
CRYPTO-41 Module

© 2015 ‘Angel Martin Page 1

HP-41 Cryptography

Module

 Overview

This module comprises a selection loosely grouped around the Cryptography subject. Don’t expect a new

implementation of the Enigma machine (besides that one was eventually defeated anyway) – but a
grouping of functions and User programs that touch upon the data scrambling and encoding areas. Some

programs have been adapted from the German Vieweg series books, modified to take advantage of the
extended functions set.

The Page scrambling and the Password Activation functions were already available in the PowerCL, and
have been now included here for all users to enjoy. Remember that they need the target ROM to be in

Q-RAM to work properly, as they modify its actual contents. Thus they implicitly require the
HEPAX/NoVoRAM, an MLDL2k or the 41-CL to be fully realized.

Amongst the new material, MCODE functions to alter the ALPHA contents by adding or subtracting a
certain number of units to each of the characters (constant shift), or by a progressive altering that
increases the shift value for character as the text moves on.

Some functions use routines from the Library#4 Module – which therefore must be installed on your

system. There is a check for the Library#4 presence upon initialization (Calculator “ON”) that will present
a warning message if it’s not present:

Both the Library#4 module and its manual can be downloaded from the HP-41 Archive Page, graciously

hosted by Warren Furlow. This module is pretty much self-contained, as it includes all the auxiliary
functions used in the FOCAL programs. - The only exception is the user program-encrypting program
“CRYPTO”, which requires the original CCD Module to be plugged in .

The table below shows the function names in alphabetical order with a brief description. The Authors and

sources are listed below for a complete program description and detailed user instructions in case you’re
interested.

XROM Function Description Author Source

10,00 -CRYPTO 41 Section Header Ángel Martin This project

10,01 DGT Sums mantissa digits Ángel Martin RAMPage Module

10,02 AREV Reverses ALPHA Content Frans de Vries Data File V10 N8 p8

10,03 CRPTPG _ _ _ Encrypt/Decrypt Page Ángel Martin PowerCL Extreme

10,04 DSHFT _ _ Down-Shift Alpha (Constant) Ángel Martin This project – see below

10,05 DSHFT+ _ _ Down-Shift Alpha (Progressive) Ángel Martin This project – see below

10,06 FLCOPY Copy ASCII File Ángel Martin PowerCL Extreme

10,07 FOG Subroutine for CRPTPG Derek Amos PPC CJ, V12N5 p3

http://www.hp41.org/LibView.cfm?Command=View&ItemID=1027
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1027
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1169
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1206
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1206
http://www.hp41.org/LibView.cfm?Command=Image&ItemID=229&FileID=6442

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 2

10,08 NOTA NOT ALPHA Ángel Martin This Project – see below

10,09 NOTFL NOT X-Mem File Ángel Martin This Project – see below

10,10 RENMFL Rename File Sebastian Toelg RAMPage Module

10,11 RETPFL Retype File Ángel Martin RAMPage Module

10,12 RGCHR Registers as Characters Ángel Martin This Project – see below

10,13 RGNUM Registers as Numeric Ángel Martin This Project – see below

10,14 SECURE Enables password lock Nick Harmer Data File V9 N5 p12

10,15 UNLOCK Disables password lock Ángel Martin PowerCL Extreme

10,16 UNSHFT _ _ Up-Shifts Alpha (Constant) Ángel Martin This project – see below

10,17 UNSHFT+ _ _ Up-Shifts Alpha (Progressive) Ángel Martin This project – see below

