
Y8002 Microprocessor
 Technical Manual

Systemyde International Corporation

Every effort has been made to ensure the accuracy of the information contain herein. If you find errors or
inconsistencies please bring them to our attention. In all cases, however, the Verilog HDL source code for
the Y8002 design defines “proper operation”.

Copyright © 2003, 2009, 2012, Systemyde International Corporation. All rights reserved.

Notice:

“Z8000”, “Z8001”, “Z8002” and “Zilog” are registered trademarks of Zilog, Inc. All uses of these terms in
this document are to be construed as adjectives, whether or not the noun “microprocessor”, “CPU” or
“device” are actually present.

1

Index

Introduction .. 3

Programming Model ... 5

Addressing and Address Modes ... 9

Instruction Format .. 13

Instruction Set .. 15

External Interface and Timing ... 171

Interrupts and Traps ... 197

Reset ... 201

Verilog HDL Source ... 203

Test Bench .. 207

Appendix 1: Execution Details ... 213

Appendix 2: Unimplemented Features/Instructions .. 225

Appendix 3: Trapped Opcodes .. 229

Appendix 4: Known Timing Differences .. 231

2

3

Chapter 1
 Introduction

This book documents the operation of the Y8002 microprocessor. The Y8002 design is supplied in Verilog
HDL format and can be implemented in any technology supported by a logic synthesis tool that accepts Ver-
ilog HDL. The design requires roughly 15K logic gate equivalents. Included in the design package is a test
bench that exercises all implemented instructions, flag settings, and representative data patterns. The test
patterns should achieve at least 95% fault coverage.

The Y8002 CPU was designed in a clean-room environment and is a clone of the Zilog Z8002 microproces-
sor. Only publicly available documentation was used to create this design so there may be minor differences
where the public documentation is misleading or lacking. With only a couple of exceptions, the instruction
execution times are identical between the two designs. All known differences for individual instructions are
listed in the instruction description chapter as notes.

The Y8002 design, depending on the version, may not implement all of the instructions, features or operat-
ing modes of the Z8000 architecture. The specific differences, for any given version of the design, are cov-
ered in the various appendices.

The Z8002 CPU is one of four variants of the Z8000 architecture, introduced by Zilog in 1979. The Z8002
and Z8004 support a 16-bit linear address space and are identical except that the Z8004 added support for
virtual memory. The Z8001 and Z8003 support a 23-bit segmented address and are identical except that the
Z8003 added support for virtual memory. All of these devices were implemented in NMOS technology and
the Z8001 CPU and the Z8002 CPU were available for -55C to +125C operation. Manufacturing of these
devices ceased around 1990.

This document should always be used as the final word on the operation of the Y8002 CPU, but it is useful
to refer to the Zilog documentation if the description given here is too cryptic. The Z8000 architecture is
over twenty years old, so it is assumed that it is already at least somewhat familiar to the reader, but an over-
view is presented here. This document will make no attempt to describe the segmented addressing mode of
the Z8000 architecture because it is not present in the Y8002 CPU.

The Z8000 architecture includes sixteen 16-bit general-purpose registers, and uses eight distinct data types
ranging from single bits to 64-bit quadruple words and byte strings. The architecture supports eight different
types of addressing modes. A Z8000 architecture CPU (like the Y8002) has 111 instruction types in its
instruction set. The multiple addressing modes and data types, when coupled with the instruction types, pro-
duces 447 different instructions for the Y8002 processor instruction set.

The architecture includes status signals that can be used to determine the nature of each bus transaction. The
status signals can be decoded and used to implement systems having multiple memory address spaces, each
space being dedicated to a specific purpose.

The architecture includes two operating modes: system mode, and normal mode. This feature allows the
operating system functions to be easily separated from application program functions to enhance operating
system and application data security.

4

The architecture provides dedicated instructions for input/output operations, allowing the separation I/O
operations from memory-related operations (the I/O space is separate from the memory space). The dedi-
cated I/O instructions can only be accessed while operating in system mode. Applications running in normal
mode cannot directly affect the operation of the I/O ports. This architecture does not prevent the user from
designing a system with memory-mapped I/O.

The architecture includes an interrupt mechanism that processes interrupts and exceptions from various
sources. These sources include a single non-maskable interrupt, a single non-vectored interrupt, up to 256
vectored interrupt sources, and traps caused by the following events: execution of a privileged instruction
while in normal mode, execution of an extended instruction, execution of the system call instruction, and a
segment trap. The interrupt mechanism stores the program status, transfers program control to an interrupt
service routine, and restores program status at the end of the interrupt process. The interrupt mechanism of
the Z8000 architecture includes a means of assigning priorities to the interrupts, but this is external to the
CPU itself.

The full Z8000 architecture implements a segmented memory map that allows the processor to directly
address six memory spaces up to 8 Megabytes (8,388,608 bytes) each. Each memory segment consists of a
64K (65,536) byte block. The sixteen address lines present on the Z8000 processors are used to access the
individual locations within the memory segment while a seven-bit segment register is used to provide access
to each of the segments. As mentioned previously, the Y8002 processor does not implement the segmented
memory scheme. It is capable of addressing six separate memory spaces, each being a maximum of 64K
bytes.

The architecture includes a refresh-control block that is designed to generate memory refresh cycles for
dynamic random access memory that may be used in conjunction with the processor.

The architecture includes provisions to allow the processor to yield control of the system address/data, con-
trol, and status signals to another processor in the system in response to a bus request signal. When a bus
request is granted, the processor enters the bus-disconnect state. Program execution is suspended and the
CPU disconnects itself from the bus (signals are placed into a high-impedance state). When the bus request
is removed from the processor, the CPU regains control of the bus, and continues with program execution.

The architecture includes a feature known as the Extended Processing Architecture (EPA). This feature
allows the instruction set of the processor to be augmented by external devices (Extended Processing Units,
or EPUs) on the bus. The extended instructions are used to exploit this feature. If an extended processing
unit is available, the processor will handle only the data transfer portion of the instruction, and leave execu-
tion of the instruction to the EPU. If no EPU is present, the processor can handle the instruction itself using
an extended instruction trap handling software routine. The EPA bit located in the Flag and Control Word
(FCW) determines how the instruction will be handled.

5

Chapter 2
 Programming Model

The Z8000 architecture contains sixteen 16-bit general-purpose registers. With only a few exceptions, all
general-purpose registers can be used for any instruction operand. These registers allow data ranging from
bytes to quadruple words. None of the general purpose registers are affected by reset.

Word registers are specified in assembly language as R0 through R15. Sixteen byte registers (RH0-RL7) can
be used as accumulators, and overlap the first eight word registers. Registers may be paired into eight double
word registers RR0 through RR14 for 32-bit operands. Registers may also be grouped in groups of four qua-
druple word registers RQ0 through RQ12 for 64-bit operands. The double word and quadruple word regis-
ters are used by operations such as Multiply, Divide, and Extend Sign.

The Z8000 architecture includes two hardware stack pointers, one for each operating mode (normal and sys-
tem). The system stack pointer is used in system mode, during interrupt or trap handling, and for system
calls. The normal stack pointer is used in normal mode and only the normal stack pointer is accessible.
When operating in system mode the system stack pointer is accessed as a general-purpose register and the
normal stack pointer is accessed as a special control register. Register R15 is the stack pointer.

The program status reflects the current operating state of the processor. Included in the program status is the
Flag and Control Word (FCW) and Program Counter (PC). The program status is automatically pushed onto
the system stack in response to an interrupt or trap. After reset, the Y8002 CPU fetches the FCW from mem-
ory address 0x0002 and the PC from memory address 0x0004 before starting execution. Both of these
addresses are in the Program address space.

The Flag and Control Word register contains both processor status bits and processor control bits. The low-
order byte contains system status flags that are used by the processor instructions to control program branch-
ing and looping. The high order byte contains processor control bits that are used to enable and disable the
processor interrupt system and control certain processor operating modes.

The six processor status bits are:

• Carry (C) -- This bit indicates that a carry out of the high order bit position of a register being used as an
accumulator has occurred.

• Zero (Z) -- This bit indicates that the result of a processor operation is zero.

• Sign (S) -- This bit indicates that the result of an processor operation has produced a negative number.

• Overflow (V)-- This bit indicates that an overflow has occurred (on processor arithmetic operations) or
even parity (after processor logical operations).

• Decimal-Adjust (D) -- This bit is used in BCD arithmetic to indicate the type of instruction that was
executed (addition or subtraction).

6

• Half-Carry (H) --This bit is used to convert the binary result of a previous addition or subtraction of
BCD numbers into the correct decimal result.

The control bits in the high order byte of the FCW are:

• Non-Vectored Interrupt Enable (NVI) -- This bit is used to enable or disable the processor's response to
interrupts on its non-vectored interrupt input.

• Vectored Interrupt Enable (VI) -- This bit is used to enable or disable the processor's response to inter-
rupts on its vectored interrupt input.

• System Mode (SYS) -- This bit determines if the processor is to operate in the system mode (High) or
normal mode (Low). The Normal/System hardware output signal of the processor is the complement of
this bit.

• Extended Processor Architecture (EPA) -- This bit indicates the presence or absence of Extended Pro-
cessing Units (EPU) in the system architecture. If EPUs are present, this bit should be set to one, and the
processor will execute extended instructions as they are encountered. If EPUs are not present in the sys-
tem and an extended instruction is fetched for execution, the processor will generate an extended
instruction trap.

• Segmentation Mode (SEG) -- This bit is present only in a segmented Z8000 processor. When set to one,
the processor is executing in segmented mode. When set to zero, the processor is executing in non-seg-
mented mode. This bit is permanently set to 0 in the Y8002 processor.

The Program Counter is a sixteen bit register. All instruction fetches are 16 bits wide, so the least significant
bit of the PC should always be zero. However, the hardware neither forces or checks that this is true.

The Program Status Area Pointer (PSAP) contains the address of the Program Status Area, which is a table
that contains FCW and PC values used by the interrupt and exception handling hardware of the processor.
When an interrupt or trap occurs in the processor execution cycle, the Program Status Area is where the pro-
cessor obtains new values for the FCW and PC in order to process the exception. The lower byte of the
PSAP is always zero. The PSAP points to an area in the Program memory address space and is cleared to all
zeros by reset.

The Z8000 architecture contains hardware that can be used to automatically refresh dynamic memory in the
system. The Refresh Control register contains a 9-bit row counter, and a six-bit rate counter, as well as an
enable/disable control bit. Bit 15 of this register is cleared by reset. Modern dynamic RAMs have no need of
this feature.

7

General Purpose Registers

15 0

R0 RH0 RL0 RR0 RQ0

R1 RH1 RL1

R2 RH2 RL2 RR2

R3 RH3 RL3

R4 RH4 RL4 RR4 RQ4

R5 RH5 RL5

R6 RH6 RL6 RR6

R7 RH7 RL7

R8 RR8 RQ8

R9

R10 RR10

R11

R12 RR12 RQ12

R13

R14 RR14

R15 System Stack Pointer

R15’ Normal Stack Pointer

8

Program Status Registers

Program Status Area Pointer

Refresh Control

15 0

FCW SEG SYS EPA VI NVI 0 0 0 C Z S V D H 0 0

PC Address

Upper Pointer 0 0 0 0 0 0 0 0

REN Rate Row

9

Chapter 3
 Addressing and Address Modes

The Z8000 architecture supports separate memory and I/O address spaces, and each of these address spaces
can be further subdivided if necessary. The exact address space that is being accessed is encoded on the four
status signals that are output buy the processor with each bus transaction. The available address spaces are:

• Program address space, with two separate status encodings to distinguish the first word of an instruction
fetch from some other program memory fetch.

• Data address space, used to access data.

• Stack address space, used to access data via the stack pointer R15.

• Standard I/O address space, used for all regular I/O operations.

• Special I/O address space, which is usually reserved for I/O operations between the processor and a
Memory Management Unit (MMU) or a Direct Memory Access controller (DMA).

In this architecture, each of the memory address spaces can be a maximum of 64K bytes, allowing the
Y8002 CPU to address 384 KB of memory. Each I/O address space is a maximum of 64K port addresses.

Each of the memory spaces can be further separated externally according to the system or normal mode.
This provides the ability to design and implement operating systems that protect the system operation and
information from being corrupted or accessed by user applications.

I/O address space is accessible only from the system mode of operation. This prevents user programs from
gaining access to system resources directly, giving the system software complete control over peripheral
devices.

The Z8000 architecture is big-endian, meaning that the most-significant data element is addressed at the
lowest memory address. Bytes transferred to or from odd memory address locations (address bit 0 = 1) are
always transmitted on lines AD7-AD0 (data bit 0 on AD0). Bytes transferred to or from even memory
address locations (address bit 0 = 0) are always transmitted on lines AD15-AD8 (data bit 0 on AD8).

During byte writes, the CPU places the same byte on both halves of the bus. The system hardware must use
AD0 to determine which half of the bus contains the actual data to be written. For byte reads, the CPU will
read all 16-bits of data on the AD15-AD0 lines and automatically select the proper half of the bus that con-
tains the active data.

I/O devices can use either 8-bit or 16-bit data busses for either I/O address space. The address of a peripheral
with a 16-bit wide data bus may be odd or even. Peripherals having 8-bit wide data busses connected on
lines AD7-AD0 must either be addressed using odd addresses or ignore the least significant bit of the
address and use two I/O addresses per I/O port. Normally special I/O devices connect to the upper half of the
bus, and thus use even addresses.

10

Each memory address space consists of a block of 64KB of memory, with addresses being consecutively
numbered in ascending order. The 8-bit byte is the basic addressable element in memory address space. The
Z8000 architecture supports three additional addressable data elements:

• Bits, either in bytes or words

• 16-bit words

• 32-bit long words

The type of data element being accessed depends upon the instruction being executed. The assembler mne-
monics allow for addressing bit, byte, word, or long word data. Not all instructions can access all types of
data. Addressable data elements are shown below:

A bit can be addressed by specifying an address (byte or word) and the location of the bit within the byte (7-
0) or word (15-0). Bits are numbered right to left, from the least significant bit to the most significant bit.

The address of a data element longer than one byte (word, long word) is the same as that of the byte with the
lowest memory address within the word or long word. This byte is the leftmost, highest-order (most signifi-
cant) byte of the word or long word.

Word and long word addresses are always even-numbered. Low bytes of words are stored in odd-numbered
addresses and high bytes of words are stored in even numbered addresses. Byte data can be stored in odd or
even addresses.

Memory locations 0x0000-0x0005 in the Program memory space are reserved for the FCW and PC that are
fetched after a reset. Except for this reserved memory space, there are no restrictions placed on any locations
within the processor memory space, although the 256-byte block addressed by the PSAP is used for the Pro-
gram Status information for interrupts, traps and system calls rather than program information.

The architecture supports eight data types directly, although Extended Processing Units may create and
access new data types, such as floating point numbers. Five of the eight data types are fixed length data and
the remaining three data types have variable lengths. Each data type is supported by numerous instructions
that operate upon it directly. The data types are as follows:

• Bit

• Signed and unsigned byte, word, double word or quadruple word binary data

bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

bytes address “n” address “n+1”

word address “n” (“n” is even)

double address “n” (“n” is even)

word address “n+2”

11

• Byte or word logical data

• Word address

• Byte of packed BCD (binary coded decimal) integer

• Dynamic-length string of byte data

• Dynamic-length of word data

• Dynamic-length of stack data

Bit data can be manipulated either in the general-purpose registers or in memory. Binary and BCD integers,
and logical values may be manipulated in registers, although operands can be fetched directly from memory.
Addresses can only be manipulated in registers while strings and stack data can only be manipulated in
memory.

The operands for instructions can be specified using one of eight addressing modes. For some instructions
no addressing mode is used, because the operand is implied. The majority of instructions can use any of the
five common addressing modes: register, immediate, indirect register, direct address and indexed. A few
instructions can use the relative address mode and only load and store instructions can use base address and
base index addressing modes.

Because of the way that the addressing modes are encoded into the opcode, register R0 (and double register
RR0) cannot be used in the indirect address, index, base address or base index modes.

• Register: the contents of the register.

• Immediate: in the instruction.

• Indirect Register: the contents of the location whose address is in the register.

• Direct Address: the contents of the location whose address is in the instruction.

• Index: the contents of the location whose address is the sum of the address in the instruction plus the
contents of the register.

• Relative Address: the contents of the location whose address is the sum of the contents of the Program
Counter plus the displacement in the instruction.

• Base Address: the contents of the location whose address is the sum of the contents of a register plus the
displacement in the instruction.

• Base Index: the contents of the location addressed by the sum of the contents of one register plus the
contents of another register.

12

13

Chapter 4
 Instruction Format

The format of instructions in the Z8000 architecture is quite regular. The general instruction format uses a
two bit field to select the addressing mode, a five or six bit field for the operation code (opcode), a four bit
field to select the source operand and a four bit field to select the destination operand.

In the addressing mode field the bit combination 00 usually selects either immediate data or Indirect Regis-
ter addressing, the bit combination 01 selects either Direct addressing or Index addressing and the bit combi-
nation 10 selects Register addressing. The choice between Immediate and Indirect Register or between
Direct and Index is made using one of the bit combinations in bits 7-4. This is why R0 cannot be used with
Indirect Register or Index addressing.

General Instruction Format (first word of instruction)

The bit combination 11 in the address mode field is used to specify the compact format for the instruction.
Four of the most commonly used instructions have their own compact format.

Special Compact Instruction Format

Some infrequently used or complex instructions require two words to encode all of the information. All EPU
instructions also require at least two words.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Byte ad mode opcode 0 source or destination source or destination

Word ad mode opcode 1 source or destination source or destination

Long ad mode opcode source or destination source or destination

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LDB 1 1 0 0 destination byte data

CALR 1 1 0 1 offset

JR 1 1 1 0 condition code offset

DJNZ 1 1 1 1 register W offset

14

General Instruction Format (second word of instruction)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 register register condition code

0 0 0 0 register 0 0 0 0 identifier

0 0 0 0 register 0 0 0 0 0 0 0 0

EPU reserved for EPU use iteration count

EPU reserved for EPU use register reserved for EPU use iteration count

15

Chapter 5
 Instruction Set

This chapter presents the assembly language syntax, addressing modes, flag settings, binary encoding, and
execution time for the Y8002 instruction set. The entire instruction set is presented in alphabetical order,
without regard to whether or not a particular instruction has been implemented in a particular version of the
design. For a list of implemented versus unimplemented instructions, refer to the appropriate Appendix.

The assembly language syntax is identical to that used by the original Zilog assembler. Different assembler
programs may or may not use identical syntax. The syntax is presented generically at the beginning of each
instruction, with the details presented for each addressing mode later in each entry.

The operation of each instruction is specified in a format similar to Verilog HDL for minimum ambiguity,
but no descriptive text or examples are included.

The effect of the instruction on each flag is listed, with a brief description. Normally the flags are updated by
the main operation of the instruction, but for some complex instructions different flags may be affected by
different parts of the instruction. This is specified in the description. Where the same flag is reused during a
complex instruction a note is included at the end of the instruction description with the details.

Fields in the instruction are listed using shortcuts for common fields. These shortcuts should be self-explan-
atory in most cases, but will be detailed here for completeness.

The most common fields in the instruction specify a CPU register, employing the following shortcuts:

The registers are encoded according to the following table. Note that in the case of Rdnz, Rsnz, R1nz and
R2nz the “0000” case is illegal and is usually used to select a different addressing mode. The illegal cases
for RRdd, RRss and RQdd should not be used. The instructions will still execute with an illegal register

Rbdd Byte register used as a destination operand.

Rbss Byte register used as a source operand.

Rddd Word register used as a destination operand.

Rdnz Word register used in addressing the destination.

Rrrr Word register (usually specifies a counter).

Rsss Word register used as a source operand.

Rsnz Word register used in addressing the source.

R1nz Word register used in addressing the first source.

R2nz Word register used in addressing the second source.

Rxxx Word register used as an index.

RQdd Register quad used as a destination operand.

RRdd Register pair used as a destination operand.

RRss Register pair used as a source operand.

16

encoding, but the results will be scrambled in the registers because of the way the register addresses are
treated internally in the design

Immediate data is encoded in the instruction in a number of different ways, depending on the instruction.
Note that the assembly language mnemonics will always use just “#data” or “#n”, independent of the actual
width or encoding in the instruction. The following shortcuts are employed:

encoding in
opcode

Rbss or Rbdd
Rddd, Rsss,

Rrrr or Rxxx
Rsnz, Rdnz,

R1nz or R2nz
RRdd, RRss RQdd

0000 RH0 R0 illegal RR0 RQ0

0001 RH1 R1 R1 illegal illegal

0010 RH2 R2 R2 RR2 illegal

0011 RH3 R3 R3 illegal illegal

0100 RH4 R4 R4 RR4 RQ4

0101 RH5 R5 R5 illegal illegal

0110 RH6 R6 R6 RR6 illegal

0111 RH7 R7 R7 illegal illegal

1000 RL0 R8 R8 RR8 RQ8

1001 RL1 R9 R9 illegal illegal

1010 RL2 R10 R10 RR10 illegal

1011 RL3 R11 R11 illegal illegal

1100 RL4 R12 R12 RR12 RQ12

1101 RL5 R13 R13 illegal illegal

1110 RL6 R14 R14 RR14 illegal

1111 RL7 R15 R15 illegal illegal

b Positive (or zero) twos-complement number used for shift left count.

-b Negative twos-complement number used for shift right count

bbb Three bit unsigned value (range 0x0 - 0x7, corresponding to 0 - 7).

bbbb Four bit unsigned value (range 0x0 - 0xF, corresponding to 0 - 15).

#data Four, eight or sixteen bit immediate data.

#data (high) Most significant word of thirty-two bit immediate data.

#data (low) Least significant word of thirty-two bit immediate data.

dddd Four bit unsigned value (range 0x0 - 0xF, corresponding to 0 - 15).

ddd_dddd Seven bit unsigned value (range 0x00 - 0x7F, corresponding to 0 - 127).

dddd_dddd Eight bit signed value (range 0x00 - 0xFF, or -127 to +128)

dddd_dddd_dddd Twelve bit signed value (range 0x000 - 0xFFF, or -2048 to +2047).

nnnn Four bit unsigned value (range 0x0 - 0xF, corresponding to 1 - 16).

ssssrccc Eight bit System Call identifier (range 0x00 - 0xFF)

17

The “cccc” field encodes one of sixteen possible flags combinations to be tested as part of the instruction, as
shown in the table below. Note that some encodings have more than one possible assembly language mne-
monic, and the “always true” case is implied when no other case is specified.

The remaining shortcuts should be self-explanatory. The shortcut “CZSV” is a four bit field where each bit
corresponds to the flag of the same name. The shortcut “VN” is a two bit field with each bit corresponding to
one of the interrupt enable bits of the same name in the FCW.

The execution times are listed here only as a number of clock cycles. These numbers assume no wait states
and no interrupts during execution of an iterative instruction. The details of both internal and external execu-
tion sequences are available in an Appendix.

cccc
encoding

 in opcode
Flag combination Meaning

F 0000 any Always False

LT 0001 (S ^ V) = 1 Less Than

LE 0010 (Z || (S ^ V)) = 1 Less Than or Equal

ULE 0011 (C || Z) = 1 Unsigned Less Than or Equal

OV
PE

0100 V = 1
Overflow

Parity Even

MI 0101 S = 1 Minus

Z
EQ

0110 Z = 1
Zero
Equal

C
ULT

0111 C = 1
Carry

Unsigned Less Than

1000 any Always True

GE 1001 (S ^ V) = 0 Greater Than or Equal

GT 1010 (Z || (S ^ V)) = 0 Greater Than

UGT 1011 (!C && !Z) = 1 Unsigned Greater Than

NOV
PO

1100 V = 0
No Overflow
Parity Odd

PL 1101 S = 0 Plus

NZ
NE

1110 Z = 0
Not Zero
Not Equal

NC
UGE

1111 C = 0
No Carry

Unsigned Greater Than or Equal

18

ADC
Add With Carry

ADC dst, src dst: R

ADCB src: R

Operation: dst <= dst + src + C

Flags: C: Set if arithmetic carry from result MSB; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow; cleared otherwise.

D: Cleared (ADCB);
 Unaffected (ADC).

H: Set if arithmetic carry from bit 3; cleared otherwise (ADCB);
 Unaffected (ADC).

Addressing
Modes

Assembly Syntax Encoding Clocks

R: ADC Rd, Rs 10110101_Rsss_Rddd 5

ADCB Rbd, Rbs 10110100_Rbss_Rbdd 5

19

ADD
Add

ADD dst, src dst: R

ADDB src: R, IM, IR, DA, X

ADDL

Operation: dst <= dst + src

Flags: C: Set if arithmetic carry from MSB; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow; cleared otherwise.

D: Cleared (ADDB);
 Unaffected (ADD).

H: Set if arithmetic carry from bit 3; cleared otherwise (ADDB);
 Unaffected (ADD).

Addressing
Modes

Assembly Syntax Encoding Clocks

R: ADD Rd, Rs 10000001_Rsss_Rddd 4

ADDB Rbd, Rbs 10000000_Rbss_Rbdd 4

ADDL RRd, RRs 10010110_RRss_RRdd 8

IM: ADD Rd, #data 00000001_0000_Rddd 7

#data

ADDB Rbd, #data 00000000_0000_Rbdd 7

#data | #data

ADDL RRd, #data 00010110_0000_RRdd 14

#data (high)

#data (low)

20

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: ADD Rd, @Rs 00000001_Rsnz_Rddd 7

ADDB Rbd, @Rs 00000000_Rsnz_Rbdd 7

ADDL RRd, @Rs 00010110_Rsnz_RRdd 14

DA: ADD Rd, address 01000001_0000_Rddd 9

address

ADDB Rbd, address 01000000_0000_Rbdd 9

address

ADDL RRd, address 01010110_0000_RRdd 15

address

X: ADD Rd, addr(Rs) 01000001_Rsnz_Rddd 10

address

ADDB Rbd, addr(Rs) 01000000_Rsnz_Rbdd 10

address

ADDL RRd, addr(Rs) 01010110_Rsnz_RRdd 16

address

21

AND
Logical AND

AND dst, src dst: R

ANDB src: R, IM, IR, DA, X

Operation: dst <= dst & src

Flags: C: Unaffected.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if result parity is even; cleared otherwise (ANDB);
 Unaffected (AND).

