious page) simply making p=2 and m=1

The Gaussian or ordinary hypergeometric function 2F1(a,b;c; z) is a special function represented by the
hypergeometric series, that includes many other special functions as specific or limiting case. It is
defined for |z| < 1 by the power series:

provided that c does not equal 0, −1, −2, ... Here (q)n is the Pochhammer symbol, which is defined by:

Many of the common mathematical functions can be expressed in terms of the hypergeometric
function, or as limiting cases of it. Some typical examples are:

The relation 2F1 (a,b,c,x) = (1 - x) -a 2F1 (a, c-b, c ; -x/(1-x)) is used if x < 0

The Regularized

 Hypergeometric function has a similar expression for each summing term, just divided
by Gamma of the corresponding Pochhamer symbol plus the index n.

REGISTERS: R01 thru R03. They are to be initialized before executing HGF or RGHF.
 R00 is not used.

R01 = a, R02 = b, R03 = c

HGF Examples:

 • 1.2 STO 01, 2.3 STO 02 , 3.7 STO 03

 0.4 ΣF$ "HGF" -> 1.435242953
 -3 ΣFL [,] -> 0.309850661

RHGF Examples:

 • 2 STO 01, 3 STO 02, -7 STO 03

 0.4, ΣF$ "RHGF" - > 5353330.290
 -3 ΣFL [,] -> 2128.650875

Stack Input Output
X X< 1 2F1 (a,b,c,x)

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 179 of 198 January 2016

Regular Coulomb Wave Functions. { RCWF }

In mathematics, a Coulomb wave function is a solution of the Coulomb wave equation, named after
Charles-Augustin de Coulomb. They are used to describe the behavior of charged particles in a
Coulomb potential and can be written in terms of confluent hypergeometric functions or Whittaker
functions of imaginary argument. The Coulomb wave equation is show below:

where L is usually a non-negative integer. The
solutions are called Coulomb wave functions.
Putting x = 2iρ changes the Coulomb wave
equation into the Whittaker equation, so
Coulomb wave functions can be expressed in
terms of Whittaker functions with imaginary
arguments. Two special solutions called the
regular and irregular Coulomb wave functions are
denoted by FL(η,ρ) and GL(η,ρ), and defined in
terms of the confluent hypergeometric function
by the friendly expression below:

where Mk,µ = Whittaker's function of the 1st kind – which is included in the SandMath, but without
support for complex numbers and therefore can’t be used for this purpose.

The formulas used instead are as follows: (as per JM Baillard’s implementation as usual)

FL(n,r) = CL(n) r L+1 Σ Ak
L (n) r k-L-1 ; for k>L, and L integer

 with CL(n) = (1/Γ(2L+2)) 2L e -pi.n/2 | Γ(L+1+i.n) |
 and AL+1

L = 1 ; AL+2
L = n/(L+1) ; (k+L)(k-L-1) Ak

L = 2n Ak-1
L - Ak-2

L (k > L+2)

further, we avoid using gamma for complex arguments by replacing the last modulus calculation with
the following expressions (based on the reflection formula):

| Γ(1+i y) |2 = (π.y) / sinh (π y); and
| Γ(1+L+i y) |2 = [L2 + y2] [(L-1)2 + y2] [1 + y2] (π y) / sinh (π y)

The resulting FOCAL program is RCWF, which takes as inputs the values for L, n and r placed in the
stack registers Z, Y, and X respectively – returning the result into X.

Example:

 calculate F(2, 0.7, 1.8)

 2, ENTER^, 0.7, ENTER^, 1.8, ΣF$ "RCWF" -> F(2, 0.7 , 1.8) = 0.141767746
 or alternatively: [ΣFL], [H], [SHIFT], [R] using the main launcher instead.

Note the restrictions imposed on the parameters, which are:

L is a non-negative integer, , n is real, r is non-negative.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 180 of 198 January 2016

Integrals of Bessel Functions. { ITI , ITJ }

One of the usual approaches is to use the following recurrent relations for the calculation

With Re(n)>0. More specifically, for positive integer orders n=1,2,.... we have

and also

There’s however another approach based (yes, here as well!) on the Generalized Hypergeometric
function HGF+. In fact the applicability of this method extends to the Integro-Differential forms of the
Bessel functions, and so could be used to calculate second primitives or derivatives as well.

The expressions used in the SandMath for functions ITJ and ITI are as follows:

Dµ In(x) = K xn-µ Γ(n+1) 2F~
3[(n+1)/2, (n+2)/2 ; (n+1-µ)/2, (n+2-µ)/2, n+1 ; x2/4]

Dµ Jn(x) = K xn-µ Γ(n+1) 2F~
3[(n+1)/2, (n+2)/2 ; (n+1-µ)/2, (n+2-µ)/2, n+1 ; -x2/4]

Where K = 2µ-2n sqrt(π); and µ = -1 for the integral (primitive)

in case you don’t believe such a convenience, take a look at this WolframAlpha’s link:
 http://www.wolframalpha.com/input/?i=integrate+%28besselI%28n%2Cx%29%29

Nothing short of magical if you ask me – what I’d call “going out with a bang”.

A few examples: (note the convenient usage of the LASTF feature for repeat executions of the same
function.)

 1.4 ENTER^, 3, ΣF$ "ITJ" -> §|0,3 J(1.4,x).dx = 1.049262785
 1.4 ENTER^, 3, ΣF$ "ITI" -> §|0,3 I(1.4,x).dx = 2.918753200
 1 ENTER^, 3, ΣF$ "ITJ" -> §|0,3 J(1,x).dx = 1.260051955
 0 ENTER^, 10, ΣFL [,] -> §|0,10 J(0,x).dx = 1.067011304
 50 ENTER^, 30, ΣFL [,] -> §|0,30 J(50,x).dx =1.478729947 E-8

http://www.wolframalpha.com/input/?i=integrate+%28besselI%28n%2Cx%29%29�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 181 of 198 January 2016

Appendix 11- Looking for Zeros.

