HP-41 Advantage Math ROM Extending the HP-41 SandMatrix - I

Ángel M. Martin Cañas.

February 2020

This compilation revision 1.3.3

Copyright © 2018-2020 Ángel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this material. No commercial usage of any kind is allowed.

Front cover image taken from: <u>https://www.dreamstime.com/royalty-free-stock-photography-mathematics-background-image20849947</u>

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow. See <u>www.hp41.org</u>

AIVANTAGE_MATH 20 HP-4 (Modul e

Table of Contents

1.	Introduction			
	a.	Bringing it all home	4	
	b.	Table of Functions.	6	
_				
2.	Matrix	Applications		
	a.	Advantage Pac Utilities	8	
	h	Data Sorting using Matrices	10	
	о. С	Parabolic Regression	14	
	с. d	Over-conditioned Systems	16	
	u. e	Jacobi method (Symmetric Matrix)	19	
	f.	Anti-Identity Matrix	22	
	a.	Matrix Minors, Sub-matrices	23	
	9. h.	Matrix Rotations.	25	
	i.	Matrix L/U Editing	27	
	j.	Appendix: Harmonic Determinants	29	
c	Docur	sive 2D Solve and Integration		
з.	Recui		20	
	a.	Recursive use of FINIG	30	
	b.	Recursive use of FROOT	31	
	с.	Examples	33	
	d.	MCODE Routines	37	
4.	Non-L	inear Systems		
	a.	Cubic Spline Interpolation.	39	
	b.	Systems of Non-Linear Equations	43	
	с.	Bessel J and Y via continued fractions	47	
	d.	Newton and Halley Methods revisited	49	
	e.	Complex Step Differentiation Method	50	
	f.	Appendix: From Poles to Zeroes	52	
			52	

Taxonomy of *n×n* Matrices

(c) Ángel M. Martin

Introduction: Bringing it all home.

Much (and mostly good) has been said about the HP-41 Advantage Pack , released by HP in what could arguably be already the tailing end of the HP-41's life – even if that was self-inflicted, due to the further introduction of subsequent models claiming to be its successor (such as the HP-42S and the HP-48). But in retrospect one would notice the apparent lack of programs written taking advantage of the powerful platform provided by the Advantage Pac: those are really far and in between in the literature, and one has to do a serious research effort to find the few ones available, now incorporated to this module.

Surely power-house functions like **MSYS** and **MDET** cannot be improved upon, but there are many areas where they could be put to work towards more ambitious goals, like Cubic Spline interpolation and systems of Non-Linear equations – both included in the module as well.

Obviously the SandMatrix already brought the state of the art to a further place, but this module picks up where the SandMatrix left off, mainly adding some sorely missing routines to handle complex matrices in a more convenient way and extending the built-in capabilities of the **FROOT** and **FINTG** facilities. It also "brings it all home" with a few applications that use functions from several other math modules together: the 41Z, SandMath and SandMatrix all together at unison, not only for the complex matrices section but also in unexpected places such as real function derivatives using the Complex Step technique, or the Bessel functions calculated via continued fractions... quite something to behold.

Module Dependencies.

As mentioned, you should have the 41Z, the SandMath and the SandMatrix plugged in the calculator. They will use 6 pages of the I/O bus, to add to the single page required by this ROM. This means that only one page will remain available in the external ports of the calculator, so use it judiciously – I strongly suggest the OS/X Module to be plugged as well, and if possible (i.e. without a printer) in page #6. The WARP Module in page#7 (or the Power-CL for CL owners) will round up the perfect set.

It comes without saying that the Library#4 is needed as well, as a pre-requisite for all the modules mentioned before. And lest we forget, the HP-41 CX is required (the X-Functions won't cut it, sorry).

ROM Function Tables.

Without further ado, let's see the functions included in the module. Refer to the individual function descriptions later on for details on the syntax and use instructions.

XROM	Function	Description	Input	Author
12,00	-ADVTG_MATH	Section Header	n/a	
12,01	"AIM"	Anti-Identity Matrix	order in X	Ángel Martin
12,02	"CSORT"	Column Data Sort	Using Matrix File	Simon Bradshaw
12,03	"DDN"	Harmonic Determinant	order n in X	Ángel Martin
12,04	"DN"	Verification formula	order n in X	Ángel Martin
12,05	"FCTORS"	Builds Factors Mtrix	Name in ALPHA	Ángel Martin
12,06	"LS2"	Least Squares 2nd order	Parabolic Regression	David Hodges
12,07	"M90L"	Rotates 90-deg Left	Name in ALPHA	Ángel Martin
12,08	"M90L"	Rotates 90-deg Right	Name in ALPHA	Ángel Martin
12,09	"MMIRR"	Mirror Image	Name in ALPHA	Ángel Martin
12,10	"MCSRT"	Matrix Column Sort	Col# in X, Name in ALPHA	Richard Kendon
12,11	"MINOR"	Matrix Principal Minor	I,j in X , Name in ALPHA	Ángel Martin
12,12	"MINORS"	Builds Minors matrix	Name in ALPHA	Ángel Martin
12,13	"ML"	Matrix Least-Squares		David Hodges
12,14	"MSRT"	Matrix Sort	for Data registers	John Bruce Jr.
12,15	"MRREV"	Matrix Row Reversal	Name in ALPHA	Richard Kendon
116,16	"MSYM"	Matrix Symmetric	Name in ALPHA	Ángel Martin
12,17	"MU<>L"	Swaps U/L Regions	Name in ALPHA	Ángel Martin
12,18	"MZRO"	Zeroes a Matrix	Name in ALPHA	Richard Kendon
12,19	"OCS"	Over-Conditioned Systems	Final Stage	David Hodges
12,20	"OCS+"	Over-Conditioned Systems	Main Program	Ángel Martin
12,21	"R/aRR"	Make diagonal Unitary	Name in ALPHA, i.j in X	Ángel Martin
12,22	"R1DP"	Row-1 duplication	Name in ALPHA	Richard Kendon
12,23	"SUBMAT"	Reduces Matrix	Name in ALPHA, i.j in X	Ángel Martin
12,24	-2D_ITG/SLV	Section Header	n/a	n/a
12,25	"FITG2"	Double Integrals;	FNAME in ALPHA, limits	Ángel Martin
12,26	"*2D"	Inner Integral	g = g(x)	Ángel Martin
12,27	"F1XY"	x+y	Example 1	Ángel Martin
12,28	"F2XY"	y cos(p xy)	Example 2	Ángel Martin
12,29	"FRT2"	Double Solver	FNAME in ALPHA, guesses	Ángel Martin
12,30	"*FG"	Inner Solver	f = f(x)	Ángel Martin
12,31	"F1"	sin(x + y) = x	Example2a	Ángel Martin
12,32	"F2"	$\cos(x - y) = y$	Example2b	Ángel Martin
12,33	"G1"	x^2 + y^2 = 5	Example 3a	Ángel Martin
12,34	"G2"	x^2 - y^2 = 3	Example 3b	Ángel Martin
12,35	CLOAK	Hides buffer 14 into #13	none	Ángel Martin
12,36	EXPOSE	Exposes Buffer 14 from #13	None	Ángel Martin

(c) Ángel M. Martin

12,37	RESET	Resets Buffer 13	None	Ángel Martin
12,38	-INTERPOL	Section Header	n/a	n/a
12,39	AINT	ALPHA integer X	X in X	Fritz Ferwerda
12,40	ASWAP	ALPHA Swap around comma	A,B in ALPHA	Ángel Martin
12,41	CLAC	Clear ALPHA from Comma	String in ALPHA	W&W GmbH
12,42	E3/E+	Builds pointer	x.00X	Ángel Martin
12,43	FLNAME	Working File Name	None	Sebastian Toelg
12,44	"CSPLINE"	Cubic Spline	Interpolation	Greg McClure
12,45	"DFED"	Data File Editor	CF 08: Edit	Ángel Martin
12,46	JACOBI	Jacobi Method	Under program control	Valentín Albillo
12,47	POLZER	From Zeros to Roots	Under program control	Ángel Martin
12,48	"JYNX"	Bessel J & Y via Cont. Fractions	n in Y, x in X	Martin-Baillard
12,49	"="	Complex Cont. Fraction	under PRGM control	Martin-Baillard
12,50	"#"	Real Cont. Fraction	under PRGM control	Martin-Baillard
12,51	-NL_SYSTEMS	Section Header	n/a	n/a
12,52	"NLSN"	Non-Linear System Driver	Driver program	Ángel Martin
12,53	"NLSYS"	Non-linear Systems	Main Program	Greg McClure
12,54	"FIN"	Input Function Names	n expected in R00	Ángel Martin
12,55	"PLR+"	Driver for PLR	Prompts for data	Ángel Martin
12,56	"PLR"	Polynomial Real Roots		JM Baillard
12,57	"XIN"	Input guess values	n expected in ROO	Ángel Martin
12,58	"XOUT"	Output Results	n stored in ROO	Ángel Martin
12,59	"XHALL"	Halley'S Method w/ DERV	h in Y, x0 in X	Ángel Martin
12,60	"XNWT"	Newton's method w/ DERV	h in Y, x0 in X	Ángel Martin
12,61	"ZNWT"	Newton's Method w/ 41Z	h in Y, x0 in X	Ángel Martin

1. Advantage Pac Applications

Taken from old Data File issues, these few applications illustrate the "discovery" of the matrix functions by the UK community – apparently oblivious to the previous existence of the very interesting (albeit inferior) set provided by the CCD Module... The descriptions are taken directly from the original sources.

Matrix Routines using the Advantage ROM R.D. Kendon, DataFile V9N7p32

1. Matrix Rows Reversal

With the matrix name in ALPHA, this routine uses **MSWAP** starting with the outer rows and working to the middle. The program makes use of the convention, described in the Advantage manual, than an integer B in X or Z is taken as B.001, whereas in Y is taken as B.00n where n is the last column.

1	LBL "RVR"	7	MSAWP
2	DIM?	8	SIGN
3	INT	9	ST- Z
4	1	10	X <y?< td=""></y?<>
5	LBL 01	11	GTO 01
6	ENTER^	12	END

2. <u>Make all matrix elements zero.</u>

When some elements are ALPHA data you cannot place 0 in X and use **MAT***. Use the fact that resizing a matrix to larger dimensions (as opposed to creating a matrix) sets all additional elements to zero. Matrix name in ALPHA.

LBL "MZ"	05	;	MS
DIM?	06	,	RE
0	07	,	MA
MATDIM	80	5	RT
	LBL "MZ" DIM? 0 MATDIM	LBL "MZ" 05 DIM? 06 0 07 MATDIM 08	LBL "MZ" 05 DIM? 06 0 07 MATDIM 08

3. Row-1 Replication.

I had a matrix of data and I wished to multiply all elements of each column by a constant which was specific to that column. These constants were in single-row matrix, but one cannot use **MAT*** unless the matrices are of equal dimensions. This program assumes that a multiplier matrix of the appropriate dimensions is made and that the constants are in row-1. These constants are first moved to the last row using R <> R.

The program then sets the stack so that all rows except the first row are moved, as a block, up one row. The manual states that where the source and target blocks overlap the function works on the last group upwards, so this gives the desired result.

1	LBL "RDP"	6	0
2	DIM?	7	ENTER^
3	INT	8	2
4	R<>R	9	MMOVE
5	SIGN	10	END

4. Matrix Rows Sorting.

Use this routine to sort the order of rows of a matrix, using a specified column as the key. It was written about the same time as that by John Bruce in V5N4p23. The matrix must be in Main memory since **ANUM** is used to locate the matrix header register. To sort a matrix of several columns, the key column should be in X (e.g. 2 to sort on second col), and F00 should be clear. Since it is necessary to use CMAXAB the elements of the key column should all be of the same sign. If F00 is set, the X-register is not used, and the sort uses MAX. In this form the program is virtually the same as John Bruce's.

01 LBL "CSR"	16 LBL 00	31 +
02 1	17 +	32 R<>R
03 ALENG	18 MATDIM	33 RDN
04 -	19 RCL N	34 FRC
05 X=0?	29 FC? 00	35 LAST X
06 AIP	21 CMAXAB	36 INT
07 RDN	22 FS? 00	37 DSE X
08 `` -,"	23 MAX	38 GTO 00
09 DIM?	24 RDN	39 X<> M
10 X<> M	25 RDN	40 MNAME?
11 STOO	26 MRIJ	41 ANUM
12 RDN	27 INT	42 X<>Y
13 STO N	28 RCL Y	43 STO IND Y
14 0	29 E3	44 MATDIM
15 RCLM	30 /	45 END

Sorting with the Advantage ROM - John Bruce Jr. – DataFile V5N4 p23

INTRODUCTION. The two functions MAX and MIN included in the set of instructions with the ADV ROM are very powerful additions to the Sorters "elbow". Not only do they act on numeric data, but they also deal with ALPHA data. This can only be a major breakthrough for 41C/41CV owners.

EXECUTION OF SORT. The program expects to see a defined array in Main memory containing your data(a mixture of numeric and alpha data is allowed).Place the name of the array in ALPHA and execute SORT.SPEED: On average this program is 1/3 faster than Binary Insertion Sorting.

01 LBL 'SORT"	12 STO IND Y	23 RDN
02 0	13 MATDIM	24 DSE X
03 MSI1A	14 MAX	25 GTO01
04 DIM?	15 RDN	26 STO IND Y
05 RCL X	16 RCL X	27 X<>Y
06 F3	17 E3	28 FRC
07 /	18 /	29 E3
08 ANUM	19 MRIJ	38 •
	28 INT	31 MATDIM
10 X -> Y	21 +	32 .END.
11 × RI 01	22 R<>R	

Data sorting using the Advantage ROM matrix functions.

Simon Bradshaw -DataFile V4N5 p22 Requirements: HP-41 (any model), Advantage ROM (XF/M - optional but very helpful)

The reviews that have appeared in DATAFILE - and some of the articles referring to the ADV ROM - have said, with justification, much about its outstanding matrix manipulation functions. These are intended mainly for mathematical work, e.g. solving simultaneous equations or use of other matrix-based problem-solving techniques. But they can be used in less directly 'number-crunching' ways as well.