10,18 WORKFL Recalls Work File Name Ángel Martin PowerCL Extreme

10,19 XPASS _ Changes Password Nick Harmer Data File V9 N5 p12

10,20 -USER PRGM Checks for Library#4 Ángel Martin This project

10,21 “A>REG” Saves ALPHA in Data Registers JM Baillard hp-41 Programs

10,22 "AS>DT" Copies Text File to Data File Harald Schumny Vieweg Book #5

10,23 "CDA" Codes ALPHA Unknown Swap Disks

10,24 "CDRGX" Codes Registers by X,Y JM Baillard hp-41 Programs

10,25 "CRYPTO" Encrypts Program (w/ CCD Mod) Ángel Martin Author’s Collection

10,26 “CYPHER” Encrypts Data Registers Ángel Martin This project – see below

10,27 "DCA" Decodes ALPHA Unknown Swap Disks

10,28 "DCRGX" Decodes Registers by X JM Baillard hp-41 Programs

10,29 “DECPHR” Decrypts Data Registers Ángel Martin This project – see below

10,30 "DT>AS" Copies Data File to Text File Harald Schumny Vieweg Book #5

10,31 "INVRG" Inverts Register Contents Frank Altensen Vieweg Book #7

10,32 “INVRGX” Like INVRG on bbb.eee range Ángel Martin This project – see below

10,33 “NUMRIK” Register Conversion to Numeric Martin/Altensen Vieweg Book #7

10,34 “RNDMZ” Register Randomization Ángel Martin This project – see below

10,35 "SHFLRG" Shuffles Mem Registers Frank Altensen Vieweg Book #7

10,36 “UNUMRK” Undoes Numeric Conversion Martin/Altensen Vieweg Book #7

10,37 “URNDMZ” Undoes Randomization Ángel Martin This project – see below

10,38 "USHFRG" Un-shuffles Mem Registers Frank Altensen Vieweg Book #7

10,39 "CRPTAS" Manages Text File Encryption GeirIsene Geir’s Pages

10,40 "DECR" Decrypts Text File GeirIsene Geir’s Pages

10,41 "ENCR" Encrypts Text File GeirIsene Geir’s pages

10,42 "VIEWCR" Views Encrypted Text File GeirIsene Geir’s Pages

10,43 -CODE THRY Section Header Ángel Martin This Project

10,44 2^X-1 Power of 2 minus one Ángel Martin SandMath Module

10,45 LD2 Digital Logarithm base-2 Ángel Martin This Project – See below

10,46 “CODING” Coding Theory Main Michael Schilli PRISMA Jan 1990, p23

10,47 “HUFFM” Huffman Method Michael Schilli PRISMA Jan 1990, p23

10,48 “SHANN” Shannon-Fano Method Michael Schilli PRISMA Jan 1990, p23

10,49 “PUSH” Subroutine for CODING Michael Schilli PRISMA Jan 1990, p23

10,50 “POP” Subroutine for CODING Michael Schilli PRISMA Jan 1990, p23

10,51 “*SZ” Size Check Michael Schilli PRISMA Jan 1990, p23

10,52 “SEMIO” Semiotic Analysis Martin/Altensen Vieweg Book #7

10,53 “VREG” Views bbb.eee registers Ángel Martin RAMPage Module

http://www.hp41.org/LibView.cfm?Command=View&ItemID=1169
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1169
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1206
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1206
http://hp41programs.yolasite.com/crypto.php
http://www.hp41.org/LibView.cfm?Command=View&ItemID=36
http://hp41programs.yolasite.com/crypto.php
http://www.hp41.org/LibView.cfm?Command=View&ItemID=36
http://hp41programs.yolasite.com/crypto.php
https://github.com/isene/hp-41_crypt
https://github.com/isene/hp-41_crypt
https://github.com/isene/hp-41_crypt
https://github.com/isene/hp-41_crypt
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1232
http://www.perlmeister.com/prisma.html
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1085
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1085
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1085
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1085
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1085
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1169

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 3

10,54 A<>RG _ _ Swaps ALPHA and Registers Ángel Martin RAMPage Module

10,55 ARCLI Alpha RCL Integer W&W GmbH OS/X Manual

10,56 CEIL Ceiling Function Ángel Martin SandMath Module

10,57 FLOOR Floor Function Ángel Martin SandMath Module

10,58 PMTA Prompt ALPHA Text W&W GmbH OS/X Manual

10,59 RAND Random Number from Seed Håkan Thörngren PPC CJ V13N4 p31

10,60 SEED Enters Seed Håkan Thörngren PPC CJ V13N4 p31

10,61 MREV Mantissa Digit Reversal Ángel Martin Recurse Module

10,62 X>$ Numeric to String VL Electronics HEPAX Module

10,63 ADR _ _ _ _ Address Coding Ángel Martin This module

`

Image Credit: Emigma rotor set Wapcaplet.

https://brilliant.org/wiki/enigma-machine/

http://www.hp41.org/LibView.cfm?Command=View&ItemID=1169
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1168
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1232
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1232
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1168
http://www.hp41.org/LibView.cfm?Command=Image&ItemID=240&FileID=6846
http://www.hp41.org/LibView.cfm?Command=Image&ItemID=240&FileID=6846
https://en.wikipedia.org/wiki/File:Enigma_rotor_set.png

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 4

1 – Crypto Function Set

Below is a brief description for some of the functions of the module for your convenience – As always,
you’re encouraged to check the documentation provided in the linked documents for all the other
functions and programs.

DSHFT_and USHFT__ ;Char. Constant Shift

These functions apply a constant shift to encode all characters in the ALPHA registers, given by the value
in the prompt. The shift is either added to or subtracted from the original char value, depending on the

function used. They are inverse from one another, so you can recover the text encoded by one using the
other with the same parameter.

Like it is the case with the other prompting functions, they will take the prompt argument from the X
registers if executed as part of a user program.

Examples: Convert the following text in ALPHA by adding three to the character values, then recover
the initial text subtracting the same amount from them.

ALPHA, “MARY HAD A LITTLE LAMB”, ALPHA

USHFT 03 =>“**PDU/#KDG#D#OLWWOH#ODPE”

DSHFT 03 =>“MARY HAD A LITTLE LAMB”

DSHFT+_ and USHFT+__; Char. Progressive Shift

These functions apply a progressive shift to encode the characters in ALPHA, beginning with the value
entered in the prompt. The shifts are either added to or subtracted from the original char value,

depending on the function used. They are inverse from one another, so you can recover the text
encoded by one using the other with the same parameter.

Like it is the case with the other prompting functions, they will take the prompt argument from the X
registers if executed as part of a user program.

Examples: Convert the same text from the example before using a progressive shift to the character

values, starting with the value 003. Undo the changes by applying a progressive reduction to the
converted text.

ALPHA, “MARY HAD A LITTLE LAMB”, ALPHA

USHFT+03 =>“**eX**4CSU0 P.YU_^UM'RFQE”

DSHFT+ 03 =>“MARY HAD A LITTLE LAMB”

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 5

NOTA and NOTFL ; Inverting Data

These functions use the simplest pattern for a character code modification; i.e. a logical NOT operation,
either on the contents of the ALPHA registers or in an ASCII file located in Extended-memory. The
functions will therefore invert the text and can be used twice to recover the original contents again.

NOTA will not change the NULL characters – and therefore the encoded text will have the same length

as the original. This is not the case for the shifting functions, which work on a complete register basis –
and thus the encoded text will have a total length multiple of seven.

NOTFL is the equivalent function for ASCII files. The ASCII file name is expected to be in ALPHA before
calling NOTFL. Be aware that it will also invert the record-definition characters within the ASCII file

records, and therefore you should not try to Edit or View the file contents while it is encrypted! Refer to
the user program “CRPTAS” for a more flexible encryption of ASCII files that respects the control
characters and therefore is compatible with the file editing functions like ED.

AREV and A<>RG__ ; ALPHA Utilities

AREV is a super-fast function that will reverse the complete contents in ALPHA (up to 24 characters),
turning it into its mirror-image. For instance:

→

A<>RG will dump the ALPHA contents into four consecutive registers, starting by the register number

entered in its prompt. Use it to temporarily save ALPHA and restore it back with a second execution of

the function using the same parameter. Note that the data in the registers should not be recalled, as that
would normalize the contents and therefore void the original formatting.

Like it is the case with the other prompting functions, they will take the prompt argument from the X
registers if executed as part of a user program.

Example.- The short program below combines four of the functions described above to create a

convoluted encryption of the ALPHA register, then reverses itself to undo the encoding. Note how in a
program the shifting functions take the shift value from the X register – and not the prompt.

Line Instruction Line Instruction

01 LBL “CD” 08 LBL “DCD”

02 AREV 09 NOTA

03 3 10 3

04 USHFT+ 11 DSHFT+

05 NOTA 12 AREV

06 AVIEW 13 AVIEW

07 RTN 14 END

This idea is the foundation of the user programs CYPHER and DECPHR, which will be described later in
the manual.

