
NEWT Microprocessor
 Technical Manual



Every effort has been made to ensure the accuracy of the information contained herein. If you find errors or
inconsistencies please bring them to our attention. In all cases, however, the Verilog HDL source code for
the NEWT design defines “proper operation”.

Copyright © 2013, 2014, Systemyde International Corporation. All rights reserved.

Notice:

“HP-41C”, “HP-41CV”, “HP-41CX” and “HP” are registered trademarks of Hewlett-Packard, Inc. All uses
of these terms in this document are to be construed as adjectives, whether or not the noun “calculator”,
“CPU” or “device” are actually present.

Acknowledgements:

This project never could have succeeded without Warren Furlow’s excellent Web site hp41.org. And even
more important was his SDK41R6 software suite, for code development, and his V41 program for code
debugging. Numerous people have answered my dumb questions on the Web site hpmuseum.org, and the
book “Inside the HP-41” by Jean-Daniel Dodin was invaluable for getting a foothold on understanding the
HP-41 operating system and register usage. Gene Wright was kind enough to be my voice at the HHC 2010
conference.



1

Index

Revision History                                                                                                                      2

1.  Introduction                                                                                                                            3

2.  Programming Model                                                                                                               5

3.  Memory Organization                                                                                                             9

4.  Instruction Set                                                                                                                       15

5.  Turbo Mode                                                                                                                       127

6.  Keyboard Scanner                                                                                                              131

7.  External Interface                                                                                                                133

8.  Timing                                                                                                                                141

9.  Power Control                                                                                                                    147

10. I/O Ports                                                                                                                               151

11. Pin Assignments                                                                                                                                  157

Appendix                                                                                                                                 161



2

Revision History

Date Changes Pages

01/01/2010 Complete review & update

01/14/2010 Update module image list to avoid copyright issues 163-169

01/20/2010 clarify y-functions options 157-169

07/02/2010 Correct CLRST instruction description 69

07/19/2010
Change Turbo behavior for a number of instructions:
?LLD, DADD=C, DATA=C, REGn=C

24, 76, 77, 103

07/21/2010

Correct C=REGn instruction description.
Update Turbo mode description.
Update Keyboard Scanner description
Update Memory Organization description

63
123-126
127-128
167-172

09/13/2010 “final” review and update 157-181

09/17/2010 Clarify serial function boundary cases 170-173

10/18/2010
Clarify reg_addr operation with C=REGN and REGN=C
Update Light Sleep signal states
Update appendices

63, 103
135
157-186

11/10/2010 Added instruction table. Miscellaneous clean-ups. various

11/12/2010 Added MMU registers for pages 4, 6, and 7. various

11/19/2010 Added ASTROUI image 167, 187

11/29/2010
Added DISASM-4C image
Added 1-page option for SandMath image
Changed ENBANKx operation description

Appendices
Appendices
81

01/14/2011 Deleted Appendices to separate NEWT from 41CL

04/04/2011 Updated power-up timing description. 148

04/06/2011 Updated Rate and Control registers to write-only 152, 153

04/12/2011 Updated Tx Status register. 152

07/15/2011 Updated peripheral registers 151, 154

08/22/2011
Updated Page mapping information
Updated WCMD operation for special MMU enable/disable.

10,
12-13, 121

03/07/2012 Added description of bank registers for pages 6 and 7. 10-14

01/20/2013 Typos (p14), added Appendix

02/08/2013 MMU Write command cannot be used for pages 0-3 12

09/22/2014 CHKKB, RSTKB instruction timing 153-154

06/27/2015 Typos (register names)

06/29/2015 Typos about MMU enable bit 11

06/30/2015 Tx Buffer Empty status bit polarity 153



3



4



3

Introduction

The NEWT (Nut, Expanded, With Turbo) CPU is an upgraded version of the Hewlett-
Packard Nut microprocessor, which was employed in a number of HP calculators, includ-
ing the HP-41 series. Only publicly available documentation was used to create this design
so there may be minor differences where the public documentation is misleading or lack-
ing. The instruction set and register architecture are identical between the two designs.

This document should always be used as the final word on the operation of the NEWT
microprocessor, but it is useful to refer to the Hewlett-Packard documentation if the
description given here is too cryptic. The Nut architecture is over twenty years old, so we
assume that it is already at least somewhat familiar to the reader.

As one would expect for a microprocessor targeted for handheld calculators, the NEWT
architecture is highly optimized for BCD floating point math. The architecture includes
three primary 56-bit (14 digit) registers, two auxiliary 56-bit registers, and one 8-bit gen-
eral-purpose register. There are two 4-bit pointer registers that are used to select fields
within the 56-bit registers. A Carry bit communicates carry information from one opera-
tion to the next, and there is a 14-bit general-purpose status register.

A dedicated keyboard scanner continuously scans a keyboard of up to seven rows and six
columns. There is also an 8-bit serial status output and a 14-bit serial flag input. The Pro-
gram Counter (PC) is sixteen bits wide and the instructions are ten bits wide. The program
memory is logically separate from the data memory.

In the original Nut design all information was transferred serially to or from the CPU. One
of the expanded features of the NEWT design is a traditional 16-bit parallel memory inter-
face. This allows the use of standard word-wide memories to hold both program and data
information. It also allows program information to be held in RAM memory, a feature that
was not present in the original NUT architecture. This interface contains two Chip Selects,
one for a FLASH memory and one for a RAM memory.

As mentioned previously, the PC is sixteen bits wide, providing 64k words of instruction
memory. This instruction memory is divided into sixteen pages of 4k words each. In addi-
tion, many of these 4k pages can have up to four banks, only one of which is active at a
time. In the NEWT design a Memory Management Unit (MMU) can be used to map each
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page and bank into a physical address that is in either the Flash memory or the RAM
memory.

One unique feature of the original Nut architecture was the ability to transfer control from
the CPU to an intelligent peripheral that executes in-line instructions while the CPU is
idled. This feature is still available in the NEWT design, even when operating in the Turbo
mode.

The Turbo mode speeds up the clock to the CPU by a factor of up to fifty, under program
control. The serial Nut-compatible signals continue to be generated but the CPU executes
via the new parallel memory bus for both instructions and data. Instructions that will affect
the serial signals or that must be seen by an external peripheral or memory automatically
slow down the CPU to normal speed to execute, preserving system compatibility. In addi-
tion, since the instruction is only ten bits wide, two of the unused bits in the 16-bit parallel
memory devices are used to modify Turbo mode execution for things such as timing
loops.

Throughout this document Nut-compatible pin signals will be denoted in bold (for exam-
ple, ph1). It is important to remember, however, that the actual NEWT design must be
surrounded by a virtual pad ring constructed out of discrete circuitry. This is necessary to
maintain compatibility with the existing Nut hardware, which uses a 6V supply, and the
NEWT hardware, which of necessity will use a lower voltage. This voltage translation is
explained in detail in the External Interface chapter.

The NEWT design is partitioned into two sections. The first section contains the majority
of the CPU and is designed to be powered down while not in use. The second section,
which is much smaller, is continuously powered and controls the power-up and power-
down for the CPU. If the NEWT design is implemented in programmable logic, the CPU
will be implemented in an FPGA, while the second section will be implemented using a
CPLD. If the NEWT design is implemented in a stand-alone chip both sections can be on
the same chip, on separate power planes. The details of the power-up and power-down
operation is explained in the Power Control chapter.
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Programming Model

The NEWT register architecture contains five 56-bit (14 digit) general-purpose registers,
called A, B, C, M and N. C is the primary register, and most operations involve this regis-
ter as either one of the sources or as the destination. These 56-bit registers generally hold
BCD floating point numbers, with a two digit exponent, one digit for the exponent sign, a
ten-digit mantissa, and one digit for the mantissa sign.

Normally both the exponent and mantissa hold 10’s-complement BCD numbers. How-
ever, the CPU can also be operated in Hexadecimal mode, where the full binary encoding
is allowed in the registers, for binary data or alphanumeric data. In the Hexadecimal mode
all arithmetic operations operate in binary fashion, with binary carries from bit-to-bit and

nibble number 13 12 11 10 9 8 7 6 5 4 3 2 1 0

nibble meaning S M XS X

A Register

B Register

C Register

M Register

N Register

G Register

Subr Stack 4

Subr Stack 3

Subr Stack 2

Subr Stack 1

PC
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digit-to-digit. In the Decimal mode, BCD digits are handled, with all arithmetic results
converted automatically to BCD, with BCD carries across digits as necessary.

There is also an 8-bit G register that can be loaded, stored and exchanged with an two
adjacent digits of the C register.

The Program Counter is 16 bits wide, and a four-level subroutine stack is included. This
subroutine stack does not overflow to any external memory, so no more than four levels of
nested subroutines can be handled without additional program overhead.

The architecture includes a number of other special-purpose registers. The Status (ST)
register is fourteen bits wide and is usually accessed as individual bits. These bits can be
used for program status. The Flag Output (FO) register is automatically shifted out serially
during each instruction time. The individual bits can be latched externally or merely used
to create a repeating waveform.

The Keyboard Flag (KYF) register is set automatically by the keyboard scanner when a
keypress is detected. The scan code of the key being pressed is then loaded into the Key-
board (KEYS) register. The keyboard scanner handles multiple key presses and the KYF
register operation aids in implementing rollover for the keys. The keyboard scanner oper-
ation is covered in more detail in the Keyboard Scanner chapter.

The Carry (CY) flag is a single bit that communicates carry information from one instruc-
tion to the next. This flag can also be tested for jumps and subroutine calls. Note that the
state of the CY flag does not persist. If it is not explicitly set by an instruction, then it will
always be cleared by an instruction. At the end of a peripheral operation, the selected
peripheral can communicate information back to the CPU via the CY flag.

bit 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ST Register

FO Register

KEYS Register

KYF Register

CY Register

P Register

Q Register
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The P and Q registers are four-bit registers used to point to specific digits or ranges of dig-
its in the general-purpose registers. When pointing to a specific digit only one of the regis-
ters is active at a time, but both are used when selecting a range of digits.

The CPU does not automatically operate on the entire floating-point number. Rather, soft-
ware must handle individual fields explicitly. Hence the need for the Time Enable Field,
or TEF. Most operations on the general-purpose registers include a TEF, to specify
exactly which digits will be affected by the operation. All digits not selected by the TEF
are unchanged. Eight different TEF values are encoded into those instructions that use this
function according to the following table.

Most of these TEF values are straightforward, selecting one or more of the floating point
fields, as shown in the figure below:

Encoding Mnemonic Meaning

000 PT On Pointer

001 X Exponent & Sign

010 WPT Word Through Pointer

011 W Whole Word

100 PQ Pointer P through Pointer Q

101 XS Exponent Sign

110 M Mantissa Only

111 S Mantissa Sign

nibble number 13 12 11 10 9 8 7 6 5 4 3 2 1 0

nibble meaning S XS XP

X TEF

W TEF

XS TEF

M TEF

S TEF



8

The three remaining TEF values use the pointers. The On Pointer (PT) value selects only
the digit pointed at by the current pointer. Word Through Pointer (WPT) selects all digits
from digit 0 through the digit pointed at by the current pointer.

Pointer P through Pointer Q (PQ) operates as would be expected when P points to a digit
lower than the digit pointed at by Q, selecting digit P through digit Q, inclusive. If P and Q
are equal only that digit is selected. If P is greater than Q the value of Q is ignored and dig-
its starting with the digit selected by P through the end of the word are selected.

In addition to these Time Enable Fields, there are a few other instructions that use specific
digit times. These are shown in the figure below:

nibble number 13 12 11 10 9 8 7 6 5 4 3 2 1 0

nibble meaning S M XS XP

C=ST, CST EX

LDI, CXISA

C=KEYS

C=STK
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Memory Organization

The memory organization of the NEWT microprocessor must be viewed from two differ-
ent perspectives. The first view is the memory organization of the original Nut micropro-
cessor. This is the logical memory organization and consists of separate program and data
memory spaces. The second view is the native memory organization of the NEWT micro-
processor itself. This is the physical memory organization and consists of a unified mem-
ory space divided in half by the two available chip selects. The logical memory usually
maps into the physical memory.

The logical memory is what is normally visible to the programmer. It consists of a 64K by
10-bit program memory space and a 4K by 56-bit “register” memory space. Program
memory is accessed via the bidirectional serial isa_bus signal, which carries both the
instruction address and the instruction data. Register memory is accessed via the bidirec-
tional serial data_bus signal for the data, which communicates with the C register. Regis-
ter addresses are handled differently, with the register address being latched in a dedicated
location external to the processor. The program memory is normally read-only and the
register memory is read/write.

The 4K by 56-bit register memory is used for data, alarms or user programs. However,
from the point of view of the microprocessor, register memory is just read/write data
memory. In the NEWT microprocessor, all register memory is mapped automatically into
a particular region of physical memory. This mapping is completely transparent to the
user. Note that even though the NEWT microprocessor properly handles 4096 registers,
existing 41C Operating System software only provides for accessing 1024 registers.

In the original 41C system, register addresses were stored in the register memory chips.
The NEWT design stores the register address in a reserved physical memory location. The
contents of this memory location, called reg_addr, are retrieved from physical memory
each time a register is accessed.

The 64K by 10-bit program memory is divided into sixteen 4k “pages” using the upper
four bits of the address. Some of these pages support up to four “banks”. A number of
pages are dedicated to particular software functions in the HP-41C series of calculators.
This is shown in the table below, along with the bank information. Note that the 8K
“Ports” allow the use of external plug-in modules for software, and the Card Reader
peripheral always uses Page E in Port 4.
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The physical memory in the NEWT microprocessor is 16M by 16 bits. This physical
memory is divided into two 8M regions, with a separate chip select for each region. The
lower half of physical memory uses MEMCS0B and is normally connected to a Flash
memory device. The upper half uses MEMCS1B and is normally connected to a RAM
memory device.

