
Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 1 of 54

HP-41 Advantage Math ROM

Extending the HP-41 SandMatrix - I

Ángel M. Martin Cañas. February 2020

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 2 of 54

This compilation revision 1.3.3

Copyright © 2018-2020 Ángel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this

material. No commercial usage of any kind is allowed.

Front cover image taken from: https://www.dreamstime.com/royalty-free-stock-photography-

mathematics-background-image20849947

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.

See www.hp41.org

https://www.dreamstime.com/royalty-free-stock-photography-mathematics-background-image20849947
https://www.dreamstime.com/royalty-free-stock-photography-mathematics-background-image20849947
http://www.hp41.org/

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 3 of 54

Table of Contents

1. Introduction
a. Bringing it all home . 4
b. Table of Functions. 6

2. Matrix Applications
a. Advantage Pac Utilities . 8

b. Data Sorting using Matrices . 10
c. Parabolic Regression. 14
d. Over-conditioned Systems. 16
e. Jacobi method (Symmetric Matrix) . 19

f. Anti-Identity Matrix . 22
g. Matrix Minors. Sub-matrices . 23

h. Matrix Rotations. 25

i. Matrix L/U Editing . 27

j. Appendix: Harmonic Determinants . 29

3. Recursive 2D-Solve and Integration

a. Recursive use of FINTG . 30

b. Recursive use of FROOT . 31

c. Examples . 33

d. MCODE Routines . 37

4. Non-Linear Systems

a. Cubic Spline Interpolation. 39

b. Systems of Non-Linear Equations . 43

c. Bessel J and Y via continued fractions . 47

d. Newton and Halley Methods revisited 49

e. Complex Step Differentiation Method . 50

f. Appendix: From Poles to Zeroes . 52

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 4 of 54

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 5 of 54

Introduction: Bringing it all home.

Much (and mostly good) has been said about the HP-41 Advantage Pack , released by HP in what

could arguably be already the tailing end of the HP-41’s life – even if that was self-inflicted, due to

the further introduction of subsequent models claiming to be its successor (such as the HP-42S and

the HP-48). But in retrospect one would notice the apparent lack of programs written taking

advantage of the powerful platform provided by the Advantage Pac: those are really far and in

between in the literature, and one has to do a serious research effort to find the few ones available,

now incorporated to this module.

Surely power-house functions like MSYS and MDET cannot be improved upon, but there are many

areas where they could be put to work towards more ambitious goals, like Cubic Spline interpolation

and systems of Non-Linear equations – both included in the module as well.

Obviously the SandMatrix already brought the state of the art to a further place, but this module picks

up where the SandMatrix left off, mainly adding some sorely missing routines to handle complex

matrices in a more convenient way and extending the built-in capabilities of the FROOT and FINTG

facilities. It also “brings it all home” with a few applications that use functions from several other

math modules together: the 41Z, SandMath and SandMatrix all together at unison, not only for the

complex matrices section but also in unexpected places such as real function derivatives using the

Complex Step technique, or the Bessel functions calculated via continued fractions… quite something

to behold.

Module Dependencies.

As mentioned, you should have the 41Z, the SandMath and the SandMatrix plugged in the calculator.

They will use 6 pages of the I/O bus, to add to the single page required by this ROM. This means that

only one page will remain available in the external ports of the calculator, so use it judiciously – I

strongly suggest the OS/X Module to be plugged as well, and if possible (i.e. without a printer) in

page #6. The WARP Module in page#7 (or the Power-CL for CL owners) will round up the perfect

set.

It comes without saying that the Library#4 is needed as well, as a pre-requisite for all the modules

mentioned before. And lest we forget, the HP-41 CX is required (the X-Functions won’t cut it, sorry).

Library #4

41-Z

SandMath

SandMatrix

Advantage Math

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 6 of 54

ROM Function Tables.

Without further ado, let’s see the functions included in the module. Refer to the individual function

descriptions later on for details on the syntax and use instructions.

XROM Function Description Input Author

12,00 -ADVTG_MATH Section Header n/a

12,01 "AIM" Anti-Identity Matrix order in X Ángel Martin

12,02 "CSORT" Column Data Sort Using Matrix File Simon Bradshaw

12,03 "DDN" Harmonic Determinant order n in X Ángel Martin

12,04 "DN" Verification formula order n in X Ángel Martin

12,05 “FCTORS” Builds Factors Mtrix Name in ALPHA Ángel Martin

12,06 "LS2" Least Squares 2nd order Parabolic Regression David Hodges

12,07 “M90L” Rotates 90-deg Left Name in ALPHA Ángel Martin

12,08 “M90L” Rotates 90-deg Right Name in ALPHA Ángel Martin

12,09 “MMIRR” Mirror Image Name in ALPHA Ángel Martin

12,10 "MCSRT" Matrix Column Sort Col# in X, Name in ALPHA Richard Kendon

12,11 "MINOR" Matrix Principal Minor I,j in X , Name in ALPHA Ángel Martin

12,12 “MINORS” Builds Minors matrix Name in ALPHA Ángel Martin

12,13 "ML" Matrix Least-Squares David Hodges

12,14 "MSRT" Matrix Sort for Data registers John Bruce Jr.

12,15 "MRREV" Matrix Row Reversal Name in ALPHA Richard Kendon

116,16 “MSYM” Matrix Symmetric Name in ALPHA Ángel Martin

12,17 “MU<>L” Swaps U/L Regions Name in ALPHA Ángel Martin

12,18 "MZRO" Zeroes a Matrix Name in ALPHA Richard Kendon

12,19 "OCS" Over-Conditioned Systems Final Stage David Hodges

12,20 "OCS+" Over-Conditioned Systems Main Program Ángel Martin

12,21 “R/aRR” Make diagonal Unitary Name in ALPHA, i.j in X Ángel Martin

12,22 "R1DP" Row-1 duplication Name in ALPHA Richard Kendon

12,23 “SUBMAT” Reduces Matrix Name in ALPHA, i.j in X Ángel Martin

12,24 -2D_ITG/SLV Section Header n/a n/a

12,25 "FITG2" Double Integrals; FNAME in ALPHA, limits Ángel Martin

12,26 "*2D" Inner Integral g = g(x) Ángel Martin

12,27 "F1XY" x+y Example 1 Ángel Martin

12,28 "F2XY" y cos(p xy) Example 2 Ángel Martin

12,29 “FRT2” Double Solver FNAME in ALPHA, guesses Ángel Martin

12,30 “*FG” Inner Solver f = f(x) Ángel Martin

12,31 “F1” sin(x + y) = x Example2a Ángel Martin

12,32 “F2” cos(x - y) = y Example2b Ángel Martin

12,33 “G1” x^2 + y^2 = 5 Example 3a Ángel Martin

12,34 “G2” x^2 - y^2 = 3 Example 3b Ángel Martin

12,35 CLOAK Hides buffer 14 into #13 none Ángel Martin

12,36 EXPOSE Exposes Buffer 14 from #13 None Ángel Martin

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 7 of 54

12,37 RESET Resets Buffer 13 None Ángel Martin

12,38 -INTERPOL Section Header n/a n/a

12,39 AINT ALPHA integer X X in X Fritz Ferwerda

12,40 ASWAP ALPHA Swap around comma A,B in ALPHA Ángel Martin

12,41 CLAC Clear ALPHA from Comma String in ALPHA W&W GmbH

12,42 E3/E+ Builds pointer x.00X Ángel Martin

12,43 FLNAME Working File Name None Sebastian Toelg

12,44 "CSPLINE" Cubic Spline Interpolation Greg McClure

12,45 "DFED" Data File Editor CF 08: Edit Ángel Martin

12,46 JACOBI Jacobi Method Under program control Valentín Albillo

12,47 POLZER From Zeros to Roots Under program control Ángel Martin

12,48 "JYNX" Bessel J & Y via Cont. Fractions n in Y, x in X Martin-Baillard

12,49 "=" Complex Cont. Fraction under PRGM control Martin-Baillard

12,50 "#" Real Cont. Fraction under PRGM control Martin-Baillard

12,51 -NL_SYSTEMS Section Header n/a n/a

12,52 "NLSN" Non-Linear System Driver Driver program Ángel Martin

12,53 "NLSYS" Non-linear Systems Main Program Greg McClure

12,54 "FIN" Input Function Names n expected in R00 Ángel Martin

12,55 “PLR+” Driver for PLR Prompts for data Ángel Martin

12,56 “PLR” Polynomial Real Roots JM Baillard

12,57 "XIN" Input guess values n expected in R00 Ángel Martin

12,58 "XOUT" Output Results n stored in R00 Ángel Martin

12,59 "XHALL" Halley'S Method w/ DERV h in Y, x0 in X Ángel Martin

12,60 "XNWT" Newton's method w/ DERV h in Y, x0 in X Ángel Martin

12,61 "ZNWT" Newton's Method w/ 41Z h in Y, x0 in X Ángel Martin

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 8 of 54

1. Advantage Pac Applications

Taken from old Data File issues, these few applications illustrate the “discovery” of the matrix
functions by the UK community – apparently oblivious to the previous existence of the very

interesting (albeit inferior) set provided by the CCD Module… The descriptions are taken directly from
the original sources.

Matrix Routines using the Advantage ROM
R.D. Kendon, DataFile V9N7p32

1. Matrix Rows Reversal

With the matrix name in ALPHA, this routine uses MSWAP starting with the outer rows and working

to the middle. The program makes use of the convention, described in the Advantage manual, than

an integer B in X or Z is taken as B.001, whereas in Y is taken as B.00n where n is the last column.

1 LBL “RVR”
2 DIM?
3 INT

4 1

5 LBL 01

6 ENTER^

7 MSAWP

8 SIGN

9 ST- Z

10 X<Y?

11 GTO 01

12 END

2. Make all matrix elements zero.

When some elements are ALPHA data you cannot place 0 in X and use MAT*. Use the fact that

resizing a matrix to larger dimensions (as opposed to creating a matrix) sets all additional elements to

zero. Matrix name in ALPHA.

01 LBL “MZ”

02 DIM?

03 0

04 MATDIM

05 MS

06 RDN

07 MATDIM

08 RTN

3. Row-1 Replication.

I had a matrix of data and I wished to multiply all elements of each column by a constant which was

specific to that column. These constants were in single-row matrix, but one cannot use MAT* unless

the matrices are of equal dimensions. This program assumes that a multiplier matrix of the

appropriate dimensions is made and that the constants are in row-1. These constants are first moved

to the last row using R<>R.

The program then sets the stack so that all rows except the first row are moved, as a block, up one

row. The manual states that where the source and target blocks overlap the function works on the

last group upwards, so this gives the desired result.

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 9 of 54

1 LBL “RDP”

2 DIM?

3 INT

4 R<>R

5 SIGN

6 0

7 ENTER^

8 2

9 MMOVE

10 END

4. Matrix Rows Sorting.

Use this routine to sort the order of rows of a matrix, using a specified column as the key. It was

written about the same time as that by John Bruce in V5N4p23. The matrix must be in Main memory

since ANUM is used to locate the matrix header register. To sort a matrix of several columns, the key

column should be in X (e.g. 2 to sort on second col), and F00 should be clear. Since it is necessary to

use CMAXAB the elements of the key column should all be of the same sign. If F00 is set, the X-

register is not used, and the sort uses MAX. In this form the program is virtually the same as John

Bruce’s.

01 LBL “CSR”

02 1

03 ALENG

04 -

05 X=0?

06 AIP

07 RDN

08 “|-,”

09 DIM?

10 X<> M

11 STOO

12 RDN

13 STO N

14 0

15 RCLM

16 LBL 00

17 +

18 MATDIM

19 RCL N

29 FC? 00

21 CMAXAB

22 FS? 00

23 MAX

24 RDN

25 RDN

26 MRIJ

27 INT

28 RCL Y

29 E3

30 /

31 +

32 R<>R

33 RDN

34 FRC

35 LAST X

36 INT

37 DSE X

38 GTO 00

39 X<> M

40 MNAME?

41 ANUM

42 X<>Y

43 STO IND Y

44 MATDIM

45 END

Sorting with the Advantage ROM - John Bruce Jr. – DataFile V5N4 p23

INTRODUCTION. The two functions MAX and MIN included in the set of instructions with the ADV

ROM are very powerful additions to the Sorters "elbow”. Not only do they act on numeric data, but
they also deal with ALPHA data. This can only be a major breakthrough for 41C/41CV owners.

EXECUTION OF SORT. The program expects to see a defined array in Main memory containing your
data(a mixture of numeric and alpha data is allowed).Place the name of the array in ALPHA and

execute SORT.SPEED: On average this program is 1/3 faster than Binary Insertion Sorting.