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: AND Rd, Rs 10000111_Rsss_Rddd 4

ANDB Rbd, Rbs 10000110_Rbss_Rbdd 4

IM: AND Rd, #data 00000111_0000_Rddd 7

#data

ANDB Rbd, #data 00000110_0000_Rbdd 7

#data | #data

IR: AND Rd, @Rs 00000111_Rsnz_Rddd 7

ANDB Rbd, @Rs 00000110_Rsnz_Rbdd 7

DA: AND Rd, address 01000111_0000_Rddd 9

address

ANDB Rbd, address 01000110_0000_Rbdd 9

address

22

Addressing
Modes

Assembly Syntax Encoding Clocks

X: AND Rd, addr(Rs) 01000111_Rsnz_Rddd 10

address

ANDB Rbd, addr(Rs) 01000110_Rsnz_Rbdd 10

address

23

BIT
Bit Test Static

BIT dst, src dst: R, IR, DA, X

BITB src: IM

Operation: Z <= !dst[src]

Flags: C: Unaffected.

Z: Set if selected bit is zero; cleared otherwise.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: BIT Rd, #b 10100111_Rddd_bbbb 4

BITB Rbd, #b 10100110_Rbdd_0bbb 4

IR: BIT @Rd, #b 00100111_Rdnz_bbbb 8

BITB @Rd, #b 00100110_Rdnz_0bbb 8

DA: BIT address, #b 01100111_0000_bbbb 10

address

BITB address, #b 01100110_0000_0bbb 10

address

X: BIT addr(Rd), #b 01100111_Rdnz_bbbb 11

address

BITB addr(Rd), #b 01100110_Rdnz_0bbb 11

address

24

Notes:

1. Only bits 2-0 of the opcode are used to select the bit in the case of BITB, and bit 3 of the opcode is
ignored.

25

BIT
Bit Test Dynamic

Notes:

1. The Z8000 microprocessor restricts the source register to be one of R0 - R7 for BITB. This restriction
does not apply to the Y8002 design. Any register may be used as the source.

2. Only bits 3-0 of the source operand are used for the bit select for BIT; only bits 2-0 of the source operand
are used for the bit select for BITB.

3. Only bits 11-8 of the second word of the opcode are used. All other bits in the second word of the opcode
are ignored.

BIT dst, src dst: R

BITB src: R

Operation: Z <= !dst[src]

Flags: C: Unaffected.

Z: Set if selected bit is zero; cleared otherwise.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: BIT Rd, Rs 00100111_0000_Rsss 10

0000_Rddd_0000_0000

BITB Rbd, Rs 00100110_0000_Rsss 10

0000_Rbdd_0000_0000

26

CALL
Call

Notes:

1. The address loaded into the PC is the address of the destination operand, not the data at the destination
address.

2. In the case of CALL @Rd a data (or stack) memory access at the address in Rd is performed but the data
is discarded.

3. Bits 3-0 of the opcode are ignored.

CALL dst dst: IR, DA, X

Operation: SP <= SP - 2

@SP <= PC

PC <= dst

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: CALL @Rd 00011111_Rdnz_0000 10

DA: CALL address 01011111_0000_0000 12

address

X: CALL address(Rd) 01011111_Rdnz_0000 13

address

27

CALR
Call Relative

Notes:

1. The Zilog documentation incorrectly states that the displacement is added to the Program Counter. The
Zilog Z8000 devices actually subtract the displacement from the Program Counter. The Y8002 design
matches this behavior

2. The PC used for the address calculation is the PC of the next instruction.

3. The displacement is a 12-bit twos-complement number in the range -2048 to +2047. Thus the destination
must be in the range -4092 to +4098 from the address of the CALR instruction.

CALR dst dst: RA

Operation: SP <= SP - 2

@SP <= PC

PC <= PC - (2 x displacement)

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RA: CALR address 1101dddd_dddd_dddd 10

28

CLR
Clear

CLR dst dst: R, IR, DA, X

CLRB

Operation: dst <= 0

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: CLR Rd 10001101_Rddd_1000 7

CLRB Rbd 10001100_Rbdd_1000 7

IR: CLR @Rd 00001101_Rdnz_1000 8

CLRB @Rd 00001100_Rdnz_1000 8

DA: CLR address 01001101_0000_1000 11

address

CLRB address 01001100_0000_1000 11

address

X: CLR addr(Rd) 01001101_Rdnz_1000 12

address

CLRB addr(Rd) 01001100_Rdnz_1000 12

address

29

COM
Complement

COM dst dst: R, IR, DA, X

COMB

Operation: dst <= ~dst

Flags: C: Unaffected.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if result parity is even; cleared otherwise (COMB);
 Unaffected (COM).

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: COM Rd 10001101_Rddd_0000 7

COMB Rbd 10001100_Rbdd_0000 7

IR: COM @Rd 00001101_Rdnz_0000 12

COMB @Rd 00001100_Rdnz_0000 12

DA: COM address 01001101_0000_0000 15

address

COMB address 01001100_0000_0000 15

address

X: COM addr(Rd) 01001101_Rdnz_0000 16

address

COMB addr(Rd) 01001100_Rdnz_0000 16

address

30

COMFLG
Complement Flag

Notes:

1. The Z8000 documentation lists the H flag as undefined, when in fact it is always complemented. The
Y8002 design matches this behavior.

COMFLG flags flag: C, Z, S, P, V

Operation: FCW[7:4] <= FCW[7:4] ^ inst[7:4]

Flags: C: Complemented if specified; unaffected otherwise.

Z: Complemented if specified; unaffected otherwise.

S: Complemented if specified; unaffected otherwise.

V: Complemented if specified; unaffected otherwise.

D: Unaffected.

H: Complemented.

Addressing
Modes

Assembly Syntax Encoding Clocks

COMFLG flags 10001101_CZSV_0101 7

31

CP
Compare Register

CP dst, src dst: R

CPB src: R, IR, DA, X

CPL

Operation: dst - src

Flags: C: Set if arithmetic borrow from MSB; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: CP Rd, Rs 10001011_Rsss_Rddd 4

CPB Rbd, Rbs 10001010_Rbss_Rbdd 4

CPL RRd, RRs 10010000_RRss_RRdd 8

IM: CP Rd, #data 00001011_0000_Rddd 7

#data

CPB Rbd, #data 00001010_0000_Rbdd 7

#data | #data

CPL RRd, #data 00010000_0000_RRdd 14

#data (high)

#data (low)

32

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: CP Rd, @Rs 00001011_Rsnz_Rddd 7

CPB Rbd, @Rs 00001010_Rsnz_Rbdd 7

CPL RRd, @Rs 00010000_Rsnz_RRdd 14

DA: CP Rd, address 01001011_0000_Rddd 9

address

CPB Rbd, address 01001010_0000_Rbdd 9

address

CPL RRd, address 01010000_0000_RRdd 15

address

X: CP Rd, addr(Rs) 01001011_Rsnz_Rddd 10

address

CPB Rbd, addr(Rs) 01001010_Rsnz_Rbdd 10

address

CPL RRd, addr(Rs) 01010000_Rsnz_RRdd 16

address

33

CP
Compare Immediate

CP dst, src dst: IR, DA, X

CPB src: IM

Operation: dst - src

Flags: C: Set if arithmetic borrow from MSB; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: CP @Rd, #data 00001101_Rdnz_0001 11

#data

CPB @Rd, #data 00001100_Rdnz_0001 11

#data | #data

DA: CP address, #data 01001101_0000_0001 14

address

#data

CPB address, #data 01001100_0000_0001 14

address

#data | #data

X: CP (addr)Rd, #data 01001101_Rdnz_0001 15

address

#data

CPB (addr)Rd, #data 01001100_Rdnz_0001 15

address

#data | #data

34

CPD
Compare and Decrement

Notes:

1. The C, Z, S and V flags are set as usual by the compare. This flag combination is used by the cc check.
The Z and V flags are subsequently set per the instruction description.

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

CPD dst, src, r, cc dst: R

CPDB src: IR

Operation: dst - src

Rs <= (Word) ? Rs - 2 : Rs - 1

r <= r - 1

Flags: C: Set if arithmetic borrow from MSB for compare; cleared otherwise.

Z: Set if flags match cc after the last compare; cleared otherwise.

S: Set if result is negative for compare; cleared otherwise.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: CPD Rd, @Rs, r, cc 10111011_Rsnz_1000 20

0000_Rrrr_Rddd_cccc

CPDB Rd, @Rs, r, cc 10111010_Rsnz_1000 20

0000_Rrrr_Rddd_cccc

35

CPDR
Compare, Decrement and Repeat

Notes:

1. The C, Z, S and V flags are set as usual by the compare. This flag combination is used by the cc check.
The Z and V flags are subsequently set per the instruction description.

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

4. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

CPDR dst, src, r, cc dst: R

CPDRB src: IR

Operation: dst - src

Rs <= (Word) ? Rs - 2 : Rs - 1

r <= r - 1

repeat until cc is true or r = 0

Flags: C: Set if arithmetic borrow from MSB for the last compare; cleared otherwise.

Z: Set if flags match cc after the last compare; cleared otherwise.

S: Set if result is negative for the last compare; cleared otherwise.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: CPDR Rd, @Rs, r, cc 10111011_Rsnz_1100 11 + 9n

0000_Rrrr_Rddd_cccc

CPDRB Rd, @Rs, r, cc 10111010_Rsnz_1100 11 + 9n

0000_Rrrr_Rddd_cccc

36

CPI
Compare and Increment

Notes:

1. The C, Z, S and V flags are set as usual by the compare. This flag combination is used by the cc check.
The Z and V flags are subsequently set per the instruction description.

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

CPI dst, src, r, cc dst: R

CPIB src: IR

Operation: dst - src

Rs <= (Word) ? Rs + 2 : Rs + 1

r <= r - 1

Flags: C: Set if arithmetic borrow from MSB for the last compare; cleared otherwise.

Z: Set if flags match cc after the last compare; cleared otherwise.

S: Set if result is negative for the last compare; cleared otherwise.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: CPI Rd, @Rs, r, cc 10111011_Rsnz_0000 20

0000_Rrrr_Rddd_cccc

CPIB Rd, @Rs, r, cc 10111010_Rsnz_0000 20

0000_Rrrr_Rddd_cccc

37

CPIR
Compare, Increment and Repeat

Notes:

1. The C, Z, S and V flags are set as usual by the compare. This flag combination is used by the cc check.
The Z and V flags are subsequently set per the instruction description.

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

4. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

CPIR dst, src, r, cc dst: R

CPIRB src: IR

Operation: dst - src

Rs <= (Word) ? Rs + 2 : Rs + 1

r <= r - 1

repeat until cc is true or r = 0

Flags: C: Set if arithmetic borrow from MSB for the last compare; cleared otherwise.

Z: Set if flags match cc after the last compare; cleared otherwise.

S: Set if result is negative for the last compare; cleared otherwise.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: CPIR Rd, @Rs, r, cc 10111011_Rsnz_0100 11 + 9n

0000_Rrrr_Rddd_cccc

CPIRB Rd, @Rs, r, cc 10111010_Rsnz_0100 11 + 9n

0000_Rrrr_Rddd_cccc

38

CPSD
Compare String and Increment

Notes:

1. The C, Z, S and V flags are set as usual by the compare. This flag combination is used by the cc check.
The Z and V flags are subsequently set per the instruction description.

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

CPSD dst, src, r, cc dst: IR

CPSDB src: IR

Operation: dst - src

Rs <= (Word) ? Rs - 2 : Rs - 1

Rd <= (Word) ? Rd - 2 : Rd - 1

r <= r - 1

Flags: C: Set if arithmetic borrow from MSB for the last compare; cleared otherwise.

Z: Set if flags match cc after the last compare; cleared otherwise.

S: Set if result is negative for the last compare; cleared otherwise.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: CPSD @Rd, @Rs, r, cc 10111011_Rsnz_1010 25

0000_Rrrr_Rdnz_cccc

CPSDB @Rd, @Rs, r, cc 10111010_Rsnz_1010 25

0000_Rrrr_Rdnz_cccc

39

CPSDR
Compare String, Decrement and Repeat

Notes:

1. The C, Z, S and V flags are set as usual by the compare. This flag combination is used by the cc check.
The Z and V flags are subsequently set per the instruction description.

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

CPSDR dst, src, r, cc dst: IR

CPSDRB src: IR

Operation: dst - src

Rs <= (Word) ? Rs - 2 : Rs - 1

Rd <= (Word) ? Rd - 2 : Rd - 1

r <= r - 1

repeat until cc is true or r = 0

Flags: C: Set if arithmetic borrow from MSB for the last compare; cleared otherwise.

Z: Set if flags match cc after the last compare; cleared otherwise.

S: Set if result is negative for the last compare; cleared otherwise.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: CPSDR @Rd, @Rs, r, cc 10111011_Rsnz_1110 11 + 14n

0000_Rrrr_Rdnz_cccc

CPSDRB @Rd, @Rs, r, cc 10111010_Rsnz_1110 11 + 14n

0000_Rrrr_Rdnz_cccc

40

Notes (continued):

4. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

41

CPSI
Compare String and Increment

Notes:

1. The C, Z, S and V flags are set as usual by the compare. This flag combination is used by the cc check.
The Z and V flags are subsequently set per the instruction description.

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

CPSI dst, src, r, cc dst: IR

CPSIB src: IR

Operation: dst - src

Rs <= (Word) ? Rs + 2 : Rs + 1

Rd <= (Word) ? Rd + 2 : Rd + 1

r <= r - 1

Flags: C: Set if arithmetic borrow from MSB for the last compare; cleared otherwise.

Z: Set if flags match cc after the last compare; cleared otherwise.

S: Set if result is negative for the last compare; cleared otherwise.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: CPSI @Rd, @Rs, r, cc 10111011_Rsnz_0010 25

0000_Rrrr_Rdnz_cccc

CPSIB @Rd, @Rs, r, cc 10111010_Rsnz_0010 25

0000_Rrrr_Rdnz_cccc

42

CPSIR
Compare String, Increment and Repeat

Notes:

1. The C, Z, S and V flags are set as usual by the compare. This flag combination is used by the cc check.
The Z and V flags are subsequently set per the instruction description.

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

CPSIR dst, src, r, cc dst: IR

CPSIRB src: IR

Operation: dst - src

Rs <= (Word) ? Rs + 2 : Rs + 1

Rd <= (Word) ? Rd + 2 : Rd + 1

r <= r - 1

repeat until cc is true or r = 0

Flags: C: Set if arithmetic borrow from MSB for the last compare; cleared otherwise.

Z: Set if flags match cc after the last compare; cleared otherwise.

S: Set if result is negative for the last compare; cleared otherwise.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: CPSIR @Rd, @Rs, r, cc 10111011_Rsnz_0110 11 + 14n

0000_Rrrr_Rdnz_cccc

CPSIRB @Rd, @Rs, r, cc 10111010_Rsnz_0110 11 + 14n

0000_Rrrr_Rdnz_cccc

43

Notes (continued):

4. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

44

DAB
Decimal Adjust

Notes:

1. This instruction should only be executed on the result of an ADDB, ADCB, SUBB, or SBCB instruction,
and serves to convert the binary result into a BCD number.

2. Bits 3-0 of the opcode are ignored.

3. Note that the sign flag is not really meaningful for a BCD number.

4. The byte and flags are modified according to the table below:

DAB dst dst: R

Operation: dst <= dst + da_value

Flags: C: Set or cleared according to the table in the notes.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: DAB Rbd 10110000_Rbdd_0000 5

45

Notes (continued):

Instruction
C before

DAB
dst[7:4]

before DAB
H before

DAB
dst[3:0]

before DAB
Number

added to dst
C after
DAB

0 0-9 0 0-9 00 0

0 0-8 0 A-F 06 0

0 0-9 1 0-3 06 0

ADDB or ADCB 0 A-F 0 0-9 60 1

0 9-F 0 A-F 66 1

0 A-F 1 0-3 66 1

1 0-2 0 0-9 60 1

1 0-2 0 A-F 66 1

1 0-3 1 0-3 66 1

0 0-9 0 0-9 00 0

SUBB or SBCB 0 0-8 1 6-F FA 0

1 7-F 0 0-9 A0 1

1 6-F 1 6-F 9A 1

46

DEC
Decrement

DEC dst, src dst: R, IR, DA, X

DECB src: IM

Operation: dst <= dst - src (src = 1 to 16, encoded in opcode)

Flags: C: Unaffected.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: DEC Rd, #n 10101011_Rddd_nnnn 4

DECB Rbd, #n 10101010_Rbdd_nnnn 4

IR: DEC @Rd, #n 00101011_Rdnz_nnnn 11

DECB @Rd, #n 00101010_Rdnz_nnnn 11

DA: DEC address, #n 01101011_0000_nnnn 13

address

DECB address, #n 01101010_0000_nnnn 13

address

X: DEC addr(Rd), #n 01101011_Rdnz_nnnn 14

address

DECB addr(Rd), #n 01101010_Rdnz_nnnn 14

address

47

DI
Disable Interrupt

Notes:

1. The interrupt enable bits are updated before the instruction completes, so an interrupt that is asserted
while being disabled by this instruction will not be accepted.

DI int int: VI, NVI

Operation: FCW[12:11] <= FCW[12:11] & inst[1:0]

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DI int 01111100_0000_00VN 7

48

DIV
Divide

DIV dst, src dst: R

DIVL src: R, IM, IR, DA, X

Operation: Word: dst[31:0] / src[15:0]

 dst[31:16] <= remainder

 dst[15:0] <= quotient

Long: dst[63:0] / src[31:0]

 dst[63:32] <= remainder

 dst[31:0] <= quotient

Flags: C: See tables below.

Z: Set if the quotient or divisor is zero; cleared otherwise.

S: See tables below.

V: See tables below.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: DIV RRd, Rs 10011011_Rsss_RRdd 6 + div

DIVL RQd, RRs 10011010_RRss_RQdd 6 + divl

IM: DIV RRd, #data 00011011_0000_RRdd 8 + div

#data

DIVL RQd, #data 00011010_0000_RQdd 11 + div

#data (high)

#data (low)

IR: DIV RRd, @Rs 00011011_Rsnz_RRdd 8 + div

DIVL RQd, @Rs 00011010_Rsnz_RQdd 11 + divl

49

Notes:

1. The Zilog documentation incorrectly describes the condition used to detect overflow for a negative quo-
tient. The Zilog documentation specifies that for DIV a quotient less than -(2^16) is an overflow, but Z8000
devices actually signal overflow if the quotient is less than -(2^16 - 1). In the case of DIVL the documenta-
tion specifies that a quotient less than -(2^32) is an overflow, but Z8000 devices actually signal overflow if
the quotient is less than -(2^32 - 1). The Y8002 design matches the behavior of the Zilog devices.

2. In the case of overflow, the destination register(s) and S flag are undefined. The Y8002 design does not
attempt to match the Z8000 microprocessor’s undefined value for this case, and the Y8002 design always
clears the S flag in this case.

3. All four numbers (divisor, divider, quotient and remainder) are signed twos-complement numbers. The
remainder will always have the same sign as the divisor.

4. The quotient can be a 17-bit number for DIV and a 33-bit number for DIVL. The S flag is the MSB of the
quotient in this case, and can be used to extend the quotient to a full 32 or 64 bits in software. The other flags
indicate whether the S flag is actually needed to represent the number correctly.

5. The execution time and different flag cases for DIV are shown in the table below:

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: DIV RRd, address 01011011_0000_RRdd 10 + div

address

DIVL RQd, address 01011010_0000_RQdd 13 + divl

address

X: DIV RRd, addr(Rs) 01011011_Rsnz_RRdd 11 + div

address

DIVL RQd, addr(Rs) 01011010_Rsnz_RQdd 14 + divl

address

DIV case C Z S V div cycles

1. Quotient is a 16-bit twos-complement number. 0 zero sign 0 86

2. Divisor is zero. The destination register is unchanged in this
case.

0 1 0 1 5

3. Quotient is too large to represent in 17 bits. The destination reg-
ister is undefined in this case.

0 0 0 1 16

4. Quotient is a 17-bit twos-complement number. 1 0 sign 1 86

50

Notes (continued):

6. The execution time and different flag cases for DIVL are shown in the table below:

7. Because the Rs (or RRs) and RRd (or RQd) are used to store intermediate results, they must be separate
and non-overlapping.

DIVL case C Z S V divl cycles

1. Quotient is a 32-bit twos-complement number. 0 zero sign 0 494

2. Divisor is zero. The destination register is unchanged in this
case.

0 1 0 1 8

3. Quotient is too large to represent in 33 bits. The destination reg-
ister is undefined in this case.

0 0 0 1 30

4. Quotient is a 33-bit twos-complement number. 1 0 sign 1 494

51

DJNZ
Decrement and Jump if Not Zero

Notes:

1. The PC used for the address calculation is the PC of the next instruction.

2. The displacement is a 7-bit unsigned number in the range 0 to 127. Thus the destination must be in the
range -252 to +2 from the address of the DJNZ (or DBJNZ) instruction.

DJNZ R,dst dst: RA

DBJNZ

Operation: R <= R - 1

if R != 0 the PC <= PC - (2 x displacement)

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RA: DJNZ R, address 1111Rrrr_1ddd_dddd 11

DBJNZ Rb, address 1111Rrrr_0ddd_dddd 11

52

EI
Enable Interrupt

Notes:

1. The interrupt enable bits are updated before the instruction completes, so an interrupt that is asserted
while being enabled by this instruction will be accepted.

EI int int: VI, NVI

Operation: FCW[12:11] <= FCW[12:11] | ~inst[1:0]

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

EI int 01111100_0000_01VN 7

53

EX
Exchange

EX dst, src dst: R

EXB src: R, IR, DA, X

Operation: tmp <= src

src <= dst

dst <= tmp

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: EX Rd, Rs 10101101_Rsss_Rddd 6

EXB Rbd, Rbs 10101100_Rbss_Rbdd 6

IR: EX Rd, @Rs 00101101_Rsnz_Rddd 12

EXB Rbd, @Rs 00101100_Rsnz_Rbdd 12

DA: EX Rd, address 01101101_0000_Rddd 15

address

EXB Rbd, address 01101100_0000_Rbdd 15

address

X: Ex, Rd, addr(Rs) 01101101_Rsnz_Rddd 16

address

EXB Rbd, addr(Rs) 01101100_Rsnz_Rbdd 16

address

54

EXTS
Extend Sign

EXTSB dst dst: R

EXTS
EXTSL

Operation: Byte: dst[15:8] <= (dst[7]) ? 0xFF : 0x00

Word: dst[31:16] <= (dst[15]) ? 0xFFFF : 0x0000

Long: dst[63:32] <= (dst[31]) ? 0xFFFFFFFF : 0x00000000

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: EXTSB Rd 10110001_Rddd_0000 11

EXTS RRd 10110001_RRdd_1010 11

EXTSL RQd 10110001_RQdd_0111 11

55

HALT
Halt

Notes:

1. Interrupts are sampled once during the initial eight-clock sequence and once during every three-clock
internal operation cycle.

2. If an interrupt is active at the time of the first sample, the instruction executes in eight clock cycles. If an
interrupt is sampled during an internal operation cycle, a subsequent internal operation cycle is performed
before starting the interrupt acknowledge cycle.

HALT

Operation: Halt and wait for interrupt

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

HALT 01111010_0000_0000 8 + 3n

56

(S)IN
(Special) Input

IN dst, src dst: R

INB src: IR, DA

SIN dst, src dst: R

SINB dst, src src: DA

Operation: dst <= src

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: IN Rd, @Rs 00111101_Rsnz_Rddd 10

INB Rbd, @Rs 00111100_Rsnz_Rbdd 10

DA: IN Rd, port 00111011_Rddd_0100 12

port

SIN Rd, port 00111011_Rddd_0101 12

port

INB Rbd, port 00111010_Rbdd_0100 12

port

SINB Rbd, port 00111010_Rbdd_0101 12

port

57

Notes:

1. Data is read from the I/O or Special I/O address space. Only the status code is different between IN and
SIN.

2. I/O reads always have one automatic WAIT state. This is included in the Cycles number above.

58

INC
Increment

INC dst, src dst: R, IR, DA, X

INCB src: IM

Operation: dst <= dst + src (src = 1 to 16, encoded in opcode)

Flags: C: Unaffected.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: INC Rd, #n 10101001_Rddd_nnnn 4

INCB Rbd, #n 10101000_Rbdd_nnnn 4

IR: INC @Rd, #n 00101001_Rdnz_nnnn 11

INCB @Rd, #n 00101000_Rdnz_nnnn 11

DA: INC address, #n 01101001_0000_nnnn 13

address

INCB address, #n 01101000_0000_nnnn 13

address

X: INC addr(Rd), #n 01101001_Rdnz_nnnn 14

address

INCB addr(Rd), #n 01101000_Rdnz_nnnn 14

address

59

(S)IND
(Special) Input and Decrement

Notes:

1. The Z8000 documentation lists the Z flag as undefined. In the Y8002 design this flag is unaffected.

IND dst, src, r, cc dst: IR

INDB src: IR

SIND
SINDB

Operation: dst <= src

Rd <= (Word) ? Rd - 2 : Rd - 1

r <= r - 1

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: IND @Rd, @Rs, r 00111011_Rsnz_1000 21

0000_Rrrr_Rdnz_1000

SIND @Rd, @Rs, r 00111010_Rsnz_1001 21

0000_Rrrr_Rdnz_1000

INDB @Rd, @Rs, r 00111011_Rsnz_1000 21

0000_Rrrr_Rdnz_1000

SINDB @Rd, @Rs, r 00111010_Rsnz_1001 21

0000_Rrrr_Rdnz_1000

60

Notes (continued):

2. Data is read from the I/O or Special I/O address space. Only the status code is different between IND and
SIND.

3. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

4. Bits 15-12 of the second word of the opcode are ignored.

5. Bits 3-0 of the second word of the opcode are actually a condition code. The result of this condition code
check is ORed with the r = 0 check to determine if the instruction is complete. The bit combination 1000 is
the encoding for “True”, making this a non-repeating instruction.