The register memory is automatically mapped to the 16K word section of physical mem-
ory starting at address 0x800000. This places it at the bottom of RAM memory. The regis-
ter address is stored in physical memory location 0x804000. The 56-bit register data is
automatically packed and unpacked into this 16K word region so that it appears to be the
normal register memory. Certain areas of program memory are also automatically mapped
to physical memory as shown in the table below.

Logical
Address MSB

Logical
Page

Banks HP-41C function

0000-0010 0-2 one Operating System

0011 3 one Extended Functions

0100 4 one Service Module

0101 5 four
Time Module and 

Extended Functions

0110 6 four Printer

0111 7 four HP-IL

1000-1001 8-9 four Port 1

1010-1011 A-B four Port 2

1100-1101 C-D four Port 3

1110-1111 E-F four Port 4

Logical
Page

Bank Physical Address [23:12]

0 normally 0x000

1 normally 0x001

2 normally 0x002

3 normally 0x003

4 from MMU (if enabled)

5 all four
normally bank 1: 0x006

normally banks 2, 3 & 4: 0x005

6 from MMU (if enabled)

7
0x007 if MMU disabled;

otherwise from MMU



11

Logical pages 0-3 and 5 are normally reserved for the Operating System. Enabling the
Special MMU operation turns on the translation circuitry for those pages, but only if the
the regular MMU operation is also enabled.

When program memory is mapped to physical memory the ten bits of actual program data
are right-justified in the sixteen bits of physical memory. Bits 15-14 and 11-10 are unused
and bits 13 and 12 are used by the Turbo control logic to control execution speed on an
instruction-by-instruction basis. This operation is explained in the Turbo Mode chapter.

The NEWT-specific WCMD instruction is used to write to either the physical program
memory or to the MMU registers, using the contents of the C register for the actual com-
mand, address and data information. The command in digit 4 determines the destination of
the write data. These commands are described below. When a bank selection is required, it
is encoded into digit 5 according to the following table:

A command value of 0000 identifies a write to an MMU register to enable or disable
address translation for a particular page and bank. A command value of 0001 identifies a
read of an MMU register. The specific MMU register is selected by the combination of the
page value in digit 9 and the bank select value in digit 5. A one in the most-significant bit
of digit 3 enables address translation, while a zero in this bit disables address translation.
The twelve bits of the physical address that will be substituted for the page value in the
selected bank is contained in digits 2-0. Read data is latched by the command and must be
accessed using the on-chip I/O Port. Programming the MMU requires some care. The

8 all four from MMU (if enabled)

9 all four from MMU (if enabled)

A all four from MMU (if enabled)

B all four from MMU (if enabled)

C all four from MMU (if enabled)

D all four from MMU (if enabled)

E all four from MMU (if enabled)

F all four from MMU (if enabled)

Nibble 5 Memory bank selected

xx00 bank 1

xx01 bank 3

xx10 bank 2

xx11 bank 4
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MMU entry for a particular page/bank should never be updated while executing from that
page/bank. Doing so will switch the instruction fetch to another region of physical mem-
ory, which may lead to unexpected results.

Writes to MMU registers for pages 0-3 are ignored, and these MMU registers must be
accessed using the Write Physical Address command. Disabled pages (and/or banks) are
not fetched from physical memory, but are fetched from external memory via the isa_bus.
Disabled pages are always fetched at normal speed. Note that on first power-up the entire
MMU is disabled because the MMU registers have not been initialized. Once the MMU
has been completely initialized, a WCMD instruction with a command value of 0111 glo-
bally enables MMU translation.

A WCMD instruction with a command value of 1111 enables the special MMU transla-
tion circuitry, which maps logical pages 0-3 and 5. Note that the special MMU enable
information is volatile. That is, the enabled state is lost when the NEWT is powered down.

It is also possible to globally disable MMU translation. A WCMD instruction with a com-
mand value of 0110 globally disables MMU translation. Both of these commands are buff-
ered, and do not take effect until the Program Counter returns to one of the Operating
System pages (0, 1 or 2). This function is necessary to protect the software that enables or
disables the MMU from having “the rug yanked out from underneath it” when the MMU
programming changes.

nibble 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write MMU
page bank 0 en ph addr

Read MMU
page bank 1

nibble 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Global MMU 
Enable

7

Special MMU 
Enable

F
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A WCMD instruction with a command value of 1110 disables the special MMU transla-
tion circuitry, returning pages 0-3 and 5 to their normal locations in Flash memory.

A command value of 0010 identifies a write to a logical address, while a command value
of 0011 identifies a read from a logical address. The logical address is specified in digits
9-6 and the bank select value in digit 5. This logical address is automatically translated to
a physical address and for a write all 16 bits of data in digits 3-0 are written to the external
word-wide memory.

For a read the memory data is latched for and can be read via the on-chip I/O Port. Nor-
mally the write command will be used to write to the external RAM, but it can also be
used to write to the external Flash memory.

A command value of 0100 identifies a write directly to a physical address, while a com-
mand of 0101 identifies a read from a physical address. The physical address specified in
digits 11-6. For a write all 16 bits of data in digits 3-0 are written to the external word-
wide memory.

For a read the memory data is latched for and can be read via the on-chip I/O Port. Nor-
mally the write command will be used to write to the external RAM, but it can also be
used to write to the external Flash memory.

nibble 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Global MMU 
Disable

6

Special MMU 
Disable

E

nibble 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write Logical 
Address

logical address bank 2 data

Read Logical 
Address

logical address bank 3
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Most of the remaining command values are used to control the turbo mode. This is
detailed in the Turbo Mode chapter.

The NEWT design automatically latches the bank change information by monitoring the
CPU instruction execution. Even though the MMU mapping occurs as a function of the
current 4K page and selected bank, there are actually only seven bank select registers.
This is consistent with the original HP-41C implementation of the memory bank function.
The seven sets of bank select registers are for Page 5, Page 6, Page 7, Port 1 (Pages 8 and
9), Port 2 (Pages A and B), Port 3 (Pages C and D) and Port 4 (Pages E and F). Even
though a pair of 4K pages may share a bank select register, each individual 4K page and
bank select combination is individually mapped into the physical memory by the MMU. If
a particular 4K page does not require separate mapping for each bank, the MMU transla-
tion for each bank should still be programmed, in this case pointing to the same 4K page in
physical memory.

Note that the MMU registers are not stored in the NEWT microprocessor itself. Rather,
they are stored in the 4K page of physical memory starting at address 0x804000. This
allows the NEWT microprocessor to be powered down while retaining all data stored in
the external RAM memory.

Both the register memory area of physical memory (at physical addresses 0x800000-
0x803FFF) and the MMU area of physical memory (at physical addresses 0x804000-
0x804FFF) are managed automatically by the NEWT microprocessor itself. Care should
be exercised accessing these areas via a user programs.

nibble 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write Physical 
Address

physical address 4 data

Read Physical 
Address

physical address 5
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Instruction Set

This chapter presents the NEWT instruction set, including the assembly language syntax,
operands, Carry flag settings, binary encoding, and execution time. The entire instruction
set, including those peripheral instructions that affect the CPU, is presented in alphabetical
order. Many of the restrictions present in the original NUT instruction set have been elim-
inated and these differences will be listed in notes at the end of individual instruction
descriptions.

All unused binary encodings execute as NOP as far as the CPU is concerned. However, a
number of these encodings are interpreted by logic external to the CPU. In some cases this
logic is part of the NEWT design, and in other cases the logic is external to the NEWT
design. Unused opcodes always execute at normal bus speed for compatibility.

The assembly language syntax is shown here identical to that used by the original HP
assembler. At least two other sets of assembly language syntax exist, but no attempt will
be made here to support them.

The operation of each instruction is specified in a format similar to Verilog HDL for min-
imum ambiguity, but no descriptive text or examples are included. In these descriptions
bits and bit fields are enclosed in square brackets [ and ]. In addition, digits (nibbles) and
digit fields ar enclosed in triangular brackets < and >. In those cases where more than one
operation takes place concurrently, such as in register exchanges, the individual opera-
tions that occur simultaneously are enclosed by a Verilog fork-join pair.

The effect of the instruction on the Carry flag is listed separately. In addition, the effect of
the two operating modes, Decimal/Hexadecimal and Turbo, are also listed.

Fields in the instruction are listed using shortcuts for common fields. These shortcuts
should be self-explanatory in most cases, but will be detailed here for completeness.

The most common field in the instruction specifies a Time Enable Field (shown as TEF),
employing the following shortcuts:
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The second common field (shown as dddd) selects one of the fourteen digits or digit times
during execution. Thus this field has only fourteen valid values, leaving two unused or
illegal values. Often these two illegal values will be used to encode an entirely different
instruction. Hence the apparent overlap of instruction encodings. The valid encodings are
shown in the table below.

The third common field (shown as nnnn) selects one of sixteen values, registers (in the
NUT sense) or peripherals, using standard binary encoding.

Encoding Mnemonic Meaning
000 PT On Pointer

001 X Exponent & Sign

010 WPT Word Through Pointer

011 W Whole Word

100 PQ Pointer P through Pointer Q

101 XS Exponent Sign

110 M Mantissa Only

111 S Mantissa Sign

Encoding Mnemonic Digit
0000 3 3 (Mantissa digit 0)

0001 4 4 (Mantissa digit 1)

0010 5 5 (Mantissa digit 2)

0011 10 10 (Mantissa digit 7)

0100 8 8 (mantissa digit 5)

0101 6 6 (Mantissa digit 3)

0110 11 11 (Mantissa digit 8)

0111 illegal encoding

1000 2 2 (Exponent Sign digit)

1001 9 9 (Mantissa digit 6)

1010 7 7 (Mantissa digit 4)

1011 13 13 (Mantissa sign digit)

1100 1 1 (Exponent digit 1)

1101 12 12 (Mantissa digit 9)

1110 0 0 (Exponent digit 0)

1111 illegal encoding
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?A#0
Test A Not Equal To Zero

?A#0 operand: Time Enable Field

Operation: CY <= (A<time_enable_field> != 0)

Flag: Set if A is not zero at any time during the Time Enable Field; cleared otherwise.

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

?A#0 TEF 1101_0TEF_10 1
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?A#C
Test A Not Equal To C

?A#C operand: Time Enable Field

Operation: CY <= (A<time_enable_field> != C<time_enable_field>)

Flag: Set if A is not equal to C at any time during the Time Enable Field; cleared otherwise.

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

?A#C TEF 1101_1TEF_10 1
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?A<B
Test A Less Than B

?A<B operand: Time Enable Field

Operation: CY <= (A<time_enable_field> < B<time_enable_field>)

Flag: Set if A is less than B, for the bits during the Time Enable Field; cleared otherwise.

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

?A<B TEF 1100_1TEF_10 1
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?A<C
Test A Less Than C

?A<C operand: Time Enable Field

Operation: CY <= (A<time_enable_field> < C<time_enable_field>)

Flag: Set if A is less than C, for the bits during the Time Enable Field; cleared otherwise

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

?A<C TEF 1100_0TEF_10 1
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?B#0
Test B Equal To Zero

?B#0 operand: Time Enable Field

Operation: CY <= (B<time_enable_field> != 0)

Flag: Set if B is not zero at any time during the Time Enable Field; cleared otherwise.

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

?B#0 TEF 1011_0TEF_10 1
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?C#0
Test C Equal To Zero

?C=0 operand: Time Enable Field

Operation: CY <= (C<time_enable_field> != 0)

Flag: Set if C is not zero at any time during the Time Enable Field; cleared otherwise.

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

?C#0 TEF 1011_1TEF_10 1
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?Fd=1
Test Flag Input Equal to One

Note: The flag input, fi_bus, is sampled near the middle of the appropriate digit time (on
the falling edge of the second ph1 clock) during the execution phase of this instruction.
The following flags are currently used in an HP-41 system:

?Fd=1 operand: Digit Number

Operation: CY <= FI<digit>

Flag: Set/Cleared to match the selected Flag Input

Dec/Hex: Independent

Turbo Automatically fetched and executed at normal bus speed

Assembly Syntax Encoding Machine Cycles

?Fd=1 dddd_1011_00 1

flag number device Mnemonic Used for

0
82143A
82242A

?PBSY Printer Busy

1 82104A ?CRDR Card Reader

2 82153A ?WNDB Wand Byte Available

5 82242A ?EDAV Emitter Diode Available

6 82160A ?IFCR Interface Clear Received

7 82160A ?SRQR Service Request Received

8 82160A ?FRAV Frame Available

9 82160A ?FRNS Frame Received Not As Sent

10 82160A ?ORAV Output Register Available

12 82182A ?ALM Alarm

13 all ?SER Service Request
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?LLD
Low Level Detect

?LLD operand: none

Operation: CY <= low_battery_status

Flag: Set if the lld input is Low, signaling a Low Battery; cleared otherwise.

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

?LLD 0101_1000_00 1
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?P=Q
Test P Equal To Q

?P=Q operand: none

Operation: CY <= (P == Q)

Flag: Set if P equals Q; cleared otherwise.

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

?P=Q 0100_1000_00 1
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?PFLGn=1
Test Peripheral Flag N

Note: This instruction is only available while a peripheral is in control of the bus, and
automatically returns control of the bus to the CPU. Peripherals may have up to sixteen
flags to communicate information to the CPU via this instruction. The active peripheral
drives the state of the selected flag on the isa_bus during the first clock cycle of the fol-
lowing bus cycle. Thus the next instruction, which will be executed by the CPU, should be
a conditional branch. This next instruction will always be executed at normal bus speed to
allow the active peripheral time to respond.

?PFLGn=1 operand: none

Operation: CY <= Peripheral Flag n

Flag: Set/Cleared as a result of the test

Dec/Hex: Independent

Turbo: Automatically executed at normal bus speed.