01 LBL 'SORT"

02 0
03 MSIJA

04 DIM?
05 RCL X

06 E3

07 /
08 ANUM

09 +
10 X<>Y

11 *LBL01

12 STO IND Y

13 MATDIM
14 MAX

15 RDN
16 RCL X

17 E3

18 /
19 MRIJ

28 INT
21 +

22 R<>R

23 RDN

24 DSE X
25 GTO01

26 STO IND Y
27 X<>Y

28 FRC

29 E3
38 •

31 MATDIM
32 .END.

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 10 of 54

Data sorting using the Advantage ROM matrix functions.
Simon Bradshaw -DataFile V4N5 p22
Requirements: HP-41 (any model), Advantage ROM (XF/M - optional but very helpful)

The reviews that have appeared in DATAFILE - and some of the articles referring to the ADV ROM -

have said, with justification, much about its outstanding matrix manipulation functions. These are
intended mainly for mathematical work, e.g. solving simultaneous equations or use of other matrix-

based problem-solving techniques. But they can be used in less directly 'number-crunching' ways as

well.

What is a matrix? To a BASIC programmer a matrix is just a two-dimensional array. What are arrays
used for? “Data storage and manipulation" is quite often the answer. This suggests that the matrix

functions can be used to allow us to store and work on blocks of data. In fact, when the functions
available in the ADV ROM for working on matrices are compared with those usually available to the

BASIC programmer for array handling, the 41ADV user seems to have quite a big 'advantage'

(pardon!). The matrix 'utility' functions allow exchange of pairs of rows and columns, swapping and
moving of parts of a matrix or matrices, comparison of rows (more on which below), and a number of

functions which while 'mathematical' in nature are very helpful in data processing, e.g. row and
column sums, largest and smallest value checks, and several others. Add to this the option of

automatic sequential access to elements and you have a collection of array handling functions which

put most BASICs to shame.

Of course, there are disadvantages - you cannot save space by use of integer variables, and so you
will always need at least one register per element. Also, each element can only store six characters of

ALPHA information, although there is no reason why you could not spread a longer ALPHA string over

two or more elements in the same row.

Discussing ALPHA elements poses a few questions. The advantage ROM manual has little to say on
the latter (it suffers from this problem throughout), other than that you can enter ALPHA values via

the matrix editor and that most functions“…are not meaningful for matrices containing ALPHA data
…”(p43). In fact, the list of error messages on p38 includes ALPHA DATA and implies that you cannot

operate on matrices with ALPHA elements.

In fact, most of the 'utility' functions can operate perfectly happily on ALPHA elements - they only

move elements around, and do not operate on them. At first this does not seem to helpful, since to
do sorting you have to be able to do string comparison. A function is provided 'R>R?' which takes an

argument kkk.lli in X and compares elements in rows k and l of the matrix, working through columns

until it finds two unequal elements and then giving 'true' if the element in k is greater than that in l,
and 'false' (and skipping a step in a program) otherwise.

At least that is the manual’s explanation - no mention is made of how it handles ALPHA data. I had

written a program, given below, to sort an n-row matrix, and decided to see how it would handle
ALPHA data. Entering this sort of data value 'MEDlT' is quite easy - just press ALPHA before entering

the data (remember only the first 6characters will be stored into the matrix elements. I entered a

series of short names and ran my matrix-sorting program. To my surprise, not only was there no
ALPHADATA message flashed at me, but when I checked the matrix, I found the elements sorted into

alphabetical order!

Further checks confirmed that R>R? acts like the HP-41CX indirect comparison functions, in that it

does a proper alphabetical order test (e.g. giving the result 'HOLE'> 'HOLD'). As far as I know this
information is not given elsewhere - the Advantage manual says nothing about ALPHA sorting

capability, and when I called Wlodek he knew nothing about it. It would seem that Hewlett-Packard
have acted true to form, and the undocumented function has 'struck again (cf HP-75 I/O ROM).

The upshot of all this is that the Advantage can be used to sort alphanumeric lists. Consider the list of

the following HPCC members, giving their first names and their membership numbers.

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 11 of 54

Colum → 1 2

1 DAVID 2

2 WLODEK 9
3 RABIN 19

4 DAVID 155

5 SIHON 398

If this is sorted using my program, then the matrix is rearranged as below:

1 DAVID 2
2 DAVID 155

3 RABIN 19
4 SIMON 398

5 WLODEK 19

The names have now been sorted into alphabetical order. Since each row is moved as a whole, each
entry keeps its appropriate membership number. Note how the entries for Messrs Burch and Bundy

have been sorted by number. Since the comparison function R>R? moves through the columns of

the matrix until it finds two unequal elements, on finding the first-column elements both containing
'DAVID', it went on to compare the second-column elements in each row - here the membership

numbers - and sorted the rows by them.

The actual sorting routine - MSORT- is given below. It is a reasonable approximation to what a true

sort function should do in that it preserves ALPHA and the stack (except L, as a true function would)
and uses no main memory registers. As it stands, it requires extended functions and memory, but this

is not essential, although without them, thestack will not be preserved,

01 LBL "MSORT;Matrix Sort

02 SIGN ;Save X in L

03 RDN ;Drop stack

04 DIM? ;make matrix current
05 RDN :Drop stack

06 4 ;Size of data file
07 "TEMP" ;Name of data file

08 CRFLD ;Create temp data file

09 R^ ;Roll stack up
10 SAVEX ;Save T

11 R^
12 SAVEX ;Save Z

13 R^

14 SAVEX ;Save Y
15 LASTX

16 SAVEX ;Save X
17 MNAME? ;Restore matrix name

18 DIM? ;Get matrix dimensions
19 INT ;Get number of rows

20 LBL 01

21 2.001 ;Index counter
22 CF 00 ;Check-if-sort-made flag

23 LBL 02
24 R>R? :Compare rows

25 GTO 03 ;If in order, jump on

26 R<>R ;If not, swap rows
27 SF 00 ;indicates swap made

28 LBL 03

29 1.001 ;Increment index counter
30 +

31 ENTER ;Duplicate counter

32 FRC ;Extract number of first
33 E3 ;element in the next

34* ;row pair to be sorted
35 RCL Z ;Recall no of rows

36 X=Y? ;Test if equal

37 GTO 04 ;If so, pass all rows checked
38 RDN ;If not, get back index counter

39 RDN ; … and check next pair of
rows

40 GTO 02 ;go to row check

41 LBL 04
42 FS?C 00 ;Were any sorts made?

43 GTO 01 ;if so, then go and sort again
44 “TEMP' ;Name of data file

45 CLX ;Set pointer to start …
46 SEEKPTA ; … of data file

47 GETX ;Recover T

48 GETX ; “ Z
49 GETX ; “ Y

50 GETX ; “ X
51 PURFL :Purge data file from XM

52 MNAME? :Restore matrix name to

APLHA
53 END ;End of program

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 12 of 54

A few notes on this program. If you don't have XF/M, then just delete lines 02 to 17 and 44 to 52.
The program will work just as well, but it will corrupt the stack. The stack save routine is effectively

that given in 'Extend Your HP-41', while Wlodek suggested to me the idea of saving the stack in XM
when synthetic programming was difficult. Here the APLHA register is needed and so it is hard to use

registers M, N and O to store anything in. Although it could probably be done, it would have made

the program (a) longer and (b) harder for me to write, and so I usedX-Mem instead.

Notice that I didn't need to save ALPHA. Just by using a dummy function (here DIM?) I made the
matrix named the current matrix, and so later I could recover ALPHA by use of MNAME? This also

checks if the matrix named is present before starting to save the stack in XM.

The sorting method used is the bubble sort (or ripple sort), which works by comparing each row with

the next to see if they are in the right order, swapping them if they are not. It then loves on one row
and repeats the process. Once it has worked through all the rows it checks if any sorts were made. If

not, then the “rows" must be in order and it finishes, otherwise it goes back and sorts again. This
routine is not very fast but is easy to program. As for speed, to sort a matrix of 6 rows takes this

program 35 seconds - this is for a matrix in reverse order, which takes the most sorting, so this is a

maximum time. To sort a 10-row matrix takes a maximum of 104 seconds -, I have worked out that
the time taken to complete a bubble sort is proportional to n(n-1) where n is the number of rows.

This agrees very well with my timings, which seems to indicate that for my program to sort an n-row
matrix takes n(n-l)17/6 seconds. To sort a 200-row matrix (say 20013, with one column holding

numbers of active HPCC members and the other two their names) should thus take almost 13 hours.

This may appear to be rather a long time but bear in mind that MSORT is written in FOCAL (41 User

language) and so cannot be expected to be too fast, but since it is written using the M-code routines
in the ADV ROM it is still faster and simpler than a program for the 41 alone. By the way, the times

given were for matrices in main memory. If your matrix is stored in extended memory (as the one I
described above would have to be) timings indicate that about 10% more time is needed to complete

a sort of a given matrix. Also, if using XM, remember to leave some space for the data file that

MSORT creates.

A couple more notes on matrix sorting. As it stands, MSORT sorts in ascending order. Modifying the
program to sort a file into descending order is very simple - just replace lines 25 to 28 with:

SF 00, R>R?, R<>R

This effectively inverts the test so that now a matrix is sorted with the largest element first.Earlier I
said that when R>R? looks at two rows it goes through them column by column until it finds two

that are not equal. This means that you can spread names out over lore than one columns, e.g.
consider the following

(unsorted) matrix:-

(-------) (--------) <- 6 chars each
BRADBU RY R

BRADSH AW S
BRADSH AW D

BLACKB USH S

BLACKB URN P

MSORT sorts this into the following:-

BLACKB URN P
BLACKB USH S

BRADBU RY R

BRADSH AW D
BRADSH AW S

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 13 of 54

Note how BLACKBURN and BLACKBUSH have been sorted into the right order, as have BRADSHAWD
and BRADSHAW N. You may think that (say) BRADSHAWN K might confuse the program by being

sorted between these two, but because R>R? compares characters within a matrix element one
character at a time, the “N” of BRADSHAWN is compared with the “_“ after BRADSHAW, and since

sorting is done by ASCII code "_“ comes before “N” and so immediately R>R? decides that

BRADSHAWN comes after BRADSHAW, whatever initials follow them.

Thus, can be extended to as many rows as you like, within limits of memory, for instance to get my
HPCC members list into memory all names would have to be abbreviated to a maximum 11 letters

plus one initial (sorry about that, Wlodek!). Incidentally, if you want to sort such a matrix by
membership number at one tile and name at another, then just use the matrix manipulation

commands to rearrange the column within the matrix, e.g. by using C<>C (column exchange) you

can bring any column to the 'front' of a matrix and then sort the matrix using that column.

If you have a file as big as this, you will need to save it. If the file is in Main Memory, work out its
start and end addresses, and use WDTAX or WRTRX to save it. If the file is in XM then use MMOVE

to copy the file to a dummy matrix in Main memory and save that as described. If your XMmatrix is

very large, you may need to do this lore than once, saving the XM matrix in two or more parts.

While we are on the subject of moving around our nicely sorted data, you will no doubt want to write
programs to help you enter and extract data from matrices such as I have described - MEDIT is

rather inconvenient and slow for entering ALPHA data, especially if that data is to be broken up over
several columns. It is easier to write a program which reads the data into ALPHA and then uses ASTO

X, MSR+ several times. If you write any good programs in this vein, then please send them in. If you

write an improved version of MSORT, then please send that in - I am sure that someone out there
can write a version in half the number of lines which preserves the stack without using XM. If you

actually find a use for MSORT - or any other ADV ROM-using data sorting/storage routines, then
write to DATAFILE about it - how people use their 41's is always interesting reading.

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 14 of 54

Parabolic Regression - by David Hodges (DataFile V4N5 p11
System requirements: HP-4l with Advantage ROM

The HP-4l Advantage ROM contains a program called CFIT which enables you to fit four different
types of curve to a set of statistical data (xi ,yi). Whilst this is ideal for the majority of applications,

there are occasions where it is better to fit a second order polynomial to the data. This means
expressing y in terms of x like this:-

Y = a0 + a1.x +a2.x^2

and obtaining the best coefficients a0 and a1 using the method of least squares. This technique is
also known as "parabolic regression" and there is a program in the Stats ROM which you can use to

calculate the coefficients. If you do not have a Stats ROM but have an Advantage ROM, however, you
can use the short program below which uses the module’s matrix functions. It is written along the

same lines as CFIT and has a similar menu but is does not have a- facility and does not calculate a

correlation coefficient.

LS2 (least squares, 2nd order) works by allowing you to accumulate paired data in the same way as

you would with +. When all of the data have been entered the program sets up a system of

matrices from the summations and puts the matrix files in extended memory f this is available.

TheMSYS function is then used to solve the system and obtain the coefficient matrix.

initialize the routine, clear the summation registers and display the menu. Lines 14 to37 perform the
summations and store the values in registers 00 to 07. Registers 0to 10 are used to store a0 , a1 and

a2after computation.

Two matrices are created by lines 38 to 72;[A] is the 3x3 x matrix, and [B] is used for boththey

matrix and the coefficient matrix. The last section of the program allows you to compute a y-

predicted value using the coefficients.