61

(S)INDR
(Special) Input, Decrement and Repeat

Notes:

1. The Z8000 documentation lists the Z flag as undefined. In the Y8002 design this flag is unaffected.

INDR dst, src, r, cc dst: IR

INDRB src: IR

SINDR
SINDRB

Operation: dst <= src

Rd <= (Word) ? Rd - 2 : Rd - 1

r <= r - 1

repeat until r = 0

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: INDR @Rd, @Rs, r 00111011_Rsnz_1000 11 + 10n

0000_Rrrr_Rdnz_0000

SINDR @Rd, @Rs, r 00111010_Rsnz_1001 11 + 10n

0000_Rrrr_Rdnz_0000

INDRB @Rd, @Rs, r 00111011_Rsnz_1000 11 + 10n

0000_Rrrr_Rdnz_0000

SINDR @Rd, @Rs, r 00111010_Rsnz_1001 11 + 10n

0000_Rrrr_Rdnz_0000

62

Notes (continued):

2. Data is read from the I/O or Special I/O address space. Only the status code is different between IND and
SIND.

3. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

4. Bits 15-12 of the second word of the opcode are ignored.

5. Bits 3-0 of the second word of the opcode are actually a condition code. The result of this condition code
check is ORed with the r = 0 check to determine if the instruction is complete. The bit combination 0000 is
the encoding for “False”, making this a repeating instruction.

6. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

63

(S)INI
(Special) Input and Increment

Notes:

1. The Z8000 documentation lists the Z flag as undefined. In the Y8002 design this flag is unaffected.

INI dst, src, r, cc dst: IR

INIB src: IR

SINI
SINIB

Operation: dst <= src

Rd <= (word) ? Rd + 2 : Rd + 1

r <= r - 1

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: INI @Rd, @Rs, r 00111011_Rsnz_0000 21

0000_Rrrr_Rdnz_1000

SINI @Rd, @Rs, r 00111010_Rsnz_0001 21

0000_Rrrr_Rdnz_1000

INIB @Rd, @Rs, r 00111011_Rsnz_0000 21

0000_Rrrr_Rdnz_1000

SINIB @Rd, @Rs, r 00111010_Rsnz_0001 21

0000_Rrrr_Rdnz_1000

64

Notes (continued):

2. Data is read from the I/O or Special I/O address space. Only the status code is different between INI and
SINI.

3. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

4. Bits 15-12 of the second word of the opcode are ignored.

5. Bits 3-0 of the second word of the opcode are actually a condition code. The result of this condition code
check is ORed with the r = 0 check to determine if the instruction is complete. The bit combination 1000 is
the encoding for “True”, making this a non-repeating instruction.

65

(S)INIR
(Special) Input, Increment and Repeat

Notes:

1. The Z8000 documentation lists the Z flag as undefined. In the Y8002 design this flag is unaffected.

INIR dst, src, r, cc dst: IR

INIRB src: IR

SINIR
SINIRB

Operation: dst <= src

Rd <= (Word) ? Rd + 2 : Rd + 1

r <= r - 1

repeat until r = 0

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: INIR @Rd, @Rs, r 00111011_Rsnz_0000 11 + 10n

0000_Rrrr_Rdnz_0000

SINIR @Rd, @Rs, r 00111010_Rsnz_0001 11 + 10n

0000_Rrrr_Rdnz_0000

INIRB @Rd, @Rs, r 00111011_Rsnz_0000 11 + 10n

0000_Rrrr_Rdnz_0000

SINIR @Rd, @Rs, r 00111010_Rsnz_0001 11 + 10n

0000_Rrrr_Rdnz_0000

66

Notes (continued):

2. Data is read from the I/O or Special I/O address space. Only the status code is different between IND and
SIND.

3. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

4. Bits 15-12 of the second word of the opcode are ignored.

5. Bits 3-0 of the second word of the opcode are actually a condition code. The result of this condition code
check is ORed with the r = 0 check to determine if the instruction is complete. The bit combination 0000 is
the encoding for “False”, making this a repeating instruction.

6. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

67

IRET
Interrupt Return

Notes:

1. The identifier that is pushed as part of the interrupt or trap acknowledge cycle is skipped (and thus is
effectively discarded).

IRET

Operation: SP <= SP + 2

FCW <= @SP

SP <= SP + 2

PC <= @SP

SP <= SP + 2

Flags: C: Loaded from stack.

Z: Loaded from stack.

S: Loaded from stack.

V: Loaded from stack.

D: Loaded from stack.

H: Loaded from stack.

Addressing
Modes

Assembly Syntax Encoding Clocks

IRET 01111011_0000_0000 13

68

JP
Jump

Notes:

1. The address loaded into the PC is the address of the destination operand, not the data at the destination
address.

2. In the case of JP cc, @Rd a data (or stack) memory access at the address in Rd is performed but the data is
discarded.

3. The execution time is 7 clocks if cc is false and 10 clocks if cc is true.

JP cc, dst dst: IR, DA, X

Operation: if cc is true: PC <= dst

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: JP cc, @Rd 00011110_Rdnz_cccc 10/7

DA: JP cc, address 01011110_0000_cccc 7

address

X: JP cc, address(Rd) 01011110_Rdnz_cccc 8

address

69

JR
Jump Relative

Notes:

1. The PC used for the address calculation is the PC of the next instruction.

2. The displacement is an 8-bit twos-complement number in the range -128 to +127. Thus the destination
must be in the range -254 to +256 from the address of the JR instruction.

JR cc, dst dst: IR, DA, X

Operation: if cc is true: PC <= PC + (2 x displacement)

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RA: JR cc, address 1110cccc_dddd_dddd 6

70

LD
Load Register

LD dst, src dst: R

LDB src: R, IR, DA, X, BA, BX

LDL

Operation: dst <= src

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LD Rd, Rs 10100001_Rsss_Rddd 3

LDB Rbd, Rbs 10100000_Rbss_Rbdd 3

LDL RRd, RRs 10010100_RRss_RRdd 5

IR: LD Rd, @Rs 00100001_Rsnz_Rddd 7

LDB Rbd, @Rs 00100000_Rsnz_Rbdd 7

LDL RRd, @Rs 00010100_Rsnz_RRdd 11

DA: LD Rd, address 01100001_0000_Rddd 9

address

LDB Rbd, address 01100000_0000_Rbdd 9

address

LDL RRd, address 01010100_0000_RRdd 12

address

71

Notes:

1. In the case of BX addressing only bits 11-8 of the second word of the opcode are used. All other bits in the
second word of the opcode are ignored.

Addressing
Modes

Assembly Syntax Encoding Clocks

X: LD Rd, addr(Rs) 01100001_Rsnz_Rddd 10

address

LDB Rbd, addr(Rs) 01100000_Rsnz_Rbdd 10

address

LDL RRd, addr(Rs) 01010100_Rsnz_RRdd 13

address

BA: LD Rd, Rs(#disp) 00110001_Rsnz_Rddd 14

displacement

LDB Rbd, Rs(#disp) 00110000_Rsnz_Rbdd 14

displacement

LDL RRd, Rs(#disp) 00110101_Rsnz_RRdd 17

displacement

BX: LD Rd, Rs(Rx) 01110001_Rsnz_Rddd 14

0000_Rxxx_0000_0000

LDB Rbd, Rs(Rx) 01110000_Rsnz_Rddd 14

0000_Rxxx_0000_0000

LDL RRd, Rs(Rx) 01110101_Rsnz_RRdd 17

0000_Rxxx_0000_0000

72

LD
Load Memory

LD dst, src dst: IR, DA, X, BA, BX

LDB src: R

LDL

Operation: dst <= src

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LD @Rd, Rs 00101111_Rdnz_Rsss 8

LDB @Rd, Rbs 00101110_Rdnz_Rbss 8

LDL @Rd, RRs 00011101_Rdnz_RRss 11

DA: LD address, Rs 01101111_0000_Rsss 11

address

LDB address, Rbs 01101110_0000_Rbss 11

address

LDL address, RRs 01011101_0000_RRss 14

address

73

Notes:

1. In the case of BX addressing only bits 11-8 of the second word of the opcode are used. All other bits in the
second word of the opcode are ignored.

Addressing
Modes

Assembly Syntax Encoding Clocks

X: LD addr(Rd), Rs 01101111_Rdnz_Rsss 12

address

LDB addr(Rd), Rbs 01101110_Rdnz_Rbss 12

address

LDL addr(Rd), RRs 01011101_Rdnz_RRss 15

address

BA: LD Rd(#disp), Rs 00110011_Rdnz_Rsss 14

displacement

LDB Rd(#disp), Rbs 00110010_Rdnz_Rbss 14

displacement

LDL Rd(#disp), RRs 00110111_Rdnz_RRss 17

displacement

BX: LD Rd(Rx), Rs 01110011_Rdnz_Rsss 14

0000_Rxxx_0000_0000

LDB Rd(Rx), Rbs 01110010_Rdnz_Rbss 14

0000_Rxxx_0000_0000

LDL Rd(Rx), RRs 01110111_Rdnz_RRss 17

0000_Rxxx_0000_0000

74

LD
Load Immediate Value

LD dst, src dst: R, IR, DA, X

LDB src: IM

LDL

Operation: dst <= src

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LD Rd, #data 00100001_0000_Rddd 7

#data

LD Rbd, #data 00100000_0000_Rbdd 7

#data | #data

1100Rbdd_data8data 5

LDL RRd, #data 00010100_0000_RRdd 11

#data (high)

#data (low)

IR: LD @Rd, #data 00001101_Rdnz_0101 11

#data

LDB @Rd, #data 00001100_Rdnz_0101 11

#data | #data

75

Notes:

1. Two formats exist for LDB register. The single-word format executes two clock cycles faster than the
two-word format and will normally be chosen by an assembler.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: LD address, Rs 01001101_0000_0101 14

address

#data

LDB address, Rbs 01001100_0000_0101 14

address

#data | #data

X: LD addr(Rd), Rs 01001101_Rdnz_0101 15

address

#data

LDB addr(Rd), Rbs 01001100_Rdnz_0101 15

address

#data | #data

76

LDA
Load Address

Notes:

1. In the case of BX addressing only bits 11-8 of the second word of the opcode are used. All other bits in the
second word of the opcode are ignored.

2. A data (or stack) memory access at the effective address is performed but the data is discarded.

LDA dst, src dst: R

src: DA, X, BA, BX

Operation: dst <= address of src

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: LDA Rd, address 01110110_0000_Rddd 12

address

X: LDA Rd, addr(Rs) 01110110_Rsnz_Rddd 13

address

BA: LDA Rd, Rs(#disp) 00110100_Rsnz_Rddd 15

displacement

BX: LDA Rd, Rs(Rx) 01110100_Rsnz_Rddd 15

0000_Rxxx_0000_0000

77

LDAR
Load Address Relative

Notes:

1. A program memory access at the effective address is performed but the data is discarded.

LDAR dst, src dst: R

src: RA

Operation: dst <= address of src

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RA: LDAR Rd, address 00110100_0000_Rddd 15

displacement

78

LDCTL
Load Into Control Register

Notes:

1. All unused bits should be written with zeros for compatibility.

LDCTL dst, src dst: control register

src: R

Operation: dst <= src

Flags: C: Loaded from source for FCW destination; unaffected otherwise.

Z: Loaded from source for FCW destination; unaffected otherwise.

S: Loaded from source for FCW destination; unaffected otherwise.

V: Loaded from source for FCW destination; unaffected otherwise.

D: Loaded from source for FCW destination; unaffected otherwise.

H: Loaded from source for FCW destination; unaffected otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LDCTL FCW, Rs 01111101_Rsss_1010 7

LDCTL REFRESH,Rs 01111101_Rsss_1011 7

LDCTL NSP,Rs 01111101_Rsss_1111 7

LDCTL PSAP, Rs 01111101_Rsss_1101 7

79

LDCTL
Load From Control Register

Notes:

1. All unused FCW bits return zeros.

LDCTL dst, src dst: R

src: control register

Operation: dst <= src

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LDCTL Rd, FCW 01111101_Rddd_0010 7

LDCTL Rd,REFRESH 01111101_Rddd_0011

LDCTL Rd,NSP 01111101_Rddd_0111

LDCTL Rd, PSAP 01111101_Rddd_0101 7

80

LDCTLB
Load Into Flags Register

Notes:

1. All unused bits should be written with zeros for compatibility.

LDCTL dst, src dst: flags

src: R

Operation: dst <= src

Flags: C: Loaded from source.

Z: Loaded from source.

S: Loaded from source.

V: Loaded from source.

D: Loaded from source.

H: Loaded from source.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LDCTLB FCW, Rbs 10001100_Rbss_1001 7

81

LDCTLB
Load From Flags Register

Notes:

1. All unused FLAGS bits return zeros.

LDCTLB dst, src dst: R

src: flags

Operation: dst <= src

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LDCTBL Rbd, FLAGS 10001100_Rbdd_0001 7

82

LDD
Load and Decrement

Notes:

1. The Z8000 documentation lists the Z flag as undefined, but actually it operates identically to the V flag.
The Y8002 design matches this behavior.

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

4. Bits 3-0 of the second word of the opcode are actually a condition code. The result of this condition code
check is ORed with the r = 0 check to determine if the instruction is complete. The bit combination 1000 is
the encoding for “True”, making this a non-repeating instruction.

LDD dst, src, r, cc dst: IR

LDDB src: IR

Operation: dst <= src

Rs <= (Word) ? Rs - 2 : Rs - 1

Rd <= (Word) ? Rd - 2 : Rd - 1

r <= r - 1

Flags: C: Unaffected.

Z: Set if r is zero after the decrement; cleared otherwise.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LDD @Rd, @Rs, r 10111011_Rsnz_1001 20

0000_Rrrr_Rdnz_1000

LDDB @Rd, @Rs, r 10111010_Rsnz_1001 20

0000_Rrrr_Rdnz_1000

83

LDDR
Load, Increment and Repeat

Notes:

1. The Z8000 documentation lists the Z flag as undefined, but actually it operates identically to the V flag.
The Y8002 design matches this behavior.

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

LDDR dst, src, r, cc dst: IR

LDDRB src: IR

Operation: dst <= src

Rs <= (Word) ? Rs -2 : Rs -1

Rd <= (Word) ? Rd - 2 : Rd - 1

r <= r - 1

repeat until r = 0

Flags: C: Unaffected.

Z: Set if r is zero after the decrement; cleared otherwise.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LDDR @Rd, @Rs, r 10111011_Rsnz_1001 11 + 9n

0000_Rrrr_Rdnz_0000

LDDRB @Rd, @Rs, r 10111010_Rsnz_1001 11 + 9n

0000_Rrrr_Rdnz_0000

84

Notes (continued):

4. Bits 3-0 of the second word of the opcode are actually a condition code. The result of this condition code
check is ORed with the r = 0 check to determine if the instruction is complete. The bit combination 0000 is
the encoding for “False”, making this a repeating instruction.

4. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

85

LDI
Load and Increment

Notes:

1. The Z8000 documentation lists the Z flag as undefined, but actually it operates identically to the V flag.
The Y8002 design matches this behavior.

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

4. Bits 3-0 of the second word of the opcode are actually a condition code. The result of this condition code
check is ORed with the r = 0 check to determine if the instruction is complete. The bit combination 1000 is
the encoding for “True”, making this a non-repeating instruction.

LDI dst, src, r, cc dst: IR

LDIB src: IR

Operation: dst <= src

Rs <= (Word) ? Rs + 2 : Rs + 1

Rd <= (Word) ? Rd + 2 : Rd + 1

r <= r - 1

Flags: C: Unaffected.

Z: Set if r is zero after the decrement; cleared otherwise.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LDI @Rd, @Rs, r 10111011_Rsnz_0001 20

0000_Rrrr_Rdnz_1000

LDIB @Rd, @Rs, r 10111010_Rsnz_0001 20

0000_Rrrr_Rdnz_1000

86

LDIR
Load, Increment and Repeat

Notes:

1. The Z8000 documentation lists the Z flag as undefined, but actually it operates identically to the V flag.
The Y8002 design matches this behavior.

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

LDIR dst, src, r, cc dst: IR

LDIRB src: IR

Operation: dst <= src

Rs <= (Word) ? Rs + 2 : Rs + 1

Rd <= (Word) ? Rd + 2 : Rd + 1

r <= r - 1

repeat until r = 0

Flags: C: Unaffected.

Z: Set if r is zero after the decrement; cleared otherwise.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LDIR @Rd, @Rs, r 10111011_Rsnz_0001 11 + 9n

0000_Rrrr_Rdnz_0000

LDIRB @Rd, @Rs, r 10111010_Rsnz_0001 11 + 9n

0000_Rrrr_Rdnz_0000

87

Notes (continued):

4. Bits 3-0 of the second word of the opcode are actually a condition code. The result of this condition code
check is ORed with the r = 0 check to determine if the instruction is complete. The bit combination 0000 is
the encoding for “False”, making this a repeating instruction.

4. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

88

LDK
Load Constant

LDK dst, src dst: R

src: IM

Operation: dst <= src (src = 0 to 15)

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LDK Rd, #data 10111101_Rddd_dddd 5

89

LDM
Load Multiple - Registers From Memory

Notes:

1. Registers are loaded starting with Rd and increasing. R0 follows R15 in the case of a wrap-around.

2. There are no restrictions on the Rd and Rs registers.

3. Bits 15-12 and 7-4 of the second word of the opcode are ignored.

LDM dst, src, n dst: R

src: IR, DA, X

Operation: dst <= src (n words)

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LDM Rd, @Rs, #n 00011100_Rsnz_0001 11 + 3n

0000_Rddd_0000_nnnn

DA: LDM Rd, address, #n 01011100_0000_0001 14 + 3n

0000_Rddd_0000_nnnn

address

X: LDM Rd, addr(Rs), #n 01011100_Rsnz_0001 15 + 3n

0000_Rddd_0000_nnnn

address

90

LDM
Load Multiple - Memory From Registers

Notes:

1. Registers are stored starting with Rd and increasing. R0 follows R15 in the case of a wrap-around.

2. There are no restrictions on the Rd and Rs registers.

3. Bits 15-12 and 7-4 of the second word of the opcode are ignored.

LDM dst, src, n dst: IR, DA, X

src: R

Operation: dst <= src (n words)

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LDM @Rd, Rs, #n 00011100_Rdnz_1001 11 + 3n

0000_Rsss_0000_nnnn

DA: LDM address, Rs, #n 01011100_0000_1001 14 + 3n

0000_Rsss_0000_nnnn

address

X: LDM addr(Rd), Rs, #n 01011100_Rdnz_1001 15 + 3n

0000_Rsss_0000_nnnn

address

91

LDPS
Load Program Status

LDPS src src: IR, DA, X

Operation: PS <= src (FCW from src address, PC from subsequent address)

Flags: C: Loaded from src.

Z: Loaded from src.

S: Loaded from src.

V: Loaded from src.

D: Loaded from src.

H: Loaded from src.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LDPS @Rs 00111001_Rsnz_0000 12

DA: LDPS address 01111001_0000_0000 16

address

X: LDPS addr(Rs) 01111001_Rsnz_0000 17

address

92

LDR
Load Relative Register

Notes:

1. The PC used for the address calculation is the PC of the next instruction.

2. The displacement is a 16-bit twos-complement number in the range -32768 to +32767. Thus the source
must be in the range -32766 to +32769 from the address of the LDR instruction.

3. Data is read from the program address space.

LDR dst, src dst: R

LDRB src: RA

LDRL

Operation: dst <= src

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RA: LDR Rd, address 00110001_0000_Rddd 14

displacement

LDRB Rbd, address 00110000_0000_Rbdd 14

displacement

LDRL RRd, address 00110101_0000_RRdd 17

displacement

93

LDR
Load Relative Memory

Notes:

1. The PC used for the address calculation is the PC of the next instruction.

2. The displacement is a 16-bit twos-complement number in the range -32768 to +32767. Thus the destina-
tion must be in the range -32766 to +32769 from the address of the LDR instruction.

3. Data is read from the program address space.

LDR dst, src dst: RA

LDRB src: R

LDRL

Operation: dst <= src

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RA: LDR address, Rs 00110011_0000_Rsss 14

displacement

LDRB address, Rbs 00110010_0000_Rbss 14

displacement

LDRL address, RRs 00110111_0000_RRss 17

displacement

94

MBIT
Multi-Micro Bit Test

Notes:

1. The MIB input is sampled during the T1 state of this instruction.

MBIT

Operation: FCW[5] <= MIB

Flags: C: Unaffected.

Z: Unaffected.

S: Set if MIB is High, cleared otherwise.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

MBIT 01111011_0000_1010 7

95

MREQ
Multi-Micro Request

Notes:

1. Rd is unchanged if no request was signalled, and zero if a request was signalled.

2. This instruction is not interruptible and can take a long time to execute if the value in Rd is very big.

MREQ dst dst: R

Operation: if (!MIB) begin

 FCW[6:5] <= 0x00 //request not signalled

 MOB <= 1

 end

else begin

 MOB <= 0

 dst <= dst - 1; repeat until dst = 0

 if (!MIB) begin

 FCW[6:5] <= 0x11 //request granted

 end

 else begin

 FCW[6:5] <= 0x10 //request not granted

 MOB <= 1

 end

 end

Flags: C: Unaffected.

Z: Set if request was signalled; cleared otherwise.

S: Set if request was signalled and granted; cleared otherwise.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

MREQ Rd 01111011_Rddd_1101 12 + 7n

96

MRES
Multi-Micro Reset

Notes:

1. The MOB output changes state on the instruction boundary.

MRES

Operation: MOB <= High

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

MRES 01111011_0000_1001 5

97

MSET
Multi-Micro Set

Notes:

1. The MOB output changes state on the instruction boundary.

MSET

Operation: MOB <= Low

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

MSET 01111011_0000_1000 5

98

MULT
Multiply

MULT dst, src dst: R

MULTL src: R, IM, IR, DA, X

Operation: Word: dst[31:0] <= dst[15:0] x src[15:0]

Long: dst[63:0] <= dst[31:0] x src[31:0]

Flags: C: See tables below.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Cleared.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: MULT RRd, Rs 10011001_Rsss_RRdd 6 + mult

MULTL RQd, RRs 10011000_RRss_RQdd 6 + multl

IM: MULT RRd, #data 00011001_0000_RRdd 8 + mult

#data

MULTL RQd, #data 00011000_0000_RQdd 11 + multl

#data (high)

#data (low)

IR: MULT RRd, @Rs 00011001_Rsnz_RRdd 8 + mult

MULTL RQd, @Rs 00011000_Rsnz_RQdd 11 + multl

DA: MULT RRd, address 01011001_0000_RRdd 10 + mult

address

MULTL RQd, address 01011000_0000_RQdd 13 + mult

address

99

Notes:

1. All three numbers (multiplicand, multiplier and product) are signed twos-complement numbers.

2. The execution time and different C flag cases for MULT are shown in the table below:

4.The execution time and different C flag cases for MULTL are shown in the table below:

5. The execution time for MULTL is data-dependent. The m in the table below is the number of ones in the
absolute value of the multiplicand (dst[31:0]).

5. Because RRd (or RQd) and Rs (or RRs) are used to store intermediate results, they must be separate and
non-overlapping.

Addressing
Modes

Assembly Syntax Encoding Clocks

X: MULT RRd, addr(Rs) 01011001_Rsnz_RRdd 11 + mult

address

MULTL RQd, addr(Rs) 01011000_Rsnz_RQdd 14 + multl

address

MULT case C mult cycles

1. Product requires 32 bits. 1 63

2. Product is zero. 0 9

3. Product can be represented in 16 bits. Most significant word is merely sign-
extension data.

0 63

MULTL case C multl cycles

1. Product requires 64 bits. 1 252 + 4m

2. Product is zero. 0 15

3. Product can be represented in 32 bits. Most significant two words are merely
sign-extension data.

0 252 + 4m

100

NEG
Negate

NEG dst dst: R, IR, DA, X

NEGB

Operation: dst <= 0 - dst

Flags: C: Set if result is zero; cleared otherwise (indicating borrow).

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: NEG Rd 10001101_Rddd_0010 7

NEGB Rbd 10001100_Rbdd_0010 7

IR: NEG @Rd 00001101_Rdnz_0010 12

NEGB @Rd 00001100_Rdnz_0010 12

DA: NEG address 01001101_0000_0010 15

address

NEGB address 01001100_0000_0010 15

address

X: NEG addr(Rd) 01001101_Rdnz_0010 16

address

NEGB addr(Rd) 01001100_Rdnz_0010 16

address

101

NOP
No operation

NOP

Operation: none

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

NOP 10001101_0000_0111 7

102

OR
Logical OR

OR dst, src dst: R

ORB src: R, IM, IR, DA, X

Operation: dst <= dst | src

Flags: C: Unaffected.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if result parity is even; cleared otherwise (ORB);
 Unaffected (OR).