Assembly Syntax Encoding Machine Cycles

?PFLGn=1 nnnn_0000_11 1
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?PT=
Test Pointer Equal To

Note: In the original NUT implementation this instruction cannot immediately follow an
arithmetic (type 10) instruction. This restriction is not present in the NEWT implementa-
tion.

?PT= operand: Digit Number

Operation: CY <= (PT == digit)

Flag: Set if the pointer is equal to the dddd field in the instruction; cleared otherwise.

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

?PT=  d dddd_0101_00 1
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ASL
Shift Left A

Note: Zero is shifted into the least-significant (time-enabled) digit.

ASL operand: Time Enable Field

Operation: A<time_enable_field> <= A<time_enable_field> << 1

Flag: Cleared

Dec/Hex: Independent (no decimal adjust)

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

ASL  TEF 1111_1TEF_10 1



29

ASR
Shift Right A

Note: Zero is shifted into the most-significant (time-enabled) digit.

ASR operand: Time Enable Field

Operation: A<time_enable_field> <= A<time_enable_field> >> 1

Flag: Cleared

Dec/Hex: Independent (no decimal adjust)

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

ASR  TEF 1110_0TEF_10 1
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A=0
Clear A

A=0 operand: Time Enable Field

Operation: A<time_enable_field> <= 0

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

A=0  TEF 0000_0TEF_10 1
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A=A+1
Increment A

A=A+1 operand: Time Enable Field

Operation: {CY, A<time_enable_field>} <= A<time_enable_field> + 1

Flag: Set/Cleared as a result of the operation

Dec/Hex: Decimal adjusted in Decimal Mode

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

A=A+1  TEF 0101_1TEF_10 1
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A=A+B
Load A With A + B

A=A+B operand: Time Enable Field

Operation: {CY, A<time_enable_field>} <= A<time_enable_field> + B<time_enable_field>

Flag: Set/Cleared as a result of the operation

Dec/Hex: Decimal adjusted in Decimal Mode

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

A=A+B  TEF 0100_1TEF_10 1
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A=A+C
Load A With A + C

A=A+C operand: Time Enable Field

Operation: {CY, A<time_enable_field>} <= A<time_enable_field> + C<time_enable_field>

Flag: Set/Cleared as a result of the operation

Dec/Hex: Decimal adjusted in Decimal Mode

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

A=A+C  TEF 0101_0TEF_10 1
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A=A-1
Decrement A

A=A-1 operand: Time Enable Field

Operation: {CY, A<time_enable_field>} <= A<time_enable_field> - 1

Flag: Set/Cleared as a result of the operation

Dec/Hex: Decimal adjusted in Decimal Mode

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

A=A-1  TEF 0110_1TEF_10 1
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A=A-B
Load A With A - B

A=A-B operand: Time Enable Field

Operation: {CY, A<time_enable_field>} <= A<time_enable_field> - B<time_enable_field>

Flag: Set/Cleared as a result of the operation

Dec/Hex: Decimal adjusted in Decimal Mode

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

A=A-B  TEF 0110_0TEF_10 1
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A=A-C
Load A With A - C

A=A-B operand: Time Enable Field

Operation: {CY, A<time_enable_field>} <= A<time_enable_field> - C<time_enable_field>

Flag: Set/Cleared as a result of the operation

Dec/Hex: Decimal adjusted in Decimal Mode

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

A=A-C  TEF 0111_0TEF_10 1



37

A=C
Load A From C

A=C operand: Time Enable Field

Operation: A<time_enable_field> <= C<time_enable_field>

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

A=C  TEF 0100_0TEF_10 1
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ABEX
Exchange A and B

ABEX operand: Time Enable Field

Operation: fork

    A<time_enable_field> <= B<time_enable_field>

    B<time_enable_field> <= A<time_enable_field>

    join

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

ABEX  TEF 0001_1TEF_10 1
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ACEX
Exchange A and C

ACEX operand: Time Enable Field

Operation: fork

    A<time_enable_field> <= C<time_enable_field>

    C<time_enable_field> <= A<time_enable_field>

    join

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

ACEX  TEF 0010_1TEF_10 1
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BSR
Shift Right B

Note: Zero is shifted into the most-significant (time-enabled) digit.

BSR operand: Time Enable Field

Operation: B<time_enable_field> <= B<time_enable_field> >> 1

Flag: Cleared

Dec/Hex: Independent (no decimal adjust)

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

BSR  TEF 1110_1TEF_10 1
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B=0
Clear B

B=0 operand: Time Enable Field

Operation: B<time_enable_field> <= 0

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

B=0  TEF 0000_1TEF_10 1
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B=A
Load B From A

B=A operand: Time Enable Field

Operation: B<time_enable_field> <= A<time_enable_field>

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

B=A  TEF 0010_0TEF_10 1



43

BCEX
Exchange B and C

BCEX operand: Time Enable Field

Operation: fork

    B<time_enable_field> <= C<time_enable_field>

    C<time_enable_field> <= B<time_enable_field>

    join

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

BCEX  TEF 0011_1TEF_10 1
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CSR
Shift Right C

Note: Zero is shifted into the most-significant (time-enabled) digit.

CSR operand: Time Enable Field

Operation: C<time_enable_field> <= C<time_enable_field> >> 1

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

CSR  TEF 1111_0TEF_10 1
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C=0
Clear C

C=0 operand: Time Enable Field

Operation: C<time_enable_field> <= 0

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=0  TEF 0001_0TEF_10 1
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C=A+C
Load C With A + C

C=A+C operand: Time Enable Field

Operation: {CY, C<time_enable_field>} <= A<time_enable_field> + C<time_enable_field>

Flag: Set/Cleared as a result of the operation

Dec/Hex: Decimal adjusted in Decimal Mode

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=A+C  TEF 1000_0TEF_10 1
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C=A-C
Load C With A - C

C=A-C operand: Time Enable Field

Operation: {CY, C<time_enable_field>} <= A<time_enable_field> - C<time_enable_field>

Flag: Set/Cleared as a result of the operation

Dec/Hex: Decimal adjusted in Decimal Mode

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=A-C  TEF 1001_0TEF_10 1
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C=B
Load C From B

C=B operand: Time Enable Field

Operation: C<time_enable_field> <= B<time_enable_field>

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=B  TEF 0011_0TEF_10 1
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C=-C
Negate C

Note: This is the arithmetic complement, or the value subtracted from zero.

C=-C operand: Time Enable Field

Operation: {CY, C<time_enable_field>} <= 0 - C<time_enable_field>

Flag: Set/Cleared as a result of the operation

Dec/Hex: 10’s complement in Decimal Mode, 16’s complement in Hexadecimal Mode

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=-C  TEF 1010_0TEF_10 1
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C=-C-1
Complement C

Note: This is the logical complement, which is the same as subtracting the value from
negative one.

C=-C-1 operand: Time Enable Field

Operation: {CY, C<time_enable_field>} <= 0 - C<time_enable_field> - 1

Flag: Set/Cleared as a result of the operation

Dec/Hex: 9’s complement in Decimal Mode, 15’s complement in Hexadecimal Mode

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=-C-1  TEF 1010_1TEF_10 1
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C=C+1
Increment C

C=C+1 operand: Time Enable Field

Operation: {CY, C<time_enable_field>} <= C<time_enable_field> + 1

Flag: Set/Cleared as a result of the operation

Dec/Hex: Decimal adjusted in Decimal Mode

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=C+1  TEF 1000_1TEF_10 1
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C=C+C
Load C With C + C

C=C+C operand: Time Enable Field

Operation: {CY, C<time_enable_field>} <= C<time_enable_field> + C<time_enable_field>

Flag: Set/Cleared as a result of the operation

Dec/Hex: Decimal adjusted in Decimal Mode

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=C+C  TEF 0111_1TEF_10 1
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C=C-1
Decrement C

C=C-1 operand: Time Enable Field

Operation: {CY, C<time_enable_field>} <= C<time_enable_field> - 1

Flag: Set/Cleared as a result of the operation

Dec/Hex: Decimal adjusted in Decimal Mode

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=C-1  TEF 1001_1TEF_10 1
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C=C&A
Load C With C AND A

Note: In the original NUT implementation this instruction cannot immediately follow an
arithmetic (type 10) instruction. This restriction is not present in the NEWT implementa-
tion.

C=C&A operand: none

Operation: C <= C & A

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=C&A 1110_1100_00 1
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C=CORA
Load C With C OR A

Note: In the original NUT implementation this instruction cannot immediately follow an
arithmetic (type 10) instruction. This restriction is not present in the NEWT implementa-
tion.

C=CORA operand: none

Operation: C <= C | A

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=CORA 1101_1100_00 1
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C=DATA
Load C From Register (Indirect)

Note: The register address must have been previously loaded into reg_addr by a
DADD=C instruction. The data is actually loaded from the parallel memory bus using the
RAM chip select.

As discussed in the Memory Organization chapter, there are unimplemented areas in the
register map in 41C mode. Accessing an unimplemented register causes the data_bus to
remain floating, allowing an external device to drive the data_bus.

C=DATA operand: none

Operation: C <= REG[reg_addr]

Flag: Cleared

Dec/Hex: Independent

Turbo:
Independent for valid register address; fetched and executed at bus speed for an unimple-
mented register or a peripheral register.

Assembly Syntax Encoding Machine Cycles

C=DATA 0000_1110_00 1
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C=DATAP
Load C From Peripheral

Note: This instruction is only available while a peripheral is in control of the bus. Periph-
erals may have up to sixteen registers to communicate information to the CPU via this
instruction. The active peripheral drives the contents of the selected register on the
data_bus during the following bus cycle.

The LSB of this instruction determines whether or not control is immediately returned to
the CPU. If the LSB is zero the peripheral remains in control, while if the LSB is one con-
trol is returned to the CPU. In either case the bus cycle following the fetch of this instruc-
tion is always executed at normal bus speed to allow the peripheral time to transfer the
data to the CPU.

C=DATAP operand: peripheral register number

Operation: C <= peripheral register n

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically executed at bus speed

Assembly Syntax Encoding Machine Cycles

C=DATAP n nnnn_1110_1x 1
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C=G
Load C From G

Note: There are several boundary conditions that can occur when the pointer is pointing at
the most significant nibble. These are detailed below:

1. If the active pointer was not changed to point at the most significant nibble immediately
prior to this instruction, then:

          C<13> <= G<1>
          C<0>   <= G<0>

2. If the active pointer was changed to point at the most significant nibble (using PT=13,
INC PT or DEC PT) immediately prior to this instruction, then:

          fork
              C<13>  <= G<0>
              G           <= {G<0>, G<1>}
              join

C=G operand: none

Operation: C<ptr+:ptr> <= G

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=G 0010_0110_00 1
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3. If the active pointer was changed from pointing at the most significant nibble (using
DEC PT only) immediately prior to this instruction, then:

          fork
              C<13:12> <= {G<0>, G<1>}
              C<0>        <= G<0>
              G               <= {G<0>, G<1>}
              join

4. If the active pointer was changed from pointing at the most significant nibble (using
PT=d only) immediately prior to this instruction, then:

          fork
              C<ptr+:ptr> <= {G<0>, G<1>}
              C<0>           <= G<0>
              G                  <= {G<0>, G<1>}
              join
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C=KEYS
Load C From KEYS

C=KEYS operand: none

Operation: C<4:3> <= KEYS

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically executed at bus speed

Assembly Syntax Encoding Machine Cycles

C=KEYS 1000_1000_00 1
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C=M
Load C From M

C=M operand: none

Operation: C <= M

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=M 0110_0110_00 1
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C=N
Load C From N

C=N operand: none

Operation: C <= N

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=N 0010_1100_00 1
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C=REGN
Load C From Register

Note: Bits 11-4 of the register address must have been previously loaded into reg_addr by
a DADD=C instruction. The data is actually loaded from the parallel memory bus using
the RAM chip select.

As discussed in the Memory Organization chapter, there are unimplemented areas in the
register map in 41C mode. Accessing an unimplemented register causes the data_bus to
remain floating, allowing an external device to drive the data_bus.

Only fifteen encodings are valid for nnnn. The all zeros case is the C=DATA instruction,
with indirect register addressing.

C=REGN operand: register number

Operation: reg_addr <= {reg_addr[11:4], nnnn}

C <= REG[reg_addr]

Flag: Cleared

Dec/Hex: Independent

Turbo:
Independent for valid register address; fetched and executed at bus speed for an unimple-
mented register or a peripheral register.

Assembly Syntax Encoding Machine Cycles

C=REGN  n nnnn_1110_00 1



64

C=ST
Load C From ST

C=ST operand: none

Operation: C<1:0> <= ST[7:0]

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=ST 1110_0110_00 1
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C=STK
Load C From STK

C=STK operand: none

Operation:     C<6:3> <= STK0

    STK0 <= STK1

    STK1 <= STK2

    STK2 <= STK3

    STK3 <= 0000

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

C=STK 0110_1100_00 1
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CGEX
Exchange C and G

Note: There are several boundary conditions that can occur when the pointer is pointing at
the most significant nibble. These are detailed below:

1. If the active pointer was not changed to point at the most significant nibble immediately
prior to this instruction, then:

          fork
              C<13> <= G<1>
              C<0>   <= G<0>
              G          <= {C<13>, C<0>}
              join

CGEX operand: none

Operation: fork

    C<ptr+:ptr> <= G

    G <= C<ptr+,ptr>

    join

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

CGEX 0011_0110_00 1
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2. If the active pointer was changed to point at the most significant nibble (using PT=13,
INC PT or DEC PT) immediately prior to this instruction, then:

          fork
              C<13>  <= G<0>
              G           <= {C<13>, G<1>}
              join

3. If the active pointer was changed from pointing at the most significant nibble (using
DEC PT only) immediately prior to this instruction, then:

          fork
              C<13:12> <= {C<0>, G<1>}
              C<0>        <= G<0>
              G               <= C<13:12>
              join

4. If the active pointer was changed from pointing at the most significant nibble (using
PT=d only) immediately prior to this instruction, then:

          fork
              C<ptr+:ptr> <= {C<0>, G<1>}
              C<0>            <= G<0>
              G                   <= C<ptr+:ptr>
              join
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CHKKB
Check Keyboard

Note: To guarantee proper operation with the keyboard scanner state machine, this
instruction, and the next two instructions, are automatically executed at normal speed.