Once again we’re just connecting the dots: here’s a brute-force crude implementation of a root finder
for Bessel functions, made possible once the major task (i.e. calculating the function value) is reduced
to a single MCODE function.

The following trivial-looking program (it really can’t get any simpler!) uses SOLVE within the Advantage
Pack (or FROOT in the SandMath), no less. Starting with zero, obvious guess values are the previous
root and the root incremented by one. Successive repetitions will unearth all those roots; just make
sure you have the “turbo” mode enabled on V41 (or equivalent emulator). Enjoy!

The first few roots j(n,k) of the Bessel function Jn(x) are given in the following table for small
nonnegative integer values of n and k

See also: http://cose.math.bas.bg/webMathematica/webComputing/BesselZeros.jsp

Note that the program listing also includes code to calculate the Integral of JBS, defined as incomplete
function with the argument in the upper integration limit. Granted it isn’t the fastest one in town but
such isn’t an issue on a modern-day emulator, and the economy of code cannot be stronger!

Which allegedly satisfies the equation: §0

x Jn(t).dt = 2 (Jn+1(x) + Jn+3(x) + Jn+5(x) +)

http://cose.math.bas.bg/webMathematica/webComputing/BesselZeros.jsp�

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 182 of 198 January 2016

 

3.7.1. Functions description and examples.

Last but not least (what an understatement in this case) let’s go with a bang: welcome to the bank-
switched implementation of Solve and Integrate. Chances are that if you’re reading this you’re already
familiar with SOLVE and INTEG, from the Advantage Pac module – needless to say this is about the
same functions, so we won’t get into a lengthy discussion on the functions methodology and attributes
- both are assumed to be already known to you

 Function Description Comments
 FROOT Calculates roots of f(x) in an interval Same as SOLVE
 FINTG Calculates the integral of f(x) between limits Same as INTEG
 FLOOP Auxiliary function for control Does nothing by itself.
 SIRTN Auxiliary function for control In hidden FAT (bank-3)

FROOT will attempt to obtain a real root for the function in an interval defined by the values in [Y, X],
and FINTG will numerically calculate the definite integral of a function f(x) between the integration
limits defined in registers Y (lower limit) and X (upper limit). In both cases the function needs to be
programmed in a FOCAL program , and its global LBL name needs to be in ALPHA when FROOT or
FINTG are executed in program mode.

Note that this means it won’t work for mainframe or MCODE functions from plug-in ROMS, which will
need a dummy user code program to “host” them. Also note that – contrary to the original SOLVE and
INTEG - , on the SandMath implementation these functions will prompt for the program name when
executed in RUN mode.

 ALPHA will be turned on automatically for convenience.

Let’s see a couple of examples. The first one should be a repeat of the exercise from previous
appendix, now using this version of the functions. Be aware that the execution time will be long, but
that’s an acid test for the operation – being a nested example of both.

For a second example refer to appendix in page 107 to calculate the Fourier coefficients for an explicit
function, f(x). Now this is what closes the circle :-)

Example

. Calculate the roots of Digamma and Exponential integral functions.

Nothing can be easier than writing this trivial program:

01 LBL “PSI2”
02 PSI
03 RTN
04 LBL “EI2”
05 EI
06 END

Enter the values 1, ENTER^, 5, then execute FROOT. – typing the program name in ALPHA at the
prompt: XEQ [ALPHA] “FROOT”, [ALPHA], “PSI2”, [ALPHA] or: XEQ “FROOT”, [ALPHA], “EI2”, [ALPHA]

The corresponding solutions (in FIX 9) are as follows:

X = 1.461632145 for PSI, and
X = 0.372507411 for Ei

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 183 of 198 January 2016

Example.
The equation is: x – E sin x = m

 Calculate the root of the Kepler equation for E = 0.2 and m=0.8

Programmed as follows, assuming E is in R01 and m in R00 data registers:

01 LBL “KPLR” input data: 0,2 STO 01, 0.8 STO 00
02 RAD input interval [0,1] in YX
03 SIN XEQ “FROOT” “KPLR” -> 0.964333888
04 RCL 01
05 *
06 –
07 RCL- (substracts R00)
08 END

Example

. Write a program to calculate Bessel J using the formula:

1 LBL "JYX" 12 LBL "*JN"
2 STO 01 13 RAD
3 X<>Y 14 RCL 00
4 STO 00 15 *
5 "*JN" 16 X<>y
6 0 17 SIN
7 PI 18 RCL 01
8 FINTG 19 *
9 PI 20 -

10 / 21 COS
11 RTN 22 END

Which won’t compete for the speed award compared with the SandMath JBS function, but besides
illustrating the example note that it returns more accurate results for large orders and arguments (as
discussed in the Bessel functions section).

Example.- J(50, 50) = 0.121409022

Correct to the 9th decimal place as can be seen using WolframAlpha’s result:
0.1214090218976150638201083836782773998739591421282135

Note that the iterative function JNX1 can also be used for this calculation, yielding the exact same
result in a comparable execution time:

50, ENTER^, ΣFL$ “JNX1” => 0.121409022

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 184 of 198 January 2016

Programming Highlights: MCODE Cathedrals.

Often when visiting a landmark or a commemorative building we feel the imposing presence of
something that’s bigger than what any possible description could convey, and we proceed tip-toeing,
speaking in whispers not to disturb the spirit of its creators... this is exactly how I felt about the
addition of the SOLVE and INTEG “cathedral of MCODE” to the SandMath.