EXAMPLE:-

Fit a second-order curve to the following set of data and predict y when x=2.2 and whenx=3.7

X 1 2 3 4

Y 1.2 3.9 9.3 15.8

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 15 of 54

Input Key

 XEQ “LS2”` “+ ”
1.2 ENTER^
1 [A]
3.9 ENTER%
2 [A]
9.3 ENTER^
3 [A]
15.8 ENTER^
4 [A]
 [E]
 R/S
 R/S
2.2 R/S
3.7 R/S

Notice that a0and a1 are both quite small; this is because the data correspond closely to a y=x^2

graph. You can now: press [C] (c)to clear the summation registers and prepare the summation

registers for a new set of data. As with CFIT, the [J] key displays a menu at any time without

disturbing the program in any way.

1 LBL "LS2"

2 SF 27
3 LBL C
4 .01
5 0
6 LBL 00
7 STO IND Y
8 ISG Y
9 GTO 00
10 CLST
11 LBL J

12 "+ c FT"
13 PROMPT
14 LBL A
15 STO 08
16 ST+ 01
17 RCL 08
18 *
19 ST+ 02
20 RCL 08
21 *
22 ST+ 03
23 RCL 08
24 *
25 ST+ 04
26 RDN
27 ST+ 05

28 RCL 08
29 *
30 ST+ 06
31 RCL 08
32 *
33 ST+ 07
34 E
35 ST+ 00
36 RCL 00
37 RTN
38 LBL E
39 "A"
40 3.003
41 MATDIM
42 .
43 43 MSIJA
44 44 RCL 00
45 45 MSR+
46 RCL 01
47 MSR+
48 RCL 02
49 MSR+
50 RCL 01
51 MSR+
52 RCL 02
53 MSR+
54 RCL 03
55 MSR+

56 RCL 02
57 MSR+
58 RCL 03
59 MSR+
60 RCL 04
61 MS
62 62"B"
63 3
64 MATDIM
65 .
66 MSIJ
67 RCL 05
68 MSR+
69 RCL 06
70 MSR+
71 RCL 07
72 MS
73 "A,B"
74 MSYS
75 "B"
76 .
77 MSIJA
78 MRR+
79 STO 08
80 "a0="
81 ARCL X
82 PROMPT
83 MRR+

84 STO 09
85 "a1="
86 ARCL X
87 PROMPT
88 MR
89 STO 10
90 "a2="
91 ARCL X
92 PROMPT
93 LBL 01
94 RCL X
95 RCL 10
96 *
97 RCL 09
98 +
99 *

100 RCL 08
101 +
102 "Y="
103 ARCL X
104 PROMPT
105 GTO 01
106 END

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 16 of 54

Over-conditioned Simultaneous Equations
 David Hodges (DataFile V7N1p21)
System requirements: HP-41 (any model) and Advantage Module.

THEORY.
Anyone who solves simultaneous equations regularly will have encountered a situation

mathematicians call over-conditioning, which means that there are more equations than there are
unknowns. Suppose for example you are given the following set of equationsand areasked to find the

values of x and. y:

2x + 3y = 8

3x + 4y = 10.9
4x + 5y = 14.1

5x + 6y = 16.9

At first sight this problem looks trivial. Since only two equations are required to solve tor two

unknowns, it’s tempting to take the two simplest equations and use then to find values for x and y.
Unfortunately, that is an oversimplification because the results depend on the equations chosen.

Solving the top two equations, for example, gives x = 0.7 and y = 2.2. Taking the middle two gives x

= -0.1and y = 2.9; whilst the bottom two give x = 1.9 and y = 1.3.

Closer inspection of the equation system shows that none of these results are correct. If the second
equation equaled 11, the third 14 and the fourth 17, then x would equal 1 and y would equal 2 no

matter which pair of equations was chosen. The true values of x and y must therefore be close to 1
and 2 respectively.

The best way to deal with such a situation is to use the method of least-squares. This technique is
actually equivalent to n-dimensional linear regression, where n is the number of unknowns, in this

case two. Re-writing the system in matrix form, [A] * [X] = [B] {i}

Solving this matrix equation requires two steps. The first involves pre-multiplying both sides of {i} by
[A'], the transpose of matrix[A]. Next the equation is inverted to give an expression for [X]in terms of

[A] and [B].[X] is then found by pre-multiplying [B] by a single matrix computed, from [A’].

Pre-multiplying{i} by [A'], and inverting for [X]:

[A'].[A].[X] =[A'].[B] {ii}

[X] = Inv([A'].[A])[A'].[B] {iii}

Where the notation Inv() denotes the inverse of the matrix inside the parentheses.

Inv([A'].[A]).[A'] in {ii} may be expressed as a single matrix [C] which gives [X]directly from [B].

[X] = [C].[B] {iv}

[C] has the same number of columnsas [A] has rows, and the same number of rows as [A]
hascolumns.

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 17 of 54

PROGRAMS.

Two programs are provided for the HP-41 and Advantage Module. The first, ML (Matrix Least-
squares), computes [C] given [A]; and the second, OS (Over-conditioned Simultaneous equations),

computes [X] [B] and the stored value of [C].

Both routines use main memory data registers to store the matrix elements. If [A] has r rows and c

columns, a total of c(2r + c) + 5 data registers is required. Owners of an Extended Functions/Memory
Module or and HP-41CX could write alternate versions of ML and OS which use extended memory to

store the matrices. These programs could be somehow shorter, since a large proportion of the code
given here isused to determine the number of registers required and to construct the matrix names.

EXAMPLE. Input dimensions of [A]rrr.ccc where r = rows and c =columns) and run ML. Input

elements of matrix [A]. Perform the following steps:

INPUT KEYS

4.002 XEQ "ML"

2 RIS
3 R/S

3 RIS
4 R/S

5 RIS

5 RIS

View elements of matrix [C].

6 R/S Matrix [C] is therefore:

R/S
R/S

R/S
R/S

R/S

R/S
R/S

Run program OS and input elements of matrix [BJx = 0.98 ;y= 2.01

 XEQ “OS”
8 R/S

10.9 R/S
14.1 R/S

16.9 R/S

 R/S

In the above examp1e, it is assumed that all allocated data registers contain zero before ML is
executed. If they do not, their contents will be displayed in the prompts and will be overwritten by

the data entered from the keyboard. Registers 00 and 01 are used to store the matrix names (R
followed by one or more digits) and flag 00 contro1s the status of OS.

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 18 of 54

Program Listing.

01 LBL "OCS+"

02 "#EQS=?"

03 PROMPT
04 "#VARS=?"

05 PROMPT
06 E3

07 /
08 +

09 LBL "ML"

10 CF 00
11 "R2"

12 MATDIM
13 .9

14 1/X

15 RND
16 -9

17 *
18 E1

19 +
20 LOG

21 CHS

22 X<>Y
23 INT

24 LASTX
25 FRC

26 STO 01

27 E3
28 *

29 ST+ 01
30 *

31 RCL X

32 3
33 +

34 DIM?
35 FIX 0

36 CF 29
37 "R"

38 ARCL Y

39 MATDIM
40 ASTO 00

41 RDN

42 +

43 E
44 +

45 "R"
46 ARCL X

47 RCL 01
48 MATDIM

49 ASTO 01

50 FIX IND Z
51 SF 29

52 CLA
53 "R2"

54 XROM "MEDIT"

55 CLST
56 "`,"

57 ARCL 00
58 MMOVE

59 "R2"
60 TRNPS

61 "`,"

62 ARCL 01
63 M*M

64 CLA
65 ARCL 01

66 "`,R2"

67 MSYS
68 "R2"

69 LBL 05
70 XROM "MEDIT"

71 GTO 05

72 LBL "OCS"

73 FS? 00

74 GTO 00
75 "R2"

76 DIM?
77 ENTER^

78 FRC

79 ST- Y
80 E3

81 *

82 STO Z

83 *
84 4

85 +
86 STO Z

87 +
88 E3

89 /

90 +
91 0

92 LBL 01
93 STO IND Y

94 ISG Y

95 GTO 01
96 CLA

97 ARCL 00
98 DIM?

99 INT
100 MATDIM

101 CLA

102 ARCL 01
103 DIM?

104 INT
105 MATDIM

106 SF 00

107 LBL 00
108 CLA

109 ARCL 00
110 XROM "MEDIT"

111 "R2,"

112 ARCL 00
113 "`,"

114 ARCL 01
115 LBL 02

116 XROM "MEDIT"
117 GTO 02

118 END

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 19 of 54

Jacoby Method for Symmetric Matrices.

Valentín Albillo, PPCTN V1N3

For symmetric matrices the Jacobi algorithm provides a faster method. JACOBI was written by

Valentín Albillo, and published in PPCTN, V1N3 (October 1980). I’ve only slightly adapted it to the

SandMatrix, but basically remains the same as originally written. The paragraphs below are directly

taken from the above reference to explain its workings.

This program computes all eigenvalues of a real symmetric matrix up to 22 x 22. It uses the Jacobi

method, which annihilates in turn selected off-diagonal elements of the given matrix A using

elementary orthogonal transformations in an iterative fashion, until all off-diagonal elements are zero

when rounded to a given number of decimal places. Then the diagonal values are the eigenvalues of

the final matrix.

The method explained. The Jacobi method does not attempt to solve the characteristic equation

for its roots. It is based in the fact that a n x n symmetric matrix has exactly n real eigenvalues. Given

A, another matrix S can be found so that: S A ST = D is a diagonal matrix, whose elements are the

eigenvalues of A.

The Jacobi method starts from the original matrix A and keeps on annihilating selected off-diagonal

elements, performing elementary rotations. Let’s single out an off-diagonal element, say apq,, and

annihilate it using an elementary rotation. The transformation R is defined as follows:

Rpp = cos z ; Rpq = sin z ; Rqp = -sin z ; Rqq = cos z
Rii = 1 ; Rpk = Riq = Rik = 0 ; for i#p,q and k#p,q

Let’s now denote: B = RT A R, which elements are as follows:

bip = aip cos z – aiq sin z

biq = aip sin z +aiq cos z

bik = aik ; where i,k # p,q

bpp = app cos2 z + aqq sin2 z – 2 apq sin z cos z

bqq = app sin2 z + aqq cos2 z + 2 apqsinz cos z

bpq = 0, and the remaining elements are symmetric.

where: sin z = w / sqrt(2(1+sqrt(1-w^2))), and cos z = sqrt (1-sin2 z)

with: L = - apq, M = (app-aqq) / 2 , and w = L sign(M) / sqrt (M2+L2)

This is iterated using a strategy for selecting each non-diagonal element in turn, until all non-diagonal

elements are zero when rounded to a specific number of decimal places. When this is so, the diagonal

contains the eigenvalues.

Program remarks. The accuracy and running times are display settings-dependent, however the

computed eigenvalues are very often more accurate that it’d appear; for instance, using FIX 5 it’s

quite possible to have eigenvalues accurate to 8 decimal digits. The program is written to be as fast

as possible and to occupy the minimum amount of program memory; the matrix is stored taking into

account its symmetry, so that all elements are stored only once (as aji = aij). For a nxn matrix

minimum size is [½ (n^2 + n) + 7].

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 20 of 54

 [[25 -41 10 -6]

Example. Find the eigenvalues for the 4x4 matrix: A = [-41 68 -17 10]

 [10 -17 5 -3]

 [-6 10 -3 2]]

Keystrokes Display Result

XEQ “JACOBI” Prompts for dimension

4, R/S Data entry starts
25, R/S

41, CHS, R/S

10, R/S
6, CHS, R/S Note how the symmetric

68, R/S elements are skipped
17, CHS, R/S

10, R/S
5, R/S

3, CHS, R/S input the last element

2, R/S Asks for precision
5, R/S Scrolling on the display

R/S After a while ~ 2.5m in normal 41

R/S the four ev’s are displayed.
R/S

The characteristic polynomial can be found using CHRPOL in the SandMatrix, resulting:

Chr(A) = x^4 -100 x^3 + 146 x^2 – 35 x +1

Program Listing.

01 LBL “JACOBI”

02 RAD

03 03"ORDER=?"
04 PROMPT

05 ENTER^
06 ENTER^

07 X^2

08 +
09 2

10 /
11 7

12 +
13 SIZE?

