
1

41CL Image Database

Starting with version -3A of the 41CL Extra Functions, the PLUGxx functions use a
stand-alone Image Database to hold information about the module images stored in Flash
memory. This Image Database can be modified by users so that the PLUGxx functions
can access new module images stored in either Flash memory or RAM.

Image Database Format

An entry in the Image Database consists of four words, and the format of the database is
set up to make adding new entries very easy. An unprogrammed Image Database entry
contains 0xFFFF in all four words. This is the default contents of Flash memory, where
the database is stored, which means that new entries can simply be added to the Image
Database without first needing to erase the Flash sector where the database is stored.

The PLUGxx functions will return a NO ENTRY error message if the user attempts to
use a module identifier corresponding to an unprogrammed database entry. An Image
Database entry can be “erased” by writing 0x0000 to the first two words. In this case the
PLUGxx functions will return a NULL ENTRY error message for the corresponding
module identifier.

To preserve backwards-compatibility with previous versions of the 41CL Extra Functions,
the Image Database entries are addressed as a function of the first and fourth characters of
the module identifier.

In order to limit the size of the database to 4K words only the characters A-Z, 1-5 and 9
(32 possibilities) are allowed for the first and fourth character of a module identifier. In
addition, when the first character of the module identifier is 9 and only the characters A-Z
are allowed for the fourth character of the module identifier, to provide some space for
housekeeping in the database. Any character is allowed for the second and third characters
of the module identifier.

The contents of each database entry are shown in the table below.



2

Digit 3 is always 0 in all four words of a database entry. These values are not checked by
the PLUGxx functions, so these digits may be used for new functionality in the future.

Digit 2 is always 0 in the first three words of a database entry and 2 in the last word of a
database entry. These values are not checked by the PLUGxx functions, but they may be
used for new functionality in the future.

Digit 1 in the first word of a database entry specifies the type of image, according to the
table below. Only these values are currently valid as far as the PLUGxx functions are con-
cerned, and any other value will cause a TYPE ERR error message to be returned for the
module identifier.

A type digit of 4 is a slightly special case. The PLUGxx functions treat this image type as
32K words, consisting of four banks to be loaded into two adjacent pages. However, both
of the images that use this type identifier really only use the first two banks in the second
page. This leaves two 4K word sections of memory available to store other images, and
the 41CL takes advantage of this space. So the database search functions treat a type digit
of 4 as 24K words in length, and return search results accordingly.

Digit 0 of the first word and digits 1 and 0 of the second word of a database entry hold the
starting memory address for the image referenced by the module identifier. This is a phys-
ical address that can be in either Flash memory or RAM. Note that if the starting address is
000, along with a type digit of 0, the entry is considered a null entry.

Digits 1 and 0 of the third and fourth words of a database entry hold the middle two char-
acters of the module identifier. This allows an address-based search of the database to
return the full module identifier. It would also allow the PLUGxx functions to check for

Image Data base 
entry word

Address 
LSBs

digit 3
meaning

digit 2
meaning

digit 1
meaning

digit 0
meaning

1 00 always 0 always 0 image type address<5>

2 01 always 0 always 0 address<4> address<3>

3 10 always 0 always 0 character 3 of module identifier

4 11 always 0 always 2 character 2 of module identifier

word 1, digit 1 image type for this module identifier

0 4K image (one page)

1 8K image (two pages)

2 16K image (all four banks in one page)

3 16K (four pages)

4 32K (all four banks in two pages)



3

the full module identifier, but this feature was not implemented to preserve backwards-
compatibility. These two words can use either the “display” encoding, where A-Z are
encoded as 0x41-0x5A, or the “assembly language” encoding, where A-Z are encoded as
0x01-0x1A. All of the original entries in the Image Database use the “assembly language”
encoding, while any user-added entires will always use the “display” encoding.

As mentioned previously, entries in the Image Database are addressed using the first and
fourth characters of a module identifier. Each of these characters must be translated to a 5-
bit field to create an address to index the database. The table below shows the translation
algorithm.

character 41 code address field

A 41 00000

B 42 00001

C 43 00010

D 44 00011

E 45 00100

F 46 00101

G 47 00110

H 48 00111

I 49 01000

J 4A 01001

K 4B 01010

L 4C 01011

M 4D 01100

N 4E 01101

O 4F 01110

P 50 01111

Q 51 10000

R 52 10001

S 53 10010

T 54 10011

U 55 10100

V 56 10101

W 57 10110

X 58 10111

Y 59 11000

Z 5A 11001

1 31 11010

2 32 11011

3 33 11100

4 34 11101

5 35 11110

9 39 11111



4

The address for an Image Database entry is formed as shown below:

Image Database Functions

The Image Database Functions (in the 41CL Extra Functions Plus) allow the user to add,
modify, store, and search the Image Database. Although the Image Database normally
resides in Flash memory, it is also possible to operate on a copy of the Image Database
that has been stored in the Y-Functions Buffer Area of RAM, located at physical address
0x805000.

IMDBF (no arguments)

Executing IMDBF sets an internal flag so that the IMDB? and IMDBINS functions will
use address 0x0DF000 in Flash memory as the location of the Image Database. There is no
default selection of Flash or RAM, so this command (or the IMDBR command) should be
issued before using either the IMDB? and IMDBINS functions. The selection informa-
tion is stored in RAM at location 0x804014, in the least-significant digit.