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 6

RGCHR and RGNUM ; Changing Register Data Types

This pair of functions do a mass-conversion of all data registers; changing the data type for the values
stored in them - to Alpha strings and back to numeric. They work on ALL data registers as defined by

the calculator SIZE. If a given register is already in the target format it will be ignored. A related function
is X>$, which does the conversion to ALPHA data type on the X-Register only.

Note that while the conversion to ALPHA DATA (function RGCHR) is always a safe one, the reverse one
(function RGNUM) is likely to result into a non-Normalized Number (NNN) and therefore the value will

be erased if you use the standard memory functions on the corresponding register, due to the

normalization routines called by them. For a more comprehensive data type conversion you should refer
to the user programs “NUMRIK” and “UNUMRK” described later in this document.

RETPFL and RENMFL ; Changing X-Mem Files

Another simple way to disguise the information contained in an ASCCI file is by modifying the file type so

that the respective file editors (and functions) won’t be able to open it or view it. This can be done with

RETPFL, which will change the file type to the value in the X register (x<=14). You should avoid using
other types reserved for other file types, such as DATA (x=2) and Program (x=1).

You can also use RENMFL to further clear your tracks after changing the file type – so there’s no
resemblance to the original ASCII file even in the new file name.

Be careful not to attempt file editors with “masked” file types!

FLCOPY and WORKFL ; Copying Files and WorkFile

There is no function in the X-Functions Module that allows for a direct File Copy – but this limitation is
overcome with FLCOPY. You can use it to copy any file type to another of the same type, provided that
the destination file has already been created in X-Memory – obviously as a blank file but with the same
size. The syntax for FLCOPY follows the intuitive format “FROM,TO” string in Alpha.

Lastly, WORKFL will retrieve the name of the current work file to ALPHA – so you don’t need to store it
during intermediate calculations that would modify the ALPHA registers.

Even if not directly related to cryptography, these functions become very useful for user programs to
facilitate the FOCAL code.

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 7

DIG and MREV ; Mantissa functions.

This pair of minimalistic routines add some tricks to the masking and disguising toolkit. You can

use them to further enhance the camouflaging tactics for data values in X, and by extension all

data registers as well.

DIG pushes the stack and puts the sum of all mantissa digits in X,

Example: PI, XEQ “DIG” => 

MREV reverses the mantissa digits of th e value in X – leaving the sign and exponent unaltered.

Example: PI, XEQ “MREV” => 

Header AE01 087 "G"
Header AE02 009 "i" Sum of Mantissa Digits

Header AE03 004 "D"
Header AE04 04E "" Angel Martin

DIG AE05 0B1 ?NC XQ Mantissa Digit SUM

 AE06 10C ->432C [SDGT4]

 AE07 17D ?NC GO [BIN-BCD] plus [RCL]

 AE08 0C6 ->315F [ATOX20]

file:///C:/HP-41/Maps%20&%20Words/Crypto%20ROM/CRYPTO_ROM.xls%23RANGE!ATOX20

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 8

FOG and CRPTPG ; Q-RAM Encryption

If you’re concerned about the security of the data and programs held in your RAM pages here is the
ultimate encryption facility to completely cover your tracks and protect the system to the paranoia stage.

FOG will scramble the RAM contents using a 6-characters long encryption key provided in ALPHA,
starting from the address in the S&X field of X (thus a NNN is expected), and until the bottom of that

page. Repeating the operation with the same encryption code will restore the contents to its original
state, so the operation is reversible – as long as you remember the key used to encrypt it in the first

place.

CRPTPG is a nice and easy driver program for FOG that takes care of preparing the required inputs for

you. No additional “precautions” are added, so the “ADR _ _ _ _” input will accept any HEX characters
and not only valid addresses.

The program will prompt for a user key, which must be 6-chars long exactly. This gets enforced by the

following error message when needed:

 and

As these functions only operate in RAM the OS area is safe, even if you attempt to encrypt it. Ditto for

every page plugged to a module in Flash memory – but watch out for the RAM-plugged pages (like
HEPAX RAM, or any other module you have residing in sRAM). That’s why the confirmation message

“OK? Y/N” will also be prompted when calling this function – even in a program.

Needless to say, things can get hairy pretty quickly if you mess with critical areas, like the polling points.
FOG will not modify the contents of locations 0xpFF4 and above within the page, but that doesn’t

guarantee a trouble-free result – because if polling points are active who knows what will be there where
they’re pointing at AFTER the encryption!

ADR ; Address Coding

This small routine is used in CRPTPG to prompt for the start address in the page to encrypt. You

can also use it in your own routines. The result is left in register Q as an NNN.

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 9

SECURE, UNLOCK, and XPASS ; Calculator Security

Here we have a nice practical application of advanced system control. Use these functions to manage a
password-protection scheme for your machine – so nobody without authorized access can use it.

They were published back in 1990 (Data File V9 N5 p12) by Nick Harmer, and implemented in Q-RAM
devices (a.k.a MLDL). Obvious caveat there was that removing the MLDL from the machine dismantled

the whole scheme – and the same applies in this implementation..

The protection works as follows:-

1. Function SECURE activates the security by setting the protection flag. The execution also

switches off the machine. This sets up a process executed on each CALC_ON event, causing to
prompt the user for the password during the start-up process.

2. Function UNLOCK deactivates the security by clearing the protection flag.
3. Function XPASS allows the user to change the password from the default one to his/her favorite

one. The length of the password is limited to six (6) characters.

 Enter code (up to 6 chrs. long) and end with [R/S]

Inputting the password is very simple but very unforgiving as well: at the prompt “PASSWORD=?” just
type the letters one by one until completing the word, and you’re done. If you make a mistake the

machine will switch itself off and it’ll be “groundhog day” all over again – until you get it right.

Each keystroke will be acknowledged by a short tone, but no change to the display – so nothing like

“*****” as you type the word. If the wrong letter is entered a lower-pitch sound will be heard and the
calculator will go to sleep.

Be especially careful when entering a new password code– as there is no repeat input to confirm the
entry; so whatever key combination you type will be taken when ending the sequence with R/S. The

initial password (“factory default”, so to speak) is “CACA”.

 Enter code (up to 6 chrs. long) and end with [R/S]

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 10

2 – Related Math Functions

2^X-1 and LD2 ; base-2 Math.

Two small utility functions to calculate digital logarithm (base 2) and powers of 2 with more accuracy

than the standard functions – using the 13-digit routines in the OS.

Both functions take the argument from the X register and save it to LastX, and the result is placed in X
replacing the original argument. No other stack or data registers are used.