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: OR Rd, Rs 10000101_Rsss_Rddd 4

ORB Rbd, Rbs 10000100_Rbss_Rbdd 4

IM: OR Rd, #data 00000101_0000_Rddd 7

#data

ORB Rbd, #data 00000100_0000_Rbdd 7

#data | #data

IR: OR Rd, @Rs 00000101_Rsnz_Rddd 7

ORB Rbd, @Rs 00000100_Rsnz_Rbdd 7

DA: OR Rd, address 01000101_0000_Rddd 9

address

ORB Rbd, address 01000100_0000_Rbdd 9

address

103

Addressing
Modes

Assembly Syntax Encoding Clocks

X: OR Rd, addr(Rs) 01000101_Rsnz_Rddd 10

address

ORB Rbd, addr(Rs) 01000100_Rsnz_Rbdd 10

address

104

(S)OTDR
(Special) Output, Decrement and Repeat

Notes:

1. The Z8000 documentation lists the Z flag as undefined. In the Y8002 design this flag is unaffected.

OTDR dst, src, r dst: IR

OTDRB src: IR

SOTDR
SOTDRB

Operation: dst <= src

Rs <= (Word) ? Rs -2 : Rs -1

r <= r - 1

repeat until r = 0

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: OTDR @Rd, @Rs, r 00111011_Rsnz_1010 11 + 10n

0000_Rrrr_Rdnz_0000

SOTDR @Rd, @Rs, r 00111011_Rsnz_1011 11 + 10n

0000_Rrrr_Rdnz_0000

OTDRB @Rd, @Rs, r 00111010_Rsnz_1010

0000_Rrrr_Rdnz_0000 11 + 10n

SOTDRB @Rd, @Rs, r 00111010_Rsnz_1011 11 + 10n

0000_Rrrr_Rdnz_0000

105

Notes (continued):

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

4. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

5. Bits 3-0 of the second word of the opcode are actually a condition code. The result of this condition code
check is ORed with the r = 0 check to determine if the instruction is complete. The bit combination 0000 is
the encoding for “False”, making this a repeating instruction.

106

(S)OTIR
(Special) Output, Increment and Repeat

Notes:

1. The Z8000 documentation lists the Z flag as undefined. In the Y8002 design this flag is unaffected.

OTIR dst, src, r dst: IR

OTIRB src: IR

SOTIR
SOTIRB

Operation: dst <= src

Rs <= (Word) ? Rs + 2 : Rs + 1

r <= r - 1

repeat until r = 0

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: OTIR @Rd, @Rs, r 00111011_Rsnz_0010 11 + 10n

0000_Rrrr_Rdnz_0000

SOTIR @Rd, @Rs, r 00111011_Rsnz_0011 11 + 10n

0000_Rrrr_Rdnz_0000

OTIRB @Rd, @Rs, r 00111010_Rsnz_0010

0000_Rrrr_Rdnz_0000 11 + 10n

SOTIRB @Rd, @Rs, r 00111010_Rsnz_0011 11 + 10n

0000_Rrrr_Rdnz_0000

107

Notes (continued):

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

4. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

5. Bits 3-0 of the second word of the opcode are actually a condition code. The result of this condition code
check is ORed with the r = 0 check to determine if the instruction is complete. The bit combination 0000 is
the encoding for “False”, making this a repeating instruction.

108

(S)OUT
(Special) Output

OUT dst, src dst: IR, DA

OUTB src: R

SOUT dst, src dst: DA

SOUTB src: R

Operation: dst <= src

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: OUT @Rd, Rs 00111111_Rdnz_Rsss 10

OUTB @Rd, Rbs 00111110_Rdnz_Rbss 10

DA: OUT port, Rst 00111011_Rsss_0110 12

port

SOUT port, Rst 00111011_Rsss_0111 12

port

OUTB port, Rbs 00111010_Rsss_0110 12

port

SOUTB port, Rbs 00111010_Rsss_0111 12

port

109

Notes:

1. The Z8000 documentation lists the Z flag as undefined. In the Y8002 design this flag is unaffected.

2. Data is written to the I/O or Special I/O address space. Only the status code is different between OUT and
SOUT.

3. I/O writes always have one automatic WAIT state. This is included in the Cycles number above.

110

(S)OUTD
(Special) Output and Decrement

Notes:

1. The Z8000 documentation lists the Z flag as undefined. In the Y8002 design this flag is unaffected.

OUTD dst, src, r dst: IR

OUTDB src: IR

SOUTD
SOUTDB

Operation: dst <= src

Rs <= (Word) ? Rs - 2 : Rs - 1

r <= r - 1

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: OUTD @Rd, @Rs, r 00111011_Rsnz_1010 21

0000_Rrrr_Rdnz_1000

SOUTD @Rd, @Rs, r 00111011_Rsnz_1011 21

0000_Rrrr_Rdnz_1000

OUTDB @Rd, @Rs, r 00111010_Rsnz_1010 21

0000_Rrrr_Rdnz_1000

SOUTDB @Rd, @Rs, r 00111010_Rsnz_1011 21

0000_Rrrr_Rdnz_1000

111

Notes (continued):

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

4. Bits 3-0 of the second word of the opcode are actually a condition code. The result of this condition code
check is ORed with the r = 0 check to determine if the instruction is complete. The bit combination 1000 is
the encoding for “True”, making this a non-repeating instruction.

112

(S)OUTI
(Special) Output and Increment

Notes:

1. The Z8000 documentation lists the Z flag as undefined. In the Y8002 design this flag is unaffected.

OUTI dst, src, r dst: IR

OUTIB src: IR

SOUTI
SOUTIB

Operation: dst <= src

Rs <= (Word) Rs + 2 : Rs + 1

r <= r - 1

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: OUTI @Rd, @Rs, r 00111011_Rsnz_0010 21

0000_Rrrr_Rdnz_1000

SOUTI @Rd, @Rs, r 00111011_Rsnz_0011 21

0000_Rrrr_Rdnz_1000

OUTIB @Rd, @Rs, r 00111010_Rsnz_0010 21

0000_Rrrr_Rdnz_1000

SOUTIB @Rd, @Rs, r 00111010_Rsnz_0011 21

0000_Rrrr_Rdnz_1000

113

Notes (continued):

2. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

3. Bits 15-12 of the second word of the opcode are ignored.

4. Bits 3-0 of the second word of the opcode are actually a condition code. The result of this condition code
check is ORed with the r = 0 check to determine if the instruction is complete. The bit combination 1000 is
the encoding for “True”, making this a non-repeating instruction.

114

POP
Pop

POP dst, src dst: R, IR, DA, X

POPL src: IR

Operation: dst <= src

Rs <= (Long) ? Rs + 4 : Rs + 2

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: POP Rd, @Rs 10010111_Rsnz_Rddd 8

POPL RRd, @Rs 10010101_Rsnz_RRdd 12

IR: POP @Rd, @Rs 00010111_Rsnz_Rdnz 12

POPL @Rd, @Rs 00010101_Rsnz_Rdnz 19

DA: POP address, @Rs 01010111_Rsnz_0000 16

address

POPL address, @Rs 01010101_Rsnz_0000 23

address

X: POP addr(Rd), @Rs 01010111_Rsnz_Rdnz 16

address

POPL addr(Rd), @Rs 01010101_Rsnz_Rdnz 23

address

115

Notes:

1. R0 cannot be used as a stack pointer. This limitation comes about because of the instruction encoding
rules.

2. Because the Rd and Rs registers are changed by the instruction, they must be separate and non-overlap-
ping.

116

PUSH
Push

PUSH dst, src dst: IR

PUSHL src: R, IM, IR, DA, X

Operation: tmp <= src

Rd <= (Long) ? Rd - 4 : Rd - 2

dst <= tmp

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: PUSH @Rd, Rs 10010011_Rdnz_Rsss 9

PUSHL @Rd, RRs 10010001_Rdnz_RRss 12

IM: PUSH @Rd, #data 00001101_Rdnz_1001 12

#data

IR: PUSH @Rd, @Rs 00010011_Rdnz_Rsnz 13

PUSHL @Rd, @Rs 00010001_Rdnz_Rsnz 20

DA: PUSH @Rd, address 01010011_Rdnz_0000 14

address

PUSHL @Rd, address 01010001_Rdnz_0000 21

address

117

Notes:

1. R0 cannot be used as a stack pointer. This limitation comes about because of the instruction encoding
rules.

2. The Z8000 documentation states that the Rs and Rd registers must be separate and non-overlapping for
PUSHL. This restriction is not present in the Y8002 design.

Addressing
Modes

Assembly Syntax Encoding Clocks

X: PUSH @Rd, addr(Rs) 01010011_Rdnz_Rsnz 14

address

PUSHL @Rd, addr(Rs) 01010001_Rdnz_Rsnz 21

address

118

RES
Reset Bit Static

RES dst, src dst: R, IR, DA, X

RESB src: IM

Operation: dst[src] <= 0

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RES Rd, #b 10100011_Rddd_bbbb 4

RESB Rbd, #b 10100010_Rbdd_0bbb 4

IR: RES @Rd, #b 00100011_Rdnz_bbbb 11

RESB @Rd, #b 00100010_Rdnz_0bbb 11

DA: RES address, #b 01100011_0000_bbbb 13

address

RESB address, #b 01100010_0000_0bbb 13

address

X: RES addr(Rd), #b 01100011_Rdnz_bbbb 14

address

RESB addr(Rd), #b 01100010_Rdnz_0bbb 14

address

119

Notes:

1. Only bits 2-0 of the opcode are used to select the bit in the case of RESB, and bit 3 of the opcode is
ignored.

120

RES
Reset Bit Dynamic

Notes:

1. The Z8000 microprocessor restricts the source register to be one of R0 - R7 for RESB. This restriction
does not apply to the Y8002 design. Any register may be used as the source.

2. Only bits 3-0 of the source operand are used for the bit select for RES; only bits 2-0 of the source operand
are used for the bit select for RESB.

3. Only bits 11-8 of the second word of the opcode are used. All other bits in the second word of the opcode
are ignored.

RES dst, src dst: R

RESB src: R

Operation: dst[src] <= 0

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RES Rd, Rs 00100011_0000_Rsss 10

0000_Rddd_0000_0000

RESB Rbd, Rs 00100010_0000_Rsss 10

0000_Rbdd_0000_0000

121

RESFLG
Reset Flag

RESFLG flags flag: C, Z, S, P, V

Operation: FCW[7:4] <= FCW[7:4] & ~inst[7:4]

Flags: C: Cleared if specified; unaffected otherwise.

Z: Cleared if specified; unaffected otherwise.

S: Cleared if specified; unaffected otherwise.

V: Cleared if specified; unaffected otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RESFLG flags 10001101_CZSV_0011 7

122

RET
Return

Notes:

1. The execution time is 7 clocks if cc is false and 10 clocks if cc is true.

RET cc

Operation: if cc is true: PC <= @SP

SP <= SP + 2

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RET cc 10011110_0000_cccc 10/7

123

RL
Rotate Left

RL dst, src dst: R

RLB src: IM

Operation: Word: {C, dst[15:0]} <= {dst[15:0], dst[15]}; repeat if by 2

Byte: {C, dst[7:0]} <= {dst[7:0], dst[7]}; repeat if by 2

Flags: C: Set if carry from MSB for last rotate; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow during rotate; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RL Rd, #1 10110011_Rddd_0000 6

RL Rd, #2 10110011_Rddd_0010 7

RLB Rbd, #1 10110010_Rbdd_0000 6

RLB Rbd, #2 10110010_Rbdd_0010 7

124

RLC
Rotate Left through Carry

RLC dst, src dst: R

RLCB src: IM

Operation: Word: {C, dst[15:0]} <= {dst[15:0], C}; repeat if by 2

Byte: {C, dst[7:0]} <= {dst[7:0], C}; repeat if by 2

Flags: C: Set if carry from MSB for last rotate; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow during rotate; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RLC Rd, #1 10110011_Rddd_1000 6

RLC Rd, #2 10110011_Rddd_1010 7

RLCB Rbd, #1 10110010_Rbdd_1000 6

RLCB Rbd, #2 10110010_Rbdd_1010 7

125

RLDB
Rotate Left Digit

RLDB dst, src dst: R

src: R

Operation: {dst[7:0], src[7:0]} <= {dst[7:4], src[7:0], dst[3:0]};

Flags: C: Unaffected.

Z: Set if dst is zero after rotate; cleared otherwise.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RLDB Rbd, Rbs 10111110_Rbss_Rbdd 9

126

RR
Rotate Right

RRC dst, src dst: R

RRCB src: IM

Operation: Word: {dst[15:0], C} <= {dst[0], dst[15:0]}; repeat if by 2

Byte: {dst[7:0], C} <= {dst[0], dst[7:0]}; repeat if by 2

Flags: C: Set if carry from LSB for last rotate; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow during rotate; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RR Rd, #1 10110011_Rddd_0100 6

RR Rd, #2 10110011_Rddd_0110 7

RRB Rbd, #1 10110010_Rbdd_0100 6

RRB Rbd, #2 10110010_Rbdd_0110 7

127

RRC
Rotate Right through Carry

RRC dst, src dst: R

RRCB src: IM

Operation: Word: {dst[15:0], C} <= {C, dst[15:0]}; repeat if by 2

Byte: {dst[7:0], C} <= {C, dst[7:0]}; repeat if by 2

Flags: C: Set if carry from LSB for last rotate; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow during rotate; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RRC Rd, #1 10110011_Rddd_1100 6

RRC Rd, #2 10110011_Rddd_1110 7

RRCB Rbd, #1 10110010_Rbdd_1100 6

RRCB Rbd, #2 10110010_Rbdd_1110 7

128

RRDB
Rotate Right Digit

RLDB dst, src dst: R

src: R

Operation: {dst[7:0], src[7:0]} <= {dst[7:4], src[3:0], dst[3:0], src[7:4]};

Flags: C: Unaffected.

Z: Set if dst is zero after rotate; cleared otherwise.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RRDB Rbd, Rbs 10111100_Rbss_Rbdd 9

129

SBC
Subtract With Carry

SBC dst, src dst: R

SBCB src: R

Operation: dst <= dst - src - C

Flags: C: Cleared if arithmetic carry from result MSB; set otherwise, indicating borrow.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow; cleared otherwise.

D: Set (SBCB);
 Unaffected (SBC).

H: Cleared if arithmetic carry from bit 3; set otherwise, indicating borrow (SBCB);
 Unaffected (SBC).

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SBC Rd, Rs 10110111_Rsss_Rddd 5

SBCB Rbd, Rbs 10110110_Rbss_Rbdd 5

130

SC
System Call

Notes:

1. Bits 7-0 of the opcode can be used by the trap handler software to encode the type of System Call being
requested. The entire opcode is pushed onto the system stack.

2. Version 1 of the Y8002 uses the System Call entry in the Program Status Area for all Unimplemented and
Reserved opcodes. All of these opcodes can be distinguished from an actual System Call by inspecting the
opcode word pushed onto the system stack. Refer to the appropriate Appendix for a list of all Unimple-
mented and Reserved opcodes.

SC src src: IM

Operation: SP <= SP - 2

@SP <= PC

SP <= SP - 2

@SP <= FCW

SP <= SP - 2

@SP <= inst

FCW <= @{PSAP, 0x0C}

PC <= @{PSAP, 0x0E}

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IM: SC #src 01111111_ssssrccc 33

131

SDA
Shift Dynamic Arithmetic

SDA dst, src dst: R

SDAB src: R

SDAL

Operation: src zero:

 Word: {C, dst[15:0]} <= {C, dst[15:0]}

 Byte: {C, dst[7:0]} <= {C, dst[7:0]}

 Long: {C, dst[31:0]} <= {C, dst[31:0]}

src positive:

 Word: (do src times): {C, dst[15:0]} <= {dst[15:0], 0}

 Byte: (do src times): {C, dst[7:0]} <= {dst[7:0], 0}

 Long: (do src times): {C, dst[31:0]} <= {dst[31:0], 0}

src negative:

 Word: (do src times): {dst[15:0], C} <= {dst[15], dst[15:0]}

 Byte: (do src times): {dst[7:0], C} <= {dst[7], dst[7:0]}

 Long: (do src times): {dst[31:0], C} <= {dst[31], dst[31:0]}

Flags:
C: Unaffected (src zero, Long only); set if carry from LSB (src negative) or
 MSB (src positive) on last shift; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow during shift; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SDA Rd, Rs 10110011_Rddd_1011 15 + 3n

0000_Rsss_0000_0000

SDAB Rbd, Rs 10110010_Rbdd_1011 15 + 3n

0000_Rsss_0000_0000

SDAL RRd, Rs 10110011_RRdd_1111 15 + 3n

0000_Rsss_0000_0000

132

Notes:

1. The Z8000 documentation lists the C flag as undefined for zero shift. In fact it is always cleared for Byte
or Word shifts of zero bit positions, and unaffected for a Long shift of zero bit positions. The Y8002 design
matches this behavior

2. The shift count should be restricted to range from -16 to 16 for SDA, from -8 to 8 for SDAB and from -32
to 32 for SDAL. However, the entire 16-bit value in the src register is used as the starting count for the shift,
so values outside of these ranges will still execute.

3. Only bits 11-8 of the second word of the opcode are used. All other bits in the second word of the opcode
are ignored.

133

SDL
Shift Dynamic Logical

SDL dst, src dst: R

SDLB src: R

SDLL

Operation: src zero:

 Word: {C, dst[15:0]} <= {C, dst[15:0]}

 Byte: {C, dst[7:0]} <= {C, dst[7:0]}

 Long: {C, dst[31:0]} <= {C, dst[31:0]}

src positive:

 Word: (do src times): {C, dst[15:0]} <= {dst[15:0], 0}

 Byte: (do src times): {C, dst[7:0]} <= {dst[7:0], 0}

 Long: (do src times): {C, dst[31:0]} <= {dst[31:0], 0}

src negative:

 Word: (do src times): {dst[15:0], C} <= {0, dst[15:0]}

 Byte: (do src times): {dst[7:0], C} <= {0, dst[7:0]}

 Long: (do src times): {dst[31:0], C} <= {0, dst[31:0]}

Flags:
C: Unaffected (src zero); set if carry from LSB (src negative) or MSB (src positive) on
 last shift; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow during shift; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SDL Rd, Rs 10110011_Rddd_0011 15 + 3n

0000_Rsss_0000_0000

SDLB Rbd, Rs 10110010_Rbdd_0011 15 + 3n

0000_Rsss_0000_0000

SDLL RRd, Rs 10110011_RRdd_0111 15 + 3n

0000_Rsss_0000_0000

134

Notes:

1. The Z8000 documentation lists the V flag as undefined. In fact it signals arithmetic overflow, even though
this is a logical operation. The Y8002 design matches this behavior.

1. The Z8000 documentation lists the C flag as undefined for zero shift. In fact it is always cleared for Byte
or Word shifts of zero bit positions, and unaffected for a Long shift of zero bit positions. The Y8002 design
matches this behavior

3. The shift count should be restricted to range from -16 to 16 for SDL, from -8 to 8 for SDLB and from -32
to 32 for SDLL. However, the entire 16-bit value in the src register is used as the starting count for the shift,
so values outside of these ranges will still execute.

4. Only bits 11-8 of the second word of the opcode are used. All other bits in the second word of the opcode
are ignored.

135

SET
Set Bit Static

SET dst, src dst: R, IR, DA, X

SETB src: IM

Operation: dst[src] <= 1

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SET Rd, #b 10100101_Rddd_bbbb 4

SETB Rbd, #b 10100100_Rbdd_0bbb 4

IR: SET @Rd, #b 00100101_Rdnz_bbbb 11

SETB @Rd, #b 00100100_Rdnz_0bbb 11

DA: SET address, #b 01100101_0000_bbbb 13

address

SETB address, #b 01100100_0000_0bbb 13

address

X: SET addr(Rd), #b 01100101_Rdnz_bbbb 14

address

SETB addr(Rd), #b 01100100_Rdnz_0bbb 14

address

136

Notes:

1. Only bits 2-0 of the opcode are used to select the bit in the case of SETB, and bit 3 of the opcode is
ignored.

137

SET
Set Bit Dynamic

Notes:

1. The Z8000 microprocessor restricts the source register to be one of R0 - R7 for SETB. This restriction
does not apply to the Y8002 design. Any register may be used as the source.

1. Only bits 3-0 of the source operand are used for the bit select for SET; only bits 2-0 of the source operand
are used for the bit select for SETB.

2. Only bits 11-8 of the second word of the opcode are used. All other bits in the second word of the opcode
are ignored.

SET dst, src dst: R

SETB src: R

Operation: dst[src] <= 1

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SET Rd, Rs 00100101_0000_Rsss 10

0000_Rddd_0000_0000

SETB Rbd, Rs 00100100_0000_Rsss 10

0000_Rbdd_0000_0000

138

SETFLG
Set Flag

SETFLG flags flag: C, Z, S, P, V

Operation: FCW[7:4] <= FCW[7:4] | inst[7:4]

Flags: C: Set if specified; unaffected otherwise.

Z: Set if specified; unaffected otherwise.

S: Set if specified; unaffected otherwise.

V: Set if specified; unaffected otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

SETFLG flags 10001101_CZSV_0001 7

139

SLA
Shift Left Arithmetic

SLA dst, src dst: R

SLAB src: IM

SLAL

Operation: For src zero:

 Word: {C, dst[15:0]} <= {C, dst[15:0]}

 Byte: {C, dst[7:0]} <= {C, dst[7:0]}

 Long: {C, dst[31:0]} <= {C, dst[31:0]}

Else:

 Word: (do src times): {C, dst[15:0]} <= {dst[15:0], 0}

 Byte: (do src times): {C, dst[7:0]} <= {dst[7:0], 0}

 Long: (do src times): {C, dst[31:0]} <= {dst[31:0], 0}

Flags: C: Unaffected (src zero); set if carry from MSB on last shift; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow during shift; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SLA Rd, #b 10110011_Rddd_1001

b

SLAB Rbd, #b 10110010_Rbdd_1001

0 | b

SLAL RRd, #b 10110011_RRdd_1101

b

140

Notes:

1. The shift count should be restricted to range from 0 to 16 for SLA, from 0 to 8 for SLAB and from 0 to 32
for SLAL. However, the entire 16-bit value (Word or Long) or 8-bit value (Byte) in the second word of the
instruction is used as the starting count for the shift, so values outside of these ranges will still execute.

2. Only bits 7-0 of the second word of the opcode are used for SLAB. All other bits in the second word of
the opcode are ignored in this case.

141

SLL
Shift Left Logical

Notes:

1. The Z8000 documentation lists the V flag as undefined. In fact it signals arithmetic overflow, even though
this is a logical operation. The Y8002 design matches this behavior.

SLL dst, src dst: R

SLLB src: IM

SLLL

Operation: For src zero:

 Word: {C, dst[15:0]} <= {C, dst[15:0]}

 Byte: {C, dst[7:0]} <= {C, dst[7:0]}

 Long: {C, dst[31:0]} <= {C, dst[31:0]}

Else:

 Word: (do src times): {C, dst[15:0]} <= {dst[15:0], 0}

 Byte: (do src times): {C, dst[7:0]} <= {dst[7:0], 0}

 Long: (do src times): {C, dst[31:0]} <= {dst[31:0], 0}

Flags: C: Unaffected (src zero); set if carry from MSB on last shift; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow during shift; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SLA Rd, #b 10110011_Rddd_0001 13 + 3b

b

SLLB Rbd, #b 10110010_Rbdd_0001 13 + 3b

0 | b

SLLL RRd, #b 10110011_RRdd_0101 13 + 3b

b

142

Notes: (continued)

2. The shift count should be restricted to range from 0 to 16 for SLL, from 0 to 8 for SLLB and from 0 to 32
for SLLL. However, the entire 16-bit value (Word or Long) or 8-bit value (Byte) in the second word of the
instruction is used as the starting count for the shift, so values outside of these ranges will still execute.

3. Only bits 7-0 of the second word of the opcode are used for SLLB. All other bits in the second word of the
opcode are ignored in this case.

143

SRA
Shift Right Arithmetic

Notes:

1. The shift count should be restricted to range from 1 to 16 for SRA, from 1 to 16 for SRAB and from 1 to
32 for SRAL. However, the entire 16-bit value (for Word or Long) or 8-bit value (for Byte) in the second
word of the instruction is used as the starting count for the shift, so values outside of these ranges will still
execute. Note that b is negative in the opcode.

2. Only bits 7-0 of the second word of the opcode are used for SRAB. All other bits in the second word of
the opcode are ignored in this case.

SRA dst, src dst: R

SRAB src: IM

SRAL

Operation: Word: (do src times): {dst[15:0], C} <= {dst[15], dst[15:0]}

Byte: (do src times): {dst[7:0], C} <= {dst[7], dst[7:0]}

Long: (do src times): {dst[31:0], C} <= {dst[31], dst[31:0]}

Flags: C: Set if carry from LSB on last shift; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Cleared.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SRA Rd, #b 10110011_Rddd_1001 13 + 3b

-b

SRAB Rbd, #b 10110010_Rbdd_1001 13 + 3b

0 | -b

SRAL RRd, #b 10110011_RRdd_1101 13 + 3b

-b

144

SRL
Shift Right Logical

Notes:

1. The Z8000 documentation lists the V flag as undefined. In fact it signals arithmetic overflow, even though
this is a logical operation. The Y8002 design matches this behavior.

2. The shift count should be restricted to range from 1 to 16 for SRL, from 1 to 8 for SRLB and from 1 to 32
for SRLL. However, the entire 16-bit value (Word or Long) or 8-bit value (Byte) in the second word of the
instruction is used as the starting count for the shift, so values outside of these ranges will still execute. Note
that b is negative in the opcode.

SRL dst, src dst: R

SRLB src: IM

SRLL

Operation: Word: (do src times): {dst[15:0], C} <= {0, dst[15:0]}

Byte: (do src times): {dst[7:0], C} <= {0, dst[7:0]}

Long: (do src times): {dst[31:0], C} <= {0, dst[31:0]}

Flags: C: Set if carry from LSB on last shift; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow during shift; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SRL Rd, #b 10110011_Rddd_0001 13 + 3b

-b

SRLB Rbd, #b 10110010_Rbdd_0001 13 + 3b

0 | -b

SRLL RRd, #b 10110011_RRdd_0101 13 + 3b

-b

145

Notes (continued):

3. Only bits 7-0 of the second word of the opcode are used for SRLB. All other bits in the second word of the
opcode are ignored in this case.