14 X<>Y

15 X>Y?
16 PSIZE

17 RCL Z
18 STO 00

19 E3/E+

20 STO 02
21 7

22 STO 04

23 23*LBL 12

24 RCL 02

25 STO 03
26 *LBL 07

27 "a"
28 RCL 02

29 AINT

30 "`:"
31 RCL 03

32 AINT
33 "`=?"
34 PROMPT
35 STO IND 04

36 ISG 04

37 X<>Y
38 ISG 03

39 GTO 07
40 ISG 02

41 GTO 12

42 "PREC.=?"
43 PROMPT

44 FIX IND X

45 -NL SYSTEMS

46 *LBL 70

47 2
48 STO 03

49 *LBL 85
50 E

51 *LBL 87

52 STO 02
53 CF 00

54 RCL 03
55 XEQ 90

56 X<>Y
57 RND

58 X=0?

59 GTO 84
60 SF 00

61 LASTX
62 ST- IND Z

63 STO 01

64 ST+ 01
65 CHS

66 STO 06

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 21 of 54

67 RCL 02
68 RCL 02

69 XEQ 90
70 STO N

71 RDN

72 RCL 03
73 RCL 03

74 XEQ 90
75 STO O

76 RDN
77 -

78 STO M

79 2
80 /

81 SIGN
82 RCL 06

83 LASTX

84 X^2
85 RCL 06

86 X^2
87 +

88 SQRT/
89 *

90 E

91 RCL Y
92 X^2

93 -
94 SQRT

95 E

96 +
97 ST+ X

98 SQRT
99 /

100 STO 06

101 ST* 01
102 X^2

103 ST* M
104 E

105 STO 04
106 X<>Y

107 -

108 SQRT
109 ST* 01

110 X<> M
111 RCL 01

112 +

113 ST- IND N

114 ST+ IND O
115 *LBL 01

116 RCL 03
117 RCL 04

118 X=Y?

119 GTO 08
120 RCL 02

121 X=Y?
122 GTO 08

123 XEQ 90
124 STO 05

125 RDN

126 STO N
127 RCLM

128 STO O
129 *

130 RCL 03

131 RCL 04
132 XEQ 90

133 STO T
134 RDN

135 ST* O
136 RCL 06

137 ST* N

138 *
139 -

140 STO IND 05
141 RCL N

142 RCL O

143 +
144 STO IND Z

145 RCL 04
146 RCL 00

147 X<=Y?

148 GTO 84
149 *LBL 08

150 E
151 ST+ 04

152 RCL 00
153 RCL 04

154 X<=Y?

155 GTO 01
156 *LBL 84

157 RCL 03
158 RCL 02

159 E

160 +

161 X#Y?
162 GTO 87

163 X<>Y
164 RCL 00

165 X#Y?

166 ISG 03
167 X<>Y

168 X#Y?
169 GTO 85

170 FS?C 00
171 GTO 70

172 RCL 00

173 E3/E+
174 STO 06

175 TONE 3
176 *LBL 13

177 "X="
178 RCL 06
179 INT

180 ENTER^
181 XEQ 90

182 X<>Y
183 ARCL X

184 PROMPT

185 ISG 06
186 GTO 13

187 RTN
188 *LBL 90

189 X>Y?

190 X<>Y
191 RCL 00

192 ST+ X
193 X<>Y

194 -

195 E
196 ST- L

197 X<> L
198 *

199 2
200 /

201 +

202 6
203 +

204 RCL IND X
205 X<>Y

206 END

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 22 of 54

2. SandMatrix Applications

Anti-Identity Matrix { AIM }

Here’s a song to the unsung-hero: meet the anti-identity matrix, a negative version (its evil twin
perhaps?) of the much-better known “Identity” matrix – with all elements reversed, i.e. zeroes

instead of ones and vice-versa.

Why bother, you would ask? Well, having a routine to create anti-IDN (a.k.a. AID) matrices comes
very handy to test many of the routines included in the SandMatrix and in this very module as well,

so here it is for your utter enjoyment.

These matrices can be easily constructed using the SandMatrixfunction MZDG , which only deletes

the diagonal elements,whenapplied to a all-ones matrix - so using the three-step sequence:

{ 1, MCON, MZDG }.

These matrices have the interesting (unproven) property that their determinants obey the

expression:

 Det [AID(nxn)] = (-1)^(n-1) . (n-1)

To test it, creating a 30x30 AIM can’t be simpler (if you use the CL Y-Memory area, that is): just
create the matrix first with MATDIM (needs name in ALPHA), input the order in X and call the

routine. You should have something like this:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 0 1

2 1 0 1

3 1 1 0 1

4 1 1 1 0 1

5 1 1 1 1 0 1

6 1 1 1 1 1 0 1

7 1 1 1 1 1 1 0 1

8 1 1 1 1 1 1 1 0 1

9 1 1 1 1 1 1 1 1 0 1

10 1 1 1 1 1 1 1 1 1 0 1

11 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

12 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

13 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

14 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

21 0 1 1 1 1 1 1 1 1 1

22 1 0 1 1 1 1 1 1 1 1

23 1 0 1 1 1 1 1 1 1

24 1 0 1 1 1 1 1 1

25 1 0 1 1 1 1 1

26 1 0 1 1 1 1

27 1 0 1 1 1

28 1 0 1 1

29 1 0 1

30 1 0

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 23 of 54

Matrix Minors& Sub-matrices. { MINOR , MINORS , SUBMAT }

In linear algebra, a minor of a matrix [A] is the determinant of some smaller square matrix, cut

down from [A] by removing one or more of its rows or columns. Minors obtained by removing just
one row and one column from square matrices (first minors) are required for calculating matrix

cofactors, which in turn are useful for computing both the determinant and inverse of square
matrices.

If [A] is a square matrix, then the minor of the entry in the i-th row and j-th column (also called the
(i,j) minor, or a first minor[1]) is the determinant of the sub-matrix formed by deleting the i-th row

and j-th column. This number is often denoted Mi,j. The (i,j) cofactor is obtained by multiplying the
minor by: (-1)^{i+j}.

Two programs are included, one for Real matrices (not limited in order, courtesy of MDET) and

another for Complex Matrices – only up to degree 5, due to the restriction imposed by CMDET. The
programs are a good example of utilization of the utility functions C<>C, R<>R, and MMOVE.

Example: Calculate all element minors for the example matrix below:

1 2 3

4 -5 6
7 8 9

You need to provide the matrix name in ALPHA pointer value in X -i.e. from 1,001 to 3,003 in this
example. You can do it one at a time using MINOR, or all sequentially using MINORS. The latter

option will create a new matrix in X-Mem named “MINORS”, with all elements being the minors of
the original matrix.

The solutions are:

You can also use SUBMAT to reduce the matrix one unit on each dimension, based on the element

of your choice removing its row and column. For instance using i,j = 2,001 in X and executing

SUBMAT will change the original matrix into a 2x2 submatrix, with the following elements:

2 3
8 9

Warning: SUBMAT replaces the original matrix with the reduced one. If you need the

original matrix to remain in memory you must copy it with a different name before calling

SUBMATto safeguard it.

 -3 -6 -3
Minors: -6 -12 -6

 -3 -6 -3

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 24 of 54

Program listing.- Real Matrix Minors

1 LBL "MINOR" 28 MNAME?

2 LBL 01 29 RTN

3 ASTO 01 MNAME 30 GTO 01

4 STO 00 i,j pointer 31 LBL 02

5 "|-,#1" 32 INT j

6 MAT= scratch copy 33 ENTER^
7 DIM? 34 DSE X j-1

8 1,001 35 X=0?

9 - one order less 36 RTN don’t bother if j=1

10 "#2" 37 X<>Y

11 MATDIM scratch sub-array 38 ENTER^
12 MZERO clear it 39 ENTER^

13 "#1" 40 I<>J 0,00(j-1)

14 RCL 00 41 E

15 I<>J i,j pointer 42 -

16 SF 00 43 + j,00(j-1)

17 XEQ 02 44 LBL 00

18 RCL 00 45 FS? 00

19 CF 00 46 C<>C bubble left column

20 XEQ 02 47 FC? 00

21 CLST 48 R<>R bubble up row

22 2,002 49 1.001 offset

23 "#1,#2" 50 - k,00(k-1)

24 MMOVE 51 DSE Y j=j-1

25 PURFL 52 GTO 00

26 CLA 53 END

27 MDET

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 25 of 54

Matrix Rotation &Mirror Images. { M90R , M90L , MMIRR }

A 90-degree clockwise rotation pivots the complete matrix around its bottom-right element, i.e the

last element in the last column works as the rotation “axis” - whilst a counter-clockwise 90-deg turn
uses the bottom-left element, i.e. the last element in the first column

This type of rotations is the simplest one to implement, thanks to the row or column swapping

functions (depending of the direction of the rotation), applied on the transposed matrix. The

algorithm consists of successive row or column switches done on the transposed matrix, and thus
it’s faster than using an individual element mapping for each of the layers (or “rings”) in the matrix

– which is also dependent on the matrix dimensions.

For example, rotating the 4x4 matrix below 90 degrees clockwise; see how the rotated matrix is the
vertical-mirror image of the original transposed?

Similarly, a counter-clockwise 90-deg rotation is the horizontal-mirror image of the original

transposed.

Our routines will simply transpose the matrix first, and then call the mirror image routine –

consisting of a row or column swapping repeated as many times as columns are in the transposed
matrix.

Terminology alert:

“Reflection” is the analogous term to mirror image,
although the horizontal and vertical reflections can

be confusing since they use vertical and horizontal
”mirrors”, which is intuitively the opposite.

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 26 of 54

Program usage: Just type the matrix name in ALPHA and execute M90R or M90L depending on
the desired direction of rotation. For MMIRR you need to clear or set user flag manually to indicate

vertical or horizontal mirror image respectively.

Program Listing:

01 LBL “M90R” ; right

02 CF 00 ; flag case

03 GTO 00 ; merge

04 LBL “M90L” ; left

05 SF 00 ; flag case

06 *LBL 00 ; common
07 TRNPS ; transpose

08 LBL “MMIRR” ; mirror

09 DIM? ;n x m

10 FRC ; 0,00m

11 E
12 + ; 1,00m

13 *LBL 01

14 FC? 00 ; right?
15 C<>C

16 FS? 00 ; left?

17 R<>R”
18 E-3 ; next col?

19 -
20 ISG X ; next row

21 GTO 01 ; repeat

22 END ; done

Note: Refer to the ‘Complex Matrix” ROM for additional functions based on a single-element rotation,
also for Real matrices but unfortunately there was no room available in this module to include them

here.

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 27 of 54

Matrix L/U Editing. { MSYM , MU<>L }

Two small routines to edit the L/U sections of a square matrix, as follows:

• MSYM copies the Upper region into the lower one, so the matrix becomes symmetric.

• MU<>L exchanges the upper and lower regions.

These routines don’t have a prominent applicability but are a good example of utilization of the
element manipulation functions in the SandMatrix, specifically MXIJ– the in-place pointer index

exchange.

MXIJ facilitates the element transposition by exchanging the row and column of the currently

selected element, returning the new selected element pointer to the X-Register. The matrix can be

non-square, but an error message will show if the “transposed” pointer does not exist. Note that

there’s no need to recall the current pointer first.

The function does the equivalent to the following FOCAL snippet: { MRIJ, I<>J, MSIJ }, which is

simple enough but having it as a single function allows simplified FOCAL programs and doesn’t
disturb the stack.

Program listing:

LBL “MSYM” 1
CF 00 2
GTO 00 3
LBL “MU<>L” 4
SF 00 5
*LBL 00 6
, 7
MSIJA 8
*LBL 01 9
MRIJA 10
INT 11
I<>J 12
LASTX 13
+ 14
MSIJ 15
J+ 16
FC? 10 17
RTN 18
*LBL 02 19
MR 20
MXIJ 21

FC? 00 22
XEQ 03 23
FS? 00 24
XEQ 04 25
J+ 26
FC? 09 27
GTO 02 28
GTO 01 29
*LBL 03 30
X<>Y 31
MS 32
MXIJ 33
RTN 34
*LBL 04 35
RDN 36
MR 37
XEQ 03 38
X<> Z 39
MS 40
END 41

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 28 of 54

Row Division by Diagonal element. (Diagonal Unitary) { R/aRR }

This function is used to modify the values of all elements, dividing each row by its diagonal element;

that is: aij = aij / aii, j=1,2,... n

In effect the result matrix has all its diagonal elements equal to 1 (i.e. diagonal is unitary). This type

of calculation is useful for row simplification steps in matrix reductions; more like a vestigial function

from when the major matrix operations were not available (i.e. the CCD days, pre-Advantage Pac).

Program listing:

Note:

This routine was moved to this ROM to make room in the SandMatrix for CMTRC, the Complex Matrix
Trace routine. This arrangement is more self-contained, favouring the SandMatrix capability to
support the Complex Determinant by itself (CMTRC is used as a subroutine by CMDET).

1 LBL "R/aRR" MNAME in Alpha 19 RDN discard product

2 SQR? square? 20 FC? 09 end of row?

3 LU? yes but LU? 21 GTO 00 no, get next element
4 -ADV MATRX not square, show error 22 FS? 10 end of matrix?

5 0 23 GTO 02 yes, exit

6 MSIJA set pointer to 1:1 24 MRIJ recall pointer

7 LBL 01 25 ENTER^

8 MR recall diag element 26 INT

9 1/X inverse value 27 ENTER^

10 X<>Y pointer to X 28 I<>J does E3/ if integer

11 MSIJ set pointer 29 + j,00j

12 X<>Y value back to X-reg 30 MSIJ set pointer

13 ENTER^ 31 X<>Y

14 ENTER^ fill stack w/ value 32 GTO 01 next row

15 LBL 00 33 LBL 02
16 MR recall element 34 DIM? get dimansion

17 * multiply 35 END end

18 MSR+ store and increase column

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 29 of 54

Appendix. Harmonic Determinants. { DNN , DN }

This section reflects the discussion started by Valentín Albillo on the HP-Museum forum. It’s useful to

showcase the capabilities of the CL_Y-Registers for very large size matrices.