Being quasi-inverse of one another, they verify the relation: x = LD2 [2^X-1(x) + 1]

STACK INPUT OUTPUT

Y y y

X x LD2(x) / 2^X-1 (x)

L l x

CEIL and FLOOR ; Ceiling and Floor integers

The floor and ceiling functions map a real number to the largest previous or the smallest following

integer, respectively. More precisely, floor(x) = [x] is the largest integer not greater than x and ceiling(x)
=]x[is the smallest integer not less than x.

This implementation uses the native MOD function, through the expressions:

CEIL (x) = [x – MOD(x, -1)]; and FLOOR (x) = [x – MOD(x, 1)].

SEED and RAND ; Random Numbers.

The Crypto ROM includes its own facility to handle Random and pseudo-random numbers. The model
uses the combination of a SEED value, which can be entered by the user or taken from the current time

using the Timer in the CX. Then the RAND function obtains a derived pseudo-random number based on
the current seed.

The application of pseudo-random numbers to cryptography is obvious is we associate the user-provided
seed value to a given user key for an encoding process, and the function RAND to the different factors
derived from the seed. Note that the seed value must be between 0 and 1 forSEED to work properly.

These functions are implemented using a dedicated buffer to store the seed and current random values.

The buffer is created automatically by the module upon start-up when the calculator is switched on. The
buffer id# is number “9”.

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 11

Example: Register Randomization.

The listing below combines the functions described above to randomize all data registers by means of a

direct multiplication by a random number derived from a user seed. It then reverses itself to undo the
encoding. Only the core section is listed – but note how no data registers are used for the program itself
and thus all main memory will be converted.

Line Instruction Line Instruction Line Instruction

01 LBL “RNDMZ” 13 LBL “URDMZ” 25 ENTER^

02 XEQ 05 14 XEQ 05 26 LOG

03 LBL 00 15 LBL 02 27 CEIL

04 RAND 16 RAND 28 10^X

05 ST* IND Y 17 ST/ IND Y 29 /

06 RDN 18 RDN 30 SEED

07 ISG X 19 ISG X 31 SIZE?

08 GTO 00 20 GTO 02 32 E

09 LBL 10 21 GTO 10 33 -

10 “READY” 22 LBL 05 34 E3

11 PROMPT 23 “KEY=? 35 /

12 RTN 24 “PROMPT 36 END

Using repeat calls to the RAND function within the register loop ensure that the “key” value used varies
from register to register, so it cannot be back-calculated by direct register comparisons.

Be aware that for the decryption process you’ll need to provide the same key used for the encryption
(a.k.a. the “anchor” for the initial step – otherwise there won’t be possible to recover the initial values.

You can always use the program “VREG” to review the actual register contents entering the control word

“bbb.eee.ii” in the X register.

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 12

3 – User programs.

CRPTAS ; ASCII Files Encryption (by Geir Isene)

The Function NOTFL was described in the first section of the manual – indicating that there was an

instable encryption since it also modifies the control characters within the file records and thus it couldn’t

be reviewed. The user programs described below overcome that limitation and provide a general-
purpose capability as follows.-

These programs encrypt and decrypt an ASCII Extended Memory (XM). You can also temporarily view an
encrypted file without substituting the file with the decrypted version.

The CRYP program implements the Vigenere cipher with a key of your choice of up to 300 characters. By

default it uses the range of characters from ASCII code 32 (space) to ASCII code 90 ("Z"), but you can
choose any range above ASCII code 32 – for example a range value of 90 to include lower case
characters (ASCII code 122 is "z").

If the key is at least as long as the file to be encrypted, you will actually get perfect security for the
encrypted file. You will have what is known as the One-time pad.

CRYPT is a menu-driven program, which present the following choices:

Here are the three functions implemented:

Function Description

ENCR

Encrypts an ASCII file. The file name must be in Alpha when you execute ENCR. The
program first prompts for the character range (default 58 – press R/S to accept the default).

It then prompts for the key (Alpha is set to ON). Enter the key to use for the encryption 24
characters at the time. As long as you fill the Alpha register with characters for the key, it

will keep asking for more key – until you enter fewer than 24 characters – then it will

commence to encrypt the file. The program resizes the memory to accommodate for a large
key if necessary. After encrypting the file with the key, you get the message "DONE" along

with a beep. All traces of the key have then been removed. Pressing R/S again will launch
the EDitor (ED) with the encrypted file.

DECR

Decrypts the file (name in Alpha. Prompts for the range and the key (use the same range

and the same key as when you encrypted the file. Again you will get a "DONE" and a beep
when the process is completed. Pressing R/S again will launch the EDitor (ED) to let you

view and edit the decrypted file.

VIEWCR

Lets you view an encrypted file. Instead of actually decrypting the whole file, you get to

view each successive record. The program sounds a Tone 9 upon showing each record. The
file remains encrypted in Extended Memory. After the last record is viewed, the program

displays "DONE" and gives a beep. All traces of the key is removed.

http://en.wikipedia.org/wiki/Vigen%C3%A8re_cipher
http://en.wikipedia.org/wiki/One-time_pad

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 13

Program listing.-

 01*LBL "CRPTAS"

 02*LBL D

 03 "VIEW DCR ECR"
 04 AVIEW
 05 CLA
 06 STOP
 07 GTO D

 08*LBL "VWCR"

 09*LBL A

 10 2
 11 GTO 03

 12*LBL "DECR"

 13*LBL C

 14 1
 15 GTO 03

 16*LBL "ENCR"

 17*LBL E

 18 0
 19*LBL 03
 20 X<>F
 21 CLX
 22 SEEKPTA
 23 58
 24 "RANGE? (58)"
 25 PROMPT
 26 STO 03
 27 4.003
 28 STO 01
 29*LBL 10

 30 "KEY? "
 31 PMTA
 32 24
 33 ALENG
 34 X=Y?
 35 SF 05
 36 E3
 37 /
 38 ST+ 01
 39 RCL 01

 40 FRC
 41 E3
 42 *
 43 E
 44 +
 45 SIZE?
 46 X<>Y
 47 X>Y?
 48 PSIZE
 49*LBL 00

 50 ATOX
 51 STO IND 01
 52 ISG 01
 53 GTO 00
 54 FS?C 05
 55 GTO 10
 56 XEQ 13
 57*LBL 01

 58 SF 25
 59 GETREC
 60 FC?C 25
 61 GTO 14
 62 ALENG
 63 STO 02
 64*LBL 02

 65 ATOX
 66 32
 67 -
 68 RCL IND 01
 69 FS? 00
 70 -
 71 FC? 00
 72 +
 73 RCL 03
 74 MOD
 75 32
 76 +
 77 XTOA
 78 ISG 01
 79 GTO 12