CHKKB operand: none

Operation: CY <= KYF

Flag: Set/Cleared according to the state of the keyboard flag

Dec/Hex: Independent

Turbo: Automatically executed at bus speed, along with the next two instructions.

Assembly Syntax Encoding Machine Cycles

CHKKB 1111_0011_00 1
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CLRST
Clear ST

CLRST operand: none

Operation: ST[7:0] <= 0

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

CLRST 1111_0001_00 1
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CLRABC
Clear A, B and C

CLRABC operand: none

Operation: A <= 0

B <= 0

C <= 0

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

CLRABC 0110_1000_00 1
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CLRDATA
Clear Registers

Note: This instruction is a NOP for the processor. The original data storage chips used in
the HP-41 series cleared all 16 registers on the selected data storage chip as a result of this
instruction. Because the NEWT design uses standard parallel RAM devices this function
is not supported by the NEWT microprocessor.

CLRDATA operand: none

Operation: No operation

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically fetched and executed at bus speed

Assembly Syntax Encoding Machine Cycles

CLRDATA 1010_1100_00 1
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CMEX
Exchange C and M

CMEX operand: none

Operation: fork

    C <= M

    M <= C

    join

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

CMEX 0111_0110_00 1
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CNEX
Exchange C and N

CNEX operand: none

Operation: fork

    C <= N

    N <= C

    join

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

CNEX 0011_1100_00 1



74

CSTEX
Exchange C and ST

Note: In the original NUT implementation this instruction cannot immediately follow an
arithmetic (type 10) instruction. This restriction is not present in the NEWT implementa-
tion.

CSTEX operand: none

Operation: fork

    C<1:0> <= ST[7:0]

    ST[7:0] <= C<1:0>

    join

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

CSTEX 1111_0110_00 1
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CXISA
Exchange C and ISA

Note: During the second machine cycle of this instruction the contents of C<6:3> are used
as a program memory address on isa_bus. The contents of this program memory location
are then loaded into C<2:0>, right-justified, with the two most significant bits set to 0.

CXISA operand: none

Operation: mem_addr <= C<6:3>

C<2:0> <= ISA[mem_addr]

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

CXISA 1100_1100_00 2
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DADD=C
Load Register address from C

Note: The register address is loaded into reg_addr (at memory location 0x804000) by the
DADD=C instruction.

DADD=C operand: none

Operation: reg_addr <= C<2:0>

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

DADD=C 1001_1100_00 1
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DATA=C
Load Register from C

Note: The register address must have been previously loaded into reg_addr by a
DADD=C instruction. The data is actually written to the parallel memory bus using the
RAM chip select.

DATA=C operand: none

Operation: REG[reg_addr] <= C

Flag: Cleared

Dec/Hex: Independent

Turbo:
Independent for valid register address; fetched and executed at bus speed for an unimple-
mented register or a peripheral register.

Assembly Syntax Encoding Machine Cycles

DATA=C 1011_1100_00 1
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DECPT
Decrement Pointer

Note: This is not a binary or decimal decrement. The pointer decrements to the next lower 
digit position.

DECPT operand: none

Operation: ptr <= ptr-

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

DECPT 1111_0101_00 1

current ptr next ptr current digit -> next digit
0000 1000 3 (Mantissa digit 0) -> 2

0001 0000 4 (Mantissa digit 1) -> 3

0010 0001 5 (Mantissa digit 2) -> 4

0011 1001 10 (Mantissa digit 7) -> 9

0100 1010 8 (mantissa digit 5) -> 7

0101 0010 6 (Mantissa digit 3) -> 5

0110 0011 11 (Mantissa digit 8) -> 10

1000 1100 2 (Exponent Sign digit) -> 1

1001 0100 9 (Mantissa digit 6) -> 8

1010 0101 7 (Mantissa digit 4) -> 6

1011 1101 13 (Mantissa sign digit) -> 12

1100 1110 1 (Exponent digit 1) -> 0

1101 0110 12 (Mantissa digit 9) -> 11

1110 1011 0 (Exponent digit 0) -> 13
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DISOFF
Display off

Note: This instruction is a NOP for the processor, but is interpreted by the (off-chip) LCD
display controller, which turns off the display.

DISOFF operand: none

Operation: No operation

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically fetched and executed at bus speed

Assembly Syntax Encoding Machine Cycles

DISOFF 1011_1000_00 1
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DISTOG
Display Toggle

Note: This instruction is a NOP for the processor, but is interpreted by the (off-chip) LCD
display controller, which toggles the state of the display.

DISTOG operand: none

Operation: No operation

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically fetched and executed at bus speed

Assembly Syntax Encoding Machine Cycles

DISTOG 1100_1000_00 1
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ENROMx
Enable ROM bank x

Note: This instruction is a NOP for the processor, but is interpreted by either the on-chip
memory controller (if the current page is in system memory) or an external ROM module
(if the current page is in an external ROM module).

For the on-chip memory controller, the actual bank select changes at the end of the current
machine cycle. This means that the instruction following the ENROMx and all subsequent
instructions are fetched from the new bank. This operation in the original NUT is not spec-
ified, but the usual code to execute a bank change is duplicated in all of the banks that are
physically present. This makes the operation independent of the actual timing. The HP
documentation for the 12K ROM chip specifies that the bank changes at the end of the
current machine cycle.

ENROMx operand: none

Operation: No operation

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically fetched and executed at bus speed

Assembly Syntax Encoding Machine Cycles

ENROM1 0100_0000_00 1

ENROM2 0110_0000_00 1

ENROM3 0101_0000_00 1

ENROM4 0111_0000_00 1
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F=SB
Load Flag Out from Status Byte

Note: The fo_bus output timing is not independent of the Turbo mode, so the timing is
identical to normal operation only during the execution of this instruction. Thus a timing
loop that times the duration of the fo_bus output should be tagged to execute at normal
bus speed.

F=SB operand: none

Operation: FO<7:0> <= ST[7:0]

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically executed a bus speed

Assembly Syntax Encoding Machine Cycles

F=SB 1001_0110_00 1
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FEXSB
Exchange Flag Out with Status Byte

Note: The fo_bus output timing is not independent of the Turbo mode, so the timing is
identical to normal operation only during the execution of this instruction. Thus a timing
loop that times the duration of the fo_bus output should be tagged to execute at normal
bus speed.

FEXSB operand: none

Operation: fork

    FO<7:0> <= ST[7:0]

    ST[7:0] <= FO<7:0>

    join

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically executed at bus speed

Assembly Syntax Encoding Machine Cycles

FEXSB 1011_0110_00 1
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G=C
Load G From C

Note: There are several boundary conditions that can occur when the pointer is pointing at
the most significant nibble. These are detailed below:

1. If the active pointer was not changed to point at the most significant nibble immediately
prior to this instruction, then:

          G <= {C<13>, C<0>}

2. If the active pointer was changed to point at the most significant nibble (using PT=13,
INC PT or DEC PT) immediately prior to this instruction, then:

          G <= {C<13>, G<1>}

3. If the active pointer was changed from pointing at the most significant nibble (using
DEC PT only) immediately prior to this instruction, then:

          G <= C<13:12> which is normal operation

G=C operand: none

Operation: G <= C<ptr+:ptr>

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

G=C 0001_0110_00 1
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GOC
Branch (Relative) on Carry

Note: The relative offset is a 7-bit 2’s complement number that is sign-extended to 16 bits
and added to the PC of this instruction if the CY flag is true. This allows a jump in the
range of -64 to +63 from the address of this instruction.

GOC operand: relative offset

Operation: if CY (PC <= PC + rel_offset)

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

GOC rel_offset aaaa_aaa1_11 1
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GONC
Branch (Relative) on No Carry

Note: The relative offset is a 7-bit 2’s complement number that is sign-extended to 16 bits
and added to the PC of this instruction if the CY flag is false. This allows a jump in the
range of -64 to +63 from the address of this instruction.

GONC operand: relative offset

Operation: if !CY (PC <= PC + rel_offset)

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

GONC rel_offset aaaa_aaa0_11 1
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GOKEYS
Branch to Keys

GOKEYS operand: none

Operation: PC <= {PC[15:8], KEYS}

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically executed at bus speed

Assembly Syntax Encoding Machine Cycles

GOKEYS 1000_1100_00 1
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GOTOC
Branch using C register

GOTOC operand: none

Operation: PC <= C<6:3>

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

GOTOC 0111_1000_00 1
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GOLC
Branch (Long) on Carry

Note: The first word of the instruction contains bits 7-0 of the jump address, and the sec-
ond word of the instruction contains bits 15-8 of the jump address.

The sync signal is suppressed during the fetch of the second word of the instruction to pre-
vent external devices from incorrectly interpreting the contents of the isa_bus during the
second machine cycle as an instruction.

GOLC operand: jump address

Operation: if CY (PC <= jump_addr)

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

GOLC  jump_addr aaaa_aaaa_01 2

aaaa_aaaa_11
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GOLNC
Branch (Long) on No Carry

Note: The first word of the instruction contains bits 7-0 of the jump address, and the sec-
ond word of the instruction contains bits 15-8 of the jump address.

The sync signal is suppressed during the fetch of the second word of the instruction to pre-
vent external devices from incorrectly interpreting the contents of the isa_bus during the
second machine cycle as an instruction.

GOLNC operand: jump address

Operation: if !CY (PC <= jump_addr)

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

GOLCNC  jump_addr aaaa_aaaa_01 2

aaaa_aaaa_10
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GSUBC
Branch (to Subroutine) on Carry

Note: The first word of the instruction contains bits 7-0 of the jump address, and the sec-
ond word of the instruction contains bits 15-8 of the jump address.

The sync signal is suppressed during the fetch of the second word of the instruction to pre-
vent external devices from incorrectly interpreting the contents of the isa_bus during the
second machine cycle as an instruction.

The PC pushed onto the return stack is the PC of the instruction following the second
word of this instruction.

If the instruction at jump_addr is NOP, it is automatically executed as RET to protect
against executing from a non-existent ROM.

GSUBC operand: jump address

Operation: if CY begin

    STK3 <= STK2

    STK2 <= STK1

    STK1 <= STK0

    STK0 <= PC

    PC <= jump_addr

    end

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

GSUBC  jump_addr aaaa_aaaa_01 2

aaaa_aaaa_01
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GSUBNC
Branch (to Subroutine) on No Carry

Note: The first word of the instruction contains bits 7-0 of the jump address, and the sec-
ond word of the instruction contains bits 15-8 of the jump address.

The sync signal is suppressed during the fetch of the second word of the instruction to pre-
vent external devices from incorrectly interpreting the contents of the isa_bus during the
second machine cycle as an instruction.

The PC pushed onto the return stack is the PC of the instruction following the second
word of this instruction.

If the instruction at jump_addr is NOP, it is automatically executed as RET to protect
against executing from a non-existent ROM.

GSUBNC operand: jump address

Operation: if !CY begin

    STK3 <= STK2

    STK2 <= STK1

    STK1 <= STK0

    STK0 <= PC

    PC <= jump_addr

    end

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

GSUB  jump_addr aaaa_aaaa_01 2

aaaa_aaaa_00
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INCPT
Increment Pointer

Note: This is not a binary or decimal increment. The pointer increments to the next higher
digit position.

INCPT operand: none

Operation: ptr <= ptr+

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

INCPT 1111_0111_00 1

current ptr next ptr current digit -> next digit
0000 0001 3 (Mantissa digit 0) -> 4

0001 0010 4 (Mantissa digit 1) -> 5

0010 0101 5 (Mantissa digit 2) -> 6

0011 0110 10 (Mantissa digit 7) -> 11

0100 1001 8 (mantissa digit 5) -> 9

0101 1010 6 (Mantissa digit 3) -> 7

0110 1101 11 (Mantissa digit 8) -> 12

1000 0000 2 (Exponent Sign digit) -> 3

1001 0011 9 (Mantissa digit 6) -> 10

1010 0100 7 (Mantissa digit 4) -> 8

1011 1110 13 (Mantissa sign digit) -> 0

1100 1000 1 (Exponent digit 1) -> 2

1101 1011 12 (Mantissa digit 9) -> 13

1110 1100 0 (Exponent digit 0) -> 1
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LC
Load Constant

Note: The pointer decrements to the next lower digit position.

LC operand: immediate nibble

Operation: C<ptr> <= nnnn

ptr <= ptr-

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

LC n nnnn_0100_00 1

current ptr next ptr current digit -> next digit
0000 1000 3 (Mantissa digit 0) -> 2

0001 0000 4 (Mantissa digit 1) -> 3

0010 0001 5 (Mantissa digit 2) -> 4

0011 1001 10 (Mantissa digit 7) -> 9

0100 1010 8 (mantissa digit 5) -> 7

0101 0010 6 (Mantissa digit 3) -> 5

0110 0011 11 (Mantissa digit 8) -> 10

1000 1100 2 (Exponent Sign digit) -> 1

1001 0100 9 (Mantissa digit 6) -> 8

1010 0101 7 (Mantissa digit 4) -> 6

1011 1101 13 (Mantissa sign digit) -> 12

1100 1110 1 (Exponent digit 1) -> 0

1101 0110 12 (Mantissa digit 9) -> 11

1110 1011 0 (Exponent digit 0) -> 13
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LDI
Load Immediate

Note: When executed at bus speed the sync signal is suppressed during the fetch of the
second word of the instruction to prevent external devices from incorrectly interpreting
the contents of the isa_bus during the second machine cycle as an instruction.