146

SUB
Subtract

SUB dst, src dst: R

SUBB src: R, IM, IR, DA, X

SUBL

Operation: dst <= dst - src

Flags: C: Cleared if arithmetic carry from MSB; set otherwise, indicating borrow.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if arithmetic overflow; cleared otherwise.

D: Set (SUBB);
 Unaffected (SUB).

H: Cleared if arithmetic carry from bit 3; set otherwise, indicating borrow (SUBB);
 Unaffected (SUB).

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SUB Rd, Rs 10000011_Rsss_Rddd 4

SUBB Rbd, Rbs 10000010_Rbss_Rbdd 4

SUBL RRd, RRs 10010010_RRss_RRdd 8

IM: SUB Rd, #data 00000011_0000_Rddd 7

#data

SUBB Rbd, #data 00000010_0000_Rbdd 7

#data | #data

SUBL RRd, #data 00010010_0000_RRdd 14

#data (high)

#data (low)

147

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: SUB Rd, @Rs 00000011_Rsnz_Rddd 7

SUBB Rbd, @Rs 00000010_Rsnz_Rbdd 7

SUBL RRd, @Rs 00010010_Rsnz_RRdd 14

DA: SUB Rd, address 01000011_0000_Rddd 9

address

SUBB Rbd, address 01000010_0000_Rbdd 9

address

SUBL RRd, address 01010010_0000_RRdd 15

address

X: SUB Rd, addr(Rs) 01000011_Rsnz_Rddd 10

address

SUBB Rbd, addr(Rs) 01000010_Rsnz_Rbdd 10

address

SUBL RRd, addr(Rs) 01010010_Rsnz_RRdd 16

address

148

TCC
Test Condition Code

TCC cc, dst dst: R

TCCB

Operation: if cc true: dst[0] <= 1

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: TCC cc, Rd 10101111_Rddd_cccc 5

TCCB cc, Rbd 10101110_Rbdd_cccc 5

149

TEST
Test

TEST dst dst: R, IR, DA, X

TESTB

TESTL

Operation: dst | 0

Flags: C: Unaffected.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if result parity is even; cleared otherwise (TESTB);
 Unaffected (TEST or TESTL).

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: TEST Rd 10001101_Rddd_0100 7

TESTB Rbd 10001100_Rbdd_0100 7

TESTL RRd 10011100_RRdd_1000 9

IR: TEST @Rd 00001101_Rdnz_0100 8

TESTB @Rd 00001100_Rdnz_0100 8

TESTL @Rd 00011100_Rdnz_1000 13

DA: TEST address 01001101_0000_0100 11

address

TESTB address 01001100_0000_0100 11

address

TESTL address 01011100_0000_1000 16

address

150

Addressing
Modes

Assembly Syntax Encoding Clocks

X: TEST addr(Rd) 01001101_Rdnz_0100 12

address

TESTB addr(Rd) 01001100_Rdnz_0100 12

address

TESTL addr(Rd) 01011100_Rddd_1000 17

address

151

TRDB
Translate and Decrement

Notes:

1. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

2. Bits 15-12 and 3-0 of the second word of the opcode are ignored.

TRDB dst, src, r dst: IR

src: IR

Operation: dst <= src[dst]

Rd <= Rd - 1

r <= r - 1

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: TRDB @Rd, @Rs, r 10111000_Rdnz_1000 25

0000_Rrrr_Rsnz_0000

152

TRDRB
Translate, Decrement and Repeat

Notes:

1. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

2. Bits 15-12 and 3-0 of the second word of the opcode are ignored.

3. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

TRDRB dst, src, r dst: IR

src: IR

Operation: dst <= src[dst]

Rd <= Rd - 1

r <= r - 1

repeat until r = 0

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: TRDRB @Rd, @Rs, r 10111000_Rdnz_1100 11 + 14n

0000_Rrrr_Rsnz_0000

153

TRIB
Translate and Increment

Notes:

1. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

2. Bits 15-12 and 3-0 of the second word of the opcode are ignored.

TRIB dst, src, r dst: IR

src: IR

Operation: dst <= src[dst]

Rs <= Rs + 1

r <= r - 1

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: TRIB @Rd, @Rs, r 10111000_Rdnz_0000 25

0000_Rrrr_Rsnz_0000

154

TRIRB
Translate, Increment and Repeat

Notes:

1. Because the Rd, Rs and r registers are changed by the instruction, they must be separate and non-overlap-
ping.

2. Bits 15-12 and 3-0 of the second word of the opcode are ignored.

3. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

TRIRB dst, src, r dst: IR

src: IR

Operation: dst <= src[dst]

Rd <= Rd + 1

r <= r - 1

repeat until r = 0

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: TRIRB @Rd, @Rs, r 10111000_Rdnz_0100 11 + 14n

0000_Rrrr_Rsnz_0000

155

TRTDB
Translate, Test and Decrement

Notes:

1. Because the Rs1, Rs2 and r registers are changed by the instruction, they must be separate and non-over-
lapping.

2. Bits 15-12 and 3-0 of the second word of the opcode are ignored.

TRTDB src1, src2, r src1: IR

src2: IR

Operation: RH1 <= src2[src1] | 0

Rs1 <= Rs1 - 1

r <= r - 1

Flags: C: Unaffected.

Z: Set if the translated value is zero; cleared otherwise.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: TRTDB @Rs1, @Rs2, r 10111000_R1nz_1010 25

0000_Rrrr_R2nz_0000

156

TRTDRB
Translate, Test, Decrement and Repeat

Notes:

1. Because the Rs1, Rs2 and r registers are changed by the instruction, they must be separate and non-over-
lapping.

2. Bits 15-12 of the second word of the opcode are ignored.

3. There is no obvious reason why bits 3-0 of the second word of the opcode must be 1110, and the Y8002
actually ignores these four bits.

4. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

TRTDRB src1, src2, r src1: IR

src2: IR

Operation: RH1 <= src2[src1] | 0

Rs1 <= Rs1 - 1

r <= r - 1

repeat until translated value is zero or r is zero after decrement; cleared otherwise.

Flags: C: Unaffected.

Z: Set if the translated value is zero; cleared otherwise.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: TRTDRB @Rs1, @Rs2, r 10111000_R1nz_1110 11 + 14n

0000_Rrrr_R2nz_1110

157

TRTIB
Translate, Test and Increment

Notes:

1. Because the Rs1, Rs2 and r registers are changed by the instruction, they must be separate and non-over-
lapping.

2. Bits 15-12 and 3-0 of the second word of the opcode are ignored.

TRTIB src1, src2, r src1: IR

src2: IR

Operation: RH1 <= src2[src1] | 0

Rs1 <= Rs1 + 1

r <= r - 1

Flags: C: Unaffected.

Z: Set if the translated value is zero; cleared otherwise.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: TRTIB @Rs1, @Rs2, r 10111000_R1nz_0010 25

0000_Rrrr_R2nz_0000

158

TRTIRB
Translate, Test, Increment and Repeat

Notes:

1. Because the Rs1, Rs2 and r registers are changed by the instruction, they must be separate and non-over-
lapping.

2. Bits 15-12 of the second word of the opcode are ignored.

3. There is no obvious reason why bits 3-0 of the second word of the opcode must be 1110, and the Y8002
actually ignores these four bits.

4. This instruction samples interrupts during each iteration. If an interrupt is pending, the instruction is
stopped and the interrupt accepted. The PC saved during the interrupt acknowledge cycle in this case is the
PC of the running instruction, allowing the instruction to restart after the interrupt has been serviced.

TRTIRB src1, src2, r src1: IR

src2: IR

Operation: RH1 <= src2[src1] | 0

Rs1 <= Rs1 + 1

r <= r - 1

repeat until translated value is zero or r is zero after decrement; cleared otherwise.

Flags: C: Unaffected.

Z: Set if the translated value is zero; cleared otherwise.

S: Unaffected.

V: Set if r is zero after the decrement; cleared otherwise.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: TRTIRB @Rs1, @Rs2, r 10111000_R1nz_0110 11 + 14n

0000_Rrrr_R2nz_1110

159

TSET
Test and Set

TEST dst dst: R, IR, DA, X

TESTB

Operation: Word: S <= dst[15], dst <= 0xFFFFh

Byte: S <= dst[7], dst <= 0xFFh

Flags: C: Unaffected.

Z: Unaffected.

S: Set if MSB of dst was 1; cleared otherwise.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: TSET Rd 10001101_Rddd_0110 7

TSETB Rbd 10001100_Rbdd_0110 7

IR: TSET @Rd 00001101_Rdnz_0110 11

TSETB @Rd 00001100_Rdnz_0110 11

DA: TSET address 01001101_0000_0110 14

address

TSETB address 01001100_0000_0110 14

address

X: TSET addr(Rd) 01001101_Rdnz_0110 15

address

TSETB addr(Rd) 01001100_Rdnz_0110 15

address

160

Notes:

1. BUSREQ is not accepted between the read and write of the destination.

2. The Z8004 microprocessor actually signals a special status code (0xF) for the read and write of a TSET
instruction. The Y8002 design does not do this, instead matching the operation of the Z8002 microprocessor
and signalling either Data or Stack memory address space.

161

XOR
Logical Exclusive-OR

XOR dst, src dst: R

XORB src: R, IM, IR, DA, X

Operation: dst <= dst ^ src

Flags: C: Unaffected.

Z: Set if result is zero; cleared otherwise.

S: Set if result is negative; cleared otherwise.

V: Set if result parity is even; cleared otherwise (XORB);
 Unaffected (XOR).

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: XOR Rd, Rs 10001001_Rsss_Rddd 4

XORB Rbd, Rbs 10001000_Rbss_Rbdd 4

IM: XOR Rd, #data 00001001_0000_Rddd 7

#data

XORB Rbd, #data 00001000_0000_Rddd 7

#data | #data

IR: XOR Rd, @Rs 00001001_Rsnz_Rddd 7

XORB Rbd, @Rs 00001000_Rsnz_Rbdd 7

DA: XOR Rd, address 01001001_0000_Rddd 9

address

XORB Rbd, address 01001000_0000_Rbdd 9

address

162

Addressing
Modes

Assembly Syntax Encoding Clocks

X: XOR Rd, addr(Rs) 01001001_Rsnz_Rddd 10

address

XORB Rbd, addr(Rs) 01001000_Rsnz_Rbdd 10

address

163

Extended Instruction
Load from EPU

Notes:

1. Bits 1-0 of the first word of the opcode are ignored by the processor, but normally select one of up to four
EPUs in the system.

2. EPU data is stored at the destination address and increasing addresses. CPU Registers are loaded starting
with Rd and increasing. R0 follows R15 in the case of a wrap-around.

LD dst, EPU, #n dst: R, IR, DA, X

Operation: dst <= EPU (n words)

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LD Rd, EPU, #n 10001111_0xxx_00xx 11 + 4n

xxxx_Rddd_xxxx_nnnn

IR: LD @Rd, EPU, #n 00001111_Rdnz_11xx 11 + 3n

xxxxxxxx_xxxx_nnnn

DA: LD address, EPU, #n 01001111_0000_11xx 14 + 3n

xxxxxxxx_xxxx_nnnn

address

X: LD addr(Rd), EPU, #n 01001111_Rdnz_11xx 15 + 3n

xxxxxxxx_xxxx_nnnn

address

164

Notes (continued):

3. Bits 15-12 and 7-4 of the second word of the opcode are ignored by the CPU but may be used by the EPU.

165

Extended Instruction
Load to EPU

Notes:

1. Bits 1-0 of the first word of the opcode are ignored by the processor, but normally select one of up to four
EPUs in the system.

2. EPU data is read from the source address and increasing addresses. CPU Registers are stored starting with
Rs and increasing. R0 follows R15 in the case of a wrap-around.

LD EPU, src, #n src:R, IR, DA, X

Operation: EPU <= src (n words)

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LD EPU, Rs, #n 10001111_0xxx_10xx 11 + 4n

xxxx_Rsss_xxxx_nnnn

IR: LD EPU, @Rs, #n 00001111_Rsnz_01xx 11 + 3n

xxxxxxxx_xxxx_nnnn

DA: LD EPU, address, #n 01001111_0000_01xx 14 + 3n

xxxxxxxx_xxxx_nnnn

address

X: LD EPU, addr(Rs), #n 01001111_Rsnz_01xx 15 + 3n

xxxxxxxx_xxxx_nnnn

address

166

Notes (continued):

3. Bits 15-12 and 7-4 of the second word of the opcode are ignored by the CPU but may be used by the EPU.

167

Extended Instruction
Load FCW from EPU

Notes:

2. Bits 1-0 of the first word of the opcode are ignored by the processor, but normally select one of up to four
EPUs in the system.

3. Bits 15-12 and 7-4 of the second word of the opcode are ignored by the CPU but may be used by the EPU.

LDB dst, EPU dst: Flags

Operation: FCW[7:0] <= EPU

Flags: C: Loaded from EPU.

Z: Loaded from EPU.

S: Loaded from EPU.

V: Loaded from EPU.

D: Loaded from EPU.

H: Loaded from EPU.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LDB FCW, EPU 10001110_xxxx_00xx 15

xxxx_0000_xxxx_0000

168

Extended Instruction
Load EPU from FCW

Notes:

1. Bits 1-0 of the first word of the opcode are ignored by the processor, but normally select one of up to four
EPUs in the system.

2. Bits 15-12 and 7-4 of the second word of the opcode are ignored by the CPU but may be used by the EPU.

LDB EPU, src src: Flags

Operation: EPU <= FCW[7:0]

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LDB EPU, FCW 10001110_xxxx_10xx 15

xxxx_Rsss_xxxx_nnnn

169

Extended Instruction
Internal EPU Operation

Notes:

2. Bits 1-0 of the first word of the opcode are ignored by the processor, but normally select one of up to four
EPUs in the system.

3. Bits 15-4 of the second word of the opcode are ignored by the CPU but may be used by the EPU.

EPUI

Operation: EPU internal operation

Flags: C: Unaffected.

Z: Unaffected.

S: Unaffected.

V: Unaffected.

D: Unaffected.

H: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: EPUI #n 10001110_xxxx_01xx 11 + 4n

xxxx_xxxx_xxxx_nnnn

170

171

Chapter 6
 External Interface and Timing

This chapter presents external interface signals and timing for the Y8002 design. The user has the option of
selecting either the normal multiplexed implementation of the design or a special non-multiplexed imple-
mentation. The table below shows the external interface signals available for both versions.

Name Description Direction Active State
Non-

Muxed
Muxed

AD[15:0] Address/Data Bus Bidirectional High X

ADDR[15:0] Address Bus Output High X

ADOUT_EN Address Output Enable Output High X

ASB Address Strobe Output Low X

B_WB Byte/Word Output Low = Word X X

BUSACKB Bus Acknowledge Output Low X X

BUSREQB Bus Request Input Low X X

CLK Processor Clock Input X X

DIN Data Input Input High X

DOUT Data Output Output High X

DSB Data Strobe Output Low X X

MIB Multi-micro In Input Low X X

MOB Multi-micro Out Output Low X X

MREQB Memory Request Output Low X X

N_SB Normal/System Output Low = System X X

NMIB Non-maskable Interrupt Request Input Low X X

NVIB Non-vectored Interrupt Request Input Low X X

R_WB Read/Write Output Low = Write X X

RESETF Device Reset Input Low X X

ST[3:0] Status Output High X X

STOPB Stop Processor Input Low X X

T1_CYCLE T1 Cycle Identifier Output High X

VIB Vectored Interrupt Request Input Low X X

WAITB Wait Input Low X X

172

Note that the user has two further options beyond the Multiplexed/Non-multiplexed decision mentioned pre-
viously. Selecting the ASIC option implements the normal high-impedance operation for those Y8002 out-
puts that require the ability to go high-impedance. Because implementing any design in an FPGA can be a
problem when 3-state signals are present, the FPGA option removes this capability, and the user must imple-
ment this functionality outside of the Y8002 implementation. These options are described more fully in the
chapter that covers the actual Verilog code for the design. The Y8002 interface signals are:

• AD[15:0] (Address/Data). These signals are the multiplexed address and data bus. This bus is driven
during the address portion of a bus transaction, and during the data portion of a write bus transaction.
The bus is high-impedance at all other times, including during a Bus Acknowledge.

• ADDR[15:0] (Address). These signals are the address bus in the non-multiplexed option. They are
always driven, but are guaranteed valid only during the portion of the bus transaction signalled by the
T1 Cycle signal.

• ADOUT_EN (Address Output Enable). This signal is present only in the non-multiplexed option and
signals when the normal Address/Data bus should be driven. This is useful when recreating the multi-
plexed bus interface externally to the Y8002 design itself.

• ASB (Address Strobe). This signal indicates that the address on the Address/Data bus, the Transaction
Status, and the signals Normal/System, Read/Write and Byte/Word are all valid and signals the start of
a bus transaction. The rising edge of Address Strobe can be used to latch the address for use throughout
the transaction. This signal is high-impedance during a Bus Acknowledge (except in the FPGA option).

• B_WB (Byte/Word). This signal indicates whether the current bus transaction is a byte (high) or word
(low) transaction, and is valid throughout the bus transaction. This signal is high-impedance during a
Bus Acknowledge (except in the FPGA option).

• BUSACKB (Bus Request Acknowledge). This signal is asserted by the processor in response to the bus
request signal being asserted. It indicates, when active, that the processor has given up control of the bus
and its control signals.

• BUSREQB (Bus Request). This signal is asserted by an external device to indicate that the external
device wants to take control of the processor bus and its associated control signals.

• CLK (System Clock). The master clock for all device timing is applied to this input.

• DIN[15:0] (Data Input). These sixteen lines are the data input bus in the non-multiplexed option. This
bus is sampled at the normal time during read bus transactions.

• DOUT[15:0] (Data Output). These signals are the data output bus in the non-multiplexed option. This
bus is valid only during the portion of a write bus transaction where the multiplexed address/data bus
would normally contain data.

• DSB (Data Strobe). This signal provides the timing for moving data to or from the processor during a
bus transaction. It indicates that valid and stable data is present on the bus. This signal is high-imped-
ance during a Bus Acknowledge (except in the FPGA option).

• MIB (Multi-Micro In). The multi-micro input is asserted by another device on the processor bus to
request exclusive use of a system resource.

173

• MOB (Multi-Micro Out). This signal is asserted by the processor to request exclusive control of a sys-
tem resource.

• MREQB (Memory Request). This signal is asserted during memory transactions, with slightly different
timing than DSB. It provides an extra edge for interfacing to DRAM, for example. This signal is high-
impedance during a Bus Acknowledge (except in the FPGA option).

• N_SB (Normal/System). This signal indicates whether the processor is operating in Normal (high) or
System (low) mode and is valid throughout the bus transaction. This signal is high-impedance during a
Bus Acknowledge (except in the FPGA option).

• NMIB (Non-Maskable Interrupt Request). A high-to-low transition on this signal requests a non-
maskable interrupt. This type of interrupt request cannot be disabled by software.

• NVIB (Non-Vectored Interrupt Request). This signal is asserted by a peripheral device to request a non-
vectored interrupt. The request should remain active until acknowledged by the processor. The non-vec-
tored interrupt may be enabled or disabled by the processor.

• R_WB (Read/Write). This signal indicates that the current bus transaction is a read (high) or write (low)
transaction. This signal is valid throughout the bus transaction and is high-impedance during a Bus
Acknowledge (except in the FPGA option).

• RESETF (Reset). Asserting this signal forces the device into a known state, after which it will start up
by fetching the starting FCW and starting PC from 0x0002 and 0x0004, respectively, in the program
memory space. Reset must be asserted for at least three clock cycles to be recognized, and the device is
held in the reset state as long as Reset is asserted.

• ST[3:0] (Transaction Status). The bus encodes the transaction type for the current bus transaction
according to the table below. These signals are valid throughout a bus transaction. They are high-
impedance during a Bus Acknowledge (except in the FPGA option). The bus transaction type is
encoded as shown below:

ST[3:0] Bus Transaction Type

0000 Internal Operation

0001 Refresh

0010 Standard I/O

0011 Special I.//O

0100 Reserved

0101 Non-Maskable Interrupt Acknowledge

0110 Non-Vectored Interrupt Acknowledge

0111 Vectored Interrupt Acknowledge

1000 Data Address Space

1001 Stack Address Space

1010 EPU Transfer, Data Address Space

1011 EPU Transfer, Stack Address Space

1100 Program Address Space

1101 Program Address Space, First Word of Instruction

1110 EPU/CPU Transfer

1111 Reserved

174

• STOPB (Stop Request). Asserting this signal causes the processor to suspend execution and issue a con-
tinuous stream of Internal Operation bus transactions until the signal is de-asserted. These Internal
Operation bus transactions are issued immediately following an Instruction Fetch 1 bus transaction
only.

• T1_CYCLE (T1 Cycle). This signal is present only in the non-multiplexed option and signals the start
of a bus transaction and that the address is valid on the Address Bus. This is useful when recreating the
multiplexed bus interface externally to the Y8002 design itself.

• VIB (Vectored Interrupt Request). This signal is asserted by a peripheral device to request a vectored
interrupt. The request should remain active until acknowledged by the processor. The vectored interrupt
may be enabled or disabled by the processor.

• WAITB (Wait Request). This signal is asserted by devices on the system bus to notify the processor that
additional time is needed to complete the current bus transaction.

This section has detailed the entire set of interface signals, without regard to whether or not a particular sig-
nal has been implemented in a particular version of the design. For a list of implemented versus unimple-
mented signals, refer to the appropriate Appendix.

Note that all Y8002 signals come either directly from the output of a flip-flop, or through one or two gate
delays from the output of a flip-flop. All outputs that come from logic are designed to be glitch-free. The
lack of substantial clock-to-signal delays for outputs is different from the original Z8002 design and may
affect system design.

In the figures below individual clock cycles are labelled as T1, T2, etc. The actual number of clock cycles in
any bus transaction (also called a machine cycle) may be longer than the typical “T3” shown in the figures.
Refer to the appropriate Appendix for an instruction-by-instruction table of machine cycle lengths.

175

The figure below shows a memory read bus transaction, without wait states:

CLK

AD

ASB

Address

ST

T1 T3T2

WAITB

DSB

MREQB

R_WB

Data

Valid Status

ADDR

DIN

Address

ADOUT_EN

T1_CYCLE

DOUT

Data

non-mux:

Undefined

B_WB Byte/Word

176

The figure below shows a memory write bus transaction, without wait states:

Note that for memory write cycles the DSB signal is delayed by one-half clock cycle to guarantee that the
data bus is valid prior to the leading edge of DSB.

CLK

AD

ASB

Address

ST

T1 T3T2

WAITB

DSB

MREQB

R_WB

Data

Valid Status

ADDR

DIN

Address

ADOUT_EN

T1_CYCLE

DOUT Data

non-mux:

(ignored)

B_WB Byte/Word

177

The figure below shows a memory read bus transaction, with one wait state:

CLK

AD

ASB

Address

ST

T1 T3T2

WAITB

DSB

MREQB

R_WB

Data

Valid Status

ADDR

DIN

Address

ADOUT_EN

T1_CYCLE

DOUT

Data

non-mux:

Undefined

Tw

B_WB Byte/Word

178

The figure below shows a memory write bus transaction, with one wait state:

CLK

AD

ASB

Address

ST

T1 T3T2

WAITB

DSB

MREQB

R_WB

Data

Valid Status

ADDR

DIN

Address

ADOUT_EN

T1_CYCLE

DOUT Data

non-mux:

(ignored)

Tw

B_WB Byte/Word

179

The figure below shows an I/O read bus transaction, with only the automatic wait state:

Note that the timing for the falling edge of Data Strobe for an I/O bus transaction is different form the corre-
sponding timing for a Memory Read bus transaction.

CLK

AD

ASB

Address

ST

T1 T3T2

WAITB

DSB

MREQB

R_WB

Data

Valid Status

ADDR

DIN

Address

ADOUT_EN

T1_CYCLE

DOUT

Data

non-mux:

Undefined

Twa

B_WB Byte/Word

(inactive)

180

The figure below shows an I/O write bus transaction, with only the automatic wait state:

CLK

AD

ASB

Address

ST

T1 T3T2

WAITB

DSB

MREQB

R_WB

Data

Valid Status

ADDR

DIN

Address

ADOUT_EN

T1_CYCLE

DOUT Data

non-mux:

(ignored)

Twa

B_WB Byte/Word

(inactive)

181

The figure below shows an I/O read bus transaction, with one additional wait state:

CLK

AD

ASB

Address

ST

T1 T3T2

WAITB

DSB

MREQB

R_WB

Data

Valid Status

ADDR

DIN

Address

ADOUT_EN

T1_CYCLE

DOUT

Data

non-mux:

Undefined

Twa Tw

B_WB Byte/Word

(inactive)

182

The figure below shows an I/O write bus transaction, with one additional wait state:

CLK

AD

ASB

Address

ST

T1 T3T2

WAITB

DSB

MREQB

R_WB

Data

Valid Status

ADDR

DIN

Address

ADOUT_EN

T1_CYCLE

DOUT Data

non-mux:

(ignored)

Twa Tw

B_WB Byte/Word

(inactive)

183

The figure below shows an internal operation bus transaction:

Note that the Wait Request input us not sampled for this type of bus transaction.

CLK

AD

ASB

Undefined

ST

T1 T3T2

WAITB

DSB

MREQB

R_WB

0000 (Internal Operation)

ADDR

DIN

Undefined

ADOUT_EN

T1_CYCLE

DOUT

non-mux:

Undefined

(inactive)

(inactive)

B_WB Undefined

(ignored)

(ignored)

184

The figure below shows a refresh bus transaction:

Note that the Wait Request input us not sampled for this type of bus transaction.

This type of bus transaction is also issued in response to a Stop request.