 80 XEQ 13
 81*LBL 12

 82 DSE 02
 83 GTO 02
 84 FS? 01
 85 TONE 9
 86 FS? 01
 87 PROMPT
 88 FS? 01
 89 GTO 01
 90 DELREC
 91 INSREC
 92 GTO 01
 93*LBL 13

 94 RCL 01
 95 FRC
 96 4
 97 +
 98 STO 01
 99 RTN
100*LBL 14

101 CF 00
102 CF 01
103 RCL 01
104 FRC
105 E
106 +
107 CLRGX
108 CLST
109 "DONE"
110 BEEP
111 AVIEW
112 CLA
113 WORKFL
114 STOP
115 SEEKPT
116 ED+
117 END

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 14

CDRGX and DCRGX ; Coding Text in Registers (by JM Baillard)

These programs allow coding and decoding a text message that has been stored into data registers by
groups of 1 to 6 characters.The key is simply a random seed input by the user in the X register. The same

one is used for coding and decoding.When the program stops, the coded message has replaced the original
(or vice versa). The register range must be entered in the Y-
register to define the length of the message.

Example: You have stored:

"MYNAME" in register R11
"ISBOND" in register R12

 "JAMES " in register R13
"BOND" in register R14

If your key is r = 1 (a more sophisticated key is recommended...) then:

11.014 ENTER^ 1 XEQ "CDRGX" => 11.014 --- Execution time = 17s ---

The coded message is now in registers R11 thru R14 (many of the characters are displayed as starbursts).

To decode this message, and since the register range is already in the stack:

ENTER^ , 1, R/S => 11.014 and the original alpha strings are in R11 to R14 again.

Remarks:

• avoid the null character since it disappears when shifted into the leftmost position; otherwise, all the
characters with an ASCII code from 1 to 255 are allowed.

• These programs use the random number generator:{ R-D FRC }, so choose r so that 180*r/PI is

not an integer.

• Using this program several times with several keys could produce an almost unbreakable encryption.

• For a 600 character message (stored in 100 registers), execution time = 7mn40s.

Program listing.-

01*LBL "CDRGX"

 02 CF 01
 03 GTO 05

 04*LBL "DCRGX"

 05 SF 01
 06*LBL 05

 07 STO 00
 08 X<>Y
 09 STO 01
 10 STO 03
 11 255
 12 STO 02
 13*LBL 01

 14 CLA

 15 ARCL IND 01
 16 ALENG
 17*LBL 02

 18 ATOX
 19 RCL 00
 20 R-D
 21 FRC
 22 STO 00
 23 RCL 02
 24 *
 25 INT
 26 FS? 01
 27 CHS
 28 +
 29 RCL 02

 30 MOD
 31 X=0?
 32 X<> L
 33 XTOA
 34 X<>Y
 35 DSE X
 36 GTO 02
 37 ASTO IND 01
 38 ISG 01
 39 GTO 01
 40 RCL 03
 41 CLA
 42 END

STACK INPUTS OUTPUTS

Y bbb.eee /

X key bbb.eee

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 15

A>REG ; Storing a message into contiguous registers.

Example: You want to store the confidential message: "THE GARDEN PEAS ARE SIMMERING IN THE
SAUCEPAN" into registers R00 , R01 ,

0 XEQ "A>REG" => the HP-41 displays “1? “

and the alpha keyboard is activated. Now key in:
"THE GARDEN PEAS ARE SIMM"

you hear a TONE since there are now 24 characters in the alpha "register".
Press R/S and the HP-41 displays “2?”, then key in:"ERING IN THE SAUCEPAN"

press R/S the HP-41 displays “3?”. Simply press R/S without any entry the HP-41 returns the control
number 0.007. Your message has been stored into registers R00 thru R07

Program listing.-

01*LBL "A>REG"

 02 ENTER^
 03 AON
 04 E
 05 ST- Y
 06 GTO 02
 07*LBL 01

 08 ISG Z
 09 CLX
 10 ASTO IND Z
 11 ASHF
 12 CLX
 13 ALENG
 14 X#0?
 15 GTO 01
 16 SIGN
 17 +
 18*LBL 02

 19 RCLFLAG
 20 FIX 0
 21 CF 29
 22 " "
 23 ARCL Y
 24 "`?"
 25 STOFLAG
 26 STOP
 27 FS?C 23
 28 GTO 01
 29 AOFF
 30 RDN
 31 CLX
 32 E3
 33 /
 34 +
 35 CLA
 36 END

STACK INPUT OUTPUT

X bbb bbb.eee

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 16

INVREG and INVRGX; Registers Inversion (by F. Altensen)

This program does basically an inversion of the Text data contained in Data Registers simply by using a
character mirror image method. It works on the entire data register range currently configured in the
calculator - but only affecting those containing ALPHA data.

Example: With the following strings stored in registers R07 – R09:

Before

R07 = “ROGER1”
R08 = “CHARLY”
R09 = “OSKAR9”

After:

R07 = “1REGOR”
R08 = “YLRAHC”
R09 = “9RAKSO”

A second execution restores the original data in the registers.

The original program by Frank Altensen only used basic HP-41C functions (plain model!), so you have an

example of bare-bones ingenuity. The drawbacks were longer execution times and data registers usage {R00 –
R06}.

Using AREV the execution improves significantly, and without internal usage of data registers. See the
modified listing below that also offers an option for a register range instead, defined by the control word
bbb.eee in the X register.

Line Instruction Line Instruction

01 LBL “INVRG” 12 X#0?

02 SIZE? 13 GTO 01

03 E 14 ARCL IND Y

04 - 15 AREV

05 E3 16 ASTO IND Y

06 / 17 LBL 01

07 LBL “INVRGX” 18 RDN

08 LBL 00 19 ISG X

09 CLA 20 GTO 00

10 RCL IND X 21 END

11 SIGN --

Note how the inversion is only performed on ALPHA data, checking for the result of the SIGN operation.