Leaving their mathematical prowess and attributes aside - as tremendous as they are – the
housekeeping chores and implementation on the 41 platform are nothing short of spectacular. The
original programmers - we are told - adapted the already-existing code form the HP-15C, but they had
to overcome a couple of real challenges to port it smoothly into the 41 platform. Possibly the 15C also
required similar trickery, but I don’t know its internal architecture so I can’t say.

The first striking thing is of course being able to return to an MCODE code stream after executing a
user code program (FOCAL) – which calculates f(x). That alone can leave you thinking – as it did to me,
suspecting the hows and the abouts being explained somehow by SIRTN and SILOOP, the two
auxiliary functions written for this purpose. – Yet how did they exactly work? We need to understand
the buffer-14 paradigm before we can answer this.

Yes, there’s the question of Buffer-14, the dedicated buffer in the Advantage that exhibits a rather
idiosyncratic temperament: contrary to all other modules, the Advantage seems to be on a “search and
destroy” mission, with the apparent aim to kill any previous existence of the buffer, judging by the
polling events CALC_OFF and IO_SRVC.

Equally intriguing is the location of said buffer, which is situated (while it’s allowed to exist) below

 the
Key assignments area – and not above it as it’s the normal way. This fact conflicts with the OS routines
that manage the I/O area, like [PKIOAS] and others, and would create real havoc if it weren’t because
the Advantage manages the buffer dynamically, creating it on-the-fly just when the execution starts,
and killing it upon termination. So as far as the rest of the machine is concerned (OS included), it is as
if buffer-14 had never existed!

But why all that hassle, you’d ask? Couldn’t they have used the normal approach to hold whatever data
that needed to be stored in a standard-type buffer, like every other implementation does? I believe the
reason was to have an absolute location for the buffer registers: with the starting location for buffer-14
always being 0x0C0 (192 dec) the access and retrival of the values stored there becomes a much
easier affair, just using their fixed “register numbers”. This may have made using the 15C algorithms
simpler, and avoids altogether the relative addressing problem present when the buffers are placed in
their “regular” space (which incidentally I became very aware of while writing the 41Z complex stack
buffer implementation).

However one of the implications of wedging a buffer below the key assignments area is that the code
would first need to move them all – as well as all other buffers already present – up in memory, to
make room for the newcomer. And conversely, this will have to be undone upon termination of the
function execution.

Now you can imagine the housekeeping chores required, and the intricacies of the implementation in
the code. That’s why the IO_SRVC event is constantly checking for the presence of buffer-14,
proceeding to its removal if found at a non-suitable time.

Let’s add to this mounting MCODE nightmare the requirement that both SOLVE and INTEG would
work in a nested way, which is something that the code will only discover having already created the
buffer for the first function – so the buffer would potentially have to be resized on the fly, not losing
any previous information already contained.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 185 of 198 January 2016

And adding insult to injury, welcome to the parallel dimension of bank-swithching: imagine now
attempting to do all that from within an auxiliary bank (say bank-3), which when activated would not
know a thing about the main one (little details like the FAT, etc); so it’s there to live and die by its own
sword. Case in point being: what if the function f(x) to solve or integrate contains functions available
within the same module, how then could they be found?

Well at least this one has an easy answer: bank-1 needs to be the active one while the FOCAL program
runs, thus obviously the main FAT is also there and all will work out. So provided we can identify the
exact points in the code where the execution is transferred to the FOCAL label we’d be home free, or
would we? But beware, because then not only the MCODE execution needs to be resumed (how it
does it is still pending clarification), but it’ll also have to re-activate bank-3 as the very first thing it
does.

Buffer-14 comes to the rescue.- Say there are two auxiliary functions, one of them SIRTN is sought for
during the initialization, and its address is placed in the RPN return stack, just above the other address
for the global LBL that calculates f(x). This will ensure that SIRTN will run after LBL f(x) is finished, ok
so we’ve got control back – what to do with it? Say now that the second auxiliary function SILOOP is
the very first (and only) line in SIRTN, that’ll send the execution back to our MCODE – way to go, but
this is a new function that has no recollection of the past or knows nothing about whatever was done
before, unless...

Unless of course we use the buffer as data structure to do the parameter passing! Isn’t this brilliant?
Yes of course, that’s the answer: SILOOP will retrieve from buffer-14 the necessary information to
resume, picking up exactly where it was left off prior to calling LBL f(x). Mind you, it’ll also have to
make sure things are as expected when it “wakes up”: is the buffer there, which function was run
(SOLVE or INTEG), and react adequately if some of the information is not there. This can happen if a
user programs SILOOP unadvertingly, of course (although they could have made it non-programmable
I suspect they didn’t care anyway).

The last touch of sophistication to speed up things was to also store the addresses of both LBL f(x) and
SIRTN in the buffer itself, thus there’s no need to search for them in every iteration of the solution;
and we know there may be from several to many depending of the difficulty of the function. Consider
that the OS routine [ASRCH] is used to locate them both, and it’s a sequential search: first RAM for LBL
f(x), then ROM – and there may be several plugged in.

You no doubt have noticed that in the SandMath there are only three functions related to this: FROOT,
(not so fruity :-), FINTG, and FLOOP (the fluppy one :-) – which sure correspond to SOLVE, INTEG,
and SILOOP. But what about the whereabouts of SIRTN? No, it’s not one of the section headers -
already used for other purposes- , and nor is it in the secondary FAT (that’d be impossible to pull off) –
fortunately this is one of the added pluses of going bank-switched: SIRTN is in the FAT of bank-3 , all
by itself so it’ll be found while [ASRCH] is called from the MCODE... all that extra work payed off and so
we saved a precious FAT entry in the main FAT.