LDI operand: immediate 10-bit value

Operation: C<2:0> <= {2’b00, const}

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

LDI const 0100_1100_00 2

const
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M=C
Load M from C

M=C operand: none

Operation: M <= C

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

M=C 0101_0110_00 1
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N=C
Load N from C

N=C operand: none

Operation: N <= C

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

N=C 0001_1100_00 1
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NOP
No Operation

NOP operand: none

Operation: None

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

NOP 0000_0000_00 1
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PFAD=C
Load Peripheral Address from C

Note: This instruction is a NOP for the processor, but is interpreted by peripheral devices
to perform the chip select function. The peripheral chip select remains active until another
PFAD=C instruction selects a different peripheral. Peripheral devices decode the least-sig-
nificant byte on the data_bus according to the following table:

PFAD=C operand: none

Operation: No operation

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically fetched and executed at bus speed

Assembly Syntax Encoding Machine Cycles

PFAD=C 1111_1100_00 1

c<1:0> Peripheral Device
0xF0 NEWT On-chip Port

0xFB Timer

0xFC Card Reader

0xFD LCD Display Driver

0xFE Wand
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POWOFF
Power Down

Note: This instruction is unique in that the sync signal is active during the fetch of the sec-
ond word of the instruction. This does not cause problem with other devices on the bus
because the system is now in the process of powering down.

POWOFF operand: none

Operation: Power Down

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically fetched and executed at bus speed

Assembly Syntax Encoding Machine Cycles

POWOFF 0001_1000_00 2

0000_0000_00
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PT=
Load Pointer immediate

PT= operand: digit

Operation: ptr <= digit

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

PT=  d dddd_0111_00 1
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RCR
Rotate C right by digits

RCR operand: digit

Operation: for (i=0; i<d; i++) begin

    C <= {C<0>, C<13:1>}

    end

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

RCR  d dddd_1111_00 1
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REGN=C
Load Register from C

Note: Bits 11-4 of the register address must have been previously loaded into reg_addr by
a DADD=C instruction. The data is actually written to the parallel memory bus using the
RAM chip select.

The value nnnn replaces the least significant four bits of the current value in the latched
register address reg_addr.

REGN=C operand: register number

Operation: reg_addr <= {reg_addr[11:4], nnnn}

REG[reg_addr] <= C

Flag: Cleared

Dec/Hex: Independent

Turbo:
Independent for valid register address; fetched and executed at bus speed for an unimple-
mented register or a peripheral register.

Assembly Syntax Encoding Machine Cycles

REGN=C  n nnnn_1010_00 1
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RST KB
Reset Keyboard

Note: The keyboard flag is only cleared if the key has been released before this instruction
is executed. If the key is still down while this instruction is executed the flag will remain
set.

To guarantee proper operation with the keyboard scanner state machine, this instruction,
and next the two instructions, are automatically executed at normal speed.

RST KB operand: none

Operation: KYF <= 0

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically executed at bus speed, along with the next two instructions.

Assembly Syntax Encoding Machine Cycles

RSTKB 1111_0010_00 1
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RTN
Return from subroutine

RTN operand: none

Operation: PC <= STK0

 STK0 <= STK1

 STK1 <= STK2

 STK2 <= STK3

 STK3 <= 0000

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

RTN 1111_1000_00 1
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RTNC
Return from subroutine on Carry

RTNC operand: none

Operation: if (CY) begin

    PC <= STK0

    STK0 <= STK1

    STK1 <= STK2

    STK2 <= STK3

    STK3 <= 0000

    end

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

RTNC 1101_1000_00 1



107

RTNNC
Return from subroutine on No Carry

RTNNC operand: none

Operation: if (!CY) begin

    PC <= STK0

    STK0 <= STK1

    STK1 <= STK2

    STK2 <= STK3

    STK3 <= 0000

    end

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

RTNNC 1110_1000_00 1
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SB=F
Load Status Byte from Flag Out

SB=F operand: none

Operation: ST[7:0] <= FO[7:0]

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically executed a bus speed

Assembly Syntax Encoding Machine Cycles

SB=F 1010_0110_00 1
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SELP
Select Pointer P

SELP operand: none

Operation: ptr = P

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

SELP 0010_1000_00 1
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SELQ
Select Pointer Q

SELQ operand: none

Operation: ptr = Q

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

SELQ 0011_1000_00 1
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SELPF
Select Peripheral

Note: This instruction transfers control from the CPU to an intelligent peripheral. The
CPU continues to fetch instructions, incrementing the PC with each fetch, but in general
ignores the instructions fetched from the isa_bus. Control is returned to the CPU when the
instruction fetched has the LSB set to one. All of these fetches are executed at normal bus
speed, including the first fetch after control is returned to the CPU.

Two instructions are available to transfer information from the peripheral back to the
CPU: First, the ?PFLGn=1 instruction transfers the contents of one of sixteen flags inter-
nal to the peripheral back to the CY flag during the first clock cycle of the following
instruction (which is executed by the CPU). Second, the C=DATAPn instruction sets the
data_bus as an input and the contents of the data_bus during the execution of this
instruction is loaded into the C register. With these two instructions, either status informa-
tion or data may be communicated from the peripheral to the CPU.

SELPF operand: peripheral number

Operation: transfer control to peripheral n

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically fetched and executed at bus speed

Assembly Syntax Encoding Machine Cycles

SELPF  n nnnn_1001_00 2 or more
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SETDEC
Set Decimal Mode

SETDEC operand: none

Operation: hex_mode = 0

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

SETDEC 1010_1000_00 1
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SETHEX
Set Hexadecimal Mode

SETHEX operand: none

Operation: hex_mode = 1

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

SETHEX 1001_1000_00 1
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SPOPND
Pop Stack

SPOPND operand: none

Operation: STK0 <= STK1

STK1 <= STK2

STK2 <= STK3

STK3 <= 0000

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

SPOPND 0000_1000_00 1
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ST=0
Clear Status bit

Note: In the original NUT implementation this instruction cannot immediately follow an
arithmetic (type 10) instruction. This restriction is not present in the NEWT implementa-
tion.

ST=0 operand: Digit Number

Operation: ST[digit] <= 0

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

ST=0  d dddd_0001_00 1
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ST=1
Set Status bit

Note: In the original NUT implementation this instruction cannot immediately follow an
arithmetic (type 10) instruction. This restriction is not present in the NEWT implementa-
tion.

ST=1 operand: Digit Number

Operation: ST[digit] <= 1

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

ST=1  d dddd_0010_00 1
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ST=1?
Test Status Equal To One

Note: In the original NUT implementation this instruction cannot immediately follow an
arithmetic (type 10) instruction. This restriction is not present in the NEWT implementa-
tion.

ST=1? operand: Digit Number

Operation: CY <= Status<digit>

Flag: Set/Cleared as a the result of the test

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

ST=1?  d dddd_0011_00 1
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ST=C
Load Status from C

ST=C operand: none

Operation: ST[7:0] <= C<1:0>

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

ST=C 1101_0110_00 1
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STK=C
Push C

STK=C operand: none

Operation: STK3 <= STK2

STK2 <= STK1

STK1 <= STK0

STK0 <= C<6:3>

Flag: Cleared

Dec/Hex: Independent

Turbo: Independent

Assembly Syntax Encoding Machine Cycles

STK=C 0101_1100_00 1
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WCMD
Write Command

Note: This instruction is a NOP as far as the processor is concerned, but is interpreted by
the Memory Management Unit or Turbo Control Unit. Writes automatically transfer the
contents of the C register to the destination. Reads latch the relevant data, which can then
be accessed via the on-chip I/O Port. The contents of digit 4 are interpreted as a command,
and some of the remaining digit contents are used for data. The write commands are:

WCMD operand: none

Operation: no operation

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically fetched and executed at bus speed

Assembly Syntax Encoding Machine Cycles

WCMD 0111_1111_00 1

Command Meaning

0 Write MMU (per bank)

2 Write Logical Address

4 Write Physical Address

6 Global MMU Disable

7 Global MMU Enable

8 Disable Turbo Mode

9 Enable 2X Turbo Mode

A Enable 5X Turbo Mode

B Enable 10X Turbo Mode

C Enable 20X Turbo Mode

D Enable 50X Turbo Mode
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The read commands are:

The table below shows the format of the data used by these commands. Refer to the Mem-
ory Organization, Turbo Mode or I/O Port chapter for more details.

E Special MMU Disable

F Special MMU Enable

Command Meaning

1 Read MMU (per bank)

3 Read from Logical Address

5 Read from Physical Address

nibble 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write MMU page bank 0 en ph addr

Read MMU page bank 1

Write Logical Address logical address bank 2 write data

Read Logical Address logical address bank 3

Write Physical Address physical address 4 write data

Read Physical Address physical address 5

Global MMU Disable 6

Global MMU Enable 7

Disable Turbo Mode 8

Enable 2x Turbo Mode 9

Enable 5x Turbo Mode A

Enable 10x Turbo Mode B

Enable 20x Turbo Mode C

Enable 50x Turbo Mode D

Special MMU Disable E

Special MMU Enable F
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WROM
Write ROM

Note: This instruction is a NOP as far as the processor is concerned, but is used in legacy
software to write to the program address space, similar to the WCMD Write to Logical
Address. The contents of the C register are used as follows: digits 6-3 are the logical
address and digits 2-0 are the data. The write is performed to the currently active bank in
the logical address page. This is different from the WCMD case, where the bank must be
explicitly specified.

Only twelve bits of data are available to be written to the memory. The other four bits are
always zero. This means that there is no way to control the Turbo mode tag bits in memory
when using this write.

WROM operand: none

Operation: no operation

Flag: Cleared

Dec/Hex: Independent

Turbo: Automatically fetched and executed at bus speed

Assembly Syntax Encoding Machine Cycles

WROM 0001_0000_00 1

nibble 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Write ROM
logical address data
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The table below shows all possible opcodes, organized sequentially, with the instruction
mnemonic and the effect of Turbo mode.

Instruction Opcode 1 Opcode 2 1x
always seen 

on bus
Notes

NOP 0000_0000_00
WROM 0001_0000_00 yes yes

0010_0000_00 yes yes reserved

0011_0000_00 yes yes reserved

ENROM1 0100_0000_00 yes yes

ENROM3 0101_0000_00 yes yes

ENROM2 0110_0000_00 yes yes

ENROM4 0111_0000_00 yes yes

1000_0000_00 yes yes reserved

1001_0000_00 yes yes reserved

1010_0000_00 yes yes reserved

1011_0000_00 yes yes reserved

1100_0000_00 yes yes reserved

1101_0000_00 yes yes reserved

1110_0000_00 yes yes reserved

1111_0000_00 yes yes reserved

SD=0 dddd_0001_00
0111_0001_00 yes yes reserved

CLRST 1111_0001_00
SD=1 dddd_0010_00

0111_0010_00 yes yes reserved

RSTKB 1111_0010_00 yes

?SD=1 dddd_0011_00
0111_0011_00 yes yes reserved

CHKKB 1111_0011_00 yes

LC nnnn_0100_00
?PT=D dddd_0101_00

0111_0101_00 yes yes reserved

DECPT 1111_0101_00
0000_0110_00 yes yes reserved

G=C 0001_0110_00
C=G 0010_0110_00

CGEX 0011_0110_00
0100_0110_00 yes yes reserved
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M=C 0101_0110_00
C=M 0110_0110_00

CMEX 0111_0110_00
1000_0110_00 yes yes reserved

F=SB 1001_0110_00 yes

SB=F 1010_0110_00 yes

FEXSB 1011_0110_00 yes

1100_0110_00 yes yes reserved

ST=C 1101_0110_00
C=ST 1110_0110_00

CSTEX 1111_0110_00
PT=D dddd_0111_00

0111_0111_00 yes yes reserved

INCPT 1111_0111_00
SPOPND 0000_1000_00
POWOFF 0001_1000_00 0000_0000_00 yes yes

SELP 0010_1000_00
SELQ 0011_1000_00
?P=Q 0100_1000_00
?LLD 0101_1000_00

CLRABC 0110_1000_00
GOTOC 0111_1000_00
C=KEYS 1000_1000_00 yes

SETHEX 1001_1000_00
SETDEC 1010_1000_00
DISOFF 1011_1000_00 yes yes

DISTOG 1100_1000_00 yes yes

RTNC 1101_1000_00
RTNNC 1110_1000_00

RTN 1111_1000_00
SELPF nnnn_1001_00 yes yes

REGN=C nnnn_1010_00
?Fd=1 dddd_1011_00 yes

0111_1011_00 yes yes reserved

1111_1011_00 yes yes reserved

0000_1100_00 yes yes reserved

N=C 0001_1100_00
C=N 0010_1100_00

CNEX 0011_1100_00
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LDI 0100_1100_00 constant
STK=C 0101_1100_00
C=STK 0110_1100_00

0111_1100_00 yes yes reserved

GOKEYS 1000_1100_00 yes

DADD=C 1001_1100_00
CLRDATA 1010_1100_00 yes yes

DATA=C 1011_1100_00
CXISA 1100_1100_00
C=C|A 1101_1100_00

C=C&A 1110_1100_00
1111_1100_00 yes yes reserved

nnnn_1101_00 yes yes reserved

C=DATA 0000_1110_00 if peripheral if peripheral

C=REGN nnnn_1110_00 if peripheral if peripheral

RCRD dddd_1111_00
WCMD 0111_1111_00 yes yes

1111_1111_00 yes yes reserved

A=0 0000_0ttt_10
B=0 0000_1ttt_10
C=0 0001_0ttt_10

AB EX 0001_1ttt_10
B=A 0010_0ttt_10

AC EX 0010_1ttt_10
C=B 0011_0ttt_10

BC EX 0011_1ttt_10
A=C 0100_0ttt_10

A=A+B 0100_1ttt_10
A=A+C 0101_0ttt_10
A=A+1 0101_1ttt_10
A=A-B 0110_0ttt_10
A=A-1 0110_1ttt_10
A=A-C 0111_0ttt_10
C=C+C 0111_1ttt_10
C=A+C 1000_0ttt_10
C=C+1 1000_1ttt_10
C=A-C 1001_0ttt_10
C=C-1 1001_1ttt_10
C=-C 1010_0ttt_10
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C=-C-1 1010_1ttt_10
?B#0 1011_0ttt_10
?C#0 1011_1ttt_10
?A<C 1100_0ttt_10
?A<B 1100_1ttt_10
?A#0 1101_0ttt_10
?A#C 1101_1ttt_10
ASR 1110_0ttt_10
BSR 1110_1ttt_10
CSR 1111_0ttt_10
ASL 1111_1ttt_10

GONC aaaa_aaa0_11
GOC aaaa_aaa1_11

GOLNC aaaa_aaaa_01 aaaa_aaaa_10
GOLC aaaa_aaaa_01 aaaa_aaaa_11

GSUBNC aaaa_aaaa_01 aaaa_aaaa_00
GSUBC aaaa_aaaa_01 aaaa_aaaa_01
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Turbo Mode

The input clock frequency for the NEWT microprocessor is 18MHz. When operating at
normal speed, this clock is divided by fifty, resulting in a “normal” operating frequency of
360KHz. The Turbo mode provides the option of running the processor at a frequency as
high as the input clock frequency.