What is a matrix? To a BASIC programmer a matrix is just a two-dimensional array. What are arrays used for? "Data storage and manipulation" is quite often the answer. This suggests that the matrix functions can be used to allow us to store and work on blocks of data. In fact, when the functions available in the ADV ROM for working on matrices are compared with those usually available to the BASIC programmer for array handling, the 41ADV user seems to have quite a big 'advantage' (pardon!). The matrix 'utility' functions allow exchange of pairs of rows and columns, swapping and moving of parts of a matrix or matrices, comparison of rows (more on which below), and a number of functions which while 'mathematical' in nature are very helpful in data processing, e.g. row and column sums, largest and smallest value checks, and several others. Add to this the option of automatic sequential access to elements and you have a collection of array handling functions which put most BASICs to shame.

Of course, there are disadvantages - you cannot save space by use of integer variables, and so you will always need at least one register per element. Also, each element can only store six characters of ALPHA information, although there is no reason why you could not spread a longer ALPHA string over two or more elements in the same row.

Discussing ALPHA elements poses a few questions. The advantage ROM manual has little to say on the latter (it suffers from this problem throughout), other than that you can enter ALPHA values via the matrix editor and that most functions"*...are not meaningful for matrices containing ALPHA data ...* (p43). In fact, the list of error messages on p38 includes ALPHA DATA and implies that you cannot operate on matrices with ALPHA elements.

In fact, most of the 'utility' functions can operate perfectly happily on ALPHA elements - they only move elements around, and do not operate on them. At first this does not seem to helpful, since to do sorting you have to be able to do string comparison. A function is provided 'R>R?' which takes an argument kkk.lli in X and compares elements in rows k and l of the matrix, working through columns until it finds two unequal elements and then giving 'true' if the element in k is greater than that in l, and 'false' (and skipping a step in a program) otherwise.

At least that is the manual's explanation - no mention is made of how it handles ALPHA data. I had written a program, given below, to sort an n-row matrix, and decided to see how it would handle ALPHA data. Entering this sort of data value '**MEDIT**' is quite easy - just press ALPHA before entering the data (remember only the first 6characters will be stored into the matrix elements. I entered a series of short names and ran my matrix-sorting program. To my surprise, not only was there no ALPHADATA message flashed at me, but when I checked the matrix, I found the elements sorted into alphabetical order!

Further checks confirmed that R>R? acts like the HP-41CX indirect comparison functions, in that it does a proper alphabetical order test (e.g. giving the result 'HOLE'> 'HOLD'). As far as I know this information is not given elsewhere - the Advantage manual says nothing about ALPHA sorting capability, and when I called Wlodek he knew nothing about it. It would seem that Hewlett-Packard have acted true to form, and the undocumented function has 'struck again (cf HP-75 I/O ROM).

The upshot of all this is that the Advantage can be used to sort alphanumeric lists. Consider the list of the following HPCC members, giving their first names and their membership numbers.

<u>Colum →</u>	1	2
1	DAVID	2
2	WLODEK	9
3	RABIN	19
4	DAVID	155
5	SIHON	398

If this is sorted using my program, then the matrix is rearranged as below:

1	DAVID	2
2	DAVID	155
3	RABIN	19
4	SIMON	398
5	WLODEK	19

The names have now been sorted into alphabetical order. Since each row is moved as a whole, each entry keeps its appropriate membership number. Note how the entries for Messrs Burch and Bundy have been sorted by number. Since the comparison function R>R? moves through the columns of the matrix until it finds two unequal elements, on finding the first-column elements both containing 'DAVID', it went on to compare the second-column elements in each row - here the membership numbers - and sorted the rows by them.

The actual sorting routine - **MSORT**- is given below. It is a reasonable approximation to what a true sort function should do in that it preserves ALPHA and the stack (except L, as a true function would) and uses no main memory registers. As it stands, it requires extended functions and memory, but this is not essential, although without them, thestack will not be preserved,

01_LBL "MSORT;Matrix Sort		29 1.001	;Increment index counter
01_LBL "MSC 02 SIGN 03 RDN 04 DIM? 05 RDN 06 4 07 "TEMP" 08 CRFLD 09 R^ 10 SAVEX 11 R^ 12 SAVEX 13 R^ 14 SAVEX 15 LASTX 16 SAVEX 17 MNAME? 18 DIM? 19 INT 20 LBL 01	PRT ;Matrix Sort ;Save X in L ;Drop stack ;make matrix current :Drop stack ;Size of data file ;Name of data file ;Name of data file ;Create temp data file ;Create temp data file ;Roll stack up ;Save T ;Save Z ;Save Z ;Save Y ;Save X ;Restore matrix name ;Get matrix dimensions ;Get number of rows	29 1.001 30 + 31 ENTER 32 FRC 33 E3 34* 35 35 RCL Z 36 X=Y? 37 GTO 04 38 RDN 39 RDN rows 40 40 GTO 02 41 LBL 04 42 FS?C 00 43 GTO 01 44<"TEMP' 45 CLX 46 SEEKPTA 47 GETX	<pre>;Increment index counter ;Duplicate counter ;Extract number of first ;element in the next ;row pair to be sorted ;Recall no of rows ;Test if equal ;If so, pass all rows checked ;If not, get back index counter ; and check next pair of ;go to row check ;Were any sorts made? ;if so, then go and sort again ;Name of data file ;Set pointer to start ; of data file ;Recover T</pre>
18 DIM? 19 INT <u>20 LBL 01</u> 21 2.001 22 CF 00 <u>23 LBL 02</u> 24 R>R? 25 GTO 03 26 R<>R 27 SF 00 28 LBL 03	;Get matrix dimensions ;Get number of rows ;Index counter ;Check-if-sort-made flag :Compare rows ;If in order, jump on ;If not, swap rows ;indicates swap made	45 CLX 46 SEEKPTA 47 GETX 48 GETX 49 GETX 50 GETX 51 PURFL 52 MNAME? APLHA 53 END	; set pointer to start ; of data file ;Recover T ; " Z ; " Y ; " X :Purge data file from XM :Restore matrix name to ;End of program

A few notes on this program. If you don't have XF/M, then just delete lines 02 to 17 and 44 to 52. The program will work just as well, but it will corrupt the stack. The stack save routine is effectively that given in 'Extend Your HP-41', while Wlodek suggested to me the idea of saving the stack in XM when synthetic programming was difficult. Here the APLHA register is needed and so it is hard to use registers M, N and O to store anything in. Although it could probably be done, it would have made the program (a) longer and (b) harder for me to write, and so I usedX-Mem instead.

Notice that I didn't need to save ALPHA. Just by using a dummy function (here **DIM?**) I made the matrix named the current matrix, and so later I could recover ALPHA by use of **MNAME?** This also checks if the matrix named is present before starting to save the stack in XM.

The sorting method used is the bubble sort (or ripple sort), which works by comparing each row with the next to see if they are in the right order, swapping them if they are not. It then loves on one row and repeats the process. Once it has worked through all the rows it checks if any sorts were made. If not, then the "rows" must be in order and it finishes, otherwise it goes back and sorts again. This routine is not very fast but is easy to program. As for speed, to sort a matrix of 6 rows takes this program 35 seconds - this is for a matrix in reverse order, which takes the most sorting, so this is a maximum time. To sort a 10-row matrix takes a maximum of 104 seconds -, I have worked out that the time taken to complete a bubble sort is proportional to n(n-1) where n is the number of rows. This agrees very well with my timings, which seems to indicate that for my program to sort an n-row matrix takes n(n-1)17/6 seconds. To sort a 200-row matrix (say 20013, with one column holding numbers of active HPCC members and the other two their names) should thus take almost 13 hours.

This may appear to be rather a long time but bear in mind that **MSORT** is written in FOCAL (41 User language) and so cannot be expected to be too fast, but since it is written using the M-code routines in the ADV ROM it is still faster and simpler than a program for the 41 alone. By the way, the times given were for matrices in main memory. If your matrix is stored in extended memory (as the one I described above would have to be) timings indicate that about 10% more time is needed to complete a sort of a given matrix. Also, if using XM, remember to leave some space for the data file that MSORT creates.

A couple more notes on matrix sorting. As it stands, **MSORT** sorts in ascending order. Modifying the program to sort a file into descending order is very simple - just replace lines 25 to 28 with:

SF 00, R>R?, R<>R

This effectively inverts the test so that now a matrix is sorted with the largest element first.Earlier I said that when R>R? looks at two rows it goes through them column by column until it finds two that are not equal. This means that you can spread names out over lore than one columns, e.g. consider the following

(unsorted) matrix:-

()	()	<- 6 chars each
BRADBU	RY	R	
BRADSH	AW	S	
BRADSH	AW	D	
BLACKB	USH	S	
BLACKB	URN	Р	

MSORT sorts this into the following:-

BLACKB	URN	Р
BLACKB	USH	S
BRADBU	RY	R
BRADSH	AW	D
BRADSH	AW	S

Note how BLACKBURN and BLACKBUSH have been sorted into the right order, as have BRADSHAWD and BRADSHAW N. You may think that (say) BRADSHAWN K might confuse the program by being sorted between these two, but because **R**>**R**? compares characters within a matrix element one character at a time, the "N" of BRADSHAWN is compared with the "_" after BRADSHAW, and since sorting is done by ASCII code "_" comes before "N" and so immediately **R**>**R**? decides that BRADSHAWN comes after BRADSHAW, whatever initials follow them.

Thus, can be extended to as many rows as you like, within limits of memory, for instance to get my HPCC members list into memory all names would have to be abbreviated to a maximum 11 letters plus one initial (sorry about that, Wlodek!). Incidentally, if you want to sort such a matrix by membership number at one tile and name at another, then just use the matrix manipulation commands to rearrange the column within the matrix, e.g. by using C<>C (column exchange) you can bring any column to the 'front' of a matrix and then sort the matrix using that column.

If you have a file as big as this, you will need to save it. If the file is in Main Memory, work out its start and end addresses, and use **WDTAX** or **WRTRX** to save it. If the file is in XM then use **MMOVE** to copy the file to a dummy matrix in Main memory and save that as described. If your XMmatrix is very large, you may need to do this lore than once, saving the XM matrix in two or more parts.

While we are on the subject of moving around our nicely sorted data, you will no doubt want to write programs to help you enter and extract data from matrices such as I have described - MEDIT is rather inconvenient and slow for entering ALPHA data, especially if that data is to be broken up over several columns. It is easier to write a program which reads the data into ALPHA and then uses ASTO X, MSR+ several times. If you write any good programs in this vein, then please send them in. If you write an improved version of MSORT, then please send that in - I am sure that someone out there can write a version in half the number of lines which preserves the stack without using XM. If you actually find a use for **MSORT** - or any other ADV ROM-using data sorting/storage routines, then write to DATAFILE about it - how people use their 41's is always interesting reading.

Parabolic Regression - by David Hodges (DataFile V4N5 p11

System requirements: HP-4I with Advantage ROM

The HP-4I Advantage ROM contains a program called **CFIT** which enables you to fit four different types of curve to a set of statistical data (xi ,yi). Whilst this is ideal for the majority of applications, there are occasions where it is better to fit a second order polynomial to the data. This means expressing y in terms of x like this:-

 $Y = a0 + a1.x + a2.x^2$

and obtaining the best coefficients a0 and a1 using the method of least squares. This technique is also known as "parabolic regression" and there is a program in the Stats ROM which you can use to calculate the coefficients. If you do not have a Stats ROM but have an Advantage ROM, however, you can use the short program below which uses the module's matrix functions. It is written along the same lines as **CFIT** and has a similar menu but is does not have a Σ - facility and does not calculate a correlation coefficient.

LS2 (least squares, 2nd order) works by allowing you to accumulate paired data in the same way as you would with Σ +. When all of the data have been entered the program sets up a system of matrices from the summations and puts the matrix files in extended memory f this is available. The**MSYS** function is then used to solve the system and obtain the coefficient matrix.

$\begin{bmatrix} \Sigma x^0 & \Sigma x^1 & \Sigma x^2 \\ \Sigma x^1 & \Sigma x^2 & \Sigma x^3 \\ \Sigma x^2 & \Sigma x^3 & \Sigma x^4 \end{bmatrix}$	$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} =$	$\begin{bmatrix} \Sigma y \\ \Sigma x y \\ \Sigma x^2 y \end{bmatrix}$
--	---	--

initialize the routine, clear the summation registers and display the menu. Lines 14 to37 perform the summations and store the values in registers 00 to 07. Registers 0to 10 are used to store a0, a1 and a2after computation.

r00 ∑x ⁰ (n)	r06 ∑xy
r01 Σx ¹ (Σx)	r07 ∑x ² y
r02 ∑x ²	r08 a ₀
r03 Σx ³	r09 a ₁
r04 Σx ⁴	r10 a ₂
r05Σy	

Two matrices are created by lines 38 to 72;[A] is the 3x3 Σx matrix, and [B] is used for boththe Σy matrix and the coefficient matrix. The last section of the program allows you to compute a y-predicted value using the coefficients.

EXAMPLE:-

Fit a second-order curve to the following set of data and predict y when x=2.2 and when x=3.7

Х	1	2	3	4	
Υ	1.2	3.9	9.3	15.8	

Input	Кеу	<u>output</u>
	XEQ "LS2"`	" Σ + $\simeq \Sigma$ F T "
1.2	ENTER^	
1	[A]	
3.9	ENTER%	
2	[A]	2.0000
9.3	ENTER^	
3	[A]	3.0000
15.8	ENTER^	
4	[A]	4.0000
	[E]	₩0=-44727 E-8
	R/S	o (= 0. (700
	R/S	a 2 :: 0.9 5 0 0
2.2	R/S	Y = 4.9 7 2 Ø
3.7	R/S	Y = 13.6345

Notice that a0and a1 are both quite small; this is because the data correspond closely to a $y=x^2$ graph. You can now: press [C] (c Σ)to clear the summation registers and prepare the summation registers for a new set of data. As with CFIT, the [J] key displays a menu at any time without disturbing the program in any way.