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 17

SHFRG and USHFRG ; Registers Shuffling (by F. Altensen)

Rather than modifying the data registers contents, these programs base their approach in a modification of the
message parts- i.e. shuffling the data registers according to a scheme derived from the user key entered at

the beginning of the program. The original message is pierced back together by undoing the shuffling – using
the same user key.

Remarks:

• Registers {R00 – R06} are used internally by the program.

• It works on the complete register range as defined by the SIZE of the calculator.

• The user key is the seed for a series of pseudo-random numbers used for the shuffling order

• The user key can have values from 1 to 9999999999, but this is a very slow process – which grows
exponentially with the length of the supplied key.

The pseudo-random algorithm used here and all throughout the module (including the MCODE function RAND
itself) is the same one described in the PPC ROM manual, whereby:

RAND(x) = FRC [9821 * x + 0,211327]

Program listing:

01*LBL "SHFRG"

 02 SF 05
 03 GTO 05

 04*LBL "USHFRG"

 05 CF 05
 06*LBL 05

 07 "CODE=?"
 08 PROMPT
 09 "DE"
 10 FS? 05
 11 CLA
 12 "`CODING..."
 13 AVIEW
 14 STO 01
 15 STO 02
 16 STO 03
 17 CLX
 18 STO 00
 19 FC? 05
 20 GTO 01
 21*LBL 00

 22 XEQ 10
 23 STO 05
 24 XEQ 10

 25 STO 06

 26 RCL IND 05
 27 X<> IND 06
 28 STO IND 05
 29 DSE 02
 30 GTO 00

 31 REG 01

 32 CL
 33*LBL 09

 34 "READY"
 35 PROMPT
 36 GTO 05
 37*LBL 10

 38 RCL 00
 39 9821
 40 *
 41 .211327
 42 +
 43 FRC
 44 STO 00
 45 SIZE?
 46 7
 47 -
 48 *
 49 7
 50 +

 51 RTN
 52*LBL 01

 53 XEQ 10
 54 STO 05
 55 XEQ 10
 56 STO 06
 57 DSE 01
 58 GTO 01
 59 RCL IND 05
 60 X<> IND 06
 61 STO IND 05
 62 CLX
 63 STO 00
 64 DSE 03
 65 ""
 66 RCL 03
 67 STO 01
 68 ISG 01
 69 CLX
 70 DSE 01
 71 GTO 01
 72 GTO 09
 73 END

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 18

NUMRIK and UNUMRK ; Numeric Conversions.

These programs provide general-purpose data type conversion functionality for all values in the data registers.
They basically allow you to change text data into an encrypted equivalent numeric value, which can be
decrypted later on to recover the original message.

Because the encrypted values are properly normalized numbers, these programs do not have the limitation

discussed before on the RGNUM function description, thus you can review the encrypted values without any
risk of data loss due to normalization. Note however that the programs use R00 to R10, the valid register range
for the conversion starts with R11.

Example: Encrypt the text message “ONCE UPON A TIME IN THE WEST”, stored in data registers R11 to R15.

First we’ll enter the message using A>REG, with 11 in X and typing the text ad libitum.

After executing NUMRIK the registers contain the following values:

R11 = 2,4231214 30
R12 = 2,5242332 32

R13 = 2,9182214 18

R14 = 3,2233229 14
R15 = 3,2323214 29

And running the inverse process with UNUMRK returns the original data as follows:

R11 = ONCE U

R12 = PON A

R13 = TIME I
R14 = N THE
R15 = WEST

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 19

Program listing.-

01*LBL "NUMRIK"

 02 CLX
 03 STO 03
 04 FIX 0
 05 11.1
 06 STO 00
 07*LBL 02

 08 SF 25
 09 RCL IND 00
 10 SIGN
 11 FC?C 25
 12 GTO 05
 13 X#0?
 14 GTO 11
 15 CLA
 16 ARCL IND 00
 17 AREV
 18 10.004
 19 STO 01
 20*LBL 04

 21 ATOX
 22 55
 23 -
 24 X<0?
 25 32
 26 STO IND 01
 27 DSE 01
 28 GTO 04
 29 5.01
 30 STO 01
 31 10.00002
 32 STO 02
 33*LBL 07

 34 RCL IND 01
 35 RCL 02
 36 INT
 37 2
 38 -
 39 10^X
 40 *
 41 ST+ 03
 42 ISG 01

 43 ""
 44 DSE 02
 45 GTO 07
 46 RCL 03
 47 ENTER^
 48 LOG
 49 INT
 50 10^X
 51 /
 52 RCL 10
 53 10^X
 54 *
 55 VIEW 00
 56 STO IND 00
 57*LBL 11

 58 CLX
 59 STO 03
 60 ISG 00
 61 GTO 02
 62*LBL 05

 63 FIX 3
 64 "READY"
 65 PROMPT

 66*LBL "UNUMRK"

 67 11.1
 68 STO 00
 69*LBL 08

 70 5.009
 71 STO 04
 72 10.00002
 73 STO 03
 74 SF 25
 75 RCL IND 00
 76 FC?C 25
 77 GTO 05
 78 X=0?
 79 GTO 12
 80 STO 01
 81 LOG
 82 INT
 83 55
 84 +

 85 STO 05
 86 CLA
 87 RCL 01
 88 ENTER^
 89 LOG
 90 INT
 91 10^X
 92 /
 93 E1
 94 /
 95 STO 01
 96*LBL 09

 97 RCL 01
 98 E2
 99 *
100 STO 06
101 INT
102 32
103 X=Y?
104 GTO 00
105 RDN
106 55
107 +
108*LBL 00

109 XTOA
110 RCL 06
111 FRC
112 STO 01
113 ISG 04
114 ""
115 DSE 03
116 GTO 09
117 RCL 05
118 XTOA
119 VIEW 00
120 ASTO IND 00
121*LBL 12

122 ISG 00
123 GTO 08
124 END

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 20

CRYPTO ; Program Encryption (w/ the CCD Module.)

If you happen to have the CCD Module around (a sure fact if you own the 41-CL) you may also want to try
this user program that encrypts programs (but itself) placed in RAM. The approach is simple a byte inversion of

all the program bytes - except the first global label and its END – so it’ll be rendered nonsensical even if legible

(i.e. non-private). A second execution of the program undoes the encryption, restoring the original code.