All in all, a stroke of genious - with all the ingredients of a work of art if you ask me. So I feel
especially glad to finally have cracked this nut and managed to include it in the SandMath; the yellow
ribbon around the box. Hope this dissertation wasn’t too boring, and that you enjoy it at least as much
as I did working on it.

, as created by FROOT

, as created by FINTG.

(*) To see this by yourself: insert function BFCAT in the LBL f(x) , then stop the enumeration.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 186 of 198 January 2016

Appendix 12.- His master’s voice (or text).-

The following excerpts are taken from the Advantage Manual, pages 61-66. Just replaced SOLVE with
FROOT (and INTEG with FINTG) and we’re all set. Besides the Advantage Pac manual and the “HP-15C
Advanced Functions Handbook” as obvious first references, most recommended reading is the
description of IG and SV in the PPC_ROM users’ manual – with a thorough description of the
methodology and plenty of examples to try your hand and test the functions.

Finding the roots of an equation f(x) = 0.

The FROOT program finds the roots of an equation of the form
f(x)=0, where x represents a real root. Note that any equation with
one variable can be expressed in this form.

For example. f(x) - a is equivalent to f(x) - a =0. and f(x) = g(x) is
equivalent to f(x) - g(x) = 0

Method.

FROOT normally uses the secant method to iteratively find and test
x values as potential roots. It takes the program several seconds to
several minutes to do this and produce a result.

If c isn't a root, but f(c) is closer to zero
than f(b), then b is relabeled as a, c is
relabeled as b, and the prediction process
is repealed. Provided the graph of [(x) is
smooth and provided the initial values of
a and b are close to a simple root, the
secant method rapidly converges to a
root.

If the calculated secant is nearly
horizontal, then FROOT modifies the
secant method to ensure that |c - bl <=

100 la - bl. (This is especially important because it also reduces the tendency for the secant method to
go astray when rounding error becomes significant near a root.)

If FROOT has already found values a and b such that f(a) and f(b) have opposite signs, it modifies the
secant method to ensure that c always lies within the interval containing the sign change. This
guarantees that the search interval decreases with each iteration, eventually finding a root. If this does
not yield a root, FROOT fits a parabola through the function values at a, b, and c, and finds the value d
at the parabola 's maximum or minimum, The search continues using the secant method, replacing a
with d.

If three successive parabolic fits yield no root or d = b, the calculator displays “NO”. In the X- and Z-
registers remain b and f(b), respectively, with a or c in the Y -register. At this point you could: resume
the search where it left off, direct the search elsewhere, decide that f(b) is negligible so that x = b is a
root, transform the equation into another equation easier to solve, or conclude that no root exists,

Instructions.

In calculating roots, FROOT repeatedly calls up and executes a program that you write for evaluating
f(x). You must also provide FROOT with two initial estimates for x, providing a range for it to begin its
sea rch for the root.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 187 of 198 January 2016

Realistic estimates greatly facilitate the speedy and accurate determination of a root. If the variable x
has a limited range in which it is meaningful and realistic as a solution, it is reasonable to choose initial
estimates within this range. (Nega tive roots, for instance, are often unrealistic for physical problems.)

• FROOT requires thirteen unused program registers. If enough spare program registers are not
available, FROOT will not run and the error “NO ROOM” results. Execute PACK in Program
mode to see how many program registers are available.

• Before running FROOT you must have a program (stored in program memory or a plug-in
module) that evaluates your function f(x) at zero. This program must be named with a global
label. FROOT then iteratively calls your program to calculate successively more accurate
estimates of x. Your program can take advantage of the fact that FROOT fills the stack with its
current estimate of x each time it calls your program.

• You then enter two initial estimates for the root, a and b, into the X and Y -registers. Lastly
put the name of your program (that evaluates the function) into the Alpha register and then
XEQ “FROOT”.

When the program stops and the calculator displays a number, the contents of the stack are:

Z = the value of the function at x - root (this value should be zero)!
Y = the previous estimate of the root (should be close to the resulting root).
X = the root (this is what is shown in the display).

If the function that you are analyzing equals zero at more than one value of x, FROOT stops when it
finds anyone of these values. To find additional values, key in different initial estimates and execute
FROOT again.

When no root is found.

It is possible that an equation has no real roots. In this case, the calculator displays “NO” instead of a
numeric result. This would happen, for example, if you tried to solve the equation lxl= -1, which has no
solution since the absolute value funct ion is never negative.

There are three general types of errors that stop FROOT from running:

• If repeated iterat ions seeking a root produce a constant nonzero va lue for the specified
function, the calculator displays “NO”.

• If numerous samples indicate that the magnitude of the function appears to have a nonzero
minimum value in the area being searched, the calculator displays “NO”.

• If an improper argument is used in a mathematical operation as part of your program, the
calculator displays “DATA ERROR”.

Programming Information.-

You can incorporate FROOT as part of a larger program you create. Be sure that your program provides
initial estimates in Ihe X- and Y-regislers just before it executes Remember also that FROOT will look in
the Alpha register for the name of the program that calculates your function.

If the execution of FROOT in your program produces a root, then your program will proceed to its next
line. If no root resuits, the next program line will be skipped. (This is the "do if true" rule of HP-41
programming). Knowing this, you can write your program to handle the case of FROOT not finding a
root, such as by choosing new initial estimates or changing a func tion parameter.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 188 of 198 January 2016

FROOT uses one of the six pending subroutine returns that the calculator has; leaving five returns for a
program that calls FROOT. Note that FROOT cannot be used recursively (calling itself). If it does, the
program stops and displays “RECURSION”. You can however use FROOT with FINTG, the integration
program.