The WCMD is used to control the Turbo mode. The actual command is contained in nib-
ble 4 and the remaining nibbles are all ignored. The state of the Turbo mode is not pre-
served during power-down, so the NEWT microprocessor always starts up with the clock
divided by fifty, for backwards compatibility with the original Nut design.

The options available for the Turbo mode are shown below. Turbo mode operates by
“swallowing” clock pulses in the interface between the 18MHz clock input and the pro-
cessor core. Even though clock pulses are swallowed, the external bus of the NEWT
design always operates at the normal 360KHz speed.

nibble 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Turbo Mode 
Command

cmd

Command Turbo Mode Clock divider

8 Disable Turbo Mode 50

9 2X Turbo Mode 25

A 5X Turbo Mode 10

B 10X Turbo Mode 5

C 20X Turbo Mode 2.5

D 50X Turbo Mode 1
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The NEWT microprocessor can only operate in Turbo mode while instructions are being
fetched from the physical memory. Independent of this fetch and execution speed, the
external serial signals are driven to simulate a Nut processor fetching continuous NOP
instructions from memory. This guarantees compatibility with other devices connected to
the serial bus. However, certain instructions must be “seen” by other devices on this serial
bus. The NEWT microprocessor automatically recognizes these instructions and halts the
CPU while the external serial bus is driven with the relevant instruction and the following
instruction. This allows external devices to “see” these instructions and act accordingly.
The relevant instructions are listed below. Note that some instructions are not refetched on
the serial bus. These instructions do not need to be seen by external devices but must run
at normal speed for some other reason, like proper timing for the fo_bus signal.

Opcode Instruction Re-fetched?

0001_0000_00 WROM yes

001x_0000_00 undefined yes

01xx_0000_00 ENROMx yes

1xxx_0000_00 undefined yes

0111_0001_00 undefined yes

0111_0010_00 undefined yes

1111_0010_00 RSTKB no

0111_0011_00 undefined yes

1111_0011_00 CHKKB no

0111_0101_00 undefined yes

xx00_0110_00 undefined yes

1001_0110_00 F=SB no

1010_0110_00 SB=F no

1011_0110_00 FEXSB no

0111_0111_00 undefined yes

0001_1000_00 POWOFF yes

1000_1000_00 C=KEYS no

1011_1000_00 DISOFF yes

1100_1000_00 DISTOG yes

xxxx_1001_00 SELPFn yes

xxxx_1011_00 ?Fn=1 yes

x111_1011_00 undefined yes

0000_1100_00 undefined yes

1000_1100_00 GOKEYS no

1010_1100_00 CLRDATA yes

1111_1100_00 PFAD=C yes

xxxx_1101_00 undefined yes

0000_1110_00 C=DATA yes, if peripheral register

xxxx_1110_00 C=REGN yes, if peripheral register

0111_1111_00 WCMD yes

1111_1111_00 undefined yes
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The register write instructions listed below will be re-fetched and executed at bus speed
when writing to peripheral registers. If the register being written is a valid HP41 memory
register these instructions execute at full speed.

There are other circumstances where it might not be convenient to change the Turbo mode
but it might still be necessary to briefly operate at regular speed. One example of this
would be timing loops. The NEWT design provides for this type of operation by using two
of the unused bits in the 16-bit physical memory. If either of these two bits are set the
speed is automatically throttled back to normal speed until an instruction is fetched with
both of the bits cleared. One bit forces the logic to fetch the marked instruction at normal
speed. This also means that the instruction will be refetched on the serial bus (and the pre-
vious instruction to execute at normal speed). The other bit forces the next instruction to
be fetched at normal speed (and the current instruction to execute at normal speed).

Bit 13 will normally only be set for the first instruction in a sequence of instructions that
need to execute at normal speed, and all other instructions in the sequence will have bit 12
set. Another alternative would be to set bit 12 in the instruction immediately prior to the
first instruction that needs to execute at normal speed. The settings of bits 13 and 12 for
those instructions that are automatically executed at normal speed are ignored.

Opcode Instruction Re-fetched?

xxxx_1010_00 REGN=C yes

1011_1100_00 DATA=C yes

Physical
Data 13

Physical
Data 12

This instruction Next instruction

0 0 Turbo if enabled Turbo if enabled

0 1 execute in normal fetch in normal

1 x refetch, then execute in normal fetch in normal
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Keyboard Scanner

The NEWT microprocessor contains a hardware keyboard scanner that accommodates
seven column lines and nine row lines. This keyboard scanner operates continuously while
the processor is running and always operates at the normal 1x frequency. The column
lines, called kc0 through kc6, are driven Low one after the other, starting with kc0, start-
ing with the first seven nibble times. Refer to the Timing chapter for detailed timing dia-
grams. During the column scanning time the inactive column lines are undriven to limit
current drain in case more than one key on the same row are pressed simultaneously.

Whenever a keypress is detected, by one of the row inputs being sampled Low during a
column time, the corresponding keycode is latched into the keyboard buffer and the key-
board flag is set. The keyboard flag is tested by a dedicated instruction and the keyboard
buffer can either be loaded into the C register or loaded into the least significant bits of the
Program Counter, creating a virtual jump table. Once the keycode has been accessed the
keyboard flag can be reset, again with a dedicated instruction.

To assist in providing a 2-key rollover, the keyboard scanner has three distinct states. In
State 1 the keyboard flag is reset and the keyboard is enabled and waiting to detect a key-
press. This is the reset and idle state of the keyboard scanner. State 2 is entered when a
keypress is detected, and in this state the keyboard flag is set and the keyboard register
holds the keycode. The keyboard scanner will remain in this state until a RST KB instruc-
tion is executed, the key that first caused the transition to State 2 is no longer down, and
there are not two or more keys down on the same column. All three of these conditions
must be met before the keyboard scanner transitions to State 3. In State 3 the keyboard
flag is reset, but the keyboard register retains the value latched in State 2 and the keyboard
scanner continues to scan the keyboard. However, scanning is effectively disabled
because no key presses can be registered in this state. Instead, a CHK KB instruction is
required to cause the scanner to transition back to State 1, where the scanning again is
enabled.

The column table below shows the keyboard buffer encoding for the column lines. In the
case of simultaneous keypress on different columns the key that is first sampled active by
a column line is the one that will be latched into the keyboard buffer.
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The row table below shows the encoding for the row lines. In the case of simultaneous
keypress on the same column the keyboard scanner logic automatically prioritizes them
highest-to-lowest in the row table.

Circuitry in the always-powered section of the NEWT microprocessor monitors the key-
board while the CPU itself is powered down. While the NEWT CPU is powered down
(deep sleep mode) the column line kc0 is driven Low, while the remaining column selects
are floating. The row inputs are monitored to potentially wake up the CPU. This operation
is covered in detail in the Power Control chapter.

While the NEWT CPU is powered but not running (light sleep mode) all of the column
lines, kc0-kc6, are driven Low, which allows any keypress to initiate operation.

Column line KEYS[7:4] or C<4>

kc0 0001

kc1 0011

kc2 0111

kc3 1000

kc4 1100

kc5 1110

kc6 1111

Row line KEYS[3:0] or C<3>

por 1000

kr7 0111

kr6 0110

kr5 0101

kr4 0100

kr3 0011

kr2 0010

kr1 0001

kr0 0000
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External Interface

The NEWT design must be surrounded by voltage translation circuitry to translate
between the NEWT operating voltage and the original Nut operating voltage of 6V. There
can be either one, two, or three NEWT signals corresponding to one Nut-compatible sig-
nal, depending on the required functionality for the Nut-compatible signal.

Not all of the Nut-compatible signals have to operate at 6V. Only those signals present on
the HP-41 I/O ports or connected to the display subsystem need to maintain voltage com-
patibility. The lower operating voltage on the other signals reduces system power con-
sumption and simplifies the interface circuitry.

The remainder of this chapter will describe both the Nut-compatible signals and the new
NEWT signals.

Input, 3.3V. The main processor clock is the output of an external 18MHz oscillator. This
signal should be held Low (and the oscillator disabled) during power-down.

Bi-directional, 6V. The register read/write bus normally outputs the contents of the C reg-
ister during each machine cycle and would input register data to the C register during a
register read. Since in the NEWT design register data is stored in physical memory the
register data is output on this bus during a register read. While operating in Turbo mode
this signal is always Low. This signal will be high-impedance during power-down, which
means that an external resistive pull-down is required.

Input, 6V. The display power-off signal is generated by the display driver to perform the
auto-shutoff function. Normally High, this signal will go Low after several minutes of
inactivity to power-down the NEWT processor.

clk Main Processor Clock

data_bus Register Read/Write Bus

dpwo Display Power Off
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Bidirectional, 6V, active-Low. The flag input bus is sampled once during each digit time
(only during the ?Fn=1 instruction) of an external bus cycle to communicate external con-
ditions to the CPU. This signal is precharged High during the last clock cycle of every
instruction.

Output, 6V. The flag output bus reflects the state of the FO register, during the first eight
digit times on the external bus.

Bi-directional, 6V. The instruction/address bus is main system bus for the NEWT proces-
sor, carrying both the instruction address pointer and the instruction itself. Timing for the
instruction/address bus is determined by the sync signal, which marks the instruction time
on this bus.

The instruction/address bus is high-impedance (but should be pulled Low with an external
resistor) during power-down (deep sleep) and light sleep. Forcing the isa_bus signal High
during power-down will initiate the power-up sequence. Forcing the isa_bus signal High
during light sleep will wake up the CPU.

The instruction/address bus is also used to transfer one of sixteen peripheral flag inputs to
the CY flag when an intelligent peripheral returns control of the bus to the CPU. This
transfer occurs during the first clock cycle of the instruction following the instruction
which returns control to the CPU.

Outputs, 3.3V, active-Low. The keyboard scanner column outputs are activated sequen-
tially at the start of each machine cycle on the external bus. During power-down (deep
sleep) kc0 is Low and all other column outputs are floating (but will be pulled High by
external pull-up resistors). During light sleep all of the column outputs, kc0-kc6, are
driven Low. The column outputs are precharged High during the ph2 time at the start of
every digit time so that high-value pull-up resistors can be used to conserve power.

fi_bus Flag Input Bus

fo_bus Flag Output Bus

isa_bus Instruction/Address Bus

kc0-kc6 Keyboard Scanner Column Outputs
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Inputs, 3.3V, active-Low. The keyboard scanner row inputs are sampled once during each
column scan digit time. During power-down a Low on the por input will initiate the
power-up sequence. All of the row inputs need external pull-ups.

Input, 3.3V, active-Low. The low battery level detect signal is used to indicate a low bat-
tery voltage. This signal does nothing by itself, but must be sampled by a dedicated
instruction.

Outputs, 3.3V. The physical memory address bus carries the address for an access of phys-
ical memory.

Output, 3.3V, active Low. The physical memory chip select 0 is active when accessing the
lower half of the physical memory space, which is normally populated with Flash mem-
ory. This signal will only be active during a memory access, and is High at all other times.
During power-down this signal is not driven, which is consistent with the Flash memory
being unpowered.

Output, 3.3V, active Low. The physical memory chip select 1 is active when accessing the
upper half of the physical memory space, which is normally populated with RAM mem-
ory. This signal will only be active during a memory access, and is High at all other times,
including power-down.

Bi-directional, 3.3V. The physical memory data bus carries the data to and from physical
memory. When no memory read or write is in progress (which includes light sleep) all
data lines are driven with the contents of the lower 16-bits of the C register.

kr0-kr7, por Keyboard Scanner Row Inputs

lld Low Battery Level Detect

MEMADDR[22:0] Physical Memory Address Bus

MEMCS0B Physical Memory Chip Select 0

MEMCS1B Physical Memory Chip Select 1

MEMDATA[15:0] Physical Memory Data Bus
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Output, 3.3V. The physical memory read strobe enables data from either Flash or RAM.
This signal will only be active during a memory access, and is High at all other times.
During power-down this signal is not driven, which is acceptable given that the Flash is
powered down and the RAM chip select is inactive.

Output, 3.3V. The physical memory write strobe transfers data into either Flash or RAM.
This signal will only be active during a memory access, and is High at all other times.
During power-down this signal is not driven, which is acceptable given that the Flash is
powered down and the RAM chip select is inactive.