1	<u>LBL "LS2"</u>	28	RCL 08	56	RCL 02	84	STO 09
2	SF 27	29	*	57	MSR+	85	"a1="
3	<u>LBL C</u>	30	ST+ 06	58	RCL 03	86	ARCL X
4	.01	31	RCL 08	59	MSR+	87	PROMPT
5	0	32	*	60	RCL 04	88	MR
6	LBL 00	33	ST+ 07	61	MS	89	STO 10
7	STO IND Y	34	E	62	62 " <i>B</i> "	90	"a2="
8	ISG Y	35	ST+ 00	63	3	91	ARCL X
9	GTO 00	36	RCL 00	64	MATDIM	92	PROMPT
10) CLST	37	RTN	65	•	93	<u>LBL 01</u>
11	LBL J	38	<u>LBL E</u>	66	MSIJ	94	RCL X
12	" Σ + c Σ FT"	39	"A"	67	RCL 05	95	RCL 10
13	PROMPT	40	3.003	68	MSR+	96	*
14	LBL A	41	MATDIM	69	RCL 06	97	RCL 09
15	5 STO 08	42		70	MSR+	98	+
16	5 ST+ 01	43	43 MSIJA	71	RCL 07	99	*
17	7 RCL 08	44	44 RCL 00	72	MS	100	RCL 08
18	*	45	45 MSR+	73	"A,B"	101	+
19) ST+ 02	46	RCL 01	74	MSYS	102	"Y="
20	RCL 08	47	MSR+	75	"B"	103	ARCL X
21	*	48	RCL 02	76		104	PROMPT
22	2 ST+ 03	49	MSR+	77	MSIJA	105	GTO 01
23	8 RCL 08	50	RCL 01	78	MRR+	106	END
24	*	51	MSR+	79	STO 08		
25	5 ST+ 04	52	RCL 02	80	"a0="		
26	6 RDN	53	MSR+	81	ARCL X		
27	'ST+ 05	54	RCL 03	82	PROMPT		
		55	MSR+	83	MRR+		

Over-conditioned Simultaneous Equations

David Hodges (DataFile V7N1p21)

System requirements: HP-41 (any model) and Advantage Module.

THEORY.

Anyone who solves simultaneous equations regularly will have encountered a situation mathematicians call over-conditioning, which means that there are more equations than there are unknowns. Suppose for example you are given the following set of equations and areasked to find the values of x and. y:

2x + 3y = 83x + 4y = 10.94x + 5y = 14.15x + 6y = 16.9

At first sight this problem looks trivial. Since only two equations are required to solve tor two unknowns, it's tempting to take the two simplest equations and use then to find values for x and y. Unfortunately, that is an oversimplification because the results depend on the equations chosen. Solving the top two equations, for example, gives x = 0.7 and y = 2.2. Taking the middle two gives x = -0.1 and y = 2.9; whilst the bottom two give x = 1.9 and y = 1.3.

Closer inspection of the equation system shows that none of these results are correct. If the second equation equaled 11, the third 14 and the fourth 17, then x would equal 1 and y would equal 2 no matter which pair of equations was chosen. The true values of x and y must therefore be close to 1 and 2 respectively.

The best way to deal with such a situation is to use the method of least-squares. This technique is actually equivalent to n-dimensional linear regression, where n is the number of unknowns, in this case two. Re-writing the system in matrix form, [A] * [X] = [B] {i}

2 3	x]_[8]	ŝ
3 4	y 10.9	2012
4 5	14.1	
56	[16.9	1000

Solving this matrix equation requires two steps. The first involves pre-multiplying both sides of $\{i\}$ by [A'], the transpose of matrix[A]. Next the equation is inverted to give an expression for [X]in terms of [A] and [B].[X] is then found by pre-multiplying [B] by a single matrix computed, from [A'].

Pre-multiplying{i} by [A'], and inverting for [X]:

[A'].[A].[X] =[A'].[B]	{ii}
[X] = Inv([A'].[A])[A'].[B]	{iii}

Where the notation Inv() denotes the inverse of the matrix inside the parentheses.

Inv([A'].[A]).[A'] in {ii} may be expressed as a single matrix [C] which gives [X]directly from [B].

[X] = [C].[B] {iv}

[C] has the same number of columnsas [A] has rows, and the same number of rows as [A] hascolumns.

PROGRAMS.

Two programs are provided for the HP-41 and Advantage Module. The first, **ML** (Matrix Least-squares), computes [C] given [A]; and the second, **OS** (Over-conditioned Simultaneous equations), computes [X] [B] and the stored value of [C].

Both routines use main memory data registers to store the matrix elements. If [A] has r rows and c columns, a total of c(2r + c) + 5 data registers is required. Owners of an Extended Functions/Memory Module or and HP-41CX could write alternate versions of ML and OS which use extended memory to store the matrices. These programs could be somehow shorter, since a large proportion of the code given here isused to determine the number of registers required and to construct the matrix names.

<u>EXAMPLE</u>. Input dimensions of [A]rrr.ccc where r = rows and c = columns) and run ML. Input elements of matrix [A]. Perform the following steps:

INPUT	KEYS	<u> </u>
4.002	XEQ "ML"	(= 0.00007
2	R <i>IS</i>	(2 = 0.0 0 0 0 7
3	R/S	2: 1 = 0.0 0 0 0 7
3	R <i>IS</i>	2:2 : 0.0 0 0 0 7
4	R/S	3:2 <u>-</u> 0.0 0 0 0 1
5	R <i>IS</i>	4: (<u>=</u> 0.00007
5	R <i>IS</i>	4:2 : 0.0 0 0 0 7

View elements of matrix [C].

6	R/S	(; (<u>-</u> - ,60007	Matrix [C] is therefore:
	R/S	(2 <u>-</u> - 0.70007	
	R/S	(3 <u>-</u> 0 0 0 0 7	[16 07 03
	R/S	(4 ± 1, 10007	-1.6 -0.7 0.2
	R/S	2:1= 1.30007	1.3 0.6 -0.1
	R/S	2:2 = 0.6 0 0 0 T	· · · · · · · · · · · · · · · · · · ·
	R/S	2:3 = - 0. (0007	
	R/S	2:4 <u>-</u> - 0.8 0 0 0 1	

Run program OS and input elements of matrix [BJx = 0.98;y= 2.01

	XEQ "OS"	(;
8	R/S	12 <u>-</u> 0.0 0 0 0 1
10.9	R/S	(3 <u>-</u> 0.0 0 0 0 0 1
14.1	R/S	(H <u>-</u> 0.0 0 0 0 1
16.9	R/S	(;
	R/S	C2 :: 2.0 0 0 1

In the above examp1e, it is assumed that all allocated data registers contain zero before ML is executed. If they do not, their contents will be displayed in the prompts and will be overwritten by the data entered from the keyboard. Registers 00 and 01 are used to store the matrix names (R followed by one or more digits) and flag 00 contro1s the status of OS.

Program Listing.

01	LBL "OCS+"		41	RDN		81	*
02	"#EOS=?"	4	42	+		82	STO Z
03	PROMPT		43	E		83	*
04	"#VARS=?"		44	+		84	4
05	PROMPT		45	"R"		85	+
06	E3		46	ARCL X		86	STO Z
07	1		47	RCL 01		87	+
08	, +		48	MATDIM		88	E3
09	LBL "ML"		49	ASTO 01		89	/
10	CE 00	1	50	FIX IND Z		90	+
11	"R2"		51	SF 29		91	0
12	ΜΔΤΟΙΜ		52	CLA		92	<u>LBL 01</u>
13	Q		53	"R2"		93	STO IND Y
14	1/X		54	XROM "MEDIT"		94	ISG Y
15			55	CLST		95	GTO 01
16	_0		56	"`" <i>1</i>		96	CLA
17	*		57	ARCL 00		97	ARCL 00
18	F1		58	MMOVE		98	DIM?
10	L1 +		59	"R2"		99	INT
20			60	TRNPS		100	MATDIM
20			61	11` 11 /		101	CLA
21			62	ARCL 01		102	ARCL 01
22			63	M*M		103	DIM?
23			64	CLA		104	INT
25	FRC		65	ARCL 01		105	MATDIM
25	STO 01		66	"`,R2"		106	SF 00
20	510 01 F3		67	MSYS		107	<u>LBL 00</u>
27	*		68	"R2"		108	CLA
20	ST+ 01		69	<u>LBL 05</u>		109	ARCL 00
29	*		70	XROM "MEDIT"		110	XROM "MEDIT"
31			71	GTO 05		111	"R2,"
32	3		72	LBL "OCS"		112	ARCL 00
22	5		73	FS? 00	1	113	"`" <i>1</i>
32	т М2		74	GTO 00		114	ARCL 01
35	FIX 0		75	"R2"		115	<u>LBL 02</u>
36	CE 20		76	DIM?		116	XROM "MEDIT"
30	U 23 "D"		77	ENTER^		117	GTO 02
22			78	FRC		118	END
20			79	ST-Y			
<u>7</u> 2			80	E3			
40	A310 00			_ -			

Jacoby Method for Symmetric Matrices.

Valentín Albillo, PPCTN V1N3

For symmetric matrices the Jacobi algorithm provides a faster method. **JACOBI** was written by Valentín Albillo, and published in PPCTN, V1N3 (October 1980). I've only slightly adapted it to the SandMatrix, but basically remains the same as originally written. The paragraphs below are directly taken from the above reference to explain its workings.

This program computes all eigenvalues of a real symmetric matrix up to 22 x 22. It uses the Jacobi method, which annihilates in turn selected off-diagonal elements of the given matrix **A** using elementary orthogonal transformations in an iterative fashion, until all off-diagonal elements are zero when rounded to a given number of decimal places. Then the diagonal values are the eigenvalues of the final matrix.

The method explained. The Jacobi method does not attempt to solve the characteristic equation for its roots. It is based in the fact that a n x n symmetric matrix has exactly n real eigenvalues. Given **A**, another matrix **S** can be found so that: **S** A $S^{T} = D$ is a diagonal matrix, whose elements are the eigenvalues of **A**.

The Jacobi method starts from the original matrix **A** and keeps on annihilating selected off-diagonal elements, performing elementary rotations. Let's single out an off-diagonal element, say a_{pq} , and annihilate it using an elementary rotation. The transformation R is defined as follows:

 $\begin{array}{ll} Rpp = \cos z \;; & Rpq = \sin z \;; \\ Rii = 1 \;; \; Rpk = Riq = Rik = 0 \;; & for \; i\#p,q \; and \; k\#p,q \end{array}$

Let's now denote: $\mathbf{B} = \mathbf{R}^{\mathsf{T}} \mathbf{A} \mathbf{R}$, which elements are as follows:

bip = aip cos z – aiq sin z biq = aip sin z +aiq cos z bik = aik ; where i,k # p,q bpp = app cos² z + aqq sin² z – 2 apq sin z cos z bqq = app sin² z + aqq cos² z + 2 apqsinz cos z bpq = 0, and the remaining elements are symmetric.

where: $\sin z = w / \operatorname{sqrt}(2(1+\operatorname{sqrt}(1-w^2)))$, and $\cos z = \operatorname{sqrt}(1-\sin^2 z)$ with: $L = -\alpha pq$, $M = (\alpha pp-\alpha qq) / 2$, and $w = L \operatorname{sign}(M) / \operatorname{sqrt}(M^2+L^2)$

This is iterated using a strategy for selecting each non-diagonal element in turn, until all non-diagonal elements are zero when rounded to a specific number of decimal places. When this is so, the diagonal contains the eigenvalues.

Program remarks. The accuracy and running times are display settings-dependent, however the computed eigenvalues are very often more accurate that it'd appear; for instance, using FIX 5 it's quite possible to have eigenvalues accurate to 8 decimal digits. The program is written to be as fast as possible and to occupy the minimum amount of program memory; the matrix is stored taking into account its symmetry, so that all elements are stored only once (as aji = aij). For a nxn matrix minimum size is [$\frac{1}{2}$ ($n^2 + n$) + 7].

			[[25	-41	10	-6]
Example.	Find the eigenvalues for the 4x4 matrix:	A =	[-41	68	-17	10]
			[10	-17	5	-3]
			[-6	10	-3	2]]

Keystrokes XEQ " JACOBI "	Display	Result Prompts for dimension
4, R/S 25, R/S 41, CHS, R/S	a (127) a (227) a (327) a (327)	Data entry starts
6, CHS, R/S 68, R/S 17, CHS, R/S 10, R/S 5, R/S	a 2:2 = 7 a 2:3 = 7 a 2:3 = 7 a 3:3 = 7 a 3:3 = 7 a 3:4 = 7	Note how the symmetric elements are skipped
3, CHS, R/S	24427 00000.0	input the last element
5, R/S	RUNNING	Scrolling on the display
R/S R/S R/S	x = 98,52 170 x = 1,18609 x = 0,25920	After a while ~ 2.5 m in normal 41 the four ev's are displayed.

The characteristic polynomial can be found using CHRPOL in the SandMatrix, resulting:

Chr(A) = x^4 -100 x^3 + 146 x^2 - 35 x +1

Program Listing.