Numerical Integration

The FINTG program finds the definite integral, I, of a function f(x)
within the interval bounded by a and b. This is expressed
mathematically and graphically as:

Executing the FINTG program employs an advanced numerical
technique to find the definite integral of a function. You supply the
equation for the function (in a program) and the interval of
'integration, and FINTG does the rest.

Method.

The algorithm for FINTG uses a Romberg method for accumulating the value of an integral. The
algorithm evaluates f(x) at many values of x between the limits of integration. It takes the program
from several seconds to several minutes to do this and produce a result.

Several refinements make the algorithm more effective. For instance, instead of using uniformly spaced
samples, which can induce a kind of resonance producing misleading results when the integrand is
periodic, FINTG uses samples that are spaced nonuniformly. Another refinement is that FNTG uses
extended precision (13 significant digits) to accumulate the internal sums. This allows thousands of
samples to be accurately accumulated, if necessary.

A calculator using numerical integration can almost never calculate an integral precisely. However,
there is a convenient way for you to specify how much error is tolerable. You can set the display format
according to how many figures are accurate in the integrand f(x). A setting of FIX 2 tells the calculator
that decimal digits beyond the second one can't matter, so the calculator need not waste time
estimating the integral with unwarranted preciSion. Refer to the heading, “Accuracy of FINTG”.

Instructions.

In calculating integrals, FINTG repeatedly executes a program that you write for evaluating f(x). You
must also provide FINTG with two limits for x, providing an interval of integration.

• FINTG requires 32 unused program registers. If enough spare program registers are nor available,
FINTG will not run and the error NO ROOM results. Execute PACK in Program mode to see how
many program registers are available.

• Before running FINTG you must have a progra m (stored in program memory or a plug-in module)
that evaluates your function f(x). This program must be named with a global label. * Your program can
take advantage of the fact that FINTG fills the stack with its current estimate of x each time it calls your
program.

• You then enter the two limits, a and b, into the X- and Y -registers. Lastly put the name of your
program (that evaluates the funct ion) into the Alpha register and then XEQ “FINTG”.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 189 of 198 January 2016

When the program stops and the calculator displays the integral, the contents of the stack are:

T - the lower limit of the integrat ion, a.
Z - the upper limit of the integration, b.
Y - the uncertainty of the approximation of the integral.
X- the approximation of the integral (this is what is shown in the display).

Accuracy of FINTG.

Since the calculator cannot compute the value of an integral exactly, it approximates it. The accuracy of
this approximation depends on the accuracy of the integrand's function itself as calculated by your
program. While in tegrals of functions with certain characteristics such as spikes or rapid oscillations
might be calculated inaccurately, these functions are rare.

This is affected by round-off error in the calculator and the accuracy of empirical constants. To specify
the accuracy of the func tion, set the display format (FIX n, SCI n, or ENG n) so that n is no greater
than the number of decimal digits that you consider accurate in the funct ion's values. If you set n
smaller, the calculator will compute the integral more quickly, but it will also presume that the function
is accurate to no more than the number of digits shown in the display format. FIX and ENG determine
an uncertainty in the function that is proportional to the function's magnitude, while SCI determines an
uncertainty that is independent of the function's magnitude.

At the same time that the FINTG program returns the resulting integral to the X-register (the display),
it returns the Uncertainty of that approximation to the Y-register. To view this uncertainty value, press
X<>Y. No algorithm for numerical integration can compute the exact difference between its
approximation and the actual integral. But this algorithm estimates an upper bound on this difference,
which is returned as the uncertainly of the approximation.

If the uncertainty of an approximation is greater than what you choose to tolerate, you can decrease it
by specifying more digits in the display format and rerunning FINTG.

Programming Information.

You can incorporate FINTG as part of a larger program you create. Be sure that your program provides
upper and lower limits in the X- and Y-registers just before it executes FINTG. Remember also that
INTEG will look in the Alpha register for the name of the program that calculates your function.

FINTG uses one of the six pending subrout ine returns that the calculator has, leaving five returns for a
program that calls FINTG. Note that FINTG cannot be used recursively (calling itself). If it is, the
program stops and displays “RECURSION”. You can use FINTG with FROOT. A routine that combines
both FINTG and FROOT requires 32 available program registers to operate.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 190 of 198 January 2016

Appendix.- CUDA Rational Approximations for ierf(x).

1. Single-Precision

//
// auto-generated by erfinv_SP_approx.m on 21-Jun-2010 10:54:10
//

__inline__ __device__ float MBG_erfinv(float x)
{
 float w, p;

 w = - _logf((1.0f-x)*(1.0f+x));

 if (w < 5.000000f) {
 w = w - 2.500000f;
 p = 2.81022636e-08f;
 p = 3.43273939e-07f + p*w;
 p = -3.5233877e-06f + p*w;
 p = -4.39150654e-06f + p*w;
 p = 0.00021858087f + p*w;
 p = -0.00125372503f + p*w;
 p = -0.00417768164f + p*w;
 p = 0.246640727f + p*w;
 p = 1.50140941f + p*w;
 }

 else {

 w = sqrtf(w) - 3.000000f;
 p = -0.000200214257f;
 p = 0.000100950558f + p*w;
 p = 0.00134934322f + p*w;
 p = -0.00367342844f + p*w;
 p = 0.00573950773f + p*w;
 p = -0.0076224613f + p*w;
 p = 0.00943887047f + p*w;
 p = 1.00167406f + p*w;
 p = 2.83297682f + p*w;