CLK

AD

ASB

Refresh Address

ST

T1 T3T2

WAITB

DSB

MREQB

R_WB

0001 (Refresh)

ADDR

DIN

Refresh Address

ADOUT_EN

T1_CYCLE

DOUT

non-mux:

Undefined

(inactive)

B_WB (same as previous)

(ignored)

(same as previous)

(ignored)

185

The figure below shows an interrupt acknowledge bus transaction:

Note that the Wait Request input is sampled twice during this bus transaction, once before the Data Strobe is
activated and once while Data Strobe is active. Memory write bus transactions follow immediately, to save
the program status.

CLK

AD

ASB

Undefined

ST

T1 TwaTwa

WAITB

DSB

MREQB

R_WB

Valid Status

ADDR

DIN

Undefined

ADOUT_EN

T1_CYCLE

DOUT

non-mux:

Undefined

Twa Twa

B_WB

(inactive)

T2 Twa T3

Identifier

Identifier

T4 T5

186

The figure below shows how interrupts are sampled:

Note that the aborted IF1 transaction is always 4 clock cycles (plus Wait states) long in this design. The
Z8000 documentation indicates that this aborted IF1 transaction may be from 3 to 7 cycles (plus Wait states)
long. An interrupt acknowledge transaction follows immediately after this aborted IF1 transaction.

CLK

AD

ASB

Address

ST

T (any) T2T (any)

WAITB

DSB

MREQB

R_WB

1101 (IF1)

NMIB

latched NMI

int recognized

VIB

NVIB

interrupt signals:

T1

B_WB

T3 T4

Data

187

The figure below shows the sampling of Bus Request and the entry into the Bus Acknowledge state:

Processor operation stops completely while Bus Acknowledge is active, even though it is theoretically pos-
sible for some internal operations to continue in parallel. This is believed to be consistent with the operation
of the Z8000 processor.

CLK

AD (read)

MREQB

Address

ST

T (any) T3T1

DSB (read)

ASB

R_WB

BUSREQB

internal req

DSB (write)

BUSACKB

bus request signals

T2

B_WB

Tx Tx

AddressAD (write)

188

The figure below shows the sampling of Bus Request and the exit from the Bus Acknowledge state:

The first two clock cycles after exiting the Bus Acknowledge state are still part of the Bus Acknowledge
sequence, and no processing takes place during these clock cycles. Processor operation resumes where it left
off upon entering the Bus Acknowledge state. This may or may not be the start of another bus transaction.

Note that the Bus Request input must remain inactive (High) for at least two clock cycles between succes-
sive bus requests. This is consistent with the operation of the Z8000 processor and is a consequence of the
two clock cycles required for recovery at the end of a Bus Acknowledge sequence.

CLK

AD

MREQB

Address

ST

Tx TxTx

DSB

ASB

R_WB

BUSREQB

internal req

BUSACKB

bus request signals

Tx

B_WB

Tresume

Same as previous cycle

Same as previous cycle

Same as previous cycle

189

The figure below shows how the Stop Request is sampled:

Note that the Stop Request input is sampled prior to an IF1 bus transaction or a Stop bus transaction only.
The IF1 bus transaction that follows the sampling of Stop Request active is always three clock cycles long,
even if the IF1 bus transaction for the fetched instruction would normally be four or more clock cycles long.
In this case the extra IF1 clock cycles follow the inserted Stop bus transactions.

The diagram above shows two inserted Stop transactions.

CLK

AD

ASB

Address

ST

T (any) T3T1

WAITB

DSB

MREQB

R_WB

1101 (IF1)

STOPB

latched Stop

stop signals:

T2

B_WB

T1 T2

Data

T3 T1

0001 (Refresh)

Address Address

190

The figure below shows the de-assertion of the Stop Request:

The behavior in response to the Stop Request input is identical to the behavior in the case of a Refresh
request, except for the address placed on the Address/Data bus. Stop bus transactions use the PC for the
address, while the refresh address is used for actual memory refresh bus transactions.

CLK

AD

ASB

Address

ST

T (any) T3T1

WAITB

DSB

MREQB

R_WB

STOPB

latched Stop

stop signals:

T2

B_WB

Tresume

0001 (Refresh)

Address

191

The figure below shows the first of three cases of the Trap timing:

The instruction fetched during the IF1 bus transaction is pushed as the identifier for this trap. The word
fetched during the IFn bus transaction is ignored. The Program Counter does not increment beyond PC + 2,
and this is the value pushed on the stack.

CLK

AD

ASB

PC

ST

T1 T1T2

WAITB

DSB

MREQB

R_WB

1101 (IF1)

ADDR

DIN

PC

ADOUT_EN

T1_CYCLE

DOUT

non-mux:

Undefined

T3 T4

B_WB

T2 T3

PC + 2

1100 (IFn)

PC + 2

192

The figure below shows the second of three cases of the Trap timing:

This case occurs when bits 15:14 of the fetched instruction are 01. The instruction fetched during the IF1 bus
transaction is pushed as the identifier for this trap and the word fetched during the IFn bus transaction is
ignored. The Program Counter does not increment beyond PC + 2, and this is the value pushed on the stack.

CLK

AD

ASB

PC

ST

T1 T2T2

WAITB

DSB

MREQB

R_WB

1101 (IF1)

ADDR

DIN

PC

ADOUT_EN

T1_CYCLE

DOUT

non-mux:

Undefined

T3 T1

B_WB

T3 T4

PC + 2

1100 (IFn)

PC + 2

193

The figure below shows the third of three cases of the Trap timing:

This is the case used by the System Call instruction, plus a number of illegal instructions. The timing for all
of the different cases of a trap are identical, and only the signals during cycles 4-7 of the sequences are dif-
ferent.

CLK

AD

ASB

PC

ST

T1 T5T2

WAITB

DSB

MREQB

R_WB

1101 (IF1)

ADDR

DIN

PC

ADOUT_EN

T1_CYCLE

DOUT

non-mux:

Undefined

T3 T4

B_WB

T6 T7

194

The figure below shows the status saving sequence common to both interrupts and traps:

This status-saving sequence immediately follows the interrupt acknowledge or trap sequence. The stack
pointer used is the System SP.

CLK

AD

ASB

SP - 2

ST

T1 T2T2

WAITB

DSB

MREQB

R_WB

1001 (Stack)

ADDR

DIN

ADOUT_EN

T1_CYCLE

DOUT

non-mux:

Ignored

T3 T1

B_WB

T3 T4 T1

Identifier

T2

Save FCW

T3

Save PC SP - 4 SP - 6

SP - 2 SP - 4 SP - 6

Save PC Save FCW Identifier

195

The figure below shows the Program Status Area fetch sequence common to reset, traps and interrupts:

This sequence follows the reset sequence directly. This sequence follows the trap or interrupt sequence after
seven clock cycles of no external operation.

CLK

AD

ASB

PSA Addr

ST

T1 T5T2

WAITB

DSB

MREQB

R_WB

1100 (Program memory)

ADDR

DIN

ADOUT_EN

T1_CYCLE

DOUT

non-mux:

Undefined

T3 T4

B_WB

T1 T2 T3 T4

PSA Addr

PSA Addr PSA Addr

196

The figure below shows the Reset timing and reset sequence:

Note that the Y8002 design requires that the Reset Request input be sampled active by two successive rising
edges of the System Clock to be recognized. This is believed to be consistent with the operation of the
Z8000 processor.

CLK

AD

ASB

ST

Tx Tr2Tx

WAITB

DSB

MREQB

R_WB

0000 (Internal Operation)

RESETB

internal Reset

Reset signals:

Tx Tr1

B_WB

Tr3 Tr4 Tr5 Tr6

ignored

197

Chapter 7
 Interrupts and Traps

The Z8000 architecture supports three different types of interrupts and four different types of trap. One of
the traps defined in the architecture (segmentation) is not present in either the Z8002 processor or in the
Y8002 design and will not be discussed. In addition, the Y8002 design extends the operation of one of the
traps. Each interrupt and trap type will be discussed below. The detailed timing for interrupts and traps was
shown in the previous chapter.

The response to an interrupt or trap is nearly identical, the difference being the interrupt acknowledge bus
cycle generated in response to an interrupt. The interrupt acknowledge cycle samples the data bus and the
data is used as an identifier for the interrupt. A trap uses the first word of the instruction that causes the trap
as the identifier.

After the interrupt acknowledge cycle (in the case of an interrupt), or the fetch of the offending instruction
(in the case of a trap) the processor pushes the Program Counter, followed by the FCW, followed by an iden-
tifier, onto the system stack. The new FCW and Program Counter are then fetched from the Program Status
Area in program memory to start the service routine. At the end of the service routine an IRET instruction is
used to restore the operating state of the processor. The PC value pushed in various cases is shown below:

The start of the Program Status Area is pointed to by the PSAP register in the processor. This register is
cleared by a Reset and should be written with a different value using a LDCTL instruction before the Pro-
gram Status Area is accessed. The Program Status Area starts on a 256-byte boundary and is organized as
shown in the table below:

Exception Pushed PC value

EPU instruction trap
Address of second word of EPU instruction (all EPU instruc-
tions are two words)

Privileged Instruction Trap
Address of second word of privileged instruction (all privi-
leged instructions are two words).

System Call/Unimplemented
Instruction Trap

Address of word following offending instruction word (next
instruction for one-word instructions, second word of instruc-
tion for two-word instructions)

Any Interrupt
Address of next instruction (current instruction if block
instruction that has not completed is interrupted)

198

The Program Status Area should be relocated from its reset location because the Reset FCW and PC are
fetched from locations 0x0002 and 0x0004 respectively, which interferes with the Program Status Area
entry for the Extended Instruction Trap when using the first 256-byte page as the Program Status Area. The
two reserved locations at the start of the Program Status Area hint that the Z8000 architecture intended them
to be used for Reset, but that there was an error in the original Z8000 implementation. The Y8002 matches
the behavior of the Z8002 design.

An Extended Instruction Trap occurs when the processor fetches an Extended Instruction while the EPA bit
in the FCW is cleared, indicating that no EPU is present in the system. This allows the processor to emulate
the operation of the Extended Instruction in software. In those versions of the Y8002 design where the
Extended Instructions are not implemented this trap will never occur, as the Unimplemented Instruction
Trap takes precedence.

The Privileged Instruction Trap occurs when the processor fetches a privileged instruction while the SYS bit
in the FCW is cleared, indicating the processor is operating in Normal mode. This prevents Normal mode

Offset from PSAP Contents Interrupt/Trap type

0x000 Reserved

0x002 Reserved

0x004 FCW Extended Instruction Trap
0x006 PC

0x008 FCW Privileged Instruction Trap

0x00A PC
0x00C FCW SC and Unimplemented Instruction Trap

0x00E PC

0x010 Not used
0x012

0x014 FCW Non-maskable Interrupt

0x016 PC
0x018 FCW Non-vectored Interrupt

0x01A PC

0x01C FCW Vectored Interrupts
0x01E PC (vector = 0x00)

0x020 PC (vector = 0x01)

0x022 PC (vector = 0x02)
. .

. .

. .
0x21A PC (vector = 0xFE)

0x21C PC (vector = 0xFF)

199

programs from affecting system resources such as I/O. In those versions of the Y8002 design where the Sys-
tem/Normal mode operation is not implemented this trap will never occur.

The SC and Unimplemented Instruction Trap operation is an extension of the original Z8002 processor’s SC
Instruction Trap. In addition to being triggered by the SC opcode, any opcode that is not implemented in the
Y8002 design will also trigger this trap. Because the first word of the offending opcode is pushed onto the
system stack as the trap identifier, these cases can always be distinguished in software. This enhanced oper-
ation makes the Y8002 design more robust by defining the operation of the processor for any opcode combi-
nation. Note that an illegal field encoding in a valid instruction, for example when selecting double or
quadruple registers, does not trigger any kind of trap.

The Non-maskable Interrupt is triggered by a falling edge on the Non-maskable Interrupt Request input.
This interrupt request really is edge-triggered and cannot be disabled by software.

The Non-vectored Interrupt is taken when the Non-vectored Interrupt Request input is asserted and the
NVIE bit in the FCW is set. Clearing the NVIE bit in the FCW disables non-vectored interrupts. Note that
the Non-vectored Interrupt Request input must remain asserted until the corresponding interrupt acknowl-
edge bus cycle is issued by the processor. This interrupt is called non-vectored because even though an iden-
tifier is read during the interrupt acknowledge cycle, it is not used by the processor and is merely pushed
onto the system stack for use by software.

The Vectored Interrupt is taken when the Vectored Interrupt Request input is asserted and the VIE bit in the
FCW is set. Clearing the VIE bit in the FCW disables vectored interrupts. The Vectored Interrupt Request
input must also remain asserted until asserted until acknowledged by the processor. This interrupt is called
vectored because the processor uses the data returned from the interrupting device during the interrupt
acknowledge cycle (the “vector”) to select from a number of new PC values stored in the Program Status
Area. Only the lower eight bits of the vector are used for this purpose, selecting from among 256 different
PC values. All vectored interrupts share the same FCW value in the Program Status Area.

In the case of a simultaneous trap and interrupt or multiple interrupt requests the following prioritization
applies. Once the highest priority request has been answered, the new FCW and PC applies and the remain-
ing pending interrupt requests are accepted as appropriate.

Priority Interrupt or trap type

Highest Traps. Note that only one type of trap can occur at a time.

Non-maskable Interrupt

Vectored Interrupt
Lowest Non-vectored Interrupt

200

201

Chapter 8
 Reset

The Device Reset input forces the Y8002 processor into a known state, irrespective of its current state. This
input must be sampled active for at least two successive rising edges of the clock input to be properly recog-
nized, and then on the next falling edge of the clock all processor outputs assume known states. This state
continues as long as the Device Reset input remains active. The reset state of all processor outputs is shown
in the table below:

Once the Device Reset input is sampled inactive the processor fetches an FCW and PC value from memory
locations 0x0002 and 0x004 respectively. Both of these locations are in the program memory address space
and the processor is in System mode for these fetches. Execution then begins at the address of the fetched
PC with the status from the fetched FCW.

The Device Reset does not affect any of the registers in the register file. In fact the only register that is ini-
tialized during the reset state is the Program Status Area Pointer, which is cleared to all zeros. As mentioned
previously, the PSAP should be reprogrammed to point elsewhere in memory to avoid a conflict between the
reset locations of 0x0002 and 0x0004 and the Program Status Area entry for the Extended Instruction trap.

Name Description Reset state

AD[15:0] Address/Data Bus 3-state

ADDR[15:0] Address Bus Previous value (unaffected by reset).
ADOUT_EN Address Output Enable Low (inactive).

ASB Address Strobe High (inactive).

B_WB Byte/Word Low (signalling Word).
BUSACKB Bus Acknowledge High (inactive).

DOUT Data Output Previous value (unaffected by reset).

DSB Data Strobe High (inactive).
MOB Multi-micro Out High (inactive).

MREQB Memory Request High (inactive).

N_SB Normal/System Low (signalling System).
R_WB Read/Write High (signalling Read).

ST[3:0] Status All zero (signalling internal operation).

T1_CYCLE T1 Cycle Identifier Low (inactive).

202

If the Bus Request input is active upon exiting the reset state the fetch of the FCW will occur before the bus
is released by the processor. This is because the Bus Request input is sampled at the start of a bus transac-
tion.

If the Stop Request input is active upon exiting the reset state both the FCW and PC will be fetched, as will
the first word of the first instruction, before any stop transactions are inserted. Again, this is consistent with
the way that the Stop Request input is sampled at the start of an IF1 bus transaction.

203

Chapter 9
 Verilog HDL Source

This chapter presents an overview of the Verilog HDL source code for the Y8002 design sufficient to under-
stand the basic organization and operation of the design. Also described are the options available for the
design. No attempt will be made to describe the internal operation of the design in detail. Refer to the com-
ments embedded in the source code for that type of information. The test bench, described in a separate
chapter, is covered in much more detail because the user may actually find it useful to modify the test bench.

The design can be viewed from two different standpoints. First is the organization of the design files them-
selves. Second is the logical organization of the Verilog HDL modules contained in the files. Both of these
views are shown in the table below.

Each file contains just one Verilog HDL module, and may include (using the ‘include directive) one or more
other files. In all cases the name of the file is identical to the name of the Verilog HDL module that it con-
tains. The only files that do not contain a Verilog HDL module are defines.v, which contains all of the
‘define statements for the design in one central location, and version.v, which selects the options for the
design.

Before discussing individual Verilog HDL modules, it is appropriate to describe the versions of the design
that are available. These versions are controlled by ‘define statements in the file version.v. This file is refer-
enced by an ‘include statement in the top level of the design.

The first ‘define selects between an ASIC option and an FPGA option. The primary difference between
these two options is that the FPGA option does not include any 3-state function for those outputs that are
normally able to go high-impedance. If this functionality is required it can be implemented outside of the
design. This option is available because synthesis tools often have difficulty implementing 3-state signals.

file organization logical organization
y8002.v y8002.v

version.v core8002.v
core8002.v ext_int.v

defines.v machine.v

ff_byte.v control.v
ff_word.v datapath.v

reg_word.v reg_word.v

ext_int.v reg_file.v
machine.v ff_byte.v

control.v ff_word.v

datapath.v

204

The second ‘define selects between the normal multiplexed option and a special non-multiplexed option.
The multiplexed option employs the normal bidirectional Address/Data bus familiar to Z8002 users, while
the non-multiplexed option uses separate Address, Data In and Data Out busses. The multiplexed option
obviously employs 3-state drivers, so selecting this option in conjunction with the FPGA option doesn’t
make a lot of sense.

The top level design file (and module) is called y8002.v. This file is the top level “wrapper” for the design
and is where the design options are implemented. It is also where the user can implement technology-spe-
cific I/O cells or buffers. Several heavily-loaded signals from the core design are buffered here using instan-
tiated ACTEL-specific cells in the FPGA option. These cells can obviously be replaced with different
buffers for different FPGA vendors. Technology-specific buffers for these heavily-loaded signals can also
be instantiated in the ASIC option. This level is also where the user can insert I/O cells if desired.

The core8002.v module contains essentially all of the design, but no logic is actually implemented at this
level. Rather, all of the remaining design files are referenced here, using ‘include statements, and the four
main modules are instantiated. The heavily-loaded signals exit this module and then are input to the module
with a slightly different name to allow for technology-specific buffers to be implemented. These signals are
the synchronized reset signal (resetpls_reg out and resetb in), the instruction register (inst_reg out and
buf_inst_reg in), and the signal which stops all of the state machines for Bus Request, Wait Request and
Stop Request (hold_mach out and buf_hold_mach in). The clock input to this module is called buf_CLK,
having been buffered outside of the module. As mentioned previously, nearly all of the logic in the design is
clocked by the rising edge of this clock. The only exceptions are in the external interface where certain fall-
ing-edge operation are required for compatibility with the Z8002 device.

The file defines.v contains all of the encoding for multi-bit control fields and state machines. Most of these
control field encoding can be changed to attempt to minimize logic, subject to restrictions listed in the file.
However, the current encoding should be close to optimal, given our experience with synthesis tools, so the
user is strongly cautioned against any such changes. The main state machines in the design are one-hot
encoded. This type of encoding works well even in ASIC implementations because the control fields are not
that wide. One-hot encoding also leads to fewer levels of logic and hence higher operating frequency in most
cases.

The ff_byte.v and ff_word.v modules contain a byte-wide register and a word-wide register respectively, for
use in the register file. These registers are not affected by reset.

The reg_word.v module contains a word-wide register for use in the datapath. This register is cleared to all
zeros by reset and is used for temporary storage in the datapath.

The reg_file.v module contains the Y8002 register file and is instantiated in the datapath. The register file is
implemented using standard flip-flops rather than latches or RAM because of its relatively small size. This is
also leads to a more robust and technology-independent design.

The ext_int.v module contains the external inteface for the Y8002 processor. This is where all of the external
control signals are generated with the proper timing, and all inputs are sampled with the proper timing. This
module contains a mixture of rising-edge triggered logic and falling-edge triggered logic as required for
compatible timing. Most outputs from this module come directly from the outputs of flip-flops, but where
this is not possible, the design guarantees glitch-free operation.

The machine.v module contains the five main state machines for the device. The primary state machine is
called mach_cyc and this state machine controls everything in the design. The four auxiliary state machines
are controlled by the primary state machine and run only in specific circumstances. The mltl_cyc state
machine runs to perform the multiply algorithm during MULT and MULTL instructions. The divl_cyc state

205

machine runs to perform the divide algorithm during DIV and DIVL instructions. The rti_cyc state machine
runs as part of the reset sequence, the trap sequence and the interrupt sequence to fetch data from the Pro-
gram Status Area. The trap_cyc state machine runs during the trap sequence and the interrupt sequence to
perform the state-saving operation that writes the FCW, PC and an identifier to the stack.

The control.v module generates all of the control signals used throughout the design. This module contains
only combinatorial logic. This partitioning allows this module to be replaced with a PLA or similar structure
in an ASIC implementation. Modern synthesis tools have made this option less attractive than it once was,
but the option is still available with this partitioning. Multi-bit control signals are generated using the mne-
monics defined in the file defines.v to increase the readability of this module.

The datapath.v module contains all of the data manipulation logic for the design. This includes the ALU, the
register file, the PC and FCW, the PSAP and the instruction register. This module drives the internal bus,
called intrnl_bus, which carries all data and addresses in the design. The design uses a classical 16-bit ALU,
without any special ALU logic for the multiply and divide operations. Three small state machines are
included in this module. Two are used for the LDM instruction, to count the number of transfers and to gen-
erate the register address. The third is used to count the iterations for the multiply and divide operations.

For more detailed information about the design refer to the comments embedded in the Verilog HDL source
code.

206

207

Chapter 10
 Test Bench

This chapter covers the operation of the test bench included with the design. The test bench instantiates the
processor, and using a series of test patterns, verifies the operation of the processor. The included test pat-
terns exercise every instruction and completely verify the operation of all of the flags. Also tested are all of
the opcodes that cause an illegal instruction trap. The test bench normally runs without any Wait states, Bus
Requests, or Stop Requests. However, each of these external stimuli, alone or in combination, can be gener-
ated by the test bench.

The overall operation of the test bench is controlled by a set of ‘define statements at the top of the test bench
file. These high-level options will be discussed first, followed by a section-by-section description of the
operation of the test bench. Much of this discussion will make more sense if a copy of the test bench is avail-
able, but the general operation can be deduced without the actual Verilog HDL code at hand.

The first ‘define selects the type of memory used by the test bench. Normal test bench operation uses two
separate memories, one for reading (and it really is read-only) and another that holds compare data for any
writes that the processor will be performing. Each test pattern loads both of these memories before starting,
and the test bench checks every write operation performed by the processor against the compare memory
contents at that address. In this regard the test bench operates much like a piece of Automatic Test Equip-
ment (ATE). The alternative is a uniform memory that is read and written by the processor. This option
allows user code to be loaded into the test bench memory for simulation.

The second ‘define selects the clock cycle time for the simulation. This option is essentially meaningless
when simulating the Verilog HDL source code, but will be useful if the test bench is used with a gate-level
implementation of the design, as well as when generating trace files to use on a tester in the case of an ASIC
implementation.

The third ‘define enables or disables the option of generating a trace file that can be converted into the
proper format for a tester. The trace file is generated in a print-on-change format and includes the direction
control signal for the address/data bus. All input stimuli are generated assuming that the tester uses the NRZ
format for all signals and that there are two tester cycles per each processor clock cycle.

The fourth ‘define controls the insertion of Wait states by the test bench. This is a global enable, used to
select zero, one or two wait states for each and every transaction that samples the WAITB input. Finer con-
trol, by each transaction type is also available. This will be discussed in the corresponding section descrip-
tion below.

The fifth ‘define controls the insertion of Bus Requests. Only a global enable is available, with a number of
options as to the length of each bus request. When enabled, a Bus Request is generated between every bus
transaction. The test bench is not capable of verifying proper operation of the Bus Request except via a
proper cycle count for the pattern.

208

The sixth ‘define is also used with Bus Requests. It selects the inactive time for the Bus Request. The proces-
sor requires that BUSREQB be inactive for at least two clock cycles between requests, and this is the mini-
mum allowed by this ‘define. To verify proper functionality, longer inactive times may also be selected here.

The final ‘define controls the insertion of Stop Requests. Only a global enable is available, with a number of
options as to the number of Stop Requests in a burst. When enabled, a Stop Request is generated for every
instruction (recall that Stop Requests are only accepted between instructions). The test bench is not capable
of verifying the proper operation of the Stop Request except via a proper cycle count for the pattern.

The remainder of this chapter will discuss each section of the Verilog HDL code of the test bench. Each sec-
tion is identified by a comment block that will be referenced here.

set test cycle time

This section uses the clock cycle time selected by the top level ‘define to set two parameters to create the
proper timing in the test bench. Both the memory access time and the minor cycle time are set here. The
minor cycle time will be explained in the relevant section below.

select wait patterns

This section uses the number of wait states selected by the corresponding top level ‘define to create the
actual data patterns which drive the WAITB input. Separate data patterns are available for each transaction
type. The data patterns correspond, msb-to-lsb, to the inverse of the value applied to the WAITB starting
with the T1 clock cycle of the transaction. One bit is used for each clock cycle, and WAITB can be asserted
more than once per bus transaction. This is useful in the case of interrupt acknowledge cycles, where
WAITB is sampled at two separate places in the transaction.

select busreq operation

This section uses the Bus Request options selected by the two top level ‘define statements to set three param-
eters used by the state machine that generates the BUSREQB input. The operation of the bus request state
machine will by covered in the relevant section below.

select stop operation

This section uses the Stop Request option selected by the top level ‘define statement to set two parameters
used by the state machine that generates the STOPB input. The operation of the stop request state machine
will by covered in the relevant section below.

instantiate processor

This is the section where the processor is actually instantiated into the test bench. All of the pin variables are
also declared here. Recall that there are actually two versions of the processor available, multiplexed and
non-multiplexed, selected in the file version.v. This section automatically recognizes the version and con-
nects the correct one.

program memory and write compare data

This section contains the program memory and, if necessary, the memory that holds the compare data. Both
memories support both byte and word accesses. This is actually done in the memory interface section below.

test bench internal variables

209

This section declares all of the variables for the test bench. Most of the variables are self-explanatory. How-
ever, note that there are actually two variables per input pin. The test bench version has an extension _var
and is the one that is manipulated by the test bench without regard to the actual timing of when the input is
applied to the processor. The actual pin variable takes its value from the test bench version at the appropriate
time during each clock cycle.

generate the overall test bench timing

This section contains the main timing generator for the test bench. All test bench variables are initialized and
the timing generator is started here. The test bench timing generator consists of a ten bit shift register, with
outputs called TREF0 through TREF9. The minor cycle time is the period of the “clock” for this state
machine. Only one of these outputs is active at a time, and rising edges on these signals are used to drive
state machines and generate the actual timing for the input signals. Each cycle of this timing generator corre-
sponds to one tester cycle and one-half of a processor clock cycle.