IMDBR (no arguments)

Executing IMDBR sets the internal flag so that the IMDB? and IMDBINS functions will
use the Y-Functions Buffer area as the location of the Image Database. Note that all other
functions, including the PLUGxx functions, will continue to use the Image Database
residing in the Flash memory.

IMDBF? (no arguments, returns with NO (Image Database in RAM) or YES (Image
Database in Flash) in the display)

Executing IMDBF? tests the Image Database location flag, returning with NO in the dis-
play if the RAM version of the Image Database is selected and YES in the display if the
Flash version of the Image Database is selected. When used in a program, if the Flash ver-

Image Database
address nibble 2

Image Database
address nibble 1

Image Database
address nibble 0

3 2 1 0 3 2 1 0 3 2 1 0

First character module identifier
address field

Fourth character module identifier
address field

word
identifier



5

sion of the Image Database is selected the next program line will be executed; and if the
RAM version of the Image Database is selected the next line in the program is skipped.

IMDBCPY (no arguments)

Executing IMDBCPY copies the 4K Image Database at address 0x0DF000 to the Y-
Functions Buffer area at address 0x805000. This function tests that the Image Database is
present at address 0x0DF000, and returns with a NO IMDB error message if this is not
true. This function automatically executes in 50x Turbo mode and is equivalent to
YMCPY with 0DF>805 in the ALPHA register.

IMDBUPD (no arguments)

Executing IMDBUPD writes the contents of the Y-Functions Buffer area at address
0x805000 to the Flash memory starting at address 0x0DF000. This function tests that the
Image Database is present at address 0x805000, and returns with a NO IMDB error mes-
sage if this is not true. This function checks that it is executing from RAM, and returns
with a CODE=ROM error message if this is not the case. This function is equivalent to
YFWR with 805>0DF in the ALPHA register. 

IMDBINS (module identifier, type, and starting page address in ALPHA register)

Executing IMDBINS inserts a database entry at the appropriate location in the Image
Database. This function tests that the Image Database is present, and returns with a NO
IMDB error message if this is not true. 

The table below shows the formatting required for the module identifier, type, and address
in the ALPHA register for the IMDBINS function. Module identifier characters must be
valid (A-F, 1-5 or 9), and the type and address characters must be valid hex digits (0-9 or
A-F). Any other characters, or the absence of the “-” characters, will result in a DATA
ERROR message.

When using the copy of the Image Database in the Y-Functions Buffer Area the new entry
is unconditionally written to the appropriate location.

When using the copy of the Image Database in Flash memory the function first checks that
it is executing from RAM, and returns with a CODE=ROM error message if this is not

character 10 9 8 7 6 5 4 3 2 1

physical address M4 M3 M2 M1 - T - P5 P4 P3



6

the case. When writing to the Image Database in Flash memory the existing database entry
should be unprogrammed, or the entry will likely be corrupted by the write. Writing 0 to
the type field, along with an address of 000 will always create a null entry.

IMDB? (module identifier or page address in ALPHA register, returns with the database
entry in the ALPHA register as well as the display)

Executing IMDB? searches the selected Image Database using the either module identi-
fier or page address in the ALPHA register and returns the corresponding database infor-
mation. This function tests that the Image Database is present, and returns with a NO
IMDB error message if this is not true.

The module identifier must be properly formatted in the ALPHA register or a BAD ID
error message will result. The page address must be properly formatted in the ALPHA
register or a DATA ERROR error message will result.

The database information is returned in the ALPHA register in the format below. Since a
module image may be up to 32K in length (8 pages), more than one physical address can
return with a match, but only the information in the actual database entry is returned. If no
address match is found the function will result in a NO MATCH error message. Only the
first match (the search proceeds from lowest database address upwards) will ever be
returned.

This function automatically executes the search in the 50X Turbo mode, but even so the
search may take several seconds when searching for an address match.

The 41CL Extra Function -4A includes the IMDB? function, but in this case the function
always searches the Flash version of the Image Database. This is necessary because the
IMDBF and IMDBR functions are not available in the regular 41CL Extra Functions.

character 4 3 2 1

module identifier M4 M3 M2 M1

page address - P5 P4 P3

character 10 9 8 7 6 5 4 3 2 1

physical address M4 M3 M2 M1 - T - P5 P4 P3



7

Memory Verification Function

The 41CL Extra Functions Plus also contains a function that can help verify the contents
of a memory page. For example, this function can be used to verify that a page transferred
over the serial port was communicated correctly, or that a page in Flash memory has not
been corrupted.

The function calculates the 32-bit Cyclic Redundancy Check (CRC) used for Ethernet,
over the 4K words of a memory page. The resulting CRC will be unique for each page,
and is capable of detecting all burst errors up to 32 bits in length.

YCRC (page address in ALPHA register, returns with the 8-digit CRC result in the
ALPHA register as well as the display)

Executing YCRC calculates the CRC over an entire page. The function automatically exe-
cutes in 50X Turbo mode, but still requires several seconds to complete. The execution
time is data-dependent, with a minimum execution time of about 4.5 seconds and a maxi-
mum execution time of about 12 seconds.

The page address must be properly formatted in the ALPHA register or a DATA
ERROR error message will result.

character 3 2 1

page address P5 P4 P3



8