 }
 return p*x;
}

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 191 of 198 January 2016

2. Double-precision

//
// auto-generated by erfinv_DP_approx.m on 21-Jun-2010 11:07:08
//

__inline__ __device__ double MBG_erfinv(double x)

{
 double w, p;

 w = - log((1.0-x)*(1.0+x));

 if (w < 6.250000) {
 w = w - 3.125000;
 p = -3.6444120640178196996e-21;
 p = -1.685059138182016589e-19 + p*w;
 p = 1.2858480715256400167e-18 + p*w;
 p = 1.115787767802518096e-17 + p*w;
 p = -1.333171662854620906e-16 + p*w;
 p = 2.0972767875968561637e-17 + p*w;
 p = 6.6376381343583238325e-15 + p*w;
 p = -4.0545662729752068639e-14 + p*w;
 p = -8.1519341976054721522e-14 + p*w;
 p = 2.6335093153082322977e-12 + p*w;
 p = -1.2975133253453532498e-11 + p*w;
 p = -5.4154120542946279317e-11 + p*w;
 p = 1.051212273321532285e-09 + p*w;
 p = -4.1126339803469836976e-09 + p*w;
 p = -2.9070369957882005086e-08 + p*w;
 p = 4.2347877827932403518e-07 + p*w;
 p = -1.3654692000834678645e-06 + p*w;
 p = -1.3882523362786468719e-05 + p*w;
 p = 0.0001867342080340571352 + p*w;
 p = -0.00074070253416626697512 + p*w;
 p = -0.0060336708714301490533 + p*w;
 p = 0.24015818242558961693 + p*w;
 p = 1.6536545626831027356 + p*w;

 }

 else if (w < 16.000000) {
 w = sqrt(w) - 3.250000;
 p = 2.2137376921775787049e-09;
 p = 9.0756561938885390979e-08 + p*w;
 p = -2.7517406297064545428e-07 + p*w;
 p = 1.8239629214389227755e-08 + p*w;
 p = 1.5027403968909827627e-06 + p*w;
 p = -4.013867526981545969e-06 + p*w;
 p = 2.9234449089955446044e-06 + p*w;
 p = 1.2475304481671778723e-05 + p*w;
 p = -4.7318229009055733981e-05 + p*w;
 p = 6.8284851459573175448e-05 + p*w;
 p = 2.4031110387097893999e-05 + p*w;
 p = -0.0003550375203628474796 + p*w;
p = 0.00095328937973738049703 + p*w;

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 192 of 198 January 2016

 p = -0.0016882755560235047313 + p*w;
p = 0.0024914420961078508066 + p*w;
p = -0.0037512085075692412107 + p*w;

 p = 0.005370914553590063617 + p*w;
 p = 1.0052589676941592334 + p*w;
 p = 3.0838856104922207635 + p*w;

 }

 else {
 w = sqrt(w) - 5.000000;
 p = -2.7109920616438573243e-11;
 p = -2.5556418169965252055e-10 + p*w;
 p = 1.5076572693500548083e-09 + p*w;
 p = -3.7894654401267369937e-09 + p*w;
 p = 7.6157012080783393804e-09 + p*w;
 p = -1.4960026627149240478e-08 + p*w;
 p = 2.9147953450901080826e-08 + p*w;
 p = -6.7711997758452339498e-08 + p*w;
 p = 2.2900482228026654717e-07 + p*w;
 p = -9.9298272942317002539e-07 + p*w;
 p = 4.5260625972231537039e-06 + p*w;
 p = -1.9681778105531670567e-05 + p*w;
 p = 7.5995277030017761139e-05 + p*w;
 p = -0.00021503011930044477347 + p*w;
 p = -0.00013871931833623122026 + p*w;
 p = 1.0103004648645343977 + p*w;
 p = 4.8499064014085844221 + p*w;

 }

 return p*x;

 }

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 193 of 198 January 2016

4. System Extensions.

 

This section of the manual is taken from the AECROM Manual, and describes the function PRGM.

The Program Generator will translate your algebraic formulas into HP-41 programs. The programs that
it produces are normal programs that show up in your CAT 1 listing. You can write them to cards, tape.
Extended memory, or any other mass storage media; and you can use these programs as subroutines
m other programs. They are in every way, sense, and form a normal HP-41 program.

The only thing unique about the programs that PRGM produces is that they are created from algebraic
formulas that YOU supply. With PRGM, writing a program to solve an algebraic formula is just a matter
of keying in that formula, just like it's written! You don't even have to put your HP-41 into program
mode. The PRGM function writes the program and stores it in memory for you to use.

2.8.1. A quick example of PRGM

Example: As a simple first example, use the PRGM function to write a program called “FRUIT” to solve
the formula: FRUIT = APPLES + ORANGES

XEQ “PRGM” PRGM _ (ALPHA is turned ON automatically)
Solution: Keystrokes Display

F,R,U,I,T, ALPHA PACKING
 ENTER:FORMULA

A, [SHIFT], +, [SHIFT], O A+O
R/S ENTER:LBL,CONS.

A. .=
A,P,P,L,E,S A. .=APPLES
R/S O. .=
O,R,A,N,G,E,S O. .=ORANGES
R/S ANS. .=
F,R,U,I,T ANS. .=FRUIT
R/S PROGRAMMING..

 PACKING
 RUN SIZE>=02

If you get the message “TRY AGAIN”, you don’t have enough RAM memory space for this small
program. You need to either set your SIZE lower, or clear out one or more of the programs you have in
your CAT 1 listing.

Running the program: Say that for this problem you have 5 apples and 6 oranges and you want to
know the total amount of fruit you have. When “APPLES=?” comes up in the display, press 5, R/S. For
“ORANGES=?” press 6, R/S. The calculator will temporarily display “FRUIT=” and then show you the
answer: 11,000

2.8.2. A general description

The above formula was simple, to say the least, but the procedure for using the PRGM function will be
no different when you use it for translating more complicated formulas into programs. The four steps
for creating programs using the PRGM function are as follows:

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 194 of 198 January 2016

1. Execute PRGM and, at the prompt “PRGM _”, supply the name for the program that you wish
to appear in CAT 1. Note that ALPHA is turned ON automatically for you.