This section also contains a cycle counter that counts the clock cycles for a pattern. This count is not used for
anything in the test bench but is provided as a convenience for anyone running the test bench. Recall that the
test bench cannot verify proper operation with Wait states, Bus Requests or Stop Requests except for the
proper cycle count upon pattern completion.

The end-of-pattern condition is also recognized in this section. The test bench recognizes the end of a test
pattern when an address of FFFEh is sampled by the ASB signal.

peripheral simulation tasks are in a separate file

TREF0

TREF1

TREF2

TREF3

TREF4

TREF5

TREF6

TREF7

TREF8

TREF9

210

This short section uses an ‘include to bring in a file that contains a number of tasks used by the test bench.
There is a reset task and a task to run each test pattern. Each test pattern task initializes the error counter,
resets the processor and loads the memories with the test program and compare data. It also loads the inter-
rupt generator memory, if required by the test pattern.

t-cycle tracker to generate inputs

This section contains the state machine that tracks the t-state (the clock cycle within a machine cycle) of the
processor, by synchronizing with the ASB signal. This synchronization is necessary to assert the various
processor inputs at the correct time. This section also decodes the Status lines to select the proper pattern for
the Wait State generator.

busreq generator state machine

The bus request state machine uses the parameters selected earlier and the state of the BUSACKB pin to
sequence through the states necessary to generate the requested on and off times for the Bus Request. This
state machine is clocked by the rising edge of TREF4 when the CLK input is High. The BUSREQB signal is
the logical AND of the two most-significant bits of the bus request state machine.

stop generator state machine

The stop request state machine uses the parameters selected earlier to sequence through the states necessary
to generate a Stop Request at the correct time. This state machine is clocked by the rising edge of TREF4
when the ASB output is Low (in other words, at the start of every machine cycle). The STOPB signal is the
logical AND of the two most-significant bits of the stop request state machine.

interrupt generator state machine

The interrupt request state machine uses information loaded into the interrupt generator memory at the start
of each test pattern to generate interrupts during the test pattern. Every interrupt acknowledge transaction
increments the address used to access the interrupt generator memory. One consequence of this is that if two
interrupts are generated by an entry, there must be a subsequent dummy entry to account for the second
interrupt acknowledge transaction. Similarly, if three interrupts are generated by an entry, two subsequent
dummy entries are required.

Each entry in the interrupt generator memory contains one bit for each interrupt type, a four bit transaction
count, a four bit transaction status and a sixteen bit address. The interrupt request state machine contains a
counter that is reset by an interrupt acknowledge transaction and then increments each time that a transaction
matching the address and status is recognized. When the transaction count, transaction status and address all
match those in the interrupt generator memory, the selected interrupt is generated at the correct time during
the transaction.

Bit position(s) Width Meaning
26 1 Value for NMIB

25 1 Value for NVIB

24 1 Value for VIB
23:20 4 Count

19:16 4 Transaction Status

15:0 16 Transaction Address

211

Once asserted, the VIB and NVIB interrupt requests remain active until the test bench recognizes the corre-
sponding interrupt acknowledge transaction. The NMIB interrupt request is different, however. In the case
of NMIB, the request is a pulse that is only one-half of a clock cycle wide. This is to verify the edge-trig-
gered operation on this input to the processor.

Every test pattern except for the one which actually tests the interrupts (called int_ops) merely loads a null
value into the interrupt generator memory.

processor inputs

This section adds the final timing to the test bench variables to create the actual processor inputs. The CLK
input changes on the rising edge of TREF5, and all of the other inputs change on the rising edge of TREF3.
In the case of BUSREQB, NVIB, RESETB, and VIB it is the rising edge of TREF3 just before a rising edge
of CLK. In the case of NMIB, STOPB and WAITB it is the rising edge of TREF3 just before a falling edge
of CLK. Note that the NVIB, RESETB and VIB inputs persist. That is, the value is latched by the test bench
and persists until the corresponding test bench variable is de-asserted. In all other cases the input is actually
driven for only half of a clock cycle and is then returned to the inactive state. The test bench does this to
guarantee that the processor input is actually sampled on the correct CLK edge.

memory interface

This section connects the test bench memories to the processor. The address/data bus is latched by the rising
edge of TREF4 during the ASB Low time. Input data is applied to the processor on the rising edge of TREF2
during the CLK Low time (after the memory access time specified previously). The memory interfaces sup-
port both byte and word transfers properly.

trace file generation

This section generates the print-on-change trace file, if that option is selected. The complete test program
requires slightly more than 110,000 clock cycles to complete. If the tester pattern memory is not deep
enough for the entire set of patterns, individual patterns can be enabled or disabled in the next section by
commenting out the appropriate task.

load and execute the test patterns

This final section is where the actual test pattern tasks are run. Note that they can be individually commented
out if required. The existing pattern sequence is arbitrary, and the patterns can actually be run in any order.
Even though each pattern task does a hardware reset, there is an initial reset task to force all processor out-
puts to be known. This should always be the first task to run for this reason. Below is a list of the test pat-
terns and their functionality:

Pattern Name Pattern Number Coverage
dat_ops 0 data movement instructions

alu_ops 1 arithmetic and logical instructions

jmp_ops 2 jumps, calls, and return
bit_ops 3 bit operation instructions

lng_ops 4 multiply, divide and multi-bit shifts

blk_ops 5 block-type instructions
trp_ops 6 all opcodes which are supposed to trap

int_ops 7 interrupts

212

213

Appendix 1
 Execution details

This Appendix lists the details of the instruction timing. The external sequence shows the length of each bus
cycle performed as part of the instruction, while the internal sequence shows the actual internal sequence.
Refer to the design documentation for more details about the internal sequenceMultiply and divide are
shown separately at the end.

Instruction Cycles External Sequence Internal Sequence

ADC Rd, Rs 5 5 3, 2

ADCB Rbd, Rbs 5 5 3, 2

ADD Rd, Rs 4 4 3, 1
ADDB Rbd, Rbs 4 4 3, 1

ADDL RRd, RRs 8 8 3, 5

ADD Rd, #data 7 4, 3 3, 1, 3
ADDB Rbd, #data 7 4, 3 3, 1, 3

ADDL RRd, #data 14 4, 3, 7 3, 1, 3, 3, 4

ADD Rd, @Rs 7 4, 3 3, 1, 3
ADDB Rbd, @Rs 7 4, 3 3, 1, 3

ADDL RRd, @Rs 14 4, 3, 7 3, 1, 3, 3, 4

ADD Rd, address 9 3, 3, 3 3, 3, 3
ADDB Rbd, address 9 3, 3, 3 3, 3, 3

ADDL RRd, address 15 3, 3, 3, 6 3, 3, 3, 3, 3

ADD Rd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3
ADDB Rbd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3

ADDL RRd, addr(Rs) 16 3, 4, 3, 6 3, 3, 1, 3, 3, 3

AND Rd, Rs 4 4 3, 1
ANDB Rbd, Rbs 4 4 3, 1

AND Rd, #data 7 4, 3 3, 1, 3

ANDB Rbd, #data 7 4, 3 3, 1, 3
AND Rd, @Rs 7 4, 3 3, 1, 3

ANDB Rbd, @Rs 7 4, 3 3, 1, 3

AND Rd, address 9 3, 3, 3 3, 3, 3
ANDB Rbd, address 9 3, 3, 3 3, 3, 3

AND Rd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3

ANDB Rbd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3

214

Instruction Cycles External Sequence Internal Sequence

BIT Rd, #b 4 4 3, 1

BITB Rbd, #b 4 4 3, 1
BIT @Rd, #b 8 4, 4 3, 1, 3, 1

BITB @Rd, #b 8 4, 4 3, 1, 3, 1

BIT address, #b 10 3, 3, 4 3, 3, 3, 1
BITB address, #b 10 3, 3, 4 3, 3, 3, 1

BIT addr(Rd), #b 11 3, 4, 4 3, 3, 1, 3, 1

BITB addr(Rd), #b 11 3, 4, 4 3, 3, 1, 3, 1

BIT Rd, Rs 10 4, 6 3, 1, 3, 3
BITB Rbd, Rs 10 4, 6 3, 1, 3, 3

CALL @Rd 10 4, 3, 3 3, 1, 3, 3

CALL address 12 3, 5, 4 3, 3, 2, 3, 1
CALL addr(Rd) 13 3, 6, 4 3, 3, 3, 3, 1

CALR address 10 6, 4 3, 3, 3, 1

CLR Rd 7 7 3, 4
CLRB Rbd 7 7 3, 4

CLR @Rd 8 5, 3 3, 2, 3

CLRB @Rd 8 5, 3 3, 2, 3
CLR address 11 3, 5, 3 3, 3, 2, 3

CLRB address 11 3, 5, 3 3, 3, 2, 3

CLR addr(Rd) 12 3, 6, 3 3, 3, 3, 3
CLRB addr(Rd) 12 3, 6, 3 3, 3, 3, 3

COM Rd 7 7 3, 4

COMB Rbd 7 7 3, 4
COM @Rd 12 5, 4, 3 3, 2, 3, 1, 3

COMB @Rd 12 5, 4, 3 3, 2, 3, 1, 3

COM address 15 3, 5, 4, 3 3, 3, 2, 3, 1, 3
COMB address 15 3, 5, 4, 3 3, 3, 2, 3, 1, 3

COM addr(Rd) 16 3, 6, 4, 3 3, 3, 3, 3, 1, 3

COMB addr(Rd) 16 3, 6, 4, 3 3, 3, 3, 3, 1, 3
COMFLG flag 7 7 3, 4

CP Rd, Rs 4 4 3, 1

CPB Rbd, Rbs 4 4 3, 1
CPL RRd, RRs 8 8 3, 5

CP Rd, #data 7 4, 3 3, 1, 3

CPB Rbd, #data 7 4, 3 3, 1, 3
CPL RRd, #data 14 4, 3, 7 3, 1, 3, 3, 4

CP Rd, @Rs 7 4, 3 3, 1, 3

CPB Rbd, @Rs 7 4, 3 3, 1, 3
CPL RRd, @Rs 14 4, 3, 7 3, 1, 3, 3, 4

215

Instruction Cycles External Sequence Internal Sequence

CP Rd, address 9 3, 3, 3 3, 3, 3

CPB Rbd, address 9 3, 3, 3 3, 3, 3
CPL RRd, address 15 3, 3, 3, 6 3, 3, 3, 3, 3

CP Rd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3

CPB Rbd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3
CPL RRd, addr(Rs) 16 3, 4, 3, 6 3, 3, 1, 3, 3, 3

CP @Rd, #data 11 4, 4, 3 3, 1, 3, 1, 3

CPB @Rd, #data 11 4, 4, 3 3, 1, 3, 1, 3

CP address, #data 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3
CPB address, #data 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3

CP addr(Rd), #data 15 3, 4, 5, 3 3, 3, 1, 3, 2, 3

CPB addr(Rd), #data 15 3, 4, 5, 3 3, 3, 1, 3, 2, 3
CPD Rd, @Rs, r, cc 20 4, 5, 11 3, 1, 3, 2, 3, 6, 2

CPDB Rbd, @Rs, r, cc 20 4, 5, 11 3, 1, 3, 2, 3, 6, 2

CPDR Rd, @Rs, r, cc 11+9n 4, 5, 9n, 2 3, 1, 3, 2, (3, 6)n, 2
CPDRB Rbd, @Rs, r, cc 11+9n 4, 5, 9n, 2 3, 1, 3, 2, (3, 6)n, 2

CPI Rd, @Rs, r, cc 20 4, 5, 11 3, 1, 3, 2, 3, 6, 2

CPIB Rbd, @Rs, r, cc 20 4, 5, 11 3, 1, 3, 2, 3, 6, 2
CPIR Rd, @Rs, r, cc 11+9n 4, 5, 9n, 2 3, 1, 3, 2, (3, 6)n, 2

CPIRB Rbd, @Rs, r, cc 11+9n 4, 5, 9n, 2 3, 1, 3, 2, (3, 6)n, 2

CPSD @Rd, @Rs, r, cc 25 4, 5, 5, 11 3, 1, 3, 2, 3, 2, 3, 6, 2
CPSDB @Rd, @Rs, r, cc 25 4, 5, 5, 11 3, 1, 3, 2, 3, 2, 3, 6, 2

CPSDR @Rd, @Rs, r, cc 11+14n 4, 5, (5, 9)n, 2 3, 1, 3, 2, (3, 2, 3, 6)n, 2

CPSDRB @Rd, @Rs, r, cc 11+14n 4, 5, (5, 9)n, 2 3, 1, 3, 2, (3, 2, 3, 6)n, 2
CPSI @Rd, @Rs, r, cc 25 4, 5, 5, 11 3, 1, 3, 2, 3, 2, 3, 6, 2

CPSIB @Rd, @Rs, r, cc 25 4, 5, 5, 11 3, 1, 3, 2, 3, 2, 3, 6, 2

CPSIR @Rd, @Rs, r, cc 11+14n 4, 5, (5, 9)n, 2 3, 1, 3, 2, (3, 2, 3, 6)n, 2
CPSIRB @Rd, @Rs, r, cc 11+14n 4, 5, (5, 9)n, 2 3, 1, 3, 2, (3, 2, 3, 6)n, 2

DAB Rbd 5 5 3, 2

DEC Rd, #n 4 4 3, 1
DECB Rbd, #n 4 4 3, 1

DEC @Rd, #n 11 4, 4, 3 3, 1, 3, 1, 3

DECB @Rd, #n 11 4, 4, 3 3, 1, 3, 1, 3
DEC address, #n 13 3, 3, 4, 3 3, 3, 3, 1, 3

DECB address, #n 13 3, 3, 4, 3 3, 3, 3, 1, 3

DEC addr(Rd), #n 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3
DECB addr(Rd), #n 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3

DI int 7 7 3, 4

DIV RRd, Rs 11/22/92 5, div, 1 3, 2, div, 1
DIVL RQd, RRs 14/36/500 5, div, 1 3, 2, div, 1

216

Instruction Cycles External Sequence Internal Sequence

DIV RRd, #data 13/24/94 4, 3, div, 1 3, 1, 3, div, 1

DIVL RQd, #data 19/41/505 4, 3, 3, div, 1 3, 1, 3, 3, div, 1
DIV RRd, @Rs 13/24/94 4, 3, div, 1 3, 1, 3, div, 1

DIVL RQd, @Rs 19/41/505 4, 3, 3, div, 1 3, 1, 3, 3, div, 1

DIV RRd, address 15/26/96 3, 3, 3, div, 1 3, 3, 3, div, 1
DIVL RQd, address 21/43/507 3, 3, 3, 3, div, 1 3, 3, 3, 3, div, 1

DIV RRd, addr(Rs) 16/27/97 3, 4, 3, div, 1 3, 3, 1, 3, div, 1

DIVL RQd, addr(Rs) 22/44/508 3, 4, 3, 3, div, 1 3, 3, 1, 3, 3, div, 1

DJNZ R, address 11 11 3, 8
DBJNZ Rb, address 11 11 3, 8

EI int 7 7 3, 4

EX Rd, Rs 6 6 3, 3
EXB Rbd, Rbs 6 6 3, 3

EX Rd, @Rs 12 4, 5, 3 3, 1, 3, 2, 3

EXB Rd, @Rs 12 4, 5, 3 3, 1, 3, 2, 3
EX Rd, address 15 3, 4, 5, 3 3, 3, 1, 3, 2, 3

EXB Rbd, address 15 3, 4, 5, 3 3, 3, 1, 3, 2, 3

EX Rd, addr(Rs) 16 3, 5, 5, 3 3, 3, 2, 3, 2, 3
EXB Rbd, addr(Rs) 16 3, 5, 5, 3 3, 3, 2, 3, 2, 3

EXTSB Rd 11 11 3, 8

EXTS RRd 11 11 3, 8
EXTSL RQd 11 11 3, 8

HALT 8+3n 5, 3, 3n 3, 2, 3, 3n

IN Rd, @Rs 10 6, 4 3, 3, 4
INB Rbd, @Rs 10 6, 4 3, 3, 4

IN Rd, port 12 4, 4, 4 3, 1, 3, 1, 4

INB Rbd, port 12 4, 4, 4 3, 1, 3, 1, 4
SIN Rd, port 12 4, 4, 4 3, 1, 3, 1, 4

SINB Rbd, port 12 4, 4, 4 3, 1, 3, 1, 4

INC Rd, #n 4 4 3, 1
INCB Rbd, #n 4 4 3, 1

INC @Rd, #n 11 4, 4, 3 3, 1, 3, 1, 3

INCB @Rd, #n 11 4, 4, 3 3, 1, 3, 1, 3
INC address, #n 13 3, 3, 4, 3 3, 3, 3, 1, 3

INCB address, #n 13 3, 3, 4, 3 3, 3, 3, 1, 3

INC addr(Rd), #n 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3
INCB addr(Rd), #n 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3

IND @Rd, @Rs, r 21 4, 5, 5, 7 3, 1, 3, 2, 4, 1, 3, 2, 2

INDB @Rd, @Rs, r 21 4, 5, 5, 7 3, 1, 3, 2, 4, 1, 3, 2, 2
SIND @Rd, @Rs, r 21 4, 5, 5, 7 3, 1, 3, 2, 4, 1, 3, 2, 2

SINDB @Rd, @Rs, r 21 4, 5, 5, 7 3, 1, 3, 2, 4, 1, 3, 2, 2

217

Instruction Cycles External Sequence Internal Sequence

INDR @Rd, @Rs, r 11+10n 4, 5, (5, 5)n, 2 3, 1, 3, 2, (4, 1, 3, 2)n, 2

INDRB @Rd, @Rs, r 11+10n 4, 5, (5, 5)n, 2 3, 1, 3, 2, (4, 1, 3, 2)n, 2
SINDR @Rd, @Rs, r 11+10n 4, 5, (5, 5)n, 2 3, 1, 3, 2, (4, 1, 3, 2)n, 2

SINDRB @Rd, @Rs, r 11+10n 4, 5, (5, 5)n, 2 3, 1, 3, 2, (4, 1, 3, 2)n, 2

INI @Rd, @Rs, r 21 4, 5, 5, 7 3, 1, 3, 2, 4, 1, 3, 2, 2
INIB @Rd, @Rs, r 21 4, 5, 5, 7 3, 1, 3, 2, 4, 1, 3, 2, 2

SINI @Rd, @Rs, r 21 4, 5, 5, 7 3, 1, 3, 2, 4, 1, 3, 2, 2

SINIB @Rd, @Rs, r 21 4, 5, 5, 7 3, 1, 3, 2, 4, 1, 3, 2, 2

INIR @Rd, @Rs, r 11+10n 4, 5, (5, 5)n, 2 3, 1, 3, 2, (4, 1, 3, 2)n, 2
INIRB @Rd, @Rs, r 11+10n 4, 5, (5, 5)n, 2 3, 1, 3, 2, (4, 1, 3, 2)n, 2

SINIR @Rd, @Rs, r 11+10n 4, 5, (5, 5)n, 2 3, 1, 3, 2, (4, 1, 3, 2)n, 2

SINIRB @Rd, @Rs, r 11+10n 4, 5, (5, 5)n, 2 3, 1, 3, 2, (4, 1, 3, 2)n, 2
IRET 13 6, 3, 4 3, 3, 3, 3, 1

JP cc, @Rd 7 or 10 4, 3, 3 3, 1, 3, 3

JP cc, address 7 3, 4 3, 3, 1
JP cc, addr(Rd) 8 3, 5 3, 3, 2

JR cc, address 6 3, 3 3, 3

LD Rd, Rs 3 3 3
LDB Rbd, Rbs 3 3 3

LDL RRd, RRs 5 5 3, 2

LD Rd, @Rs 7 4, 3 3, 1, 3
LDB Rbd, @Rs 7 4, 3 3, 1, 3

LDL RRd, @Rs 11 4, 3, 4 3, 1, 3, 3, 1

LD Rd, address 9 3, 3, 3 3, 3, 3
LDB Rbd, address 9 3, 3, 3 3, 3, 3

LDL RRd, address 12 3, 3, 3, 3 3, 3, 3, 3

LD Rd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3
LDB Rbd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3

LDL RRd, addr(Rs) 13 3, 4, 3, 3 3, 3, 1, 3, 3

LD Rd, Rs(#disp) 14 4, 7, 3 3, 1, 3, 4, 3
LDB Rbd, Rs(#disp) 14 4, 7, 3 3, 1, 3, 4, 3

LDL RRd, Rs(#disp) 17 4, 7, 3, 3 3, 1, 3, 4, 3, 3

LD Rd, Rs(Rx) 14 4, 7, 3 3, 1, 3, 4, 3
LDB Rbd, Rs(Rx) 14 4, 7, 3 3, 1, 3, 4, 3

LDL RRd, Rs(Rx) 17 4, 7, 3, 3 3, 1, 3, 4, 3, 3

LD @Rd, Rs 8 5, 3 3, 2, 3
LDB @Rd, Rbs 8 5, 3 3, 2, 3

LDL @Rd, RRs 11 5, 3, 3 3, 2, 3, 3

LD address, Rs 11 3, 5, 3 3, 3, 2, 3
LDB address, Rbs 11 3, 5, 3 3, 3, 2, 3

LDL address, RRs 14 3, 5, 3, 3 3, 3, 2, 3, 3

218

Instruction Cycles External Sequence Internal Sequence

LD addr(Rd), Rs 12 3, 6, 3 3, 3, 3, 3

LDB addr(Rd), Rbs 12 3, 6, 3 3, 3, 3, 3
LDL addr(Rd), RRs 15 3, 6, 3, 3 3, 3, 3, 3, 3

LD Rd(#disp), Rs 14 4, 7, 3 3, 1, 3, 4, 3

LDB Rd(#disp), Rbs 14 4, 7, 3 3, 1, 3, 4, 3
LDL Rd(#disp), RRs 17 4, 7, 3, 3 3, 1, 3, 4, 3, 3

LD Rd(Rx), Rs 14 4, 7, 3 3, 1, 3, 4, 3

LDB Rd(Rx), Rbs 14 4, 7, 3 3, 1, 3, 4, 3

LDL Rd(Rx), RRs 17 4, 7, 3, 3 3, 1, 3, 4, 3, 3
LD Rd, #data 7 4, 3 3, 1, 3

LDB Rd, #data 7 4, 3 3, 1, 3

LDB Rbd, #data 5 5 3, 2
LDL RRd, #data 11 4, 3, 4 3, 1, 3, 3, 1

LD @Rd, #data 11 4, 4, 3 3, 1, 3, 1, 3

LDB @Rd, #data 11 4, 4, 3 3, 1, 3, 1, 3
LD address, #data 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3

LDB address, #data 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3

LD addr(Rd), #data 15 3, 4, 5, 3 3, 3, 1, 3, 2, 3
LDB addr(Rd), #data 15 3, 4, 5, 3 3, 3, 1, 3, 2, 3

LDA Rd, address 12 4, 4, 4 3, 1, 3, 1, 3, 1

LDA Rd, addr(Rs) 13 4, 5, 4 3, 1, 3, 2, 3, 1
LDA Rd, Rs(#disp) 15 4, 7, 4 3, 1, 3, 4, 3, 1

LDA Rd, Rs(Rx) 15 4, 7, 4 3, 1, 3, 4, 3, 1

LDAR Rd, address 15 4, 7, 4 3, 1, 3, 4, 3, 1
LDCTL FCW, Rs 7 7 3, 4

LDCTL REFRESH, Rs 7 7 3, 4

LDCTL PSAP, Rs 7 7 3, 4
LDCTL NSP, Rs 7 7 3, 4

LDCTL Rd, FCW 7 7 3, 4

LDCTL Rd, REFRESH 7 7 3, 4
LDCTL Rd, PSAP 7 7 3, 4

LDCTL Rd, NSP 7 7 3, 4

LDCTLB FLAGS, Rbs 7 7 3, 4
LDCTLB Rbd, FLAGS 7 7 3, 4

LDD @Rd, @Rs, r 20 4, 5, 4, 7 3, 1, 3, 2, 3, 1, 3, 2, 2

LDDB @Rd, @Rs, r 20 4, 5, 4, 7 3, 1, 3, 2, 3, 1, 3, 2, 2
LDDR @Rd, @Rs, r 11+9n 4, 5, (4, 5)n, 2 3, 1, 3, 2, (3, 1, 3, 2)n, 2

LDDRB @Rd, @Rs, r 11+9n 4, 5, (4, 5)n, 2 3, 1, 3, 2, (3, 1, 3, 2)n, 2

LDI @Rd, @Rs, r 20 4, 5, 4, 7 3, 1, 3, 2, 3, 1, 3, 2, 2
LDIB @Rd, @Rs, r 20 4, 5, 4, 7 3, 1, 3, 2, 3, 1, 3, 2, 2

219

Instruction Cycles External Sequence Internal Sequence

LDIR @Rd, @Rs, r 11+9n 4, 5, (4, 5)n, 2 3, 1, 3, 2, (3, 1, 3, 2)n, 2

LDIRB @Rd, @Rs, r 11+9n 4, 5, (4, 5)n, 2 3, 1, 3, 2, (3, 1, 3, 2)n, 2
LDK Rd, #data 5 5 3, 2