01	LBL "JACOBI"	23	<u>23*LBL 12</u>	45	-NL SYSTEMS
02	RAD	24	RCL 02	46	<u>*LBL 70</u>
03	03 "ORDER=?"	25	STO 03	47	2
04	PROMPT	26	<u>*LBL 07</u>	48	STO 03
05	ENTER^	27	"a"	49	<u>*LBL 85</u>
06	ENTER^	28	RCL 02	50	E
07	X^2	29	AINT	51	<u>*LBL 87</u>
08	+	30	" <u>`</u> "	52	STO 02
09	2	31	RCL 03	53	CF 00
10	1	32	AINT	54	RCL 03
11	, 7	33	<i>"`=?"</i>	55	XEQ 90
12	+	34	PROMPT	56	X<>Y
13	SIZE?	35	STO IND 04	57	RND
14	X<>Y	36	ISG 04	58	X=0?
15	X>Y?	37	X<>Y	59	GTO 84
16	PSIZE	38	ISG 03	60	SF 00
17	RCL Z	39	GTO 07	61	LASTX
18	STO 00	40	ISG 02	62	ST- IND Z
19	E3/E+	41	GTO 12	63	STO 01
20	STO 02	42	<i>"PREC.=?</i> "	64	ST+ 01
21	7	43	PROMPT	65	CHS
22	STO 04	44	FIX IND X	66	STO 06

C 7		111		101	<i>N</i> #NJ
6/	RCL UZ	114	ST + IND U	101	X#Y:
68	RCL 02	115	<u>*LBL 01</u>	162	GIO 87
69	XEQ 90	116	RCL 03	163	X<>Y
70	STO N	117	RCL 04	164	RCL 00
71	RDN	118	X=Y?	165	X#Y?
72	RCL 03	119	GTO 08	166	ISG 03
73	RCL 03	120	RCL 02	167	X<>Y
73	VEO 00	120	V-V2	160	V#V2
77		121	$\Lambda = 1$:	100	
/5	5100	122	GTO 08	109	GIU 85
/6	RDN	123	XEQ 90	1/0	FS?C 00
77	-	124	STO 05	171	GTO 70
78	STO M	125	RDN	172	RCL 00
79	2	126	STO N	173	E3/E+
80	/	127	RCLM	174	STO 06
81	SIGN	128	STO O	175	TONE 3
82	BCL 06	129	*	176	*I BI 13
82		120		177	<u>"V_"</u>
01	LASTA VAD	121		170	
84 05		131	RCL 04	178	RCL UD
85	RCL 06	132	XEQ 90	1/9	INI
86	X^2	133	STO T	180	ENTER^
87	+	134	RDN	181	XEQ 90
88	SQRT/	135	ST* O	182	X<>Y
89	*	136	RCL 06	183	ARCL X
90	E	137	ST* N	184	PROMPT
91	BCL Y	138	*	185	ISG 06
Q2	X^2	130	_	186	GTO 13
02		1/0		100	
95		1/1		107	
94	SUKI	141		100	<u>**LDL 90</u>
95	E	142	RCL U	189	X>Y?
96	+	143	+	190	X<>Y
97	ST+ X	144	STO IND Z	191	RCL 00
98	SQRT	145	RCL 04	192	ST+ X
99	/	146	RCL 00	193	X<>Y
100	STO 06	147	X<=Y?	194	-
101	ST* 01	148	GTO 84	195	E
102	X^2	149	*I BL 08	196	ST- I
103	ST* M	150	<u>– EBE 00</u> F	107	XZNI
103	E	150		100	*
104		151		190	2
105	STO 04	152	RCL UU	199	2
106	X<>Y	153	RCL 04	200	/
107	-	154	X<=Y?	201	+
108	SQRT	155	GTO 01	202	6
109	ST* 01	156	<u>*LBL 84</u>	203	+
110	X<> M	157	RCL 03	204	RCL IND X
111	RCL 01	158	RCL 02	205	X<>Y
112	+	159	F	206	FND
113	ST- IND N	160	- +	200	
TT 7		TOO			

2. SandMatrix Applications

Anti-Identity Matrix

{ **AIM** }

Here's a song to the unsung-hero: meet the anti-identity matrix, a negative version (its evil twin perhaps?) of the much-better known "Identity" matrix – with all elements reversed, i.e. zeroes instead of ones and vice-versa.

Why bother, you would ask? Well, having a routine to create anti-IDN (a.k.a. AID) matrices comes very handy to test many of the routines included in the SandMatrix and in this very module as well, so here it is for your utter enjoyment.

These matrices can be easily constructed using the SandMatrixfunction **MZDG**, which only deletes the diagonal elements, when applied to a all-ones matrix - so using the three-step sequence:

{ 1, **MCON**, **MZDG** }.

These matrices have the interesting (unproven) property that their determinants obey the expression:

Det $[AID(nxn)] = (-1)^{(n-1)} . (n-1)$

To test it, creating a 30x30 AIM can't be simpler (if you use the CL Y-Memory area, that is): just create the matrix first with **MATDIM** (needs name in ALPHA), input the order in X and call the routine. You should have something like this:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
4	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
6	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
8	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
10	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
11	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
13	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
14	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
15	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1
17	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1	1
18	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1	1
19	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1	1
20	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1	1
21	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	1
23	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1
24	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1
25	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	1
26	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
27	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1
28	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1
29	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1
30	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0

Matrix Minors & Sub-matrices. { MINOR , MINORS , SUBMAT }

In linear algebra, a minor of a matrix [A] is the determinant of some smaller square matrix, cut down from [A] by removing one or more of its rows or columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which in turn are useful for computing both the determinant and inverse of square matrices.

If [A] is a square matrix, then the minor of the entry in the i-th row and j-th column (also called the (i,j) minor, or a first minor[1]) is the determinant of the sub-matrix formed by deleting the i-th row and j-th column. This number is often denoted Mi,j. The (i,j) cofactor is obtained by multiplying the minor by: $(-1)^{i+j}$.

j	i = 1				j = 2				j = 3
i = 1 +	a 11	a ₁₂	a13	(a11	a ₁₂	a13	(a_{11})	a_{12}	a 3 }
	a_{21}	a_{22}	a23	a_{21}	a_{22}	a23	a_{21}	a_{22}	a_{23}
(a_{31}	a_{32}	a33)	(a_{31})	a32	a33)	(a_{31})	a_{32}	a ₃₃)

Two programs are included, one for Real matrices (not limited in order, courtesy of **MDET**) and another for Complex Matrices – only up to degree 5, due to the restriction imposed by **CMDET**. The programs are a good example of utilization of the utility functions C<>C, R<>R, and MMOVE.

Example: Calculate all element minors for the example matrix below:

1 2 3 4 -5 6 7 8 9

You need to provide the matrix name in ALPHA *pointer value in X* i.e. from 1,001 to 3,003 in this example. You can do it one at a time using **MINOR**, or all sequentially using **MINORS**. The latter option will create a new matrix in X-Mem named "MINORS", with all elements being the minors of the original matrix.

The solutions are:

	-3	-6	-3
Minors:	-6	-12	-6
	-3	-6	-3

You can also use **SUBMAT** to reduce the matrix one unit on each dimension, based on the element of your choice removing its row and column. For instance using i,j = 2,001 in X and executing SUBMAT will change the original matrix into a 2x2 submatrix, with the following elements:

<u>Warning</u>: **SUBMAT replaces the original matrix with the reduced one.** If you need the original matrix to remain in memory *you must copy it with a different name before calling* **SUBMAT** *to safeguard it.*

²³ 89

Program listing.- Real Matrix Minors

1	LBL "MINOR"		28	MNAME?	
2	LBL 01		29	RTN	
3	ASTO 01	MNAME	30	GTO 01	
4	STO 00	i,j pointer	31	LBL 02	
5	" -,#1"		32	INT	j
6	MAT=	scratch copy	33	ENTER^	
7	DIM?		34	DSE X	j-1
8	1,001		35	X=0?	
9	-	one order less	36	RTN	don't bother if j=1
10	"#2"		37	X<>Y	
11	MATDIM	scratch sub-array	38	ENTER^	
12	MZERO	clear it	39	ENTER^	
13	"#1"		40	 <>]	0,00(j-1)
14	RCL 00		41	E	
15	l<>J	i,j pointer	42	-	
16	SF 00		43	+	j,00(j-1)
17	XEQ 02		44	LBL 00	
18	RCL 00		45	FS? 00	
19	CF 00		46	C<>C	bubble left column
20	XEQ 02		47	FC? 00	
21	CLST		48	R<>R	bubble up row
22	2,002		49	1.001	offset
23	"#1,#2"		50	-	k,00(k-1)
24	MMOVE		51	DSE Y	j=j-1
25	PURFL		52	GTO 00	
26	CLA		53	END	
27	MDET				

Matrix Rotation & Mirror Images. { M90R , M90L , MMIRR }

A 90-degree clockwise rotation pivots the complete matrix around its bottom-right element, i.e the last element in the last column works as the rotation "axis" - whilst a counter-clockwise 90-deg turn uses the bottom-left element, i.e. the last element in the first column

This type of rotations is the simplest one to implement, thanks to the row or column swapping functions (depending of the direction of the rotation), applied on the transposed matrix. The algorithm consists of successive row or column switches done on the transposed matrix, and thus it's faster than using an individual element mapping for each of the layers (or "rings") in the matrix – which is also dependent on the matrix dimensions.

For example, rotating the 4x4 matrix below 90 degrees *clockwise*; see how the rotated matrix is the vertical-mirror image of the original transposed?

Similarly, a counter-clockwise 90-deg rotation is the horizontal-mirror image of the original transposed.

Our routines will simply transpose the matrix first, and then call the mirror image routine – consisting of a row or column swapping repeated as many times as <u>columns</u> are in the transposed matrix.

Terminology alert:

"Reflection" is the analogous term to mirror image, although the horizontal and vertical reflections can be confusing since they use vertical and horizontal "mirrors", which is intuitively the opposite.

<u>Program usage</u>: Just type the matrix name in ALPHA and execute **M90R** or **M90L** depending on the desired direction of rotation. For **MMIRR** you need to clear or set user flag manually to indicate vertical or horizontal mirror image respectively.

Program Listing:

01	<u>LBL "M90R"</u>	; right
02	CF 00	; flag case
03	GTO 00	; merge
04	<u>LBL "M90L"</u>	; left
05	SF 00	; flag case
06	<u>*LBL 00</u>	; common
07	TRNPS	; transpose
08	<u>LBL "MMIRR"</u>	; mirror
09	DIM?	;n x m
10	FRC	; 0,00m
11	E	
12	+	; 1,00m
13	<u>*LBL 01</u>	
14	FC? 00	; right?
15	C<>C	
16	FS? 00	; left?
17	R<>R″	
18	E-3	; next col?
19	-	
20	ISG X	; next row
21	GTO 01	; repeat
22	END	; done

Note: Refer to the 'Complex Matrix" ROM for additional functions based on a single-element rotation, also for Real matrices but unfortunately there was no room available in this module to include them here.

		Ro	tate	d 90	deg	gree	s	
1	7	9	17	5	13	6	9	7
	9	14	12	7	15	11	14	9
	6	11	7	7	5	7	12	17
	13	15	5		~			
	5	7	7		11			
			1	-				

Rotated 180 degrees								
19 8 6 14 5 20								
7	13	16		20	20	5		
8	4	11		11	4	8		
5	20	20		16	13	7		
20	5	14		6	8	19		
V								

Matrix L/U Editing. {MSYM, MU<>L }

Two small routines to edit the L/U sections of a square matrix, as follows:

- **MSYM** copies the Upper region into the lower one, so the matrix becomes symmetric.
- MU<>L exchanges the upper and lower regions.

These routines don't have a prominent applicability but are a good example of utilization of the element manipulation functions in the SandMatrix, specifically **MXIJ** – the in-place pointer index exchange.

MXIJ facilitates the element transposition by exchanging the row and column of the currently selected element, returning the new selected element pointer to the X-Register. The matrix can be non-square, but an error message will show if the "transposed" pointer does not exist. Note that there's no need to recall the current pointer first.

The function does the equivalent to the following FOCAL snippet: { MRIJ, I<>J, MSIJ }, which is simple enough but having it as a single function allows simplified FOCAL programs and doesn't disturb the stack.

Program listing:

1	LBL "MSYM"	22	FC? 00
2	CF 00	23	XEQ 03
3	GTO 00	24	FS? 00
4	LBL "MU<>L"	25	XEQ 04
5	SE 00	26	J+
6	*I BL 00	27	FC? 09
7		28	GTO 02
/ 0	/ MCTIA	29	GTO 01
0		30	<u>*LBL 03</u>
9	<u>*LBL UI</u>	31	X<>Y
10		32	MS
11	INT	33	MXIJ
12	1<>J	34	RTN
13	LASTX	35	*I BI 04
14	+	36	
15	MSIJ	27	MD
16	J+	20	
17	FC? 10	20	
18	RTN	39	X<> Z
19	*LBL 02	40	MS
20	MR	41	END
21	LIXM		

Row Division by Diagonal element. (Diagonal Unitary) { R/aRR }

This function is used to modify the values of all elements, dividing each row by its diagonal element; that is: aij = aij / aii, j=1,2,... n

In effect the result matrix has all its diagonal elements equal to 1 (i.e. diagonal is unitary). This type of calculation is useful for row simplification steps in matrix reductions; more like a vestigial function from when the major matrix operations were not available (i.e. the CCD days, pre-Advantage Pac).

Program listing:

1	LBL "R/aRR"	MNAME in Alpha	19	RDN	discard product
2	SQR?	square?	20	FC? 09	end of row?
3	LU?	yes but LU?	21	GTO 00	no, get next element
4	-ADV MATRX	not square, show error	22	FS? 10	end of matrix?
5	0		23	GTO 02	yes, exit
6	MSIJA	set pointer to 1:1	24	MRIJ	recall pointer
7	LBL 01		25	ENTER^	
8	MR	recall diag element	26	INT	
9	1/X	inverse value	27	ENTER^	
10	X<>Y	pointer to X	28	k>J	does E3/ if integer
11	MSIJ	set pointer	29	+	j,00j
12	X<>Y	value back to X-reg	30	MSIJ	set pointer
13	ENTER^		31	Х<>Y	
14	ENTER^	fill stack w/ value	32	GTO 01	next row
15	LBL 00		33	LBL 02 🔶	
16	MR	recall element	34	DIM?	get dimansion
17	*	multiply	35	END	end
18	MSR+	store and increase column			

Note:

This routine was moved to this ROM to make room in the SandMatrix for CMTRC, the Complex Matrix Trace routine. This arrangement is more self-contained, favouring the SandMatrix capability to support the Complex Determinant by itself (CMTRC is used as a subroutine by CMDET).

Appendix. Harmonic Determinants. { **DNN**, **DN** }

This section reflects the discussion started by Valentín Albillo on the HP-Museum forum. It's useful to showcase the capabilities of the CL_Y-Registers for very large size matrices.

Consider the determinant D(N) defined as follows:

3 1 1 ... 1 1 4 1 ... 1 1 5 ... 1 1 1 1 ... N+2

This type of determinants have an exact formula using the Harmonic function, H(N):

D(N) = (N+1)! . H(N)

The sum of harmonic series is thus: H(N) = D(N-1) / N!which surely would be one of the most inefficient ways to compute it ;-)

Using the CL_Y-Registers area, write a routine to compute D(N) – and verify the direct formula for the values N=11, 13, 30, 40 and N=55 - which will use 3,025 Y-Registers.