CRYPTO expects the name of the user program to be encrypted in the ALPHA register. That program must
reside in RAM for obvious reasons. Depending on the program structure some issues may arise, such as the

case of multiple global labels that impact the final END. Because of this the program steps may be gibberish if
you review them during their encrypted state.

So here you have it, perhaps more of an academic example than a useful application but illustrates the usage
of several CCD Functions quite nicely.

As mentioned in the introduction, this is the only program that requires auxiliary modules being plugged into

the calculator – not counting the Library#4 itself.

Program listing.-

 01*LBL 92

 02 RDN

 03 A-
 04 A-

 05 DSE Y
 06 DSE Y

 07 PEEKB

 08 240
 09 X<=Y?

 10 GTO 01
 11 RDN

 12 RDN
 13 GTO 06
 14*LBL 01

 15 -

 16 CHS
 17 ST+ Z

 18 A+B
 19 GTO 06

 20*LBL "CRYPTO"

 21 CF 00

 22 .

 23 WSIZE
 24 UNS

 25 PPLNG
 26 PHD
 27*LBL 00

 28 PEEKB

 29 205
 30 X>Y?

 31 SF 00
 32 CLX

 33 192
 34 X>Y?

 35 CF 00

 36 RDN
 37 FS?C 00

 38 GTO 92
 39 240

 40 X<=Y?

 41 SF 00
 42 CLX

 43 63

 44 X>Y?

 45 SF 00
 46 CLX

 47 50
 48 X>Y?

 49 CF 00
 50 CLX

 51 16

 52 X>Y?
 53 SF 00

 54 RDN
 55 FC?C 00

 56 NOT

 57 POKEB
 58 RDN
 59*LBL 06

 60 A-
 61 DSE Y

 62 GTO 00

 63 END

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 21

CYPHER and DECPHR ; All together now.

If you read the application example in the description of AREV you’d already guess what these pair of
routines do: data registers encryption using a sequential combination of functions to erase our tracks more

effectively, and come up with a pretty unbreakable scheme (even if nothing really is!) .

The idea starts by applying DGT to the key (call it a scaling, or maybe protecting the key from the user

himself?), followed by a consecutive application of AREV and USHFT+ in the coding phase; and the reverse
sequence in the decoding phase – DSHFT+ and AREV. The progressive shifting is preferred to the constant

one as it provides a harder coding.

Note that the shifting will ignore the NULL characters – which are an integral part of the ASTO and ARCL

functions! (ever before wondered why only six Alphabetical characters can be stored in a data register, if there
is room for seven?)

Note that these programs use R00 to store the user-provided key. Also that like with the other programs
dealing with message encryption, only registers containing Alpha Data will get Encrypted/Decrypted.

Program listing.-

01*LBL "CYPHER"

 02 SF 00

 03 GTO 00

 04*LBL "DECPHR"

 05 CF 00
 06*LBL 00

 07 "KEY=?"
 08 PROMPT

 09 DGT

 10 STO 00

 11 SIZE?
 12 E

 13 -
 14 E3

 15 /
 16 E

 17 +
 18*LBL 02

 19 RCL IND X
 20 SIGN

 21 X#0?
 22 GTO 01

 23 CLX
 24 RCL 00

 25 CLA

 26 ARCL IND Y
 27 FS? 00

 28 AREV
 29 FS? 00

 30 USHFT+

 31 FC? 00
 32 DSHFT+

 33 FC? 00
 34 AREV

 35 ASTO IND Y
 36*LBL 01

 37 RDN
 38 ISG X

 39 GTO 02
 40 END

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 22

4 – Code Theory.

CODING, SHANN and HUFFM ; (by M. Schilli)

Leaving the biggest for last… The Crypto ROM includes a couple of programs related to the Code Theory field.
Of those the more distinct one is also the biggest of the module: CODING and its subroutines to perform

Shannon-Fano and Huffman coding of a given coding scheme. They were written by Michael Schilli and

published in PRISMA, the German’s user club Magazine. You should refer to the original article for description
and user instructions.

Coding Theory. (by Michael Schilli)
PRISMA Magazine 1/90, pg. 23

1.- General Overview

The encoding method is used whenever it is necessary to uniquely map individual symbols of a source

character set Q (e.g. {A,B, ... G}) to elements of a target character set Z (e.g. {[0,1]).

In this case, as given in the example, the character set Q to be mapped may contain more elements than the
target character set Z: In this case, each element of Q is mapped to a combination of multiple cells of the set

V()(l Z (for example, as in Fig.l).

A typical application example from practice is the adaptation of a news source which contains "n" different

symbols with the probabilities of occurrence p(Q1), p(Q2), ... ,p(Qn) can be emitted. On a binary channel, for
example, this can be an electrical line, which is operated with the digital signals "0"

and "1" and can transmit the emitted symbols of the source over a long distance.

Each emitted symbol from Q is now assigned a particular sequence of zeros and ones is now assigned to each

emitted symbol from Q and this is then fed into the channel. The manner of this assignment, i.e. the mapping
rule, can now be realized very differently: Besides the assignment by numbering with dual numbers (as shown

in Fig. 1), there are several relevant methods, of which two (the Shannon-Fano and the Huffman method) will
be presented here. Both methods additionally take into account the occurrence probabilities of the source

symbols - it is important to know that for an efficient signal transmission it is crucial to keep the average
number of bits to be transmitted per transmitted source signal as small as possible.

For this reason, one assigns very short code words to frequently occurring interfering signals, and, only if
necessary longer ones. It must be noted, however, that no code word that occurs may coincide with the

beginning of another code word, otherwise a downstream decoder would not be able to clearly separate the
words sent clearly separate the words sent. The quality of this code is reflected in the value of the relative

redundancy “r” (excess, dependency) and the entropy H:

(good coding: r -> 0), where E is the information content of the code, i.e. the average number of transmission
bits per transmission symbol: "m") and H represents the entropy of the source (disorder, becomes maximum

when the symbols are equally divided) - where ld = digital logarithm base 2.
The occurrence probabilities of the source symbols in our example are given as follows:

 P(A) = 0.41

P(B) = 0.16

P(C) = 0.15

P(D) = 0.13

PIE) = 0.11

p(F) = 0.03

p(G) - 0.01

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 23

Figure 1 shows the resulting values for a "numerical" coding are listed.