LDM Rd, @Rs, #n 11+3n 4, 3, 3, 3n, 1 3, 1, 3, 3, 3n, 1

LDM Rd, address, #n 14+3n 3, 4, 3, 3, 3n, 1 3, 3, 1, 3, 3, 3n, 1
LDM Rd, addr(Rs), #n 15+3n 3, 4, 3, 4, 3n, 1 3, 3, 1, 3, 4, 3n, 1

LDM @Rd, Rs, #n 11+3n 4, 3, 3, 3n, 1 3, 1, 3, 3, 3n, 1

LDM address, Rs, #n 14+3n 3, 4, 3, 3, 3n, 1 3, 3, 1, 3, 3, 3n, 1

LDM addr(Rd), Rs, #n 15+3n 3, 4, 3, 4, 3n, 1 3, 3, 1, 3, 4, 3n, 1
LDPS @Rs 12 4, 3, 5 3, 1, 3, 3, 2

LDPS address 16 4, 4, 3, 5 3, 1, 3, 1, 3, 3, 2

LDPS addr(Rs) 17 4, 5, 3, 5 3, 1, 3, 2, 3, 3, 2
LDR Rd, address 14 4, 7, 3 3, 1, 3, 4, 3

LDRB Rbd, address 14 4, 7, 3 3, 1, 3, 4, 3

LDRL RRd, address 17 4, 7, 3, 3 3, 1, 3, 4, 3, 3
LDR address, Rs 14 4, 7, 3 3, 1, 3, 4, 3

LDRB address, Rbs 14 4, 7, 3 3, 1, 3, 4, 3

LDRL address, RRs 17 4, 7, 3, 3 3, 1, 3, 4, 3, 3
MBIT 7 7 3, 4

MREQ 12+7n 12, 7n 3, 2, 3, 4, (3, 4)n

MRES 5 5 3, 2
MSET 5 5 3, 2

MULT RRd, Rs 15/69 5, mul, 1 3, 2, mul, 1

MULTL RQd, RRs 21/258+4n 5, mul, 1 3, 2, mul, 1
MULT RRd, #data 17/71 4, 3, mul, 1 3, 1, 3, mul, 1

MULTL RQd, #data 26/263+4n 4, 3, 3, mul, 1 3, 1, 3, 3, mul, 1

MULT RRd, @Rs 17/71 4, 3, mul, 1 3, 1, 3, mul, 1
MULTL RQd, @Rs 26/263+4n 4, 3, 3, mul, 1 3, 1, 3, 3, mul, 1

MULT RRd, address 19/73 3, 3, 3, mul, 1 3, 3, 3, mul, 1

MULTL RQd, address 28/265+4n 3, 3, 3, 3, mul, 1 3, 3, 3, 3, mul, 1
MULT RRd, addr(Rs) 20/74 3, 4, 3, mul, 1 3, 3, 1, 3, mul, 1

MULTL RQd, addr(Rs) 29/266+4n 3, 4, 3, 3, mul, 1 3, 3, 1, 3, 3, mul, 1

NEG Rd 7 7 3, 4
NEGB Rbd 7 7 3, 4

NEG @Rd 12 5, 4, 3 3, 2, 3, 1, 3

NEGB @Rd 12 5, 4, 3 3, 2, 3, 1, 3
NEG address 15 3, 5, 4, 3 3, 3, 2, 3, 1, 3

NEGB address 15 3, 5, 4, 3 3, 3, 2, 3, 1, 3

NEG addr(Rd) 16 3, 6, 4, 3 3, 3, 3, 3, 1, 3
NEGB addr(Rd) 16 3, 6, 4, 3 3, 3, 3, 3, 1, 3

NOP 7 7 3, 4

220

Instruction Cycles External Sequence Internal Sequence

OR Rd, Rs 4 4 3, 1

ORB Rbd, Rbs 4 4 3, 1
OR Rd, #data 7 4, 3 3, 1, 3

ORB Rbd, #data 7 4, 3 3, 1, 3

OR Rd, @Rs 7 4, 3 3, 1, 3
ORB Rbd, @Rs 7 4, 3 3, 1, 3

OR Rd, address 9 3, 3, 3 3, 3, 3

ORB Rbd, address 9 3, 3, 3 3, 3, 3

OR Rd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3
ORB Rbd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3

OTDR @Rd, @Rs, r 11+10n 4, 5, (4, 6)n, 2 3, 1, 3, 2, (3, 1, 4, 2)n, 2

OTDRB @Rd, @Rs, r 11+10n 4, 5, (4, 6)n, 2 3, 1, 3, 2, (3, 1, 4, 2)n, 2
SOTDR @Rd, @Rs, r 11+10n 4, 5, (4, 6)n, 2 3, 1, 3, 2, (3, 1, 4, 2)n, 2

SOTDRB @Rd, @Rs, r 11+10n 4, 5, (4, 6)n, 2 3, 1, 3, 2, (3, 1, 4, 2)n, 2

OTIR @Rd, @Rs, r 11+10n 4, 5, (4, 6)n, 2 3, 1, 3, 2, (3, 1, 4, 2)n, 2
OTIRB @Rd, @Rs, r 11+10n 4, 5, (4, 6)n, 2 3, 1, 3, 2, (3, 1, 4, 2)n, 2

SOTIR @Rd, @Rs, r 11+10n 4, 5, (4, 6)n, 2 3, 1, 3, 2, (3, 1, 4, 2)n, 2

SOTIRB @Rd, @Rs, r 11+10n 4, 5, (4, 6)n, 2 3, 1, 3, 2, (3, 1, 4, 2)n, 2
OUT @Rd, Rs 10 6, 4 3, 3, 4

OUTB @Rd, Rbs 10 6, 4 3, 3, 4

OUT port, Rs 12 4, 4, 4 3, 1, 3, 1, 4
OUTB port, Rbs 12 4, 4, 4 3, 1, 3, 1, 4

SOUT port, Rs 12 4, 4, 4 3, 1, 3, 1, 4

SOUTB port, Rbs 12 4, 4, 4 3, 1, 3, 1, 4
OUTD @Rd, @Rs, r 21 4, 5, 4, 8 3, 1, 3, 2, 3, 1, 4, 2, 2

OUTDB @Rd, @Rs, r 21 4, 5, 4, 8 3, 1, 3, 2, 3, 1, 4, 2, 2

SOUTD @Rd, @Rs, r 21 4, 5, 4, 8 3, 1, 3, 2, 3, 1, 4, 2, 2
SOUTDB @Rd, @Rs, r 21 4, 5, 4, 8 3, 1, 3, 2, 3, 1, 4, 2, 2

OUTI @Rd, @Rs, r 21 4, 5, 4, 8 3, 1, 3, 2, 3, 1, 4, 2, 2

OUTIB @Rd, @Rs, r 21 4, 5, 4, 8 3, 1, 3, 2, 3, 1, 4, 2, 2
SOUTI @Rd, @Rs, r 21 4, 5, 4, 8 3, 1, 3, 2, 3, 1, 4, 2, 2

SOUTIB @Rd, @Rs, r 21 4, 5, 4, 8 3, 1, 3, 2, 3, 1, 4, 2, 2

POP Rd, @Rs 8 5, 3 3, 2, 3
POPL RRd, @Rs 12 5, 3, 4 3, 2, 3, 3, 1

POP @Rd, @Rs 12 4, 5, 3 3, 1, 3, 2, 3

POPL @Rd, @Rs 19 4, 3, 5, 3, 4 3, 1, 3, 3, 2, 3, 3, 1
POP address, @Rs 16 3, 5, 5, 3 3, 3, 2, 3, 2, 3

POPL address, @Rs 23 3, 5, 3, 5, 3, 4 3, 3, 2, 3, 3, 2, 3, 3, 1

POP addr(Rd), @Rs 16 3, 5, 5, 3 3, 3, 2, 3, 2, 3
POPL addr(Rd), @Rs 23 3, 5, 3, 5, 3, 4 3, 3, 2, 3, 3, 2, 3, 3, 1

221

Instruction Cycles External Sequence Internal Sequence

PUSH @Rd, Rs 9 6, 3 3, 3, 3

PUSHL @Rd, RRs 12 6, 3, 3 3, 3, 3, 3
PUSH @Rd, #data 12 4, 5, 3 3, 1, 3, 2, 3

PUSH @Rd, @Rs 13 5, 5, 3 3, 2, 3, 2, 3

PUSHL @Rd, @Rs 20 5, 3, 5, 3, 4 3, 2, 3, 3, 2, 3, 3, 1
PUSH @Rd, address 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3

PUSHL @Rd, address 21 3, 4, 3, 4, 3, 4 3, 3, 1, 3, 3, 1, 3, 3, 1

PUSH @Rd, addr(Rs) 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3

PUSHL @Rd, addr(Rs) 21 3, 4, 3, 4, 3, 4 3, 3, 1, 3, 3, 1, 3, 3, 1
RES Rd, #b 4 4 3, 1

RESB Rbd, #b 4 4 3, 1

RES @Rd, #b 11 4, 4, 3 3, 1, 3, 1, 3
RESB @Rd, #b 11 4, 4, 3 3, 1, 3, 1, 3

RES address, #b 13 3, 3, 4, 3 3, 3, 3, 1, 3

RESB address, #b 13 3, 3, 4, 3 3, 3, 3, 1, 3
RES addr(Rd), #b 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3

RESB addr(Rd), #b 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3

RES Rd, Rs 10 4, 6 3, 1, 3, 3
RESB Rbd, Rs 10 4, 6 3, 1, 3, 3

RESFLG flags 7 7 3, 4

RET cc 7 or 10 4, 3, 3 3, 1, 3, 3
RL Rd, #1 6 6 3, 3

RL Rd, #2 7 7 3, 4

RLB Rbd, #1 6 6 3, 3
RLB Rbd, #2 7 7 3, 4

RLC Rd, #1 6 6 3, 3

RLC Rd, #2 7 7 3, 4
RLCB Rbd, #1 6 6 3, 3

RLCB Rbd, #2 7 7 3, 4

RLDB Rbl, Rbs 9 9 3, 6
RR Rd, #1 6 6 3, 3

RR Rd, #2 7 7 3, 4

RRB Rbd, #1 6 6 3, 3
RRB Rbd, #2 7 7 3, 4

RRC Rd, #1 6 6 3, 3

RRC Rd, #2 7 7 3, 4
RRCB Rbd, #1 6 6 3, 3

RRCB Rbd, #2 7 7 3, 4

RRDB Rbl, Rbs 9 9 3, 6
SBC Rd, Rs 5 5 3, 2

SBCB Rbd, Rbs 5 5 3, 2

222

Instruction Cycles External Sequence Internal Sequence

SC #src 33 6, 3, 4, 5, 6, 5, 4 3, 3, 3, 3, 1, 3, 2, 3, 3, 3, 2, 3, 1

SDA Rd, Rs 15+3n 4, 11, 3n 3, 1, 3, 8, 3n
SDAB Rbd, Rs 15+3n 4, 11, 3n 3, 1, 3, 8, 3n

SDAL RRd, Rs 15+3n 4, 11, 3n 3, 1, 3, 8, 3n

SDL Rd, Rs 15+3n 4, 11, 3n 3, 1, 3, 8, 3n
SDLB Rbd, Rs 15+3n 4, 11, 3n 3, 1, 3, 8, 3n

SDLL RRd, Rs 15+3n 4, 11, 3n 3, 1, 3, 8, 3n

SET Rd, #b 4 4 3, 1

SETB Rbd, #b 4 4 3, 1
SET @Rd, #b 11 4, 4, 3 3, 1, 3, 1, 3

SETB @Rd, #b 11 4, 4, 3 3, 1, 3, 1, 3

SET address, #b 13 3, 3, 4, 3 3, 3, 3, 1, 3
SETB address, #b 13 3, 3, 4, 3 3, 3, 3, 1, 3

SET addr(Rd), #b 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3

SETB addr(Rd), #b 14 3, 4, 4, 3 3, 3, 1, 3, 1, 3
SET Rd, Rs 10 4, 6 3, 1, 3, 3

SETB Rbd, Rs 10 4, 6 3, 1, 3, 3

SETFLG flags 7 7 3, 4
SLA Rd, #n 13+3n 4, 9, 3n 3, 1, 3, 6, 3n

SLAB Rbd, #n 13+3n 4, 9, 3n 3, 1, 3, 6, 3n

SLAL RRd, #n 13+3n 4, 9, 3n 3, 1, 3, 6, 3n
SLL Rd, #n 13+3n 4, 9, 3n 3, 1, 3, 6, 3n

SLLB Rbd, #n 13+3n 4, 9, 3n 3, 1, 3, 6, 3n

SLLL RRd, #n 13+3n 4, 9, 3n 3, 1, 3, 6, 3n
SRA Rd, #n 13+3n 4, 9, 3n 3, 1, 3, 6, 3n

SRAB Rbd, #n 13+3n 4, 9, 3n 3, 1, 3, 6, 3n

SRAL RRd, #n 13+3n 4, 9, 3n 3, 1, 3, 6, 3n
SRL Rd, #n 13+3n 4, 9, 3n 3, 1, 3, 6, 3n

SRLB Rbd, #n 13+3n 4, 9, 3n 3, 1, 3, 6, 3n

SRLL RRd, #n 13+3n 4, 9, 3n 3, 1, 3, 6, 3n
SUB Rd, Rs 4 4 3, 1

SUBB Rbd, Rbs 4 4 3, 1

SUBL RRd, RRs 8 8 3, 5
SUB Rd, #data 7 4, 3 3, 1, 3

SUBB Rbd, #data 7 4, 3 3, 1, 3

SUBL RRd, #data 14 4, 3, 7 3, 1, 3, 3, 4
SUB Rd, @Rs 7 4, 3 3, 1, 3

SUBB Rbd, @Rs 7 4, 3 3, 1, 3

SUBL RRd, @Rs 14 4, 3, 7 3, 1, 3, 3, 4

223

Instruction Cycles External Sequence Internal Sequence

SUB Rd, address 9 3, 3, 3 3, 3, 3

SUBB Rbd, address 9 3, 3, 3 3, 3, 3
SUBL RRd, address 15 3, 3, 3, 6 3, 3, 3, 3, 3

SUB Rd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3

SUBB Rbd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3
SUBL RRd, addr(Rs) 16 3, 4, 3, 6 3, 3, 1, 3, 3, 3

TCC cc, Rd 5 5 3, 2

TCCB cc, Rbd 5 5 3, 2

TEST Rd 7 7 3, 4
TESTB Rbd 7 7 3, 4

TESTL RRd 9 9 3, 6

TEST @Rd 8 5, 3 3, 2, 3
TESTB @Rd 8 5, 3 3, 2, 3

TESTL @Rd 13 5, 3, 5 3, 2, 3, 3, 2

TEST address 11 3, 5, 3 3, 3, 2, 3
TESTB address 11 3, 5, 3 3, 3, 2, 3

TESTL address 16 3, 5, 3, 5 3, 3, 2, 3, 3, 2

TEST addr(Rd) 12 3, 6, 3 3, 3, 3, 3
TESTB addr(Rd) 12 3, 6, 3 3, 3, 3, 3

TESTL addr(Rd) 17 3, 6, 3, 5 3, 3, 3, 3, 3, 2

TRDB @Rd, @Rs, r 25 4, 5, 5, 4, 7 3, 1, 3, 2, 3, 2, 3, 1, 3, 4
TRDRB @Rd, @Rs, r 11+14n 4, 5, (5, 4, 5)n, 2 3, 1, 3, 2, (3, 2, 3, 1, 3, 2)n, 2

TRIB @Rd, @Rs, r 25 4, 5, 5, 4, 7 3, 1, 3, 2, 3, 2, 3, 1, 3, 4

TRIRB @Rd, @Rs, r 11+14n 4, 5, (5, 4, 5)n, 2 3, 1, 3, 2, (3, 2, 3, 1, 3, 2)n, 2
TRTDB @Rs1, @Rs2, r 25 4, 5, 5, 4, 7 3, 1, 3, 2, 3, 2, 3, 1, 3, 4

TRTDRB @Rs1, @Rs2, r 11+14n 4, 5, (5, 4, 5)n, 2 3, 1, 3, 2, (3, 2, 3, 1, 3, 2)n, 2

TRTIB @Rs1, @Rs2, r 25 4, 5, 5, 4, 7 3, 1, 3, 2, 3, 2, 3, 1, 3, 4
TRTIRB @Rs1, @Rs2, r 11+14n 4, 5, (5, 4, 5)n, 2 3, 1, 3, 2, (3, 2, 3, 1, 3, 2)n, 2

TSET Rd 7 7 3, 4

TSETB Rbd 7 7 3, 4
TSET @Rd 11 5, 3, 3 3, 2, 3, 3

TSETB @Rd 11 5, 3, 3 3, 2, 3, 3

TSET address 14 3, 5, 3, 3 3, 3, 2, 3, 3
TSETB address 14 3, 5, 3, 3 3, 3, 2, 3, 3

TSET addr(Rd) 15 3, 6, 3, 3 3, 3, 3, 3, 3

TSETB addr(Rd) 15 3, 6, 3, 3 3, 3, 3, 3, 3
XOR Rd, Rs 4 4 3, 1

XORB Rbd, Rbs 4 4 3, 1

XOR Rd, #data 7 4, 3 3, 1, 3
XORB Rbd, #data 7 4, 3 3, 1, 3

224

The table below shows the detailed timing for Divide and Multiply: Idle cycles add to the previous bus trans-
action, as they do not correspond to a new bus transaction.

Instruction Cycles External Sequence Internal Sequence

XOR Rd, @Rs 7 4, 3 3, 1, 3

XORB Rbd, @Rs 7 4, 3 3, 1, 3
XOR Rd, address 9 3, 3, 3 3, 3, 3

XORB Rbd, address 9 3, 3, 3 3, 3, 3

XOR Rd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3
XORB Rbd, addr(Rs) 10 3, 4, 3 3, 3, 1, 3

LD @Rd, EPU 11+3n 4, 6, 3n, 1 3, 1, 3, 3, 3n, 1

LD address, EPU 14+3n 3, 4, 6, 3n, 1 3, 3, 1, 3, 3, 3n, 1

LD addr(Rd), EPU 15+3n 3, 4, 7, 3n, 1 3, 3, 1, 3, 4, 3n, 1
LD EPU, @Rs 11+3n 4, 6, 3n, 1 3, 1, 3, 3, 3n, 1

LD EPU, address 14+3n 3, 4, 6, 3n, 1 3, 3, 1, 3, 3, 3n, 1

LD EPU, addr(Rs) 15+3n 3, 4, 7, 3n, 1 3, 3, 1, 3, 4, 3n, 1
LD Rd, EPU 11+4n 4, 6, 4n, 1 3, 1, 3, 3, 4n, 1

LD EPU, Rs 11+4n 4, 6, 4n, 1 3, 1, 3, 3, 4n, 1

LD FCW, EPU 15 4, 6, 5 3, 1, 3, 3, 4, 1
LD EPU, FCW 15 4, 6, 5 3, 1, 3, 3, 4, 1

EPUI 11+4n 4, 6, 4n, 1 3, 1, 3, 3, 4n, 1

Operation Case Min Cycles Max Cycles External Sequence

div word 86 86 17 idle, 4 (15 times), 9

div word by zero 5 5 5 idle
div word overflow 16 16 16 idle

div long 494 494 37 idle, 14 (31 times), 23

div long by zero 8 8 8 idle
div long overflow 30 30 30 idle

mul word 63 63 13 idle, 3 (15 times), 5
mul word zero 9 9 9 idle

mul long 256 380 24 idle, 7 or 11 (31 times), 15

mul long zero 15 15 15 idle

225

Appendix 2
Unimplemented Features/Instructions

Revision 1 of the Y8002 design does not implement a number of features and instructions of the Z8000
architecture. Unimplemented features include the refresh mechanism (although the REFRESH register is
implemented), System/User mode of operation (only System mode is supported and the SYS bit in the FCW
is forced High), and the Extended Processing architecture (the EPA bit in the FCW is forced Low). Even
though Normal mode is not supported, the Normal Stack Pointer is present.

Unimplemented instructions are listed in the table below:

Note that any of these instructions can be easily added to the design if required.

Instruction Opcode (first word only)

LD @Rd, EPU 00001111_Rdnz_11xx

LD address, EPU 01001111_0000_11xx

LD addr(Rd), EPU 01001111_Rdnz_11xx
LD EPU, @Rs 00001111_Rsnz_01xx

LD EPU, address 01001111_0000_01xx

LD EPU, addr(Rs) 01001111_Rsnz_01xx
LD Rd, EPU 10001111_0xxx_00xx

LD EPU, Rs 10001111_0xxx_10xx

LD FCW, EPU 10001110_xxxx_00xx
LD EPU, FCW 10001110_xxxx_10xx

EPUI 10001110_xxxx_01xx

226

229

Appendix 3
 Trapped Opcodes

This Appendix lists all of the instruction ecodings which will result in an Unimplemented Instruction trap,
along with the valid instructions included with each encoding.

Opcode Instruction(s)

0x00110x_xxxx_xx11 Reserved

0x00110x_xxxx_1x1x Reserved

0x00110x_xxxx_11xx Reserved
0x001100_xxxx_1xx1 Reserved

01001101_xxxx_1xx1 Reserved

x0001100_xxxx_xx11 Reserved
x0001100_xxxx_1x1x Reserved

x0001100_xxxx_11xx Reserved

10001101_xxxx_1xx1 Reserved
10001101_xxxx_1x1x Reserved

10001101_xxxx_11xx Reserved

0x011100_xxxx_0000 Reserved
0x011100_xxxx_xx1x Reserved

0x011100_xxxx_x1xx Reserved

0x00111x_xxxx_xxxx EPU
x000111x_xxxx_xxxx EPU

00110110_xxxx_xxxx Reserved

00111000_xxxx_xxxx Reserved
00111001_xxxx_xxx1 Reserved

00111001_xxxx_xx1x Reserved

00111001_xxxx_x1xx Reserved
00111001_xxxx_1xxx Reserved

0011101x_xxxx_11xx Reserved

01111011_xxxx_0xx1 Reserved
01111011_xxxx_0x10 Reserved

01111011_xxxx_x011 Reserved

01111011_xxxx_x100 Reserved
01111011_xxxx_111x Reserved

230

Opcode Instruction(s)

01111000_xxxx_xxxx Reserved

01111001_xxxx_xxx1 Reserved
01111001_xxxx_xx1x Reserved

01111001_xxxx_x1xx Reserved

01111001_xxxx_1xxx Reserved
01111101_xxxx_x00x Reserved

01111101_xxxx_x1x0 Reserved

0111111x_xxxx_xxxx Reserved, SC

1001110x_xxxx_xxx1 Reserved
1001110x_xxxx_xx1x Reserved

1001110x_xxxx_x1xx Reserved

1001110x_xxxx_0xxx Reserved
100111x1_xxxx_xxxx Reserved

10110010_xxxx_x1x1 Reserved

10111001_xxxx_xxxx Reserved
10111000_xxxx_xxx1 Reserved

1011101x_xxxx_x011 Reserved

1011101x_xxxx_x1x1 Reserved
10111111_xxxx_xxxx Reserved

231

Appendix 4
 Known Timing Differences

Every effort has been made to match the documented operation of the original Z8002 microprocessor as far
as timing is concerned. However, there are three cases where this was not possible, and these are described
in this Appendix. The cases are Interrupt Acknowledge timing, the Divide instruction, and the Multiply
instruction.

In addition to the known timing differences, there are a number of cases of potential timing differences.
These cases arise where the Zilog documentation is either incomplete or undefined. The cases that are poten-
tially different are Shift and Shift Dynamic with zero shift, Shift and Shift Dynamic with an out-of-range
shift value, and Halt when responding to an interrupt. If the Z8002 behavior is logical, the Y8002 design
probably matches it.

The interrupt acknowledge cycle timing includes an aborted IF1 bus transaction. In the Y8002 design this
transaction is always four clock cycles in length (plus any Wait states). The Zilog documentation states that
this bus transaction may be anywhere from three to seven clock cycles long (plus Wait states) but does not
indicate why this is the case. Variable timing for this instance does not seem logical and the Y8002 design
does not attempt to match this behavior.

The Divide instruction differences are shown in the table below. Note that the numbers in the Zilog docu-
mentation are somewhat suspicious because they do not appear to correctly account for the different
addressing modes.

Divide Y8002 timing published Z8002 timing
Instruction normal div-by-0 overflow normal div-by-0 overflow

DIV RRd, Rs 92 11 22 107 13 25
DIV RRd, #data 94 13 24 107 13 25
DIV RRd, @Rs 94 13 24 107 13 25
DIV RRd, address 96 15 26 108 14 26
DIV RRd, addr(Rs) 97 16 27 109 15 27

DIVL RQd, RRs 500 14 36 744 30 51
DIVL RQd, #data 505 19 41 744 30 51
DIVL RQd, @Rs 505 19 41 744 30 51
DIVL RQd, address 507 21 43 745 31 52
DIVL RQd, addr(Rs) 508 22 44 746 32 53

232

The Multiply instruction differences are shown in the table below. As in the case of Divide, the Zilog docu-
mentation does not appear to correctly account for the different addressing modes. In addition, the seven
clock cycle difference, depending on whether an operand bit is one or zero in the case of MULTL, seems
excessive.

Multiply Y8002 timing published Z8002 timing
Instruction min max zero result min max zero result

MULT RRd, Rs 69 69 15 70 70 18
MULT RRd, #data 71 71 17 70 70 18
MULT RRd, @Rs 71 71 17 70 70 18
MULT RRd, address 73 73 19 71 71 19
MULT RRd, addr(Rs) 74 74 20 72 72 20

MULTL RQd, RRs 262 386 21 289 506 30
MULTL RQd, #data 267 391 26 289 506 30
MULTL RQd, @Rs 267 391 26 289 506 30
MULTL RQd, address 269 393 28 290 507 31
MULTL RQd, addr(Rs) 270 394 29 291 508 32