The routines are listed below. Both expect the order N in the X-register:

01	LBL "DDN"	16 MSC+
02	RCL X	17 SF 25
03	E3	18 J+
04	1	19 FS?C 25
05	+	20 GTO 00
06	"Y"- matrix will start at RY-001	21 MDET
07	MATDIM	_22 END
08	E	23 <u>LBL "DN"</u>
09	MCON	24 E
10	CLX	25 +
11	MSIJA	26 HARM
12	2	27 LASTX
13	<u>LBL 00</u>	28 FACT
14	E	29 *
15	+	30 END

And the table below shows the results from each approach:

Ν	D(N)	Time (@Turbo50)	Formula
11	1,486,442,880.0	1.8 sec	1,486,442,880.0
13	2.83465647 <mark>2</mark> E11	2.01 sec	2.834656474 E11
30	3.311538747 E34	11 sec	3.311538746 E34
40	1.439439902 E50	1 min 20 sec	1.439439902 E50
50	3.278748200 E75	2 min 30 sec	3.278748199 E75

Warning: *Remember that the CL is required to store a matrix in the Y-Registers area*. Otherwise you'll get the error message on the right:

N	8	Y		Μ	Ε	М	
	USER		RAD				

3. Recursive 2D-Solve & Integrate

Recursive Utilization of FINTG and FROOT.

Like the original SOLVE and INTEG did, both **FROOT**& **FINTG** support "crossed" nested calls from one another, i.e. you can call FROOT from an integrand function being used by FINTG, and you can call FINTG in the root-finding function definition for FROOT. However, it is not possible to recursively call either one of these functions sequentially from within a FOCAL routine. Any attempts to do so triggers the "*RECURSION*" error message and the execution aborts.

The SIROM provides a set of MCODE functions and two FOCAL routines to overcome this limitation. Each time FROOT/FINTG is executed it creates a dedicated memory buffer to store the application data and to perform all the math. The basis of the operation is the use of a secondary memory area for the nested call of the function, not conflicting with the initial memory buffer created in the first call. The main loop uses the initial buffer #14, and the operand function in turn creates a secondary buffer #14 to use for the nested loop – deleting it after it's complete.

In order to reuse the existing code, we'll trick the OS changing the id# of the initial buffer #14 right before the second call – *not deleting it but cloaking it in the I/O Memory area of the calculator*. The operand function re-labels the buffer with id#13 (using function **CLOAK**), then the nested call to FROOT/INTEG creates and uses a new buffer #14 to perform its task and deletes it upon completion – returning the execution to the "operand" function FOCAL routine. Before the execution is returned to the driver program, the cloaked buffer is re-issued as id#14 (using function **EXPOSE**) so things can be picked up exactly where there were left off before calling the nested subroutine.

If you must know, all **CLOAK** and **EXPOSE** do is changing the buffer id#' of the initial buffer created in the first call to FROOT/INTEG - first from 14 to 13, and then back to 14. Prior to all this a third function (**RESET**) is used to check for pre-existing buffers with id#13 – deleting it if found.

2D Driver Routines and Rules of Engagement.

RECURSION USER RAD 1

The main programs for double integrals and system of 2 equations are **FITG2** and **FRT2**. Each one has an auxiliary routine associated with it, which acts as the first level operand function and issues a second nested call for the integrand or the second equation appropriately, as follows:

For **FITG2**, the function name f(x,y) is expected in ALPHA, and the four integral limits in the stack in the pattern "y1, y2, x1, x2" – (y1,y2) for the outer integral, and (x1,x2) for the inner one.

• The integrand function is to be programmed assuming x is in R01, and y in the stack.

For **FRT2**, both function names are expected to be in Alpha separated by comma (like "F1,F2"), and the guesses entered in the stack, with the pattern "x1, x2, y1, y2" - with (x1, x2) for f1(x,y) and (y1, y2) for f(2(x,y)).

- The second operand function f2(x,y) is executed first. It assumes x in R01 and y in the stack.
- The first operand function f1(x,y) assumes x in R01 and y in R02.
- You decide which one is F1 and F2 by their order in the ALPHA string

All buffer management is made automatically by the auxiliary routines ***2D** and ***FG**.

Routine Listings.

Here are the routine listings for your perusal. Notably **FRT2** introduces more complexity to process the function names – entered as comma-separated strings in ALPHA – and due to the indirect call to f1(x,y) at the end of the auxiliary routine ***FG** - which is not required by ***2D** in the double integration case, as it's just one function involved. **CLAC** and **ASWAP** are borrowed from the ALPHA ROM – and need the Library#4 present in the calculator. They're only used for **FRT2**.

01	LBL "FRT2"		01	*LBL " FITG2"	
02	CLKEYS	no keys assigned	02	CLKEYS	no keys assigned
03	ASTO 00	save string	03	ASTO 00	save in ROO
04	ASWAP	swap around ","	04	STO 03	upper limit2
05	CLAC	remove second	05	RDN	
06	ASTO 05	save in R05	06	STO 02	lower limit2
07	CLA		07	RDN	
08	ARCL 00	recall string	08	RESET	reset buffers
09	CLAC	remove second	09	"2D"	first level operand
10	ASTO 00	save in ROO	10	FINTG	call first round
11	STO 04	upper guess2	11	RTN	done
12	RDN		12	"NO SOL"	
13	STO 03	lower guess2	13	AVIEW	
14	RDN		14	RESET	
15	RESET	reset buffers	15	RTN	done.
16	"*FG"	first level operand	16	*LBL "*2D"	
17	FROOT	call first round	17	STO 01	Save x for later
18	GTO 00		18	CLOAK	mask buffer id#
19	*LBL 01	Not found	19	RCL 02	lower limit2
20	RESET		20	RCL 03	upper limit2
21	"NO ROOT"		21	CLA	
22	AVIEW		22	ARCL 00	f(x,y)
23	*LBL 00	Found	23	FINTG	nested call
24	RCL 02	y solution	24	EXPOSE	re-issue buf id#
25	X<>Y	arrange in stack	25	END	ready
26	CLA	appends			
27	ARCL 00	f1(x,y) name			
28	"[-,"				
29	ARCL 05				
30	RTN	done(!)			
31	*LBL "*FG"				
32	STO 01	save x for later			
33	CLOAK	mask buffer id#			
34	RCL 03	lower guess 2			
35	RCL 04	upper guess 2			
35	CLA				
36	ARCL 05	f2(x,y)			
37	FROOT	nested call			
38	GTO 00	Found yo, skip	_		
39	GTO 01	Not found!			
40	*LBL 00				
41	EXPOSE	re-issue buf id#			
42	STO 02	Save yo result			
43	XEQ IND 00	calculates f1(x,Yo)			

44

END

FITG2 uses registers {R00-R03} and leaves the results in X and R01. The function name is left in ALPHA (6-chars max).

FRT2 uses registers {R00-R05} and leaves the results in the stack registers {X, Y} and {R01, R02} for the 2-equation roots. The comma-separated function names string is left in ALPHA (6-chars max for <u>each</u> name).

<u>Comments.</u>

The new functions to support the nested configuration are simplified versions of some generalpurpose buffer utilities, available in other extension modules as follows:

- **RESET** is equivalent to the sequence { 13, **B**?, **CLB**, RDN }
- **CLOAK** is equivalent to the sequence { 14.013 , **REIDBF**, RDN}
- **EXPOSE** is equivalent to the sequence: { 13.014 , **REIDBF** , RDN }

B? and **CLB** are available in the OS/X ROM, and **REIDBF** in the RAMPAGE ROM.

Using the simplified versions is more intuitive for math-oriented users, and besides freed up some space for additional examples in the SIROM.

While you can use **RESET** at any time (which will delete buff #13 if present, or do nothing if not present), using **CLOAK** and **EXPOSE** will generally result in the error message "BUF ERR". They're meant to be used only while buffer #14 exists, which is tightly controlled by the code in FINTG and FROOT – and furthermore, the SIROM uses the I/O_PAUSE interrupt as a "search & destroy" for buffer #14 at all times. Refer to the corresponding section in the **SandMath** manual to read more on this subject.

<u>Caveat emptor</u>.

- There's a price to pay for this buffer trickery, and that's the <u>loss of the USER key</u> <u>assignments</u>. As you can see in the listings above, the main routines call **CLKEYS** to make the operation more reliable (this avoids spurious buffer errors due to memory overwrites). You can save them in an X-Mem file using **SAVEKA** and then recover them with **GETKA** after the fact (both functions are also available in the AMC_OS/X ROM).
- These routines are not fast, their interest is in the methodology not optimized for speed to say the least. If you need faster responses, then the SandMath provides dedicated MCODE functions for many of these and yet some more.
- Bear in mind that the INTEG-based method to define special functions is not an efficient one from the mathematical standpoint, but it is a godsend for engineering problems. Also FROOT is not perfect or fool-proof either, so choosing a good initial guess is of high importance. If FRT2 fails to find a root (in either variable), it'll present the error message "NO ROOT" Change the limits and try again.

The following examples should provide a good overview into the details of the programming.

Example 1. Calculate the integral of the Bessel Jn function, $ITJ(1,3) = INT(0,3) \{ J(1,t).dt \}$ using the integral definition as reference:

$$J_n(x) = \frac{1}{\pi} \int_0^\pi \cos(n\tau - x\sin\tau) \,\mathrm{d}\tau.$$

Program Code is below. Note that you don't need to worry about the buffer management, that's done automatically by the driver routines all transparently to the user.

01	LBL "ITJB"		13	LBL " *JN"	inner variable t in stack
02	X<>Y	order n to X	14	RAD	angular mode
03	STO 04	order saved in R04	15	RCL 04	get order
04	CLX	lower outer limit	16	*	n.t
05	X<>Y	upper outer limit	17	X<>Y	inner variable t
06	0	lower inner limit	18	SIN	sin t
07	PI	upper inner limit	19	RCL 01	outer variable
08	"*JN"	function name	20	*	x.sin t
09	XROM " ITG2"	double integration	21	-	n.t - x.sin t
10	PI	adjust factor	22	COS	cos (n.t - x.sin t)
11	1	final result	23	END	integrand complete.
12	RTN	done.			

As mentioned before, *speed is not this method's forte*. Even on V41 in turbo mode it'll take a good 75 seconds to return 1.260052 (in FIX 6). This was not the goal of the example, but to clarify the general guidelines and showcase the conceptual approach. If you want a fast result you're encouraged to use **JBS** in the SandMath, or even better the **ITJ**(sub)function also in the SandMath, which uses the Generalized, Regularized Hypergeometric function for the calculation – a world of differences...

Comment. This particular example is of course much better dealt with using the well-known expression between the Bessel function J1 and J0 shown below (proving once again that it's always good to check your math before embarking in long and winding paths):

$$\int_0^x J_1(t) \, dt = \underline{1 - J_0(x)}$$

thus:

$$\int_0^3 J_1(t) \, dt = 1 - J_0(3) \approx 1.26005$$

Here's an interesting plot showing the integral function of J1(x) between]-15 . 15[

Example 2. Calculate the solution for the system of non-linear equations below:

The equations are programmed as shown below. Note how the convention is observed, with the y value assumed in the stack for the second function and in R02 for the first one; whilst x is always assumed in R01 for both functions. The solutions are obtained in about 3 seconds (FIX 9) using V41 in Turbo mode.

ALPHA, "F1,F2", ALPHA, 1, ENTER^, 2, ENTER^, 1, ENTER^, 2, XEQ "FRT2"

09	LBL "F2"	
10	RAD	
11	CHS	- <i>y</i>
12	RCL 01	x
13	+	х-у
14	COS	cos(x-y)
15	Х<>Ү	У
16	-	cos(x-y)-y
17	END	
	09 10 11 12 13 14 15 16 17	09 LBL "F2" 10 RAD 11 CHS 12 RCL 01 13 + 14 COS 15 X<>Y 16 - 17 END

Example 3. Obtain the roots for the system of two equations below (available as "G1" and "G2")

This is an interesting case because FRT2 not only is much slower (as we knew it was going to be), but also fails to find a root using initial guesses equal to the solutions, i.e. x0 = 2, y0=1.

Other Examples.

Let's use Valentín Albillo's neat examples from DataFile for Double Integrals - as follows:

$$I = \int_{0}^{1} \int_{1}^{2} (x^{2} + y^{2}) \cdot dy \cdot dx \quad I = \int_{3}^{4} \int_{1}^{2} 1/(x + y)^{2} \cdot dy \cdot dx$$
$$I = \int_{-2.3}^{1.6} \int_{-2.3}^{6.1} \int_{3.9}^{6.1} (e^{-x + x^{3}} + x^{3} - y^{3} + x^{2} + 7) + \tan^{-1}(x - 2) + \sin(y + 3) \cdot dy \cdot dx$$

See the original article for details, available at: http://web.archive.org/web/20110906135412/http://membres.multimania.fr/albillo/calc/pdf/DatafileVA024.pdf

The results are: I1 = 8/3 = 2.66666666 I2 = Ln(25/24) = 0.040821 I3 = 1,321.275779

Appendix: MCODE listing for dedicated functions

BUFERR	AEC0	20D	?NC XQ	Build Msg - UF25 Clear
	AEC1	OFC	->3F83	[APERMSG]
	AEC2	002	"B"	
	AEC3	015	"U"	
	AEC4	006	"F"	"NO BUF" or
	AEC5	020		"DUP BUF"
	AEC6	005	"E"	
	AEC7	012	"R"	
	AEC8	212	"R"	
	AEC9	1F1	?NC GO	LeftJ, Show and Halt
	AECA	OFE	->3F7C	[APEREX]
Header	AECB	08B	"K"	
Header	AECC	001	"A"	
Header	AECD	00F	<i>"0"</i>	
Header	AECE	00C	"L"	
Header	AECF	003	"C"	Ángel Martin
CLOAK	AED0	388	SETF 0	
	AED1	130	LDI S&X	
	AED2	00E	CON: 14	buffer id# = "E"
	AED3	053	JNC +10d	[MERGE]
Header	AED4	085	"E"	
Header	AED5	013	"S"	
Header	AED6	00F	<i>"0"</i>	
Header	AED7	010	"P"	
Header	AED8	018	"X"	
Header	AED9	005	"E"	Ángel Martin
EXPOSE	AEDA	384	CLRF 0	
	AEDB	130	LDI S&X	
	AEDC	100D	CON: 13	buffer id# = "D"
MERGE	AEDD	106	A=C S&X <	
	AEDE	000	NOP	
	AEDF	2A5	?NC XQ	
	AEEO	10C	->43A9	[CHKBFA]
NOBUF2	AEE1	2FB	JNC -33d	[NOBUF]
BFOUND2	AEE2	2DC	PT= 13	
	AEE3	38C	?FSET 0	cloaking?
	AEE4	027	JC + 04	yes, skip
MAKE14	AEE5	390	LD@PT- E	change id# to "EE"
	AEE6	390	LD@PT- E	
	AEE7	01B	JNC +03	
MAKE13	AEE8	350	LD@PT- D 🔶	change id# to "DD"
	AEE9	350	LD@PT- D	
	AEEA	2F0	WRTDATA	
	AEEB	3C1	?NC GO	Normal Function Return
	AEEC	002	->00F0	[NFRPU]