Consider the determinant D(N) defined as follows:

This type of determinants have an exact formula using the Harmonic function, H(N):

D(N) = (N+1)! . H(N)

The sum of harmonic series is thus: H(N) = D(N-1) / N!
which surely would be one of the most inefficient ways to compute it ;-)

Using the CL_Y-Registers area, write a routine to compute D(N) – and verify the direct formula for
the values N=11, 13, 30, 40 and N=55 - which will use 3,025 Y-Registers.

The routines are listed below. Both expect the order N in the X-register:

01 LBL "DDN"

02 RCL X

03 E3
04 /

05 +

06 "Y"- matrix will start at RY-001
07 MATDIM

08 E
09 MCON

10 CLX
11 MSIJA

12 2

13 LBL 00
14 E

15 +

16 MSC+
17 SF 25

18 J+
19 FS?C 25

20 GTO 00

21 MDET
22 END

23 LBL "DN"

24 E

25 +
26 HARM

27 LASTX

28 FACT
29 *

30 END

And the table below shows the results from each approach:

N D(N) Time (@Turbo50) Formula

11 1,486,442,880.0 1.8 sec 1,486,442,880.0

13 2.834656472 E11 2.01 sec 2.834656474 E11

30 3.311538747 E34 11 sec 3.311538746 E34

40 1.439439902 E50 1 min 20 sec 1.439439902 E50

50 3.278748200 E75 2 min 30 sec 3.278748199 E75

Warning: Remember that the CL is required to store
a matrix in the Y-Registers area. Otherwise
you’ll get the error message on the right:

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 30 of 54

3. Recursive 2D-Solve & Integrate

Recursive Utilization of FINTG and FROOT.

Like the original SOLVE and INTEG did, both FROOT& FINTG support “crossed” nested calls from

one another, i.e. you can call FROOT from an integrand function being used by FINTG, and you can

call FINTG in the root-finding function definition for FROOT. However, it is not possible to recursively

call either one of these functions sequentially from within a FOCAL routine. Any attempts to do so

triggers the “RECURSION” error message and the execution aborts.

The SIROM provides a set of MCODE functions and two FOCAL routines to overcome this limitation.

Each time FROOT/FINTG is executed it creates a dedicated memory buffer to store the application

data and to perform all the math. The basis of the operation is the use of a secondary memory area

for the nested call of the function, not conflicting with the initial memory buffer created in the first

call. The main loop uses the initial buffer #14, and the operand function in turn creates a secondary

buffer #14 to use for the nested loop – deleting it after it’s complete.

In order to reuse the existing code, we’ll trick the OS changing the id# of the initial buffer #14 right

before the second call – not deleting it but cloaking it in the I/O Memory area of the calculator. The

operand function re-labels the buffer with id#13 (using function CLOAK), then the nested call to

FROOT/INTEG creates and uses a new buffer #14 to perform its task and deletes it upon completion

– returning the execution to the “operand” function FOCAL routine. Before the execution is returned

to the driver program, the cloaked buffer is re-issued as id#14 (using function EXPOSE) so things

can be picked up exactly where there were left off before calling the nested subroutine.

If you must know, all CLOAK and EXPOSE do is changing the buffer id#’ of the initial buffer created

in the first call to FROOT/INTEG - first from 14 to 13, and then back to 14. Prior to all this a third

function (RESET) is used to check for pre-existing buffers with id#13 – deleting it if found.

2D Driver Routines and Rules of Engagement.

The main programs for double integrals and system of 2 equations are FITG2 and FRT2. Each one

has an auxiliary routine associated with it, which acts as the first level operand function and issues a

second nested call for the integrand or the second equation appropriately, as follows:

For FITG2, the function name f(x,y) is expected in ALPHA, and the four integral limits in the stack in

the pattern “y1, y2, x1, x2” – (y1,y2) for the outer integral, and (x1,x2) for the inner one.

• The integrand function is to be programmed assuming x is in R01, and y in the stack.

For FRT2, both function names are expected to be in Alpha separated by comma (like “F1,F2”), and

the guesses entered in the stack, with the pattern “x1, x2, y1, y2” - with (x1, x2) for f1(x,y) and (y1,

y2) for f(2(x,y).

• The second operand function f2(x,y) is executed first. It assumes x in R01 and y in the stack.

• The first operand function f1(x,y) assumes x in R01 and y in R02.

• You decide which one is F1 and F2 by their order in the ALPHA string

All buffer management is made automatically by the auxiliary routines *2D and*FG.

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 31 of 54

Routine Listings.

Here are the routine listings for your perusal. Notably FRT2 introduces more complexity to process

the function names – entered as comma-separated strings in ALPHA – and due to the indirect call to

f1(x,y) at the end of the auxiliary routine *FG - which is not required by *2D in the double

integration case, as it’s just one function involved. CLAC and ASWAP are borrowed from the ALPHA

ROM – and need the Library#4 present in the calculator. They’re only used for FRT2.

01 LBL "FRT2" 01 *LBL " FITG2"
02 CLKEYS no keys assigned 02 CLKEYS no keys assigned

03 ASTO 00 save string 03 ASTO 00 save in R00

04 ASWAP swap around "," 04 STO 03 upper limit2

05 CLAC remove second 05 RDN
06 ASTO 05 save in R05 06 STO 02 lower limit2

07 CLA 07 RDN
08 ARCL 00 recall string 08 RESET reset buffers

09 CLAC remove second 09 "2D" first level operand

10 ASTO 00 save in R00 10 FINTG call first round

11 STO 04 upper guess2 11 RTN done

12 RDN 12 “NO SOL”
13 STO 03 lower guess2 13 AVIEW
14 RDN 14 RESET
15 RESET reset buffers 15 RTN done.

16 "*FG" first level operand 16 *LBL "*2D"
17 FROOT call first round 17 STO 01 Save x for later

18 GTO 00 18 CLOAK mask buffer id#

19 *LBL 01 Not found 19 RCL 02 lower limit2

20 RESET 20 RCL 03 upper limit2

21 “NO ROOT” 21 CLA
22 AVIEW 22 ARCL 00 f(x,y)

23 *LBL 00 Found 23 FINTG nested call

24 RCL 02 y solution 24 EXPOSE re-issue buf id#

25 X<>Y arrange in stack 25 END ready

26 CLA appends
27 ARCL 00 f1(x,y) name
28 “|-,”
29 ARCL 05
30 RTN done(!)
31 *LBL "*FG"
32 STO 01 save x for later
33 CLOAK mask buffer id#
34 RCL 03 lower guess 2
35 RCL 04 upper guess 2
35 CLA
36 ARCL 05 f2(x,y)
37 FROOT nested call
38 GTO 00 Found yo, skip
39 GTO 01 Not found!
40 *LBL 00
41 EXPOSE re-issue buf id#
42 STO 02 Save yo result

43 XEQ IND 00 calculates f1(x,Yo)
44 END

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 32 of 54

FITG2 uses registers {R00-R03} and leaves the results in X and R01. The function name is left in

ALPHA (6-chars max).

FRT2 uses registers {R00-R05} and leaves the results in the stack registers {X, Y} and {R01, R02}

for the 2-equation roots. The comma-separated function names string is left in ALPHA (6-chars max

for each name).

Comments.

The new functions to support the nested configuration are simplified versions of some general-

purpose buffer utilities, available in other extension modules as follows:

• RESET is equivalent to the sequence { 13, B?, CLB, RDN }

• CLOAK is equivalent to the sequence { 14.013 , REIDBF, RDN}

• EXPOSE is equivalent to the sequence: { 13.014 , REIDBF , RDN }

B? and CLB are available in the OS/X ROM, and REIDBF in the RAMPAGE ROM.

Using the simplified versions is more intuitive for math-oriented users, and besides freed up some

space for additional examples in the SIROM.

While you can use RESET at any time (which will delete buff #13 if present, or do nothing if not

present), using CLOAK and EXPOSE will generally result in the error message “BUF ERR”. They’re

meant to be used only while buffer #14 exists, which is tightly controlled by the code in FINTG and

FROOT – and furthermore, the SIROM uses the I/O_PAUSE interrupt as a “search & destroy” for

buffer#14 at all times. Refer to the corresponding section in the SandMath manual to read more on

this subject.

Caveat emptor:

• There’s a price to pay for this buffer trickery, and that’s the loss of the USER key

assignments. As you can see in the listings above, the main routines call CLKEYS to make

the operation more reliable (this avoids spurious buffer errors due to memory overwrites).

You can save them in an X-Mem file using SAVEKA and then recover them with GETKA after

the fact (both functions are also available in the AMC_OS/X ROM).

• These routines are not fast, their interest is in the methodology - not optimized for speed to

say the least. If you need faster responses, then the SandMath provides dedicated MCODE

functions for many of these and yet some more.

• Bear in mind that the INTEG-based method to define special functions is not an efficient one

from the mathematical standpoint, but it is a godsend for engineering problems. Also FROOT

is not perfect or fool-proof either, so choosing a good initial guess is of high importance. If

FRT2 fails to find a root (in either variable), it’ll present the error message “NO ROOT” –

Change the limits and try again.

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 33 of 54

The following examples should provide a good overview into the details of the programming.

Example 1. Calculate the integral of the Bessel Jn function, ITJ(1,3) = INT (0,3) { J(1,t).dt}

using the integral definition as reference:

Program Code is below. Note that you don’t need to worry about the buffer management, that’s done

automatically by the driver routines all transparently to the user.

As mentioned before, speed is not this method’s forte. Even on V41 in turbo mode it’ll take a good 75

seconds to return 1.260052 (in FIX 6). This was not the goal of the example, but to clarify the

general guidelines and showcase the conceptual approach. If you want a fast result you’re

encouraged to use JBS in the SandMath, or even better the ITJ(sub)function also in the SandMath,

which uses the Generalized, Regularized Hypergeometric function for the calculation – a world of

differences…

Comment. This particular example is of course much better dealt with using the well-known

expression between the Bessel function J1 and J0 shown below (proving once again that it’s always

good to check your math before embarking in long and winding paths):

thus:

Here’s an interesting plot showing

the integral function of J1(x)

between]-15 . 15[

01 LBL "ITJB" 13 LBL " *JN" inner variable t in stack

02 X<>Y order n to X 14 RAD angular mode

03 STO 04 order saved in R04 15 RCL 04 get order

04 CLX lower outer limit 16 * n.t

05 X<>Y upper outer limit 17 X<>Y inner variable t

06 0 lower inner limit 18 SIN sin t

07 PI upper inner limit 19 RCL 01 outer variable

08 "*JN" function name 20 * x.sin t

09 XROM " ITG2" double integration 21 - n.t - x.sin t
10 PI adjust factor 22 COS cos (n.t - x.sin t)

11 / final result 23 END integrand complete.

12 RTN done.

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 34 of 54

Example 2. Calculate the solution for the system of non-linear equations below:

f1(x,y) =x - sin(x + y) Solution: x = 0,935082064

f2(x,y) = y - cos(x - y) y = 0,998020058

The equations are programmed as shown below. Note how the convention is observed, with the y

value assumed in the stack for the second function and in R02 for the first one; whilst x is always

assumed in R01 for both functions. The solutions are obtained in about 3 seconds (FIX 9) using V41

in Turbo mode.

 ALPHA, “F1,F2” , ALPHA, 1, ENTER^, 2, ENTER^, 1, ENTER^, 2, XEQ “FRT2”

01 LBL "F1" 09 LBL "F2"
02 RCL 01 x 10 RAD
03 RCL 02 y 11 CHS -y

04 + x+y 12 RCL 01 x

05 SIN sin(x+y) 13 + x-y

06 RCL 01 x 14 COS cos(x-y)

07 - sin(x+y)-x 15 X<>Y y

08 RTN 16 - cos(x-y)-y

 17 END

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 35 of 54

Example 3. Obtain the roots for the system of two equations below (available as “G1” and “G2”)

g1(x,y) = x^2 + y^2 -5 Solution: x = 2

g2(x,y) = x^2 -y^2 - 3 y = 1

This is an interesting case because FRT2 not only is much slower (as we knew it was going to be),

but also fails to find a root using initial guesses equal to the solutions, i.e. x0 = 2, y0=1.

Other Examples.