2. Key in the formula correctly (only one side of an equation) using single letters to represent
variable names. (Keying in formulas is explained in greater detail below). Press R/S when
you’re finished.

3. Name the variables and assign values to constants. Press [R/S] after each completed input.

4. If you want the answer to be labeled. key in a name. Press [R/S], and the function writes the

program.

The key step in the above four steps is number 2. You have to know a few things about how to
correctly key in a formula What functions are available and how do you key in functions? For example,
how do you key in SIN(A)? Well, here are the details of keying in a formula:

When the display shows “ENTER:FORMULA”, the keyboard on the HP-41 has been redefined as follows:

At first glance this keyboard appears very similar to
the ALPHA keyboard. The letters are all each assigned
to a key. The digits and arithmetic signs are available
as shifted versions of the keys on which they’re
printed. But this keyboard is different from the ALPHA
keyboard!

The best way to learn this new keyboard is to work
with it. Execute PRGM and, at the prompt “PRGM _”
type: T,E,S,T, [ALPHA] or any other name that you
choose. The display will show: “ENTER:FORMULA”.

Press the [W] key. A “W” comes up in the display.
Now clear that away by pressing the back arrow key.
Now press [SHIFT][W]. A “5” comes up in the display.

Press the [W] key again. Another “5” comes into the
display, Notice that the SHIFT in the display hasn’t
cancelled. If you want the SHIFT to cancel, you have
to press the shift key. This is different from the
standard ALPHA keyboard, but it allows you to key in
numbers like 5.775 without pressing the [SHIFT] key 5
times.

Press back arrow twice to clear those fives away, then
with SHIFT on in the display press the [J] key. The

shifted J brings the TAN function into your formula.

Continue typing to complete the formula TAN(3A) + 0.75B + C. As you make mistakes (say what?),
you can clear them away using the back arrow key. Refer to the keyboard illustrated above to locate
the characters for the above formula. Remember to press the shift key when necessary.

Switching back and forth from the shifted to the un-shifted keyboard may seem a bit awkward at first,
but for keying in formulas you’ll find this design to be very efficient. Once you get the above formula
keyed in correctly, press the back arrow key repeatedly until you cancel the function completely.

This shows you that if you respond to the enter formula prompt by pressing the back arrow you exit
the PRGM function. Do not however, press R/S at that prompt - or the calculator will crash (same
behavior as with the original AECROM, in case you wonder).

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 195 of 198 January 2016

2.8.3. Keying in formulas.

Here are a few things you should notice when you are working through the following example.

1. PRGM accept implicit multiplication. That is, when you key in ABC it assumes you mean A x B x
C. this feature reduces the keystrokes required to key in most formulas.

2. After you finish keying in a valid formula, PRGM will prompt you with “ENTER:LBL,CONS”;

which means you need to name your variables and assign values to any constants. At this
point, the keyboard is the same as above, except that any non-character keys (like TAN, SIN,
LOG) will be ignored.

3. Up to eight characters can be used to name a variable.

Example

: Calculate the volume of a cylinder 4 meters in diameter by 12 meters height.

Create a program that takes the height and diameter of a cylinder and returns its volume. Don’t label
the answer, but name the program CYLVOL. Make use of the formula for the volume of a cylinder of a
known inner-diameter and height: VOLUME = HEIGHT(π DIAM^2 /4)

XEQ “PRGM” PRGM _
Solution: Keytrokes Display

C,Y,L,V,O,L, ALPHA PACKING
 ENTER:FORMULA

[H], [] [(], [], [D], [] ,[^],
2, [], [π], [], [/], 4, [)] H(D^2 π /4)
R/S ENTER:LBL,CONS
 D. .=
D,I,A,M D. .=DIAM
R/S H. .=
H,E,I,G,H,T H. .=HEIGHT
R/S ANS. .=
R/S PROGRAMMING..

 PACKING
 RUN SIZE>=03

By pressing R/S when the prompt “ANS. .=” comes up in the display, you are telling PRGM not to label
the answer. The “RUN SIZE>=” prompt tells you how many registers are required to run the program.
In this case you have to have at least three data registers available when you run this program.

Applying now the numeric values for this example:

XEQ “CYLVOL” , 4, R/S, 12 R/S -> 150.7964 in FIX 4.

Below is the program listing as created by PRGM. Note the usage of the power function for the square
power, more general than X^2. Each variable is internally associated with a data register which will be
used in the calculations (so not based in the stack).

Note also that the final output doesn’t combine the name of the answer with its value in the display –
granted there’s some finesse missing but the compromise is largely appropriate, and the methodology
used quite impressive to say the least.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 196 of 198 January 2016

01 LBL “CYLVOL 07 STO 01 13 4
02 “DIAM=?” 08 RCL 00 14 /
03 PROMPT 09 2 15 STO 02
04 STO 00 10 Y^X 16 RCL 01
05 “HEIGHT=?” 11 PI 17 RCL 02
06 PROMPT 12 * 18 *

As the answer was left unnamed, the program doesn’t include any steps to announce the final output.
This would have been located at the end had a name been given to it at the “ANS. .=” step in data
entry.

Low priority multiply [/*/]

There is a function located on the radix key that looks like this: /*/. This function is called “low priority
multiply”. It does the same thing as the multiply function [*], but it is evaluated after the [+] and [-]
signs in your formula.

The purpose of low priority multiply is to reduce the number of parentheses in a formula that you key
in. it can also save you from having to start all over when you get to the end of keying in a formula and
realize that the whole expression needs to be multiplied by some value that otherwise would require
the formula to be enclosed in parentheses. The example in the following section shows the use of the
low priority multiply function.