Header	AEAE	094	"T"	
Header	AEAF	005	"E"	Deletes Buffer 13
Header	AEB0	013	<i>"5"</i>	
Header	AEB1	005	"E"	
Header	AEB2	012	"R"	Ángel Martin
RESET	AEB3	130	LDI S&X	
	AEB4	00D	CON: 13	buffer id# = "D"
	AEB5	106	A=C S&X	
	AEB6	2A5	?NC XQ	
	AEB7	10C	->43A9	[CHKBFA]
NOTFUND	AEB8	3E0	RTN	
BFOUND	AEB9	05E	C=0 MS	delete only the first nybble
	AEBA	2F0	WRTDATA	so the OS will do the rest!
	AEBB	04E	C=0 ALL	
	AEBC	270	RAMSLCT	
	AEBD	051	?NC GO	Pack IO/KA area
	AEBE	086	->2114	[PKIOAS]

CHKBFA	43A9	0A6	A<>C S&X	recall id# to C(0)
CHKBF4	43AA	23C	RCR 2	id# to C(12)
	43AB	35C	PT= 12	
	43AC	130	LDI S&X	
	43AD	OBF	CON: 191	Fisrt possible reg -1
	43AE	10E	A=C ALL	store id# & addr in A
CB10	43AF	166	A=A+1 S&X <	Increase reg# address
CB20	43B0	046	C=0 S&X <	
	43B1	270	RAMSLCT	Select Chip 0
	43B2	378	READ 13(c)	.END.
	43B3	306	?A <c s&x<="" th=""><th>did we reach the .END. Chainhead?</th></c>	did we reach the .END. Chainhead?
	43B4	3A0	?NC RTN	yes -> Not Found
	43B5	0A6	A<>C S&X	addr to C[S&X]
	43B6	270	RAMSLCT	Candidate address for header
	43B7	0A6	A<>C S&X	id# to A(12) & addr to A[S&X]
	43B8	038	READATA	Candidate Value for header
	43B9	2EE	?C#0 ALL	Carry if not empty register
	43BA	3A0	?NC RTN	empty reg -> Not Found
	43BB	23E	C=C+1 MS	Carry if id#="F" (KAR)
	43BC	39F	JC -13d	Key Assignment Register
	43BD	362	?A#C @PT	is this IO Buffer?
	43BE	037	JC +06	NO , keep searching
	43BF	1B0	POPADR	YES !
	43C0	23A	C=C+1 M	Return to (P+2)
	43C1	170	PUSHADR	
	43C2	038	READATA	Return with Header in C
	43C3	3E0	RTN	and BuffAdr in A - rg# selected
CB30	43C4	OFC	RCR 10 <	Skip Buffer
	43C5	056	C=0 XS	
	43C6	146	A=A+C S&X	add buffer size
	43C7	34B	JNC -23d	[CB20]

4. Non-Linear Systems

Cubic Spline Interpolation (by Greg McClure)

Here is the authoritative implementation of cubic spline interpolation, using the extended functions to store the data points and the matrix function set from either the SandMatrix or the HP-41 Advantage indistinctly. This is the optimal arrangement for improved speed and reduced code size to resolve the problem.

The cubic spline algorithm is a mathematical interpolation method used to create a smooth curve between points on a graph. At least four data points are required to create a cubic spline. These data points need to be placed into a data array in Extended Memory. The user can decide the name of this array. After creating this array and filling it with X,Y data pairs, executing CSPLINE will create the splines needed to graph the curve. The program requires Matrix functions to create the solution, so either the Advantage or SandMatrix module is required for this program. If using the SandMatrix module, the SandMath module will also be required.

To solve the cubic spline, first a tri-diagonal matrix needs to be created, and a solution vector. "*ABC" and "*R" matrices are temporarily created for this purpose. Once solved, the "*MN" data array is created with the cubic spline coefficients, and "*ABC" and "*R" are removed. "*MN" is used to display the interpolated Y and YPRIME for any X entered.

It is easiest to show how to use **CSPLINE** by giving an example.

Let's say we want to create a smooth curve going thru points [0,0], [1,1], [2,9], and [3,10]. We wish to use the "natural" slope of the curve at both the beginning and the end (it can optionally be specified for either end).

Let's create data array "XY" (needs to be size 8). So "XY", 8, CRFLD. Now ensure flag 8 is off and XEQ **DFED**. Enter in points 0, 0, 1, 1, 2, 9, 3, and 10 at the prompts. We are now ready to perform the spline interpolation.

XEQ **CSPLINE**. It asks for the array name, enter XY and press R/S, it asks if we want initial slope. No response at this prompt forces "natural" slope for the initial point. R/S then asks for the the final slope. No response forces "natural" slope for the final point. R/S then displays the steps as it calculates the arrays, then solves the simultaneous equations created.

We are ready to display results for points. LBL A is always available to quickly get to this point. After the solution is created, we are at this label. R/S prompts for "NEXT X?", enter the X value we want Y value for. R/S calculates the Y coordinate interpolated, and R/S again calculates the slope at that point. In this example, let's get the slope calculated for the first point [0,0]. Enter 0, R/S, and it shows Y is 0 (not a surprise), R/S gives a slope of -1.3333. R/S (or A) and get "NEXT X?", 1, R/S and it shows Y is 1 (not a surprise), R/S gives a slope of 5.6667. X = 1.5 gives Y=5, and slope of 9.1667, and so on for any other points you want to solve. The natural slope at the end point of 3 was also -1.3333.

We can rerun the program and specify initial and final slopes if we wish, try it and see what points and slopes are interpolated with initial and final slopes of 0.

Example. Using the Data File Editor routine **DFED** make a data array (named "XY", with size 8) loaded with 1, 1, 2, 2, 3, 9, 4, 10 (this represents points [1,1], [2,2], [3,9] and [4,10]).

Run the program, specify "XY" as the array name, and when it asks for initial and final slope, just hit R/S (this tells the program to use natural slope ends). After it finishes (it says "READY"), hit R/S and enter the X coordinate you want to see the spline value for, it will display the Y coordinate, then you hit R/S to get the slope at that point.

Y = 1.0,

Y=0.75,

Y=5.5,

YP (slope)=-1

YP=0.5,

slope of 8.

- for x = 1.0, you should get:
- for x = 1.5, you should get:
- for x = 2.5, you should get:

As you can see, you can ask for any X points you want, and quickly make a sketch of the resulting spline curve fit for these points.

Here the "natural" spline slope is -1 for each end, and by specifying the desired slope for the ends you can change the shape of the resulting spline. To do that, simply rerun the CSPLINE program.

With 425 steps, **CSPLINE** is a large program, but the usability factors are well worth the price of admission: feedback of each step is provided during the execution so you know what progress is being made.

0.8				1			Da	ta Points f(x) terpolant	•
0.6				Å					
0.4				<i>(</i>			:\ 		
0.2		1		-					
0.0	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8 1.0

01	<u>*LBL 10</u>	28	RDN	55	CLA	81 STO 03
02	"` <i>SLOPE?</i> "	29	RTN	56	ARCL 00	82 GETX
03	CF 22	30	<u>30*LBL 94</u>	57	RCL 09	83 STO 04
04	PROMPT	31	DSE X	58	XEQ 94	84 <i>"*CF"</i>
05	RTN	32	E3/E+	59	CLX	85 2 E-3
06	<u>*LBL 99</u>	33	STO 09	60	SEEKPTA	86 MSIJA
07	SF 25	34	RTN	61	" <i>INIT"</i>	87 FS? 00
08	PURFL	35	LBL "CSPLINE	62	XEQ 10	88 GTO 00
09	CF 25	36	*LBL 00	63	FC? 22	89 CLX
10	MATDIM	37	CF 00	64	SF 00	90 GTO 01
11	RTN	38	CF 01	65	FS? 22	91 <u>*LBL 00</u>
12	<u>*LBL 96</u>	39	"X,Y ARRAY?"	66	STO 07	92 RCL 03
13	"*CF"	40	AÓN	67	"FINAL"	93 RCL 01
14	RCL 09	41	PROMPT	68	XEQ 10	94 -
15	INT	42	AOFF	69	FC? 22	95 1/X
16	E	43	ASTO 00	70	SF 01	96 <u>*LBL 01</u>
17	E3/E+	44	FLSIZE	71	FS? 22	97 MS
18	*	45	2	72	STO 08	98 J-
19	E-3	46	/	73	"MATRICES	99 FS? 00
20	-	47	STO 09		"	100 GTO 00
21	MSIJA	48	48 <i>"*R"</i>	74	CF 21	101 E
22	RTN	49	XEQ 99	75	AVIEW	102 GTO 01
23	<u>23*LBL 95</u>	50	E	76	GETX	103 <u>*LBL 00</u>
24	24 <i>"*R"</i>	51	E3/E+	77	STO 01	104 ST+ X
25	RCL 09	52	*	78	GETX	105 <u>*LBL 01</u>
26	INT	53	"*CF"	79	STO 02	106 MS
27	MSIJA	54	XEQ 99	80	GETX	107 <i>"*R"</i>

108	E	165	X<>Y	222	"SOLVING"	279	*
109	MSIJA	166	X^2	223	AVIEW	280	RCL 04
110	RDN	167	RCL 06	224	"*CF,*R"	281	RCL 02
111	FS? 00	168	RCL 04	225	MSYS	282	-
112	GTO 00	169	-	226	"COFFES"	283	-
113	RCL 07	170	*	227	AVIEW	284	"*MN"
114	GTO 01	171	+	222	"*CF"	201	FI SIZE
115		172	3	220		205	
116	<u>^ LDL 00</u>	172	З *	229		200	
110	Z	173	MC	230	RCL 09	207	SAVEA
11/	/	1/4		231		288	X<>Y
118	X^2	1/5	RCL 03	232	DSE X	289	SAVEX
119	RCL 04	1/6	STO 01	233	SI+X	290	RCL 03
120	RCL 02	177	RCL 04	234	"*MN"	291	STO 01
121	-	178	STO 02	235	SF 25	292	RCL 04
122	*	179	RCL 05	236	PURFL	293	STO 02
123	3	180	STO 03	237	CF 25	294	ISG 09
124	*	181	RCL 06	238	CRFLD	295	GTO 93
125	*LBL 01	182	STO 04	239	2	296	SF 27
126	MS	183	GTO 98	240	1	297	"READY"
127	*I BL 98	184	*I BI 97	241	, ISG X	298	PROMPT
128	<u>ISG 09</u>	185	XEO 96	242		200	*IRIA
120	GTO 00	186	FS2 01	243	XEO 94	299	
130	GTO 97	187		213		300	"IVEX I X?"
121		100		277		301	PROMPT
121		100		245		302	STO 07
132		189		240		303	CLA
133	ARCL 00	190	<u>*LBL 00</u>	247	SEEKPIA	304	ARCL 00
134	FLSIZE	191	RCL 03	248	GEIX	305	FLSIZE
135	GETX	192	RCL 01	249	STO 01	306	2
136	STO 05	193	-	250	GETX	307	/
137	GETX	194	1/X	251	STO 02	308	DSE X
138	STO 06	195	<u>*LBL 01</u>	252	<u>*LBL 93</u>	309	STO 09
139	XEQ 96	196	MSR+	253	XEQ 95	310	
140	RCL 03	197	FS? 01	254	MRC+	311	SEEKPT
141	RCL 01	198	GTO 00	255	STO 05	312	
142	-	199	E	256	MR	212	
143	1/X	200	- GTO 01	257	STO 06	214	
144	MSR+	201	*I BL 00	258		214	
145	RCI 05	201		250		315	X <y?< td=""></y?<>
1/6		202		255		316	GIU UU
1/7	ICL 05	203		200	CETV	31/	GEIX
1/10	- 1/V	204		201		318	DSE 09
140	1/A	205		202		319	GTO 92
149	J+	200		203	GETX GTO 04	320	RCLPT
150	MS -	207	XEQ 95	264	STO 04	321	ISG X
151	SIOT	208	FS? 01	265	RCL 06	322	GTO 01
152	X<>Y	209	GTO 00	266	CHS	323	GTO 01
153	STO Z	210	RCL 08	267	RCL 03	324	*LBL 00
154	+	211	GTO 01	268	RCL 01	325	RCLPT
155	ST+ X	212	<u>*LBL 00</u>	269	-	326	*LBL 01
156	J-	213	X^2	270	*	327	DSF X
157	MS	214	RCL 04	271	RCL 04	328	GTO 00
158	RDN	215	RCL 02	272	RCL 02	329	GTO 01
159	XEQ 95	216	-	273	-	320	
160	X^2	217	*	274	+	221	2
161	RCI 04	218	3	275	RCL 05	155	۷
162	RCL 02	219	*	276	RCL 03	33Z	- *IDL 01
163		220	*I BI 01	270		333	
16/	*	220 221	MC	עו∠ 270		334	
104	÷	221	CIT	2/0	-	335	ARCL 00

336	SEEKPTA	370	+	404	*	12	AINT
337	GETX	371	RCL 09	405	+	13	"/-="
338	STO 01	372	RCL 08	406	RCL 08	14	X<>Y
339	GETX	373	-	407	*	15	ARCL X
340	STO 02	374	*	408	RCL 09	16	CF 22
341	RCL Z	375	RCL 03	409	*	17	FC? 08
342	GETX	376	RCL 01	410	RCL 04	18	" -?"
343	STO 03	377	-	411	RCL 08	19	PROMPT
344	GETX	378	/	412	*	20	FC?C 22
345	STO 04	379	RCL 06	413	+	21	GTO 02
346	RCL Z	380	RCL 05	414	RCL 02	22	FS? 08
347	"*MN"	381	-	415	RCL 09	23	GTO 01
348	SEEKPTA	382	RCL 08	416	*	24	X<>Y
349	GETX	383	*	417	+	25	RDN
350	STO 05	384	RCL 09	418	"Y="	26	X<>Y
351	GETX	385	*	419	ARCL X	27	SEEKPT
352	STO 06	386	RCL 03	420	PROMPT	28	X<>Y
353	RCL 07	387	RCL 01	421	"YP="	29	SAVEX
354	RCL 01	388	-	422	ARCL Y	434	*LBL 02
355	-	389	/	423	PROMPT	30	X<>Y
356	RCL 03	390	+	424	GTO A	435	<u>*LBL 01</u>
357	RCL 01	391	RCL 04	425	END	31	ISG X
358	-	392	RCL 02			32	GTO 00
359	/	393	-	426	*LBL "DFED"	33	"DONE"
360	STO 08	394	RCL 03	427	FLSIZE	34	AVIEW
361	E	395	RCL 01	428	E	35	CLA
362	-	396	-	429	-	36	FLNAME
363	CHS	397	/	430	E3	37	END
364	STO 09	398	+	431	1		
365	RCL 05	399	RCL 05	432	*LBL 00		
366	*	400	RCL 09	433	SEEKPT		
367	RCL 08	401	*	09	GETX		
368	RCL 06	402	RCL 06	10	X<>Y		
369	*	403	RCL 08	11	"D"		

Program **DFED** has been created to enter/review the data points in the array. First the data array must be created. For a 4-point solution the size must be 8, so with the name of the array in Alpha, and 8 in X, use **CRFLD** (use PURFL if already created). If user flag 8 is set, **DFED** will only view the data in the array. If user flag 8 is clear, it will show and optionally allow modification of the data in each element. If entering data, just enter each element until done.