Let’s use Valentín Albillo’s neat examples from DataFile for Double Integrals - as follows:

;

See the original article for details, available at:
http://web.archive.org/web/20110906135412/http://membres.multimania.fr/albillo/calc/pdf/DatafileVA024.pdf

The results are: I1 = 8/3 = 2.6666666

I2 = Ln(25/24) = 0.040821

I3 = 1,321.275779

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 36 of 54

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 37 of 54

Appendix: MCODE listing for dedicated functions

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 38 of 54

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 39 of 54

4. Non-Linear Systems

Cubic Spline Interpolation (by Greg McClure)

Here is the authoritative implementation of cubic spline interpolation, using the extended functions to
store the data points and the matrix function set from either the SandMatrix or the HP-41 Advantage

indistinctly. This is the optimal arrangement for improved speed and reduced code size to resolve the
problem.

The cubic spline algorithm is a mathematical interpolation method used to create a smooth curve
between points on a graph. At least four data points are required to create a cubic spline. These

data points need to be placed into a data array in Extended Memory. The user can decide the name
of this array. After creating this array and filling it with X,Y data pairs, executing CSPLINE will create

the splines needed to graph the curve. The program requires Matrix functions to create the solution,

so either the Advantage or SandMatrix module is required for this program. If using the SandMatrix
module, the SandMath module will also be required.

To solve the cubic spline, first a tri-diagonal matrix needs to be created, and a solution vector.

“*ABC” and “*R” matrices are temporarily created for this purpose. Once solved, the “*MN” data

array is created with the cubic spline coefficients, and “*ABC” and “*R” are removed. “*MN” is used
to display the interpolated Y and YPRIME for any X entered.

It is easiest to show how to use CSPLINE by giving an example.

Let’s say we want to create a smooth curve going thru points [0,0], [1,1], [2,9], and [3,10]. We wish

to use the “natural” slope of the curve at both the beginning and the end (it can optionally be

specified for either end).

Let’s create data array “XY” (needs to be size 8). So “XY”, 8, CRFLD. Now ensure flag 8 is off and

XEQ DFED. Enter in points 0, 0, 1, 1, 2, 9, 3, and 10 at the prompts. We are now ready to perform

the spline interpolation.

XEQ CSPLINE. It asks for the array name, enter XY and press R/S, it asks if we want initial slope.

No response at this prompt forces “natural” slope for the initial point. R/S then asks for the the final

slope. No response forces “natural” slope for the final point. R/S then displays the steps as it

calculates the arrays, then solves the simultaneous equations created.

We are ready to display results for points. LBL A is always available to quickly get to this point. After

the solution is created, we are at this label. R/S prompts for “NEXT X?”, enter the X value we want Y

value for. R/S calculates the Y coordinate interpolated, and R/S again calculates the slope at that

point. In this example, let’s get the slope calculated for the first point [0,0]. Enter 0, R/S, and it

shows Y is 0 (not a surprise), R/S gives a slope of -1.3333. R/S (or A) and get “NEXT X?”, 1, R/S and

it shows Y is 1 (not a surprise), R/S gives a slope of 5.6667. X = 1.5 gives Y=5, and slope of 9.1667,

and so on for any other points you want to solve. The natural slope at the end point of 3 was also -

1.3333.

We can rerun the program and specify initial and final slopes if we wish, try it and see what points

and slopes are interpolated with initial and final slopes of 0.

Example. Using the Data File Editor routine DFED make a data array (named "XY", with size 8)
loaded with 1, 1, 2, 2, 3, 9, 4, 10 (this represents points [1,1], [2,2], [3,9] and [4,10]).

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 40 of 54

Run the program, specify "XY" as the array name, and when it asks for initial and final slope, just hit
R/S (this tells the program to use natural slope ends). After it finishes (it says "READY"), hit R/S and

enter the X coordinate you want to see the spline value for, it will display the Y coordinate, then you
hit R/S to get the slope at that point.

• for x = 1.0, you should get: Y = 1.0, YP (slope)=-1

• for x = 1.5, you should get: Y=0.75, YP=0.5,

• for x = 2.5, you should get: Y=5.5, slope of 8.

As you can see, you can ask for any

X points you want, and quickly make
a sketch of the resulting spline
curve fit for these points.

Here the "natural" spline slope is -1

for each end, and by specifying the
desired slope for the ends you can

change the shape of the resulting

spline. To do that, simply rerun the
CSPLINE program.

With 425 steps, CSPLINE is a large

program, but the usability factors

are well worth the price of

admission: feedback of each step is

provided during the execution so

you know what progress is being made.

01 *LBL 10

02 "` SLOPE?"
03 CF 22

04 PROMPT

05 RTN
06 *LBL 99

07 SF 25
08 PURFL

09 CF 25

10 MATDIM
11 RTN

12 *LBL 96
13 "*CF"
14 RCL 09
15 INT

16 E

17 E3/E+
18 *

19 E-3
20 -

21 MSIJA

22 RTN
23 23*LBL 95

24 24"*R"
25 RCL 09

26 INT

27 MSIJA

28 RDN

29 RTN
30 30*LBL 94

31 DSE X

32 E3/E+
33 STO 09

34 RTN

35 LBL "CSPLINE

36 *LBL 00

37 CF 00
38 CF 01

39 "X,Y ARRAY?"
40 AON

41 PROMPT
42 AOFF

43 ASTO 00

44 FLSIZE
45 2

46 /
47 STO 09

48 48"*R"
49 XEQ 99
50 E

51 E3/E+
52 *

53 "*CF"
54 XEQ 99

55 CLA

56 ARCL 00
57 RCL 09

58 XEQ 94

59 CLX
60 SEEKPTA

61 "INIT"
62 XEQ 10

63 FC? 22

64 SF 00
65 FS? 22

66 STO 07
67 "FINAL"
68 XEQ 10
69 FC? 22

70 SF 01

71 FS? 22
72 STO 08

73 "MATRICES
…"

74 CF 21

75 AVIEW
76 GETX

77 STO 01
78 GETX

79 STO 02

80 GETX

81 STO 03

82 GETX
83 STO 04

84 "*CF"
85 2 E-3
86 MSIJA

87 FS? 00
88 GTO 00

89 CLX

90 GTO 01
91 *LBL 00

92 RCL 03
93 RCL 01

94 -
95 1/X

96 *LBL 01

97 MS
98 J-

99 FS? 00
100 GTO 00

101 E

102 GTO 01
103 *LBL 00

104 ST+ X
105 *LBL 01

106 MS

107 "*R"

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 41 of 54

108 E
109 MSIJA

110 RDN
111 FS? 00

112 GTO 00

113 RCL 07
114 GTO 01

115 *LBL 00
116 2

117 /
118 X^2

119 RCL 04

120 RCL 02
121 -

122 *
123 3

124 *

125 *LBL 01
126 MS

127 *LBL 98
128 ISG 09

129 GTO 00
130 GTO 97

131 *LBL 00

132 CLA
133 ARCL 00

134 FLSIZE
135 GETX

136 STO 05

137 GETX
138 STO 06

139 XEQ 96
140 RCL 03

141 RCL 01

142 -
143 1/X

144 MSR+
145 RCL 05

146 RCL 03
147 -

148 1/X

149 J+
150 MS

151 STO T
152 X<>Y

153 STO Z

154 +
155 ST+ X

156 J-
157 MS

158 RDN
159 XEQ 95

160 X^2

161 RCL 04
162 RCL 02

163 -
164 *

165 X<>Y
166 X^2

167 RCL 06
168 RCL 04

169 -

170 *
171 +

172 3
173 *

174 MS
175 RCL 03

176 STO 01

177 RCL 04
178 STO 02

179 RCL 05
180 STO 03

181 RCL 06

182 STO 04
183 GTO 98

184 *LBL 97
185 XEQ 96

186 FS? 01
187 GTO 00

188 CLX

189 GTO 01
190 *LBL 00

191 RCL 03
192 RCL 01

193 -

194 1/X
195 *LBL 01

196 MSR+
197 FS? 01

198 GTO 00

199 E
200 GTO 01

201 *LBL 00
202 ENTER^

203 ST+ X
204 *LBL 01

205 MS

206 X<>Y
207 XEQ 95

208 FS? 01
209 GTO 00

210 RCL 08

211 GTO 01
212 *LBL 00

213 X^2
214 RCL 04

215 RCL 02
216 -

217 *

218 3
219 *

220 *LBL 01
221 MS

222 "SOLVING"
223 AVIEW

224 "*CF,*R"
225 MSYS

226 "COEFFS..."
227 AVIEW
228 "*CF"
229 PURFL
230 RCL 09

231 INT
232 DSE X

233 ST+ X

234 "*MN"
235 SF 25

236 PURFL
237 CF 25

238 CRFLD

239 2
240 /

241 ISG X
242 ""

243 XEQ 94
244 CLA

245 ARCL 00

246 CLX
247 SEEKPTA

248 GETX
249 STO 01

250 GETX

251 STO 02
252 *LBL 93

253 XEQ 95
254 MRC+

255 STO 05

256 MR
257 STO 06

258 CLA
259 ARCL 00

260 FLSIZE
261 GETX

262 STO 03

263 GETX
264 STO 04

265 RCL 06
266 CHS

267 RCL 03

268 RCL 01
269 -

270 *
271 RCL 04

272 RCL 02
273 -

274 +

275 RCL 05
276 RCL 03

277 RCL 01
278 -

279 *
280 RCL 04

281 RCL 02
282 -

283 -

284 "*MN"
285 FLSIZE

286 RDN
287 SAVEX

288 X<>Y
289 SAVEX

290 RCL 03

291 STO 01
292 RCL 04

293 STO 02
294 ISG 09

295 GTO 93

296 SF 27
297 "READY"

298 PROMPT

299 *LBL A

300 "NEXT X?"
301 PROMPT

302 STO 07

303 CLA
304 ARCL 00

305 FLSIZE
306 2

307 /

308 DSE X
309 STO 09

310 CLX
311 SEEKPT

312 *LBL 92

313 GETX
314 RCL 07

315 X<Y?
316 GTO 00

317 GETX
318 DSE 09

319 GTO 92

320 RCLPT
321 ISG X

322 GTO 01
323 GTO 01

324 *LBL 00

325 RCLPT
326 *LBL 01

327 DSE X
328 GTO 00

329 GTO 01
330 *LBL 00

331 2

332 -
333 *LBL 01

334 CLA
335 ARCL 00

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 42 of 54

336 SEEKPTA
337 GETX

338 STO 01
339 GETX

340 STO 02

341 RCL Z
342 GETX

343 STO 03
344 GETX

345 STO 04
346 RCL Z

347 "*MN"
348 SEEKPTA
349 GETX

350 STO 05
351 GETX

352 STO 06

353 RCL 07
354 RCL 01

355 -
356 RCL 03

357 RCL 01
358 -

359 /

360 STO 08
361 E

362 -
363 CHS

364 STO 09

365 RCL 05
366 *

367 RCL 08
368 RCL 06

369 *

370 +
371 RCL 09

372 RCL 08
373 -

374 *

375 RCL 03
376 RCL 01

377 -
378 /

379 RCL 06
380 RCL 05

381 -

382 RCL 08
383 *

384 RCL 09
385 *

386 RCL 03

387 RCL 01
388 -

389 /
390 +

391 RCL 04
392 RCL 02

393 -

394 RCL 03
395 RCL 01

396 -
397 /

398 +

399 RCL 05
400 RCL 09

401 *
402 RCL 06

403 RCL 08

404 *
405 +

406 RCL 08
407 *

408 RCL 09

409 *
410 RCL 04

411 RCL 08
412 *

413 +
414 RCL 02

415 RCL 09

416 *
417 +

418 "Y="
419 ARCL X

420 PROMPT

421 "YP="
422 ARCL Y

423 PROMPT
424 GTO A

425 END

426 *LBL "DFED"

427 FLSIZE
428 E

429 -
430 E3

431 /

432 *LBL 00
433 SEEKPT

09 GETX
10 X<>Y

11 "D"

12 AINT
13 "|-="
14 X<>Y
15 ARCL X

16 CF 22

17 FC? 08
18 "|-?"
19 PROMPT
20 FC?C 22

21 GTO 02
22 FS? 08

23 GTO 01

24 X<>Y
25 RDN

26 X<>Y
27 SEEKPT

28 X<>Y

29 SAVEX
434 *LBL 02

30 X<>Y
435 *LBL 01

31 ISG X
32 GTO 00

33 "DONE"
34 AVIEW
35 CLA

36 FLNAME
37 END

Program DFED has been created to enter/review the data points in the array. First the data array

must be created. For a 4-point solution the size must be 8, so with the name of the array in Alpha,

and 8 in X, use CRFLD (use PURFL if already created). If user flag 8 is set, DFED will only view the

data in the array. If user flag 8 is clear, it will show and optionally allow modification of the data in

each element. If entering data, just enter each element until done.