Input, 3.3V. Tying the 41C memory mapping enable High forces the NEWT operation to
mimic that of the 41C operation with regards to “holes” in the register map. Refer to the
Memory Organization chapter for the details.

Outputs, 3.3V. This byte-wide output port carries various internal signals useful for
debugging:

PDATA[7:5] reports the current Turbo state.

PDATA[4] is High while the serial port is operating in the clocked serial mode.

PDATA[3] is High while the peripheral address register contains 0xF0, selecting the 
internal peripheral port.

PDATA[2] is High while an external peripheral is in control of the bus.

PDATA[1] is High during the time that the address is on the isa_bus signal.

PDATA[0] is High during the last clock cycle of an instruction. This is the precharge 
signal for the fi_bus signal.

MEMRDB Physical Memory Read Strobe

MEMWRB Physical Memory Write Strobe

MODE41 41C Memory Mapping Enable

PDATA[7:0] Parallel Data
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Output, 3.3V. This signal toggles every time that the Parallel Control Register is written.
This register is at Peripheral address 0xF0 with register address 0x8.

Output, 6V. The clock phase 1 is used to sample Nut-compatible inputs. Note that both the
data_bus and isa_bus signals are precharged Low while ph1 is High.

Output, 6V. The clock phase 2 signal rising edge defines bit times on the external bus.
Most Nut-compatible outputs change state on the rising edge of ph2.

Output, 6V. The power on signal indicates that the processor is powered up and running.
The edges on the power on signal occur at a specific time during the instruction cycle to
synchronize other system components. The power on signal is de-asserted by a dedicated
instruction.

The original Nut design allowed the pwo signal to be asserted external to the CPU to force
a power-down. This feature is supported by the NEWT microprocessor, but we are not
aware of any peripheral devices that take advantage of this feature.

Input, 3.3V. The power-up indicator signal is a NEWT-specific signal that goes active
shortly after the system has been connected to the battery. This function is required to
guarantee that the MMU is disabled when first starting up a NEWT system.

Output, 3.3V. This is the active-Low chip enable for the SDIO port. It is controlled by a
bit in the UART/SDIO Control Register. This register is at Peripheral address 0xF0 with
register address 0xB.

PPLS Parallel Data Pulse

ph1 Clock Phase 1

ph2 Clock Phase 2

pwo Power On

pwr_up Power-Up Indicator

SDIO_CEB SDIO Port Chip Enable
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Input, 3.3V. This is the data input for the SDIO port. Data is transferred from the SDIO
port to the processor via the UART/SDIO Data Register. This register is at Peripheral
address 0xF0 with register address 0xB.

Output, 3.3V. This is the data output for the SDIO port. Data is transferred from the pro-
cessor to the SDIO port via the UART/SDIO Data Register. This register is at Peripheral
address 0xF0 with register address 0xB.

Output, 3.3V. This is the serial clock output for the SDIO port. The serial clock is auto-
matically generated for an SDIO data transfer, pulsing eight times to transfer a byte of data
in each direction.

Output, 3.3V. This is the active-Low write protect signal for the SDIO port. It is controlled
by a bit in the UART/SDIO Control Register. This register is at Peripheral address 0xF0
with register address 0xB.

Input, 3.3V. This is the data input for the UART port. Data is transferred from the UART
port to the processor via the UART/SDIO Data Register. This register is at Peripheral
address 0xF0 with register address 0xB.

Output, 3.3V. This is the data output for the UART port. Data is transferred from the pro-
cessor to the UART port via the UART/SDIO Data Register. This register is at Peripheral
address 0xF0 with register address 0xB.

Output, 6V. The synchronization signal is High during the instruction time on the isa_bus
signal. This is what allows intelligent peripherals to monitor and respond to the instruction

SDIO_DI SDIO Port Data Input

SDIO_DO SDIO Port Data Output

SDIO_SCK SDIO Port Serial Clock

SDIO_WPB SDIO Port Write Protect

ser_rx UART Port Data Input

ser_tx UART Port Data Output

sync Synchronization
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stream. The synchronization signal is unique because during power-down it must reflect
the state of the dpwo input, to communicate this information to any external devices con-
nected to the HP-41 bus.

Output, 3.3V. The vcc request signal is activated when any of the power-up conditions
have been detected, and is used to enable the master oscillator and the voltage regulators
that supply the powered-down section of the design. In the original Nut design, the vci sig-
nal was actually a current signal that turned on the dedicated power-supply chip.

Output, 3.3V. The vcc acknowledge signal is activated when the voltage regulators for the
powered-down section of the design are stable and the oscillator is running. The signal is
not usually used in a NEWT system, but is effectively the active-Low reset signal for the
NEWT processor.

The table below provides a summary of all of the NEWT signals.

vci Vcc Request

vco Vcc Acknowledge

Signal
Name(s)

Voltage Direction
Related
Signals

Light Sleep Deep Sleep

clk 3.3V input Running Low

data_bus 6V bidi
DATA_BUS_IN
DATA_BUS_HI
DATA_BUS_EN

Low
(ext pulldown)

Low
(ext pulldown)

dpwo 6V input DPWO_IN High Low

fi_bus 6V input FI_BUS_IN
Low

(ext_pulldown)
Low

(ext pulldown)

fo_bus 6V output FO_BUS_HI Low Undriven

isa_bus 6V bidi
ISA_BUS_IN
ISA_BUS_HI
ISA_BUS_EN

Low
(ext pulldown)

Low
(ext pulldown)

kc0-kc6 3.3V outputs KC0_HI - KC6_HI all Low Low (only kc0)

kr0_kr7, por 3.3V inputs
KR0_HI - KR7_HI, 

POR
High

(ext pullup)
High

(ext pullup)

lld 3.3V input LLD_IN High Low

MEMADDR 3.3V outputs all Low Undriven

MEMCS0B 3.3V output High Undriven

MEMCS1B 3.3V output mem_cs1 High High

MEMDATA 3.3V bidi all Low Undriven

MEMRDB 3.3V output High Undriven

MEMWRB 3.3V output High Undriven
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MODE41 3.3V input High Low

PDATA 3.3V output Low Undriven

PPLS 3.3V output Low Undriven

ph1 6V output PH1_HI Low Undriven

ph2 6V output PH2_HI Low Undriven

pwo 6V output PWO_HI Low Low

pwr_up 3.3V input
High

(ext pullup)
High

(ext pullup)

SDIO_CEB 3.3V output High Undriven

SDIO_DI 3.3V input

SDIO_DO 3.3V output High Undriven

SDIO_SCK 3.3V output High Undriven

SDIO_WPB 3.3V output High Undriven

ser_rx 3.3V input

ser_tx 3.3V output High Undriven

sync 6V output
SYNC_HI

SYNC_DRV
dpwo state Low

vci 3.3V output High Low

vco 3.3V output VCO_IN Low Low
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Timing

As mentioned previously, the input clock frequency for the NEWT microprocessor is
18MHz. This input clock is divided by fifty to create the native 360KHz frequency of the
original Nut design. This 360KHz is the 1x frequency for the NEWT design, and is the
only frequency seen on the external bus.

The figure below shows the relationship between the input clock, the external clock sig-
nals, and the actual internal clock pulses used in the design. These internal clocks are
timed to allow for matching the timing of the Nut design. The dotted lines refer to states in
the internal divider.

ph2

ph2x

ph1x

ph1

clk
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The ph1x and ph2x signals are used by the external bus portion of the design. A separate
clock, called ph2c, is used by the logic of the CPU. When running in 1x mode ph2x and
ph2c have the same timing. The details of this timing is shown in the figure below.

When running in one of the turbo modes, the external bus and ph2x are unaffected. How-
ever, the ph2c signal frequency is increased as shown in the figure below. Note that the
ph2c signal is symmetric in all cases except for the 20x case.

ph2c

50

ph2x

clk

1 ...    43 44 ...    49 50

ph1x

45

ph2c - 2x

ph2c - 5x

ph2c - 10x

ph2c - 1x

clk

ph2c - 20x

ph2c - 50x
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Both the external bus and the NEWT CPU operate with fixed machine cycles that are
fifty-six clock (ph2x or ph2c) cycles long. These fifty-six clock cycles correspond to the
fifty-six bits (or fourteen digits) of the Nut data word. The figure below shows a NEWT
machine cycle.

Both the flag input signal and the flag output signal always operate at 1x speed for com-
patibility. The timing for these two signals is shown in the figure below. Note that the state
of bit 0 of the flag output register persists from the beginning of digit 8 time through the
end of the machine cycle and for the first digit of the subsequent machine cycle. The state
of the fi_bus signal is actually sampled by the second ph1 clock in each digit time.

isa_bus

data_bus

encoding

sync

Digit Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13

E C 8 0 1 2 5 A 4 9 3 6 D B

Address Inst

fo_bus

fi_bus

Digit Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 3 4 5 6 7 0
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The keyboard scanner always operates at 1x speed. The timing for the column drive sig-
nals is shown in the figure below. The row inputs are sampled by the last ph1 clock in the
digit times where a column drive signal is active. During each of the first seven digit times
one column drive signal is driven Low while the rest are High-impedance, to prevent
excessive current consumption if two keys on the same column are down at the same time.
All of the column outputs are precharged High during the first ph2 of each digit time.

kc1

kc2

kc4

kc3

kc0

kc5

kc6

Digit Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13

kr0-kr7, por
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All Nut-compatible NEWT outputs change state relative to the rising edge of the ph2 sig-
nal and all Nut-compatible inputs are sampled by the falling edge of the ph1 signal. The
original Nut documentation is vague on these timing details, but this is what can be
inferred from the available information. This timing is shown in the figure below.

The NEWT CPU starts memory accesses of the physical memory at specific times during
machine cycles, independent of the Turbo mode. Register accesses consist of four succes-
sive accesses. Note that register instructions are always executed in 1x mode, so all four
physical memory accesses complete well before the end of the first bit time.

outputs

inputs

ph1

ph2

is a _ b u s

r e g is te r  w r

s y n c

D ig it  T im e 0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3

A d d r e s s In s t

W C M D  m m u  r /w

W C M D  m e m  w r

in s t  m m u  r d

in s t  r d

r e g is te r  r d
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Memory accesses are always four clock cycles (of the input clock) in length. When not
performing a memory access, the memory control signals are all inactive, the memory
address is driven with all zeros, and the memory data bus is also driven with all zeros. The
timing for a memory read is shown in the figure below.

The timing for a memory write is shown in the figure below.

MEMCSxB

MEMOEB

MEMDATA

MEMADDR

clk

MEMCSxB

MEMWEB

MEMDATA

MEMADDR

clk
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Power Control

The NEWT processor is partitioned into two sections, one section that is always powered,
and one section that is powered down when the system is not in use. In addition to the
obvious powered and powered-down (deep sleep) states, there is also a third state, called
light sleep. In this state the entire processor is powered and the oscillator is running, but
the CPU is held in reset. These three states can be identified by the states of the pwo and
dpwo signals according to the table below. The dpwo signal is an input to the NEWT pro-
cessor that comes from the display controller, and remains active for approximately 10
minutes before going Low and forcing the powered-down state. Note that the final state is
transient, as the display controller drives dpwo High in response to pwo going High.

When a NEWT system is first powered the pwr_up signal guarantees that the system will
be in the powered-down state by initializing the necessary flip-flops in the powered sec-
tion. This is the only use of the pwr_up signal, and an example of the sequence is shown
below. No time scale is implied. The pwr_up signal must only remain Low long enough
to guarantee the state of flip-flops in the powered section.

dpwo pwo State Operation

Low Low Deep Sleep System powered down

Low High illegal powering up (transient state)

High Low Light Sleep System in standby

High High Running System running
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In the powered-down state the logic in the powered section watches for one of two condi-
tions to initiate the power-up sequence. The first condition is a Low on the por input. This
corresponds to a user pressing the ON key on the calculator. This condition is possible
because the keyboard column output kc0 is forced Low during power-down, while all of
the keyboard row inputs have passive pull-ups.

The second condition is a High on the isa_bus signal. This condition is used by external
peripherals to start CPU operation. This condition is possible because there is a high-
impedance pull-down on the isa_bus signal that normally keeps it Low.

The transition from powered-down to powered is shown below. The vci signal is the
enable for the main oscillator as well as the power supplies for the powered-down section.
Note that in reality it takes the oscillator and power supplies some time to stabilize, so the
vco signal is not asserted until after 16,384 clock cycles (about 1mS).

pwo

pwr_up

outputs

3.3V supply

power validpower ramping up powered-down state

switched 3.3V

clk

vci

por

vco
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Once the vco signal is asserted, the NEWT exits the reset state and begins operation. It
takes thirty-two clock cycles before the first ph1 is output. At this point the NEWT is
operating normally, at 1x speed.

Even though the NEWT processor has begun operation at this point, the remainder of the
system requires the pwo signal to be asserted to synchronize all system components to the
NEWT machine cycle. These other components in the system require that the pwo signal
change state at a specific time in the machine cycle, shown below.

The pwo signal has unique timing, changing state between the ph2 and ph1 signal. The
specific timing is shown in the figure below.

ph1

vco

clk

isa_bus

pwo

sync

Digit Time 0 1 2 3 4 5 6 7 8 9 10 11 1213

0000 inst
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The power-up state is where all user-visible system operation occurs. Once all operations
are complete, a POWOFF instruction is executed to place the system in either the power-
down state or the Standby state.   The timing for the falling edge of the pwo signal is the
same as the timing for the rising edge. The pwo signal changes state in the machine cycle
following the machine cycle that fetches the POWOFF instruction. If entering the power-
down state, execute the DISOFF instruction prior to the POWOFF instruction to reduce
the dpwo signal delay time to zero.

ph2

pwo

ph1

clk

isa_bus

pwo

sync

Digit Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Address zeros
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I/O Ports

The NEWT microprocessor contains three on-chip I/O ports that were not present in the
original NUT design. These three I/O ports are addressed via the PFAD=C instruction
with an address of 0xF0. The following registers are available for control of these I/O
ports:

The parallel control toggles the ppls signal with each write to the register.