Trigonometric and Hyperbolic functions.

The direct and inverse trigonometry functions are easy to locate on the keyboard and are just as easy
to use. You simply key them in as you would write them in your formula on paper. Only one keystroke
is necessary to key in a trigonometric function.

But, where are the hyperbolics? Yes, these functions (HSIN, HCOS, HTAN and their inverses) were
included in the list of SandMath functions. You should be able to use them in your formulas, right?
Certainly. Notice that the un-shifted version of the [3] key is the function [H.] - This key is used as a
prefix to turn a trigonometric function into a hyperbolic.

Example

.- Execute PRGM, name it “TEST”, and key in the formula: “x * (sinh2 a + cosh2 b)”

Solution: when the display reads ‘ENTER:FORMULA”, key in one of the following sets of keystrokes,
either will work. Notice how the low priority multiply function /*/ reduces the number of parentheses in
the resulting formula.

Set-1: ; 5 times SHIFT, 22 keystrokes in total

 [], [(], [SIN], [], [H.], [A], [], [)], [^], [2], [+], [(], [COS], [], [H.], [B], [], [)], [^],
2, [/*/], [X]

Resulting formula: (SINH A)^2 + (COSH B)^2 /*/ X

Set-2: ; 6 times SHIFT, 24 keystrokes in total

 [], [(], [(], [SIN], [], [H.], [A], [], [)], [^], [2], [+], [(], [COS], [], [H.], [B], [], [)],
[^], 2, [)], [], [X]

Resulting formula: ((SINH A)^2 + (COSH B)^2) * X

Finally, either press R/s to have PRGM complete the program, or press the back arrow key repeatedly
until the function cancels. Obviously the SandMath needs to be plugged in to execute it properly.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 197 of 198 January 2016

2.8.4. Details of PRGM

PRGM is non-programmable. When you key is a formula at the prompt, PRGM insists that you follow
certain rules. These rules are listed below.

1. The first character in your formula cannot be a right parentheses, MOD, FACT (!), +, *, or /. A
minus sign can be used as the unary minus (for example negative 5 can be entered as –5).

2. Constants may be entered either as digits in your formula or during the ‘ENTER:LBL,CONS”

routine. If you wish to enter constants during the “ENTER:LBL,CONS” routine you need to
include them as single letters in the formula.

3. Several functions can be followed by anything except: { +, -, *, /, FACT(!), MOD, and “)” }.

Those functions are: { ”(“, SQRT, LOG, LN, MOD, FRC, INT, EEX, ^, +, -, *, /, SIGN, and
trigonometric and HYP functions}.

4. These functions (characters in your formula) can be followed by anything: the letters A through

Z, e, π, low priority multiply /*/, right parentheses, factorial (!), decimal point, and the digits 1
through 9.

When “ENTER:LBL,CONS” is displayed, up to eight characters can be keyed in to name a variable or to
specify the value of a constant. You can choose to leave the single letter as the prompt for the variable
(by just pressing R/s), key in a name for that variable, or key in a numeric constant.

If the first character in the name is a number or a plus or minus sign, PRGM will take your input as a
numeric constant. In a numeric constant the character “E” is used to signify the exponent in scientific
notation (1.2E6 means 1,2 x 10^6 or 1,200,000). Also, both a comma and a dot are accepted as the
radix (1.2 is the same as 1,2, which is also the same as 1,2000 so don’t use commas for grouping).

When you execute PRGM and get the prompt ‘PRGM _” , you have to key in a name for the program
that is going to be created. You can key in any ALPHA name up to seven characters long. PRGM
always uses this name as the global ALPHA label at the first line of the program.

If you use the single characters “A” through “J” or “a” through “e”, which are commonly used as local
ALPHA labels, you will find that PRGM still makes them into global ALPHA labels. They show up in CAT
1, but because the HP-41 expects these single letters to be local ALPHA labels, you can’t access them
using GTO or XEQ except, perhaps, in a synthetic program line (if you’re into that sort of thing). In
short, don’t use those single letters as program names with PRGM unless you enjoy the additional
hassle.

Clearing programs,

The programs created by PRGM can be cleared by the same methods that you use to clear any
program. The HP-41 function CLP and the extended function PCLPS are dynamite when it comes to
clearing programs.

Excerpt taken from the AECROM Brochure:- you gotta love the marketing department! 

“Writes its ow n programs.- Artificial intelligence? Close to it! The AECROM, in conjunction with the
HP-41, creates its own programs to solve user-supplied equations… and fast! Simply key in the desired
program name and your equation. the AECROM will automatically write the program for you. Efficient,
user friendly, error free programs are written for virtually any size equation in seconds. Any number
and combination of most HP-41 match functions, in addition to new hyperbolic functions, may be used
in your equations”.

SandMath_44 Manual - Version 4x4, revision “Q”

(c) Ángel M. Martin Page 198 of 198 January 2016

This completes this manual.

Don’t forget to check Jean-Marc Baillard extensive and authoritative references on the web (despite its
unassuming web site name), located at: http://hp41programs.yolasite.com/

A treasure chest awaits you... enjoy the ride!

http://hp41programs.yolasite.com/�

	This compilation revision 5.85.05
	Copyright © 2012 – 2016 Ángel M. Martin
	TTExamples: Calculate both primorials for the first 20 natural numbers.
	See the solutions on the table next page. Table of primorialTTsTTTT
	which is closer to the WolframAlpha result:
	LBL “KK”
	CHS
	1
	+
	SQRT
	STO O
	1
	AGM
	ST+ X
	1/X
	PI
	*
	RTN
	LBL “EK”
	XEQ “KK”
	RCL 07
	X^2
	1
	AGM2
	*
	END