Systems of Non-Linear Equations (Baillard - McClure)

This version is Greg McClure's direct modification using the Advantage Matrix functions of Jean-Marc Baillard's program to handle this problem, as documented on his web site:

http://hp41programs.yolasite.com/system-eq.php

The technique used is therefore exactly the same one used there: a (quasi-) Newton's method is used on each iteration to solve a linear system of n equations in n unknowns. The obvious difference in this version is the utilization of **MSYS** instead of Jean-Marc's "LS" routine, contributing to faster execution and reduced code size – while not introducing any restriction or limitation.

The user needs to program the "n" equations as independent FOCAL routines, with a global label each. With regard to the expected locations of the variables, it's of course impossible to take the n variables from the stack and calculate the n functions in the stack if n > 4, therefore you'll have to key in n different subroutines for computing the function in the X-register with x_1 in R01, x_2 in R02, ..., and x_n in Rnn

Synthetic registers {M N O} and data registers R00 thru Rn^2+4n are used by the program. It also requires two initial guess-vectors (x1, x2,..xn) and (x1', x2',... xn') which components are to be stored into {R01- Rnn} and {Rnn+1 to R2n} respectively (and ensuring that $x_i \# x'_i$ for i = 1, 2, ..., n).

The successive x_1 -values are displayed during the calculations, and when the program stops, $|f_1| + \dots + |f_n|$ is in the X-register; and the solution (x_1, \dots, x_n) is in { R01,, Rnn }.

Register	Value	Register	Value	Register	Value
R00	n				
R01	x1	Rnn+1	x1′	R2n+1	F1 Name
R02	x2	Rnn+2	x2′	R2n+2	F2 Name
Rnn	xn	R2n	xn'	R3n	Fn Name

The table below summarizes the data input requirements for "**NLSYS**":

All this manual data entering can be bothersome, therefore you'll be glad to know that the module includes several auxiliary routines to make the complete process more convenient. First off, the driver program **NLSN** will present all needed prompts for the input parameters automatically, storing them in the appropriate data registers. Within the driver program there are calls to other utilities to input the initial guesses (**XIN**) and the function names (**FIN**). Finally, after the system has been resolved, the driver program will invoke a data-output routine (**XOUT**) to show the results. All this will happen transparently to the user.

Example. program with the routines "F1", "F2", and "F3", defined :

 $f1(x,y,z) = x^2 + y - 3$ $f2(x,y,z) = y^2 - z - 1$ $f3(x,y,z) = x - z^2 + 8$

The three solutions are: x = 1, y = 2, z = 3

Go ahead and execute **NLSN**, using as initial guesses the values X0 = (1, 1, 1) and X0' = (2, 2, 2).

LBL "F1", RCL 01, X^2,RCL 02, +, -, RTN, LBL "F2", RCL 02, X^2, RCL 03, -, 1, -, RTN, LBL "F3", RCL 01, RCL 03, X^2, -, 8, +, RTN,

Here's the full data entry sequence with the driver program, Note that existing values will be suggested, jut press R/S to re-use them when appropriate:

XEQ "NLSN"	N = 7
4, R/S	F#1:7
"F1", R/S	F∦2± 7
"F2", R/S	F#3± 7
"F3", R/S	X 🛛 ' () = 🖓
2, R/S	XØ'(2)=7
2, R/S	XØ'(3)=7
2, R/S	X 🛛 < () = 🖓
1, R/S	XØ(2)=7
1, R/S	X 🛛 (∃) = 7
1, R/S	X 3 :: 3.00000000
R/S	×2:2.00000000
R/S	X (= 1.00000000

<u>Example 2.</u>Here is an example from Jean-Marc's documentation for a 4 element non-linear simultaneous equation set:

x1 + x2 + x3 + x4 - 16 = 0 x1.x2.x3 - 3.x4 = 0 $4.x1^{2} - x2.x3.x4 - 40 = 0$ x1.x2.x3.x4 - 140 = 0

The following program should be entered by the user (assuming global labels chosen are F1, F2, F3, F4):

LBL "F1", RCL 01, RCL 02, RCL 03, RCL 04, +, +, +, 16, -, RTN, LBL "F2", RCL 01, RCL 02, RCL 03, *, *, RCL 04, 3, *, -, RTN, LBL "F3", RCL 01, ST+ X, X^2, RCL 02, RCL 03, RCL 04, *, *, -, 40, -, RTN, LBL "F4", RCL 01, RCL 02, RCL 03, RCL 04, *, *, *, 140, -, END

The solutions and the locations of the values are as follows:

X1 = R01 = 4.266540475, X2 = R02 = 1.353632234 x3 = R03 = 3.548526784, x4 = R04 = 6.831300511

1	*LBL "NLSN"	46	END	91	RCL IND M	137	<i>"*S"</i>
2	SIZE?			92	MSC+	138	CLX
3	"N=?"	47	<u>*LBL 09</u>	93	ISG M	139	MSIJA
4	PROMPT	48	SF 25	94	GTO 13	140	STO O
5	STO 00	49	PURFL	95	RCL N	141	RCL 00
6	X^2	50	CF 25	96	ENTER^	142	E3/E+
7	ΙΔςτχ	51	MATDIM	97	CLX	143	STO M
2 8	4	52	RTN	98	"*M"	144	LASTX
å	*	53	*I BL "NI SYS"	99	MSIJA	145	.1
10	+	54	RCI 00	100	RDN	146	%
11	F	55	" *\$ "	101	STO N	147	+
12	L +	56		102	RCL 00	148	+
13	Y \ Y2	57	1	103	E3/E+	149	STO N
14		58	.1 0/2	104	STO M	150	*LBL 11
15		50	70 -	105	STO O	151	RCL IND N
16		59	т "*М"	106	*LBL 08	152	RCL IND M
17		61		107	RCL IND M	153	STO IND N
10	1 1	62		108	RCL M	154	X<>Y
10	1.1	62	$\frac{1}{1} \frac{1}{1} \frac{1}$	109	RCL 00	155	-
20	т STO 02	64		110	+	156	ENTER^
20		65		111	RCL IND X	157	ABS
21		66		112	STO IND M	158	ST+ O
22		67		113	RDN	159	RDN
23		60		114	X<>Y	160	MRC+
24	<u>LDL UI</u> " <i>V0'/"</i>	60		115	STO IND Y	161	*
25		70		116	RTN	162	ST- IND M
20		70		117	*LBL 12	163	ISG N
2/	// `) <i>— 2</i> //	71		118	XEO 08	164	NOP
20		72	STON	119	RCL N	165	ISG M
29		73	3100 *I BI 1/	120	RCL 00	166	GTO 11
21		75		121	-	167	RCL O
22	ISG 02 ISC 01	75		122	RCL IND X	168	E-8
22	GTO 01	70		123	XEO IND X	169	X>Y?
24		70	ISC M	124	CHŠ	170	GTO 00
25		70		125	RCL IND N	171	RCL 00
26		80		126	+	172	.1
30		81	GTO 14	127	MSR+	173	%
3/	<u>37*LBL 05</u>	82	RCLO	128	XEQ 08	174	+
38	38 X	83	ENTER^	129	ISG M	175	GTO 99
39		84		130	GTO 12	176	<u>*LBL</u> 00
40	AIN I	0-7 85	"* C "	131	RCL O	177	X<>Y
41		86	MSTIA	132	STO M	178	CLA
42	AKCL IND UU	87	RDN	133	ISG N	179	VIEW 01
43		207 20	STO M	134	GTO 12	180	END
44		00 80	STO N	135	"*M, *S"	-	
45	GTU 05	90 90	*I BI 13	136	MSYS		

1	*LBL "XIN"	12 FS? 22	23 1.1	35 <i>"`? "</i>
2	RCL 00	13 STO IND Y	24 +	36 ARCL IND 02
3	E3/E+	14 FS?C 22	25 STO 02	37 STOP
4	CF 22	15 RDN	26 RCL 00	38 FS?C 23
5	*LBL 02	16 ISG X	27 E3/E+	39 ASTO IND 02
6	"X0("	17 GTO 02	28 STO 01	40 ISG 02
7	AINT	18 RTN	29 AON	41 ISG 01
8	"`)="	19 <u>*LBL "FIN"</u>	30 CF 23	42 GTO 00
9	ARCL IND X	20 RCL 00	31 <u>*LBL 00</u>	43 AOFF
10	"`?"	21 FS? 01	32 <i>"F#"</i>	44 END
11	PROMPT	22 ST+ X	33 RCL 01	
			34 AINT	

<u>Example 3</u>. Here's a more challenging one, with ten equations including trigonometric functions as And now is when we get to say the infamous words: "*the resolution is left to the reader as an exercise*...."

$$2 x_{1} + x_{1} \operatorname{atan}(x_{2} - x_{10}) + \cos x_{7}x_{8} - x_{3} x_{4} - \tan x_{8}$$

$$x_{2}^{2} \exp(x_{5}, x_{6}) + \exp(-x_{8}x_{9}) - x_{1} x_{7} - x_{3} - x_{9}$$

$$\sin(1 - x_{2} x_{10}) + x_{2} x_{3} x_{7} - (x_{1} x_{10})^{2} + \tan x_{3} - \tan x_{8}$$

$$x_{2} x_{10} - x_{8} x_{9} + \sin x_{5} - x_{4} x_{7}^{2}$$

$$x_{5} \exp(x_{8}) - x_{4} \sin x_{7} - \cos x_{10} - x_{5}$$

$$\exp(\cos x_{5}) - \exp(x_{3}) - x_{1} x_{2} x_{10} + x_{6}^{2} + x_{1}$$

$$x_{6} x_{7} + x_{2} x_{9} - x_{1} \sin x_{8} - x_{4} \sin x_{7}$$

$$\operatorname{atan}(1 - x_{9}) - \cos (x_{3} - x_{6}) - x_{2} x_{5} + 2x_{8}$$

$$x_{9} \exp(x_{4} x_{6}) - \tan (x_{2} x_{5}) - x_{2} x_{10} + x_{1} x_{9} - x_{6}$$

$$x_{3} x_{8} x_{10} - x_{4} x_{7} x_{10} - x_{1} x_{10} + x_{2} x_{9}$$

Solution: Set RAD mode, program the 10 equations and using the initial guess:

[X1] = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

We obtain:	X10=0.926763	;	X9=0.941375
	X8=0.950487	;	X7=0.842850
	X6=0.754390	;	X5=0.949426
	X4=1.213977	;	X3=0.878089
	X2=1.018692	;	X1=0.846165

Bessel J(x) via Continued Fractions Method - Martin-Baillard

The SandMath contains a very competent set of Bessel functions, both for the direct (J, Y) and the modified kinds (I, K). The implementation is a hybrid of MCODE and Focal routines, really optimized for the applicable valid range of the functions.

And therein lays the only caveat: that implementation does a direct sum of the alternating terms of the series, which isn't valid for asymptotic cases, where either the order or the argument (or their sum!) are very large. To palliate this, the SandMath also includes an iterative approach for JNX, using recurrence formulas – but alas, the execution time can be really long.

Is there another way to skin this cat? Well as it turns out yes, at least for the non-modified cases there's a very intriguing approach based on continued fractions, which after all are another way to iterate for the solution – only that we can take advantage of the MCODE implementation in both the SandMath and the 41Z Modules, because there are two different continued fractions involved, one of them in the complex variable – eve for the real Bessel J case!

Here again the routine is a direct modification of Jean-Marc Baillard's FOCAL program available on his web site (cf #5 in <u>http://hp41programs.yolasite.com/bessel.php</u>), adapted to use the MCODE functions **CF2V** and **ZCF2V** instead of the FOCAL subroutines – faster and shorter code. A real beauty to see the SandMath and 41Z joining forces to crack this one!

The formulas used are as follows:

With
$$p + i.q = -1/(2x) + i + (i/x) [(0.5^2 - n^2)/(2x + 2i + (1.5^2 - n^2)/(2x + 4i +))]$$

and $g_n = -1/(((2n + 2)/x) - 1/(((2n + 4)/x) -))$

Then, calling D = the denominator of the second continued fraction:

One must pay careful attention to the data registers requirements by these functions for the successions used to define the continued fractions, which are programmed under the global labels "#" for the real one and `=" for the complex one.