The UART supports full-duplex 8N1 (the transmitter actually sends two stop bits) asyn-
chronous communication, with one byte of buffering for both the receiver and one byte for
the transmitter. The baud rate set by a dedicated divider running off of the 18MHz system
clock.

The SDIO interface shares logic with the UART, so these two ports cannot be used at the
same time. This interface supports serial flash devices under software control.

The WCMD Read Data register allows software to access any location in the physical
address space using one of the three WCMD Read commands (MMU register, logically
addressed memory location, or physically addressed memory location). The memory data
is latched by the WCMD Read command and is available until rewritten by another
WCMD Read command.

Address Register function Read/Write

0xF UART/SDIO Data Read/Write

0xE UART/SDIO Rx Status Read

0xD UART/SDIO Tx Status Read

0xC UART/SDIO Rate Write

0xB UART/SDIO Control Write

0xA Master Reset Write

0x8 Parallel Control Write

0x6 MMU Status Read

0x4 Turbo Status Read

0x2 WCMD Read Data Read
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The Turbo Status register allows software to determine the current Turbo Mode in effect.
The MMU Status register returns the enable/disable status of the MMU.

UART/SDIO Data Register (USDR) (Address = 0xF)

Bit(s) Value Description

15:8 These bits are always zero.

7:0 Read Returns the contents of the receive buffer.

Write Loads the transmit buffer with a data byte for transmission.

UART/SDIO Rx Status Register (USRSR) (Address = 0xE)

Bit(s) Value Description

15:5 These bits are always zero.

4 0 The receive buffer was not overrun.

(rd-only) 1 The receive buffer was overrun. This bit is cleared by reading the receive buffer.

3:1 These bits are always zero.

0 0 The receive buffer is empty

(rd-only) 1 There is at least one byte in the receive buffer.

UART/SDIO Tx Status Register (USTSR) (Address = 0xD)

Bit(s) Value Description (Async mode only)

15:5 These bits are always zero.

4 0 The transmitter is sending a byte.

(rd-only) 1
The transmitter is idle. This bit is set when the last bit has been sent. This is bit 0 
of the data in SDIO mode and the Stop bit in Async mode.

3:1 These bits are always zero.

0 0 The transmit buffer is not empty.

(rd-only) 1 The transmit buffer is empty.
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UART/SDIO Rate Register (USRR) (Address = 0xC)

Bit(s) Value Description

15:12 These bits are always zero.

11:0

(wr-only)
The divider that generates the serial clock for the UART/SDIO. If the contents of 
this register are n, the counter counts modulo n+1.

UART/SDIO Control Register (USCR) (Address = 0xB)

Bit(s) Value Description

15:9 These bits are always zero.

8 0 Drive SDIO WP# signal High.

(wr-only) 1 Drive SDIO WP# signal Low.

7:5 These bits are always zero.

4 0 Drive SDIO CE# signal High.

(wr-only) 1 Drive SDIO CE# signal Low.

3:1 These bits are always zero.

0 0 UART enabled. Data is sent and received LSB-first.

(wr-only) 1 SDIO enabled. Data is sent and received MSB-first.

Master Reset Register (MRR) (Address = 0xA)

Bit(s) Value Description

15:1 These bits are always zero.

0 0 No effect.

1
Reset the UART and SDIO. This command must be issued before attempting to 
program any of the UART or SDIO Registers, because these peripherals are not 
affected by the normal Reset.

Parallel Control Register (PCR) (Address = 0x8)

Bit(s) Value Description

15:0 Write Toggle ppls signal.
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MMU Status Register (MSR) (Address = 0x6)

Bit(s) Value Description

15:1 These bits are always zero.

0 0 MMU is disabled.

(rd-only) 1 MMU is enabled.

Turbo Status Register (TSR) (Address = 0x4)

Bit(s) Value Description

15:3 These bits are always zero.

2:0 000 Normal operating speed.

(rd-only) 001 2X Turbo Mode in effect.

010 5X Turbo Mode in effect

011 10X Turbo Mode in effect.

100 20X Turbo Mode in effect.

101 50X Turbo Mode in effect.

11x These bit combinations are reserved.

WCMD Read Data Register (WRDR) (Address = 0x2)

Bit(s) Value Description

15:0 Read Data latched by last WCMD Read.
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Pin Assignments

The NEWT design is implemented in two separate packages. The powered-down portion
of the design uses a 144-pin Actel A3P125 FPGA. The pin assignments for this portion of
the design are shown below:

pin signal pin signal
1 MEMADDR[8] 73 VPUMP
2 MEMADDR[19] 74 no connect
3 MEMADDR[18] 75 TDO
4 MEMADDR[17] 76 TRST
5 MEMADDR[10] 77 VJTAG
6 MEMADDR[9] 78 DPWO_IN
7 MEMADDR[7] 79 LLD_IN
8 MEMADDR[6] 80 PWO_IN
9 1.5V 81 3.3V

10 GND 82 GND
11 3.3V 83 POR_IN
12 MEMADDR[12] 84 PWO_RES
13 MEMADDR[11] 85 MMU_SET
14 MEMADDR[5] 86 MMU_RES
15 MEMADDR[4] 87 MMU_EN
16 MEMADDR[14] 88 SYNC_HI
17 GND* 89 VCO_IN
18 CLK_IN 90 no connect
19 GND* 91 SDIO_WPB
20 MEMADDR[13] 92 SDIO_CEB
21 MEMADDR[3] 93 UART_TX
22 MEMADDR[2] 94 UART_RX
23 MEMADDR[16] 95 no connect
24 MEMADDR[15] 96 no connect
25 MEMADDR[0] 97 no connect
26 MEMADDR[1] 98 3.3V
27 GND 99 GND
28 3.3V 100 1.5V
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29 MEMADDR[20] 101 mem_cs1
30 MEMADDR[21] 102 no connect
31 MEMCS0B 103 KR7_IN
32 MEMRDB 104 KR6_IN
33 MEMWRB 105 KR5_IN
34 MEMADDR[22] 106 KR4_IN
35 3.3V 107 3.3V
36 GND 108 GND
37 no connect 109 MEMDATA[12]
38 FO_BUS_HI 110 MEMDATA[4]
39 ISA_BUS_HI 111 MEMDATA[11]
40 ISA_BUS_EN 112 MEMDATA[3]
41 DATA_BUS_HI 113 MEMDATA[13]
42 DATA_BUS_EN 114 MEMDATA[5]
43 PWO_HI 115 no connect
44 PH2_HI 116 KR3_IN
45 1.5V 117 3.3V
46 GND 118 GND
47 3.3V 119 1.5V
48 PPLS 120 KR2_IN
49 PH1_HI 121 KR1_IN
50 PDAT[0] 122 KR0_IN
51 PDAT[1] 123 KC6_HI
52 PDAT[2] 124 KC5_HI
53 PDAT[3] 125 MEMDATA[10]
54 PDAT[4] 126 MEMDATA[2]
55 PDAT[5] 127 MEMDATA[14]
56 PDAT[6] 128 MEMDATA[6]
57 PDAT[7] 129 MEMDATA[9]
58 SDIO_DI 130 MEMDATA[1]
59 SDIO_DO 131 MEMDATA[15]
60 SDIO_SCK 132 MEMDATA[7]
61 MODE41 133 KC4_HI
62 1.5V 134 3.3V
63 GND 135 GND
64 3.3V 136 1.5V
65 FI_BUS_IN 137 KC3_HI
66 ISA_BUS_IN 138 KC2_HI
67 DATA_BUS_IN 139 KC1_HI
68 GND 140 KC0_HI
69 TCK 141 MEMDATA[8]
70 TDI 142 MEMDATA[0]
71 TMS 143 GND
72 3.3V 144 3.3V
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The always-powered portion of the design uses a 100-pin Xilinx XC2C64A CPLD. The
pin assignments for this portion of the design are shown below:

pin signal pin signal
1 KR4_IN 51 3.3V
2 KR5_IN 52 kc3
3 KR6_IN 53 kr4
4 KR7_IN 54 no connect
5 VJTAG 55 kc2
6 no connect 56 kc4
7 mem_cs1 57 1.8V
8 UART_RX 58 SYNC_DRV
9 UART_TX 59 no connect

10 no connect 60 pwo
11 no connect 61 fi_bus
12 no connect 62 GND
13 VCO 63 no connect
14 SYNC_HI 64 data_bus
15 MMU_EN 65 no connect
16 MMU_RES 66 no connect
17 MMU_SET 67 isa_bus
18 PWO_RES 68 lld
19 POR_IN 69 GND
20 no connect 70 vci
21 GND 71 ser_tx
22 PWO_IN 72 ser_rx
23 LLD_IN 73 no connect
24 DPWO_IN 74 MEMCS1B
25 no connect 75 no connect
26 1.8V 76 KC0_HI
27 clk 77 KC1_HI
28 DATA_BUS_IN 78 KC2_HI
29 ISA_BUS_IN 79 KC3_HI
30 FI_BUS_IN 80 no connect
31 GND 81 KC4_HI
32 dpwo 82 no connect
33 kc6 83 TDO
34 kc5 84 GND
35 kc0 85 no connect
36 kc1 86 no connect
37 kr0 87 no connect
38 3.3V 88 3.3V



160

39 kr1 89 KC5_HI
40 kr2 90 KC6_HI
41 kr3 91 KR0_IN
42 por 92 KR1_IN
43 kr7 93 no connect
44 no connect 94 KR2_IN
45 TDI 95 no connect
46 no connect 96 no connect
47 TMS 97 KR3_IN
48 TCK 98 3.3V
49 kr6 99 pwr_up
50 kr5 100 GND
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Instruction Set

This Appendix presents the NEWT instruction set organized alphabetically.

Instruction Opcode 1 Opcode 2 1x
always seen 

on bus

?A#0 1101_0ttt_10
?A#C 1101_1ttt_10
?A<B 1100_1ttt_10
?A<C 1100_0ttt_10
?B#0 1011_0ttt_10
?C#0 1011_1ttt_10
?Fd=1 dddd_1011_00 yes

?LLD 0101_1000_00
?P=Q 0100_1000_00
?PT=d dddd_0101_00
?Sd=1 dddd_0011_00
A=0 0000_0ttt_10

A=A+1 0101_1ttt_10
A=A+B 0100_1ttt_10
A=A+C 0101_0ttt_10
A=A-1 0110_1ttt_10
A=A-B 0110_0ttt_10
A=A-C 0111_0ttt_10

A=C 0100_0ttt_10
ABEX 0001_1ttt_10
ACEX 0010_1ttt_10
ASL 1111_1ttt_10
ASR 1110_0ttt_10
B=0 0000_1ttt_10
B=A 0010_0ttt_10

BCEX 0011_1ttt_10
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BSR 1110_1ttt_10
C=0 0001_0ttt_10

C=A+C 1000_0ttt_10
C=A-C 1001_0ttt_10

C=B 0011_0ttt_10
C=C+C 0111_1ttt_10
C=C+1 1000_1ttt_10
C=C-1 1001_1ttt_10
C=C|A 1101_1100_00

C=C&A 1110_1100_00
C=-C 1010_0ttt_10

C=-C-1 1010_1ttt_10
C=DATA 0000_1110_00 if peripheral if peripheral

C=REGn nnnn_1110_00 if peripheral if peripheral

C=G 0010_0110_00
C=KEYS 1000_1000_00 yes

C=M 0110_0110_00
C=N 0010_1100_00
C=ST 1110_0110_00

C=STK 0110_1100_00
CGEX 0011_0110_00

CHKKB 1111_0011_00 yes

CLRABC 0110_1000_00
CLRDATA 1010_1100_00 yes yes

CLRST 1111_0001_00
CMEX 0111_0110_00
CNEX 0011_1100_00
CSR 1111_0ttt_10

CSTEX 1111_0110_00
CXISA 1100_1100_00

DADD=C 1001_1100_00
DATA=C 1011_1100_00
DECPT 1111_0101_00
DISOFF 1011_1000_00 yes yes

DISTOG 1100_1000_00 yes yes

ENROM1 0100_0000_00 yes yes

ENROM2 0110_0000_00 yes yes

ENROM3 0101_0000_00 yes yes

ENROM4 0111_0000_00 yes yes
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F=SB 1001_0110_00 yes

FEXSB 1011_0110_00 yes

G=C 0001_0110_00
GOC aaaa_aaa1_11

GOKEYS 1000_1100_00 yes

GOLC aaaa_aaaa_01 aaaa_aaaa_11
GOLNC aaaa_aaaa_01 aaaa_aaaa_10
GONC aaaa_aaa0_11

GSUBNC aaaa_aaaa_01 aaaa_aaaa_00
GSUBC aaaa_aaaa_01 aaaa_aaaa_01
GOTOC 0111_1000_00
INCPT 1111_0111_00

LC nnnn_0100_00
LDI 0100_1100_00 constant
M=C 0101_0110_00
N=C 0001_1100_00
NOP 0000_0000_00

POWOFF 0001_1000_00 0000_0000_00 yes yes

PT=d dddd_0111_00
RCRd dddd_1111_00

REGn=C nnnn_1010_00
RSTKB 1111_0010_00 yes

RTN 1111_1000_00
RTNC 1101_1000_00

RTNNC 1110_1000_00
SB=F 1010_0110_00 yes

Sd=0 dddd_0001_00
Sd=1 dddd_0010_00
SELP 0010_1000_00

SELPF nnnn_1001_00 yes yes

SELQ 0011_1000_00
SETDEC 1010_1000_00
SETHEX 1001_1000_00
SPOPND 0000_1000_00

ST=C 1101_0110_00
STK=C 0101_1100_00
WCMD 0111_1111_00 yes yes

WROM 0001_0000_00 yes yes
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