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 43 of 54

Systems of Non-Linear Equations (Baillard - McClure)

This version is Greg McClure’s direct modification using the Advantage Matrix functions of Jean-Marc

Baillard’s program to handle this problem, as documented on his web site:

http://hp41programs.yolasite.com/system-eq.php

The technique used is therefore exactly the same one used there: a (quasi-) Newton's method is used

on each iteration to solve a linear system of n equations in n unknowns. The obvious difference in
this version is the utilization of MSYS instead of Jean-Marc’s “LS” routine, contributing to faster
execution and reduced code size – while not introducing any restriction or limitation.

The user needs to program the “n” equations as independent FOCAL routines, with a global label

each. With regard to the expected locations of the variables, it’s of course impossible to take the n
variables from the stack and calculate the n functions in the stack if n > 4, therefore you'll have to

key in n different subroutines for computing the function in the X-register with x1in R01, x2in R02, ...

,and xninRnn

Synthetic registers {M N O} and data registers R00 thru Rn2+4n are used by the program. It also

requires two initial guess-vectors (x1, x2,..xn) and (x1', x2',… xn') which components are to be stored

into {R01- Rnn} and {Rnn+1 to R2n} respectively (and ensuring that xi # x'i for i = 1 , 2 , ... , n).

The successive x1-values are displayed during the calculations, and when the program stops, | f1 | +

.... + | fn | is in the X-register; and the solution (x1 , , xn) is in { R01 , , Rnn }.

The table below summarizes the data input requirements for “NLSYS”:

Register Value Register Value Register Value

R00 n

R01 x1 Rnn+1 x1’ R2n+1 F1 Name

R02 x2 Rnn+2 x2’ R2n+2 F2 Name

….. ….. ….. ….. ….. …..

Rnn xn R2n xn’ R3n Fn Name

All this manual data entering can be bothersome, therefore you’ll be glad to know that the module

includes several auxiliary routines to make the complete process more convenient. First off, the driver

program NLSN will present all needed prompts for the input parameters automatically, storing them
in the appropriate data registers. Within the driver program there are calls to other utilities to input

the initial guesses (XIN) and the function names (FIN). Finally, after the system has been resolved,
the driver program will invoke a data-output routine (XOUT) to show the results. All this will happen
transparently to the user.

Example. program with the routines “F1”, “F2”, and “F3”, defined :

f1(x,y,z) = x^2 + y – 3

f2(x,y,z) = y^2 - z -1

f3(x,y,z) = x - z^2 + 8

The three solutions are: x = 1, y = 2, z = 3

Go ahead and execute NLSN, using as initial guesses the values X0 = (1, 1, 1) andX0’= (2, 2, 2).

http://hp41programs.yolasite.com/system-eq.php

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 44 of 54

LBL “F1”, RCL 01, X^2,RCL 02, +, -, RTN,

LBL “F2”, RCL 02, X^2, RCL 03, -, 1, -, RTN,

LBL “F3”, RCL 01, RCL 03, X^2, -, 8, +, RTN,

Here’s the full data entry sequence with the driver program, Note that existing values will be

suggested, jut press R/S to re-use them when appropriate:

XEQ “NLSN”

4, R/S

“F1”, R/S
“F2”, R/S
“F3”, R/S

2, R/S
2, R/S
2, R/S

1, R/S
1, R/S
1, R/S
R/S
R/S

Example 2.Here is an example from Jean-Marc’s documentation for a 4 element non-linear

simultaneous equation set:

x1 + x2 + x3 + x4 – 16 = 0

x1.x2.x3 – 3.x4 = 0

4.x12 – x2.x3.x4 – 40 = 0

x1.x2.x3.x4 – 140 = 0

The following program should be entered by the user (assuming global labels chosen are F1, F2, F3,

F4):

LBL “F1”, RCL 01, RCL 02, RCL 03, RCL 04, +, +, +, 16, -, RTN,

LBL “F2”, RCL 01, RCL 02, RCL 03, *, *, RCL 04, 3, *, -, RTN,

LBL “F3”, RCL 01, ST+ X, X^2, RCL 02, RCL 03, RCL 04, *, *, -, 40, -, RTN,

LBL “F4”, RCL 01, RCL 02, RCL 03, RCL 04, *, *, *, 140, -, END

The solutions and the locations of the values are as follows:

X1 = R01 = 4.266540475, X2 = R02 = 1.353632234

x3 = R03 = 3.548526784, x4 = R04 = 6.831300511

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 45 of 54

1 *LBL "NLSN"

2 SIZE?

3 "N=?"
4 PROMPT

5 STO 00

6 X^2
7 LASTX

8 4
9 *

10 +
11 E

12 +

13 X>Y?
14 PSIZE

15 SF 01
16 XROM "FIN"

17 RCL 00

18 1.1
19 +

20 STO 02
21 RCL 00

22 E3/E+
23 STO 01

24 *LBL 01

25 "X0'("
26 RCL 01

27 AINT
28 "`)=?"
29 PROMPT

30 STO IND 02
31 ISG 02

32 ISG 01
33 GTO 01

34 XROM "XIN"

35 XROM "NLSYS"

36 *LBL "XOUT"

37 37*LBL 05
38 38"X"
39 RCL 00
40 AINT

41 41"`="
42 ARCL IND 00
43 PROMPT

44 DSE 00
45 GTO 05

46 END

47 *LBL 09
48 SF 25

49 PURFL

50 CF 25
51 MATDIM

52 RTN

53 *LBL "NLSYS"

54 RCL 00
55 "*S"
56 XEQ 09

57 .1
58 %

59 +
60 "*M"
61 XEQ 09

62 *LBL 99
63 VIEW 01

64 STO N
65 ST+ X

66 RCL 00
67 E3/E+

68 +

69 STO M
70 RCL N

71 +
72 STO N

73 STO O

74 *LBL 14
75 RCL IND M

76 XEQ IND X
77 STO IND N

78 ISG M

79 CLX
80 ISG N

81 GTO 14
82 RCL O

83 ENTER^
84 CLX

85 "*S"
86 MSIJA
87 RDN

88 STO M
89 STO N

90 *LBL 13

91 RCL IND M
92 MSC+

93 ISG M
94 GTO 13

95 RCL N

96 ENTER^
97 CLX

98 "*M"
99 MSIJA

100 RDN
101 STO N

102 RCL 00

103 E3/E+
104 STO M

105 STO O
106 *LBL 08

107 RCL IND M

108 RCL M
109 RCL 00

110 +
111 RCL IND X

112 STO IND M
113 RDN

114 X<>Y

115 STO IND Y
116 RTN

117 *LBL 12
118 XEQ 08

119 RCL N

120 RCL 00
121 -

122 RCL IND X
123 XEQ IND X

124 CHS

125 RCL IND N
126 +

127 MSR+
128 XEQ 08

129 ISG M
130 GTO 12

131 RCL O

132 STO M
133 ISG N

134 GTO 12
135 "*M,*S"
136 MSYS

137 "*S"
138 CLX

139 MSIJA
140 STO O

141 RCL 00

142 E3/E+
143 STO M

144 LASTX
145 .1

146 %
147 +

148 +

149 STO N
150 *LBL 11

151 RCL IND N
152 RCL IND M

153 STO IND N

154 X<>Y
155 -

156 ENTER^
157 ABS

158 ST+ O
159 RDN

160 MRC+

161 *
162 ST- IND M

163 ISG N
164 NOP

165 ISG M

166 GTO 11
167 RCL O

168 E-8
169 X>Y?

170 GTO 00

171 RCL 00
172 .1

173 %
174 +

175 GTO 99
176 *LBL 00

177 X<>Y

178 CLA
179 VIEW 01

180 END

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 46 of 54

1 *LBL "XIN"

2 RCL 00

3 E3/E+
4 CF 22

5 *LBL 02

6 "X0("
7 AINT

8 "`)="
9 ARCL IND X

10 "`?"
11 PROMPT

12 FS? 22
13 STO IND Y

14 FS?C 22
15 RDN

16 ISG X

17 GTO 02
18 RTN

19 *LBL "FIN"

20 RCL 00

21 FS? 01
22 ST+ X

23 1.1
24 +

25 STO 02
26 RCL 00

27 E3/E+

28 STO 01
29 AON

30 CF 23
31 *LBL 00

32 "F#"
33 RCL 01

34 AINT

35 "`? "
36 ARCL IND 02

37 STOP
38 FS?C 23

39 ASTO IND 02

40 ISG 02
41 ISG 01

42 GTO 00
43 AOFF

44 END

Example 3. Here’s a more challenging one, with ten equations including trigonometric functions as

And now is when we get to say the infamous words: “the resolution is left to the reader as an

exercise…. “

2 x1 + x1 atan(x2-x10) + cos x7x8 – x3 x4 – tan x8

x2
2exp(x5. x6) + exp(- x8.x9) – x1 x7 – x3 – x9

sin(1-x2 x10) + x2. x3. x7 – (x1. x10)
2 + tan x3 –tan x8

x2 x10 – x8 x9 + sin x5 – x4 x7
2

x5. exp(x8) – x4 sin x7 – cos x10 – x5

exp(cos x5) – exp(x3) – x1 x2 x10 + x6
2 + x1

x6 x7 + x2 x9 – x1 sin x8 – x4 sin x7

atan(1-x9) – cos (x3-x6) – x2 x5 + 2x8

x9.exp(x4 x6) – tan (x2 x5) – x2 x10 + x1 x9 –x6

x3 x8 x10 – x4 x7 x10 – x1 x10 + x2 x9

Solution: Set RAD mode, program the 10 equations andusingtheinitialguess:

[X1] = (1, 1, 1, 1, 1, 1, 1, 1, 1,1)

We obtain: X10=0.926763 ; X9=0.941375
X8=0.950487 ; X7=0.842850
X6=0.754390 ; X5=0.949426
X4=1.213977 ; X3=0.878089
X2=1.018692 ; X1=0.846165

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 47 of 54

Bessel J(x) via Continued Fractions Method - Martin-Baillard

The SandMath contains a very competent set of Bessel functions, both for the direct (J, Y) and the
modified kinds (I, K). The implementation is a hybrid of MCODE and Focal routines, really optimized

for the applicable valid range of the functions.

And therein lays the only caveat: that implementation does a direct sum of the alternating terms of

the series, which isn’t valid for asymptotic cases, where either the order or the argument (or their
sum!) are very large. To palliate this, the SandMath also includes an iterative approach for JNX, using

recurrence formulas – but alas, the execution time can be really long.

Is there another way to skin this cat? Well as it turns out yes, at least for the non-modified cases
there’s a very intriguing approach based on continued fractions, which after all are another way to

iterate for the solution – only that we can take advantage of the MCODE implementation in both the

SandMath and the 41Z Modules, because there are two different continued fractions involved, one of
them in the complex variable – eve for the real Bessel J case!

Here again the routine is a direct modification of Jean-Marc Baillard’s FOCAL program available on his

web site (cf #5 in http://hp41programs.yolasite.com/bessel.php), adapted to use the MCODE

functions CF2V and ZCF2Vinstead of the FOCAL subroutines – faster and shorter code. A real beauty
to see the SandMath and 41Z joining forces to crack this one!

The formulas used are as follows:

With p + i.q = -1/(2x) + i + (i/x) [(0.52 - n2)/(2x + 2i + (1.52 - n2)/(2x + 4i +))

]

 and gn= -1/(((2n + 2)/x) - 1/(((2n + 4)/x) -))

Then, calling D = the denominator of the second continued fraction:

Jn(x) = sign(D) [(2q/(x.Pi)) / (q2 + (p - gn - n/x)2)] 1/2

Yn(x) = [(p - gn - n/x)/q] Jn(x)

One must pay careful attention to the data registers requirements by these functions for the

successions used to define the continued fractions, which are programmed under the global labels
“#” for the real one and ‘=” for the complex one.

Example: Calculate the Bessel J and Y of order 100 for the argument x=100

According to Wolfram Alpha the results are:

and:

http://hp41programs.yolasite.com/bessel.php

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 48 of 54

And sure enough this is what we obtain (with ten digit precision) using our routine:

100, ENTER^, XEQ “JYNX” => 0.09636667380

X<>Y -0.1669214116

Program Listing:

01 LBL "JYNX"

02 STO 01

03 X<>Y
04 STO 13

05 "="
06 CLST

07 ZENTER^
08 .

09 RCL 01

10 ZCF2V
11 RCL 02

12 STO 01
13 ST/ Z

14 /

15 E
16 +

17 STO 10
18 X<>Y

19 CHS
20 RCL 01

21 ST+ X

22 1/X
23 -

24 STO 09
25 "#"

26 0

27 RCL 01
28 CF2V

29 CHS

30 RCL 09

31 +

32 RCL 13
33 RCL 01

34 /
35 -

36 STO 11
37 RCL 10

38 R-P

39 LASTX
40 ST+ X

41 PI
42 RCL 01

43 *

44 /
45 SQRT

46 X<>Y
47 /

48 RCL 05
49 SIGN

50 *

51 STO 12
52 RCL 11

53 *
54 RCL 10

55 /

56 RCL 12
57 CLD

58 RTN

59 LBL "="

60 RCL 12

61 ST+ X
62 RCL 02

63 ST+ X
64 ZENTER^

65 RCL 12
66 660.5

67 -

68 X^2
69 RCL 13

70 X^2
71 -

72 0

73 X<>Y
74 RTN

75 LBL "#"

76 X<>Y

77 STO 05
78 X<>Y

79 RCL 02

80 RCL 13
81 +

82 ST+ X
83 RCL 01

84 /

85 -1
86 END

Note: ensure that the ADVTG_MATH module is plugged in a page before the SandMath. This is
required because there is another global label “=” in the SandMath and we don’t want the routine to

use the incorrect one for the calculation! (besides, this would result in NONEXISTENT, so you’ll know
right away).