Example: Calculate the Bessel J and Y of order 100 for the argument x=100

According to Wolfram Alpha the results are:

Input:	
$J_{100}(100)$	Oren code 🔿
	$J_n(z)$ is the Bessel function of the first kind
🍳 Enlarge 🛃 Data 🤮 Customize 🗛 Plaintext 🌀 Interactive	
Decimar approximation.	(Mule digits)
0.096366673295861559674314024870401848311755419825021855917.	
	æ
and	

Input:

 $Y_{100}(100)$

Open code 🙆

More digits

Ð

 $Y_{\mathcal{R}}(\mathbf{x})$ is the Bessel function of the second kind

Decimal approximation:

 $-0.16692141141757650654000649527875245114794564358645737649\ldots \\$

And sure enough this is what we obtain (with ten digit precision) using our routine:

100, ENTER^, XEQ "JYNX"	=>	0.09636667380
	X<>Y	-0.1669214116

Program	Listing:

01	LBL "JYNX"	30	RCL 09	59	<u>LBL "="</u>
02	STO 01	31	+	60	RCL 12
03	X<>Y	32	RCL 13	61	ST+ X
04	STO 13	33	RCL 01	62	RCL 02
05	"="	34	/	63	ST+ X
06	CLST	35	-	64	ZENTER^
07	ZENTER^	36	STO 11	65	RCL 12
08		3/	RCL 10	66	660.5
09	RCL 01	38	R-P	67	-
10	ZCF2V	39	LASIX	68	X^2
11	RCL 02	40	SI + X	69	RCL 13
12	STO 01	41	PI DCL 01	70	X^2
13	ST/ Z	42	RCL 01	71	-
14	/	43	*	72	0
15	E	44	/	73	X<>Y
16	+	45	SQRT	74	RTN
17	STO 10	46	X<>Y	75	<u>LBL "#"</u>
18	X<>Y	4/		76	X<>Y
19	CHS	48	RCL 05	77	STO 05
20	RCL 01	49	SIGN	78	X<>Y
21	ST+ X	50	^ CTO 10	79	RCL 02
22	1/X	51		80	RCL 13
23	-	52	KCL II	81	+
24	STO 09	53		82	ST+ X
25	"#"	54	KCL IU	83	RCL 01
26	0	55	/	84	/
27	RCL 01	50	KUL 12	85	-1
28	CF2V	5/		86	END

Note: ensure that the ADVTG_MATH module is plugged in <u>a page before the SandMath</u>. This is required because there is another global label "=" in the SandMath and we don't want the routine to use the incorrect one for the calculation! (besides, this would result in NONEXISTENT, so you'll know right away).

Newton's and Halley's Methods Revisited - Martin-McClure

The idea of using the MCODE functions in the SandMath is also at the heart of this final application, as this time we'll use the first &second derivatives function **DERV** as an auxiliary tool to calculate the derivatives of the function whose roots we're trying to obtain, directly and without any additional conditioning regardless of the function in case.

The formulas involved are well known:

$$x_{n+1} = x_n - rac{f(x_n)}{f'(x_n)} \hspace{1cm} x_{n+1} = x_n - rac{2f(x_n)f'(x_n)}{2[f'(x_n)]^2 - f(x_n)f''(x_n)}$$

As usual, you need to provide two guesses in the X,Y registers and the function name in ALPHA. The user is required to program the function in a FOCAL routine under a global label, which cannot use data registers R00 to R08 as explained below.

Remember that **DERV** uses R00 to R04 (see the documentation in the SandMath manual for details), and in addition to these the routines use R05 for the function global label name, and R06 – R08 to save the initial guesses and as scratch. As it's already customary, the successive approximations to the root will be displayed if user flag 10 is set.

1	*LBL "XNWT"	17	RCL 08	33	X^2
2	CF 01	18	RCL 06	34	ST+ X
3	GTO 01	19	DERV	35	RCL 07
4	*LBL "XHALL"	20	FC? 01	36	RCL 01
5	SE 01	21	ST/ 07	37	*
5	*I BI 01	22	FS? 01	38	-
7		23	XEQ 02	39	1/X
0		24	RCL 06	40	RCL 07
0		25	RCL 06	41	*
10	STO 08	26	RCL 07	42	RCL 00
10	X<>1 *LDL 00	27	-	43	*
11	<u>-**LBL 00</u> FC2 10	28	X#Y?	44	ST+ X
12		29	GTO 00	45	STO 07
13		30	CLD	46	END
14		31	RTN		
15		32	*LBL 02		
10	510.07				

This really can't get any shorter; my kinda routine that clearly showcases that with a powerful engine behind doing the heavy lifting (**DERV** in this case) the rest is a downhill trip.

Example: obtain a root for the equation below, which we program easily as shown. Then we usesomeobviouslynon-optimal guesses to stress the algorithm:

{ LBL "X1", CBRT, LASTX, 4, +, *, END }, and then

 $y=\sqrt[3]{x}(x+4)$

ALPHA,"X1", ALPHA, 1, 2, XEQ "XNWT" => -4.00000000 Or:` 1, 2, XEQ "XHALL" =>-4.00000000 Newton's Method with Complex Step Differentiation.

And the proverbial last but not least is reserved for the "complex step derivative" method to calculate real function derivatives, just as a quasi-magical application of complex variables. Complex step differentiation is a technique that employs complex arithmetic to obtain the numerical value of the first derivative of a real valued analytic function of a real variable, avoiding the loss of precision inherent in traditional finite differences. This is then used n Newton's method in the usual way.

We're concerned with an *analytic* function. Mathematically, that means the function is infinitely differentiable and can be smoothly extended into the complex plane. Computationally, it probably means that it is defined by a single "one line" formula, not a more extensive piece of code with if statements and for loops.

Let F(z) be such a function, let x_0 be a point on the real axis, and let h be a real parameter. Expand F(z) in a Taylor series off the real axis.

 $F(x_0+ih)=F(x_0)+i.hF'(x_0)-h^2F''(x_0)/2!-ih^3F^{(3)}/3!+...$

Take the imaginary part of both sides and divide by \! h

 $F'(x_0) = Im(F(x_0+ih))/h + O(h_2)$

Armed with the 41Z arsenal of functions it's very likely that your real function can be programmed as an equation in the complex variable too. Then all it takes is to calculate the value of said complex function in a complex point close to the real argument x_0 , offset by a very small amount in the imaginary axisih. The program expects the program name in ALPHA and the values of h and x0 in the Y,X stack registers, and it returns the real derivative value in X. it uses data registers R00 to R02.

6			
1	LBL "ZNWT"	10	/
2	ASTO 02	11	RCL 01
3	ZSTO	12	*
4		13	ST- 00
5	ES2 10	14	RND
6	VIEW 00	15	X#0?
7	7RCL (00)	16	GTO 00
, 8	XEO IND 02	17	RCL 00
q	X<>Y	18	END

What's remarkable is that with just one execution of the complex function we calculate both the real function's value (the real part) and its derivative (the imaginary part with correction) at the same time. Note also the clever use of complex data register C00 to store z0 = x0 + ih, and then how it keeps calculating the complex function value until two successive iterations are equal for the current FIX selected in the calculator.

Something's remarkable when the root-finding routine is almost shorter than the equation use to program the function!

Time for some examples. The first one just a simple polynomial to try our hand with the new method, taken from the MoHPC forum: <u>https://www.hpmuseum.org/forum/thread-6667.html</u>

Calculate the three roots of the third degree polynomial: $x^3-x^2-x+0, 5=0$

We program the equation as shown below:

01LBL "Z3" 02 Z^3 03 LASTZ 04 Z^2 05 Z+	06 Z- 07 .5 08 + 09 END
And type: ALPHA, "Z1", ALPHA ,01, ENTER^, 0, XEQ "ZNWT" .01, ENTER^, 2, XEQ "ZNWT" .01, ENTER^, -2, XEQ "ZNWT"	=> 0.40301587 => 1.45174468 => -0.85476055

And then a more elaborate example adapted from the seminal reference: <u>https://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/</u>

The blog uses the function F(x) given below, which does not have any real roots:

$$F(x)=rac{\mathrm{e}^x}{(\cos x)^3+(\sin x)^3}$$

For our purposes let's calculate the roots of, say $g(x) = F(x) - \pi$

And type:

ALPHA, "Z2", ALPHA	
,01, ENTER^, 1, XEQ "ZNWT"	=>0.79830245

Appendix: From Poles to Zeros. { POLZER }

This program completes the applications section. It calculates the zeros of a polynomial expressed as a partial expansion of factors, as would typically be the case when working with transfer functions in control theory.

This program calculates the polynomial coefficients and roots of expressions such as:

 $P(x) = \Sigma [1 / (x-pi)]; i = 1, 2, ..., n , for n <= 7$

Which will be transformed into:

P(x) = Σai.x^i ;i= 0,1,... (n-1)

The coefficients are obtained using the following formulae:

a(n-1) = n $a(n-2) = (n-1) \Sigma pi$ $a(n-3) = (n-2) \Sigma \Sigma pi pj$ $a(n-4) = (n-3) \Sigma \Sigma \Sigma pi pj pk$ $a(n-5) = (n-4) \Sigma \Sigma \Sigma \Sigma pi pj pk pl$ $a(n-6) = (n-5) \Sigma \Sigma \Sigma \Sigma \Sigma pi pj pk pl pm$

in general the n-th. coefficient would require the calculation of n-dimensional product sums. However the program **POLZER** is limited to expressions up to 7 poles max (resulting in 6 zeroes).

Example.- To study the stability of the transfer function below, calculate its roots.

G(s) = 1/s + 1/(s-1) + 1/(s-2) + 1/(s-3) + 1/(s-4)

Keystrokes	Display
XEQ " POLZER "	380L=7
5, R/S	尺(1)=7
0, R/S	P(2)=7
1, R/S	P(3)=7
2, R/S	尺(4) 三尺
3, R/S	P (S) ± 7
4. R/S	$\Sigma \dots \Sigma \Sigma \dots \Sigma \Sigma \Sigma \dots \Sigma \Sigma \Sigma \Sigma \dots \Sigma \Sigma \Sigma \Sigma \Sigma$.
	EFSP Y/N
" Y "	o (4) = 5
R/S	o (∃) = - 4Ø
R/S	a (2) = (05
R/S	o < () = - (∅∅
R/S	$\mathbf{a} < \mathbf{Z} > \pm \mathbf{Z} + \mathbf{Y}$

Therefore the "natural" polynomial form is as follows:

G(s) = 5 s^4 - 40 s^3 + 105 s^2 - 100 s + 24

Next the execution is transferred to **PROOT** in the SandMatrix (or to **QUART** if #p=5) which calculates the roots following the iterative process explained in section 4.3.1. Remember that the accuracy is dictated by the number of decimals places set .

R/S	RUNNING
	х (<u>=</u> Э,БЧЧЧ2
R/S	x 2 <u>-</u> 2,5 4 3 9 5
R/S	ХЭ <u>н</u> (Ч <u>5</u> 609
R/S	X H <u>-</u> Ø, 3 5 5 5 7

POLZER is also a rather long program – and dates back to the days the author attended EE School many moons ago, so I'm somehow attached to it.

Program Listing.

LBL	. POLZER"	40	RCL 07	80	STO 17	120	+
2	RAD	41	E	81	<u>*LBL 01</u>	121	I<>J
3	SIZE?	42	-	82	RCL 07	122	7
4	23	43	*	83	83 3	123	+
5	X>Y?	44	CHS	84	-	124	SF 21
6	PSIZE	45	STO 08	85	E3/E+	125	PVIEW
7		46	FS? 02	86	RCL 17	126	CF 21
, 8		47	GTO 90	87	INT	127	<u>*LBL 08</u>
0	Q	48	XEQ F	88	+	128	-HL MATH+
10	"#POI - 2"	49	STO 14	89	STO 16	129	FS? 05
11		50	XEQ 04	90	,	130	GTO 14
12		51	RCL 07	91	STO 21	131	FS? 04
12		52	2	92	XEQ 02	132	GTO 13
1/		53	-	93	RCL IND 17	133	7
14	∧>0: V=12	54	*	94	*	134	RCL 07
16		55	STO 09	95	ST+ 22	135	+
17		56	FS? 03	96	ISG 17	136	E3/E+
10	310.00	57	GTO 90	97	GTO 01	137	6
10	, V <> E	58	XEQ F	98	RCL 22	138	+
19	∧<>r V∠∖V	59	STO 15	99	RCL 07	139	3
20		60	XEQ 03	100	5	140	PCPY
21		61	RCL 07	101	-	141	PROOT
22		62	3	102	*	142	GTO A
23	310 07 *I RI 00	63	-	103	CHS	143	<u>*LBL 14</u>
24	<u>"LDL UU</u> "D/"	64	*	104	STO 12	144	RCL 07
25		65	CHS	105	<u>*LBL 90</u>	145	ST/ 08
20		66	STO 10	106	RCL 07	146	ST/ 09
27	(1) - 2''	67	FS? 04	107	E	147	ST/ 10
20		68	GTO 90	108	-	148	ST/ 11
29		69	XEQ F	109	STO 00	149	RCL 08
21		70	STO 16	110	TONE 0	150	RCL 09
27	13G 07	71	XEQ 02	111	"CFS? Y/N"	151	RCL 10
22		72	RCL 07	112	AVIEW	152	RCL 11
20		73	4	113	sF#	153	QUART
34 25	510.07	74	-	114	99	154	GTO 00
25	, STO 00	75	*	115	CLX	155	*LBL 13
0C 7C		76	STO 11	116	X#0?	156	RCL 07
3/ 20		77	FS? 05	117	GTO 08	157	RCL 08
38		78	GTO 90	118	RCL 00	158	RCL 09
39		79	XEQ F	119	7	159	RCL 10

160	CROOT	177	<u>*LBL 04</u>	195	E3/E+	213	-
161	Σ V #	178	RCL 07	196	RCL 15	214	E3/E+
162	43	179	E3/E+	197	INT	215	RCL 16
163	GTO 00	180	RCL 14	198	+	216	INT
164	*LBL F	181	INT	199	STO 14	217	+
165	CE 21	182	+	200	,	218	STO 15
166		183	RGSUM	201	STO 19	219	,
100	5 A)/TE)A/	184	RCL IND 14	202	XEQ 04	220	STO 20
107		185	*	203	RCL IND 15	221	XEQ 03
100	SF 25	186	ST+ 19	204	*	222	RCL IND 16
109		187	ISG 14	205	ST+ 20	223	*
170	RCL 07	188	GTO 04	206	ISG 15	224	ST+ 21
1/1	RCL 00	189	RCL 19	207	GTO 03	225	ISG 16
172	- 	190	RTN	208	RCL 20	226	GTO 02
1/3	E3/E+	191	<u>*LBL 03</u>	209	RTN	227	RCL 21
174	ISG 00	192	RCL 07	210	<u>*LBL 02</u>	228	END
175	DTN	193	E	211	RCL 07		
1/0	KIN	194	-	212	2		