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 49 of 54

Newton’s and Halley’s Methods Revisited - Martin-McClure

The idea of using the MCODE functions in the SandMath is also at the heart of this final application,
as this time we’ll use the first &second derivatives function DERV as an auxiliary tool to calculate the

derivatives of the function whose roots we’re trying to obtain, directly and without any additional
conditioning regardless of the function in case.

The formulas involved are well known:

 ;

As usual, you need to provide two guesses in the X,Y registers and the function name in ALPHA. The

user is required to program the function in a FOCAL routine under a global label, which cannot use
data registers R00 to R08 as explained below.

Remember that DERV uses R00 to R04 (see the documentation in the SandMath manual for details),
and in addition to these the routines use R05 for the function global label name, and R06 – R08 to

save the initial guesses and as scratch. As it’s already customary, the successive approximations to
the root will be displayed if user flag 10 is set.

 *LBL "XNWT" 1
 CF 01 2
 GTO 01 3
 *LBL "XHALL" 4
SF 01 5
 *LBL 01 6
 ASTO 05 7
 X<>Y 8
 STO 08 9
X<>Y 10
 *LBL 00 11
 FS? 10 12
 VIEW X 13
 STO 06 14
 XEQ IND 05 15
 STO 07 16

 RCL 08 17
 RCL 06 18
DERV 19
 FC? 01 20
 ST/ 07 21
FS? 01 22
 XEQ 02 23
 RCL 06 24
 RCL 06 25
 RCL 07 26
 - 27
 X#Y? 28
GTO 00 29
 CLD 30
 RTN 31
 *LBL 02 32

X^2 33
ST+ X 34
RCL 07 35
RCL 01 36
* 37
- 38
1/X 39
RCL 07 40
* 41
RCL 00 42
* 43
ST+ X 44
STO 07 45
END 46

This really can’t get any shorter; my kinda routine that clearly showcases that with a powerful engine

behind doing the heavy lifting (DERV in this case) the rest is a downhill trip.

Example: obtain a root for the equation below, which we program easily as shown. Then we

usesomeobviouslynon-optimal guesses to stress the algorithm:

{ LBL “X1”, CBRT, LASTX, 4, +, *, END }, and then

ALPHA,”X1”, ALPHA, 1, 2, XEQ “XNWT” => -4.00000000
Or:` 1, 2, XEQ “XHALL” =>-4.00000000

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 50 of 54

Newton’s Method with Complex Step Differentiation.

And the proverbial last but not least is reserved for the “complex step derivative” method to calculate
real function derivatives, just as a quasi-magical application of complex variables. Complex step

differentiation is a technique that employs complex arithmetic to obtain the numerical value of the
first derivative of a real valued analytic function of a real variable, avoiding the loss of precision

inherent in traditional finite differences. This is then used n Newton’s method in the usual way.

We're concerned with an analytic function. Mathematically, that means the function is infinitely

differentiable and can be smoothly extended into the complex plane. Computationally, it probably
means that it is defined by a single "one line" formula, not a more extensive piece of code with if
statements and for loops.

Let F(z)be such a function, letx0be a point on the real axis, and let hbe a real parameter. Expand

F(z)in a Taylor series off the real axis.

F(x0+ih)=F(x0)+i.hF’(x0)−h2F’’(x0)/2! – ih3F(3)/3!+...

Take the imaginary part of both sides and divide byh

. F’(x0)=Im(F(x0+ih))/h+O(h2)

Armed with the 41Z arsenal of functions it’s very likely that your real function can be programmed as

an equation in the complex variable too. Then all it takes is to calculate the value of said complex

function in a complex point close to the real argument x0, offset by a very small amount in the

imaginary axisih.The program expects the program name in ALPHA and the values of h and x0 in the

Y,X stack registers, and it returns the real derivative value in X. it uses data registers R00 to R02.

LBL "ZNWT" 1
 ASTO 02 2
 ZSTO 3
 LBL 00 4
FS? 10 5
VIEW 00 6
ZRCL (00) 7
XEQ IND 02 8
X<>Y 9

 / 10
 RCL 01 11
 * 12
 ST- 00 13
 RND 14
 X#0? 15
 GTO 00 16
 RCL 00 17
 END 18

What’s remarkable is that with just one execution of the complex function we calculate both the real

function’s value (the real part) and its derivative (the imaginary part with correction) at the same
time. Note also the clever use of complex data register C00 to store z0 = x0 +ih, and then how it

keeps calculating the complex function value until two successive iterations are equal for the current
FIX selected in the calculator.

Something’s remarkable when the root-finding routine is almost shorter than the equation use to
program the function!

Time for some examples. The first one just a simple polynomial to try our hand with the new method,

taken from the MoHPC forum: https://www.hpmuseum.org/forum/thread-6667.html

https://www.hpmuseum.org/forum/thread-6667.html

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 51 of 54

Calculate the three roots of the third degree polynomial: x³–x²–x+0,5 = 0

We program the equation as shown below:

01LBL “Z3”

02 Z^3
03 LASTZ

04 Z^2

05 Z+

06 Z-

07 .5
08 +

09 END

And type:
ALPHA, “Z1”, ALPHA

,01, ENTER^, 0, XEQ “ZNWT” => 0.40301587
.01, ENTER^, 2, XEQ “ZNWT” => 1.45174468

.01, ENTER^, -2, XEQ “ZNWT“ => -0.85476055

And then a more elaborate example adapted from the seminal reference:
https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/

The blog uses the function F(x) given below, which does not have any real roots:

For our purposes let’s calculate the roots of, say g(x) = F(x) –

01 LBL “Z2”
02 ZEXP

03 LASTZ
04 ZSIN

05 LASTZ

06 ZCOS
07 3

08 Z^X
09 Z<>W

10 3
11 Z^X

12 Z+

13 Z/
14 PI

15 -
16 END

And type:

ALPHA, “Z2”, ALPHA
,01, ENTER^, 1, XEQ “ZNWT” =>0.79830245

https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 52 of 54

Appendix: From Poles to Zeros.{ POLZER }

This program completes the applications section. It calculates the zeros of a polynomial expressed as

a partial expansion of factors, as would typically be the case when working with transfer functions in

control theory.

This program calculates the polynomial coefficients and roots of expressions such as:

P(x) = [1 / (x-pi)] ;i= 1,2,… n , for n<= 7

Which will be transformed into:

P(x) = ai.x^i ;i= 0,1,… (n-1)

The coefficients are obtained using the following formulae:

a(n-1) = n

a(n-2) = (n-1) pi

a(n-3) = (n-2) pi pj

a(n-4) = (n-3) pi pj pk

a(n-5) = (n-4) pi pj pk pl

a(n-6) = (n-5) pi pj pk pl pm

in general the n-th. coefficient would require the calculation of n-dimensional product sums. However

the program POLZER is limited to expressions up to 7 poles max (resulting in 6 zeroes).

Example.- To study the stability of the transfer function below, calculate its roots.

G(s) = 1/s + 1/(s-1) + 1/(s-2) + 1/(s-3) + 1/(s-4)

Keystrokes Display

XEQ “POLZER”

5, R/S

0, R/S

1, R/S

2, R/S
3, R/S

4. R/S

“Y”

R/S
R/S
R/S

R/S

Therefore the “natural” polynomial form is as follows:

G(s) = 5 s^4 – 40 s^3 + 105 s^2 – 100 s + 24

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 53 of 54

Next the execution is transferred to PROOT in the SandMatrix (or to QUART if #p=5) which

calculates the roots following the iterative process explained in section 4.3.1. Remember that the

accuracy is dictated by the number of decimals places set .

R/S

R/S
R/S

R/S

POLZER is also a rather long program – and dates back to the days the author attended EE School

many moons ago, so I’m somehow attached to it.

Program Listing.

 LBL POLZER” 1
RAD 2
 SIZE? 3
 23 4
 X>Y? 5
 PSIZE 6
LBL A 7
CLRG 8
 8 9
"#POL=?" 10
PROMPT 11
X>=Y? 12
GTO A 13
 X>0? 14
 X=1? 15
 GTO A 16
 STO 00 17
 , 18
 X<>F 19
X<>Y 20
 SF IND X 21
 E3/E+ 22
 STO 07 23
*LBL 00 24
"P(" 25
 RCL 07 26
 AINT 27
"`)=?" 28
 PROMPT 29
 STO IND 07 30
 ISG 07 31
GTO 00 32
 RCL 00 33
 STO 07 34
 , 35
 STO 00 36
 CLA 37
 XEQ F 38
RGSUM 39

 RCL 07 40
 E 41
 - 42
 * 43
 CHS 44
 STO 08 45
FS? 02 46
 GTO 90 47
 XEQ F 48
 STO 14 49
 XEQ 04 50
 RCL 07 51
 2 52
 - 53
 * 54
 STO 09 55
 FS? 03 56
 GTO 90 57
 XEQ F 58
 STO 15 59
 XEQ 03 60
 RCL 07 61
 3 62
 - 63
 * 64
 CHS 65
 STO 10 66
 FS? 04 67
 GTO 90 68
 XEQ F 69
 STO 16 70
 XEQ 02 71
 RCL 07 72
 4 73
 - 74
 * 75
 STO 11 76
 FS? 05 77
 GTO 90 78
 XEQ F 79

 STO 17 80
*LBL 01 81
RCL 07 82
 83 3 83
 - 84
 E3/E+ 85
 RCL 17 86
 INT 87
 + 88
 STO 16 89
, 90
 STO 21 91
 XEQ 02 92
 RCL IND 17 93
 * 94
 ST+ 22 95
 ISG 17 96
 GTO 01 97
 RCL 22 98
 RCL 07 99
5 100
 - 101
 * 102
 CHS 103
 STO 12 104
*LBL 90 105
RCL 07 106
 E 107
 - 108
 STO 00 109
 TONE 0 110
"CFS? Y/N" 111
AVIEW 112
sF# 113
 99 114
 CLX 115
 X#0? 116
 GTO 08 117
 RCL 00 118
 7 119

 + 120
I<>J 121
 7 122
 + 123
 SF 21 124
PVIEW 125
 CF 21 126
*LBL 08 127
-HL MATH+ 128
 FS? 05 129
 GTO 14 130
FS? 04 131
 GTO 13 132
 7 133
 RCL 07 134
 + 135
 E3/E+ 136
 6 137
 + 138
 3 139
PCPY 140
PROOT 141
GTO A 142
*LBL 14 143
 RCL 07 144
 ST/ 08 145
 ST/ 09 146
 ST/ 10 147
 ST/ 11 148
 RCL 08 149
 RCL 09 150
 RCL 10 151
 RCL 11 152
 QUART 153
 GTO 00 154
*LBL 13 155
 RCL 07 156
 RCL 08 157
 RCL 09 158
 RCL 10 159

Advantage Math ROM Manual

(c) Ángel M. Martin February 2020 Page 54 of 54

CROOT 160
V# 161
 43 162
 GTO 00 163
*LBL F 164
 CF 21 165
 "`s" 166
 AVIEW 167
 SF 25 168
 SF 99 169
 RCL 07 170
 RCL 00 171
- 172
 E3/E+ 173
 ISG 00 174
 "" 175
 RTN 176

*LBL 04 177
 RCL 07 178
E3/E+ 179
 RCL 14 180
 INT 181
 + 182
RGSUM 183
RCL IND 14 184
 * 185
 ST+ 19 186
 ISG 14 187
 GTO 04 188
RCL 19 189
 RTN 190
*LBL 03 191
 RCL 07 192
 E 193
 - 194

E3/E+ 195
 RCL 15 196
 INT 197
 + 198
 STO 14 199
, 200
 STO 19 201
 XEQ 04 202
 RCL IND 15 203
 * 204
 ST+ 20 205
 ISG 15 206
 GTO 03 207
 RCL 20 208
 RTN 209
*LBL 02 210
RCL 07 211
 2 212

 - 213
E3/E+ 214
 RCL 16 215
 INT 216
 + 217
 STO 15 218
, 219
 STO 20 220
 XEQ 03 221
 RCL IND 16 222
 * 223
 ST+ 21 224
 ISG 16 225
 GTO 02 226
 RCL 21 227
 END 228