For the coding shown in Fig. 2 the Shannon-Fano method was used. Due to the fact that the dominant symbol

A requires only two bits for transmission, the average codeword length "m" decreases significantly and thus the
relative redundancy r.

By applying the Huffman method, the best possible code is obtained, i.e. the code with the lowest redundancy
(Fig. 3.).

In the following, the two most common methods for source coding will be explained explicitly.

2. the Shannon-Fano method

1) Order the queue symbols according to falling probability (Fig. 4.0).

2) Subdivision of the resulting symbol series into two contiguous subgroups in such a way that the sums

of the symbol probabilities of both subgroups are approximately equal (*): Separation line between AB
and CDEFG; p(AB)=0.57 p(CDEFG)=0.43.

3) All symbols which are in the 1st subgroup are assigned the (partial) code "0", those that are in the 2nd

subgroup are assigned the symbol "1'.

4) Continuation of points 2) and 3) with all the subgroups thus created, until at the end of each "branch"

of the ~partial tree" only two subgroups are left (Fig. 4.2). are left (Figs. 4.2 to 4.4).

(*) "Approximately coincide" is admittedly a somewhat woolly term, but so present in the definition of the
procedure. However, it says nothing other than that the difference of the symbol probability sums of both
subgroups should assume a minimum value. Here this procedure is not unique: There are certainly probability
distributions conceivable, in which one can be just as legitimately decided in favor of one the other separation
of the groups could be chosen just as legitimately.

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 24

3.- The Huffman method.

1) Ordering the source symbols by decreasing probability and assigning the labels a1, a2, ... ,an (Fig. 5)

2) The two symbols in the row are under one name (a67 in Fig. 5.1), add the individual probabilities and
sort the whole in a new diagram according to falling probabilities (Fig. 5.1).

3) Step 2) is repeated until only two different symbols remain in the (then) last table (Fig. 5.5).

This is followed by the actual coding, starting with the last table:

4) The two lowest symbols are assigned the (partial) codes "1" and "0" are assigned to the two lowest

symbols (in square brackets in Fig.5.5O).

5) Repeat step 4) until all tables are processed. New (partial) codes are simply appended to the right to

the right of the already existing codes (in bold).

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 25

4. program sequence on the HP-41

It is to be noted that the symbol probabilities must happen in descending row order. An additional sorting

routine for this is already huge program - also because of speed considerations – so I did not think it would

make sense (see sequence 1).

With the input of "0", the input routine is left and asks for the desired encoding - in best menu manner:
XEQ A starts the Shannon-Fano encoding,

XEQ B the Huffman coding.

If, on the other hand, you want to only calculate the source entropy from the entered probabilities, then press

key "H” (XEQ "H) to start the corresponding routine.

If you set the flag 00 before the start, you can follow the individual group divisions in the display (see

sequence 2). With another R/S the whole output can be repeated. After this demonstration of the Shannon-
Fano routine now to the Huffman procedure, which, like the previous program, can be started at any time - it is

sufficient if the probabilities have been entered once (see procedure 3).

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 26

Program listing.

 01*LBL "CODING"

 02 20
 03 STO 05
 04 E
 05 STO 10
 06 STO 00
 07 STO 12
 08 -
 09 STO 13
 10 E1
 11 +
 12 XROM "*SZ"
 13 E3
 14 STO 11
 15 CF 29
 16*LBL 00

 17 "P"
 18 FIX 0
 19 ARCL 00
 20 "`=?"
 21 PROMPT
 22 RCL 10
 23 X<Y?
 24 GTO 27
 25 X<>Y
 26 STO 10
 27 RCL 13
 28 RCL 00
 29 +
 30 X<>Y
 31 STO IND Y
 32 RCL 12
 33 ST+ 00

 34 X<>Y
 35 X#0?
 36 GTO 00
 37*LBL 01

 38 RCL 12
 39 ST+ X
 40 ST- 00
 41 RCL 00
 42 RCL 13
 43 +
 44 RCL 11
 45 /
 46 RCL 05
 47 +
 48 STO 01
 49 SF 27
 50 "SHA HUF"

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 27

 51 PROMPT
 52*LBL 14

 53 RCL 00
 54 RCL X
 55 RCL 11
 56 /
 57 +
 58 RCL 01
 59 +
 60 STO 06
 61 RCL 12
 62*LBL 02

 63 STO IND Y
 64 ISG Y
 65 GTO 02
 66 RTN

 67*LBL "HUFFM"

 68*LBL C

 69 RCL 00
 70 4
 71 *
 72 RCL 05
 73 +
 74 RCL 12
 75 -
 76 XROM "*SZ"
 77 3
 78 STO 19
 79 2
 80 STO 18
 81 XEQ 14
 82 X<>Y
 83 INT
 84 RCL X
 85 RCL 00
 86 +
 87 RCL 12
 88 -
 89 RCL 11
 90 /
 91 +
 92 STO 03
 93 STO 02
 94 RCL 00
 95 RCL X
 96 RCL 11
 97 /
 98 +
 99 +
100 STO 04
101 RCL 12

102*LBL 15

103 STO IND 02
104 ST+ X
105 ISG 02
106 GTO 15
107 RCL 01
108 STO 02
109 RCL 00
110 RCL 19
111 *
112 STO 07
113*LBL 16

114 RCL 02
115 RCL 07
116 +
117 RCL IND 02
118 STO IND Y
119 ISG 02
120 GTO 16
121 RCL 00
122 STO 13
123*LBL 20

124 RCL 13
125 RCL 04
126 INT
127 +
128 RCL 12
129 -
130 RCL X
131 DSE X
132 RCL IND X
133 RCL IND Z
134 +
135 STO 14
136 RDN
137 RCL 00
138 ST- Y
139 ST- Z
140 RDN
141 RCL IND X
142 STO 16
143 RCL IND Z
144 STO 17
145 +
146 STO 15
147 RCL 04
148 RCL 00
149 RCL 13
150 -
151 RCL 18
152 +

153 RCL 11
154 /
155 -
156 STO 02
157*LBL 17

158 RCL 14
159 RCL IND 02
160 X<Y?
161 GTO 18
162 ISG 02
163 GTO 17
164*LBL 18

165 RCL 14
166 RCL 15
167*LBL 19

168 RCL 02
169 RCL 00
170 -
171 X<>Y
172 X<> IND Y
173 X<> Z
174 X<> IND 02
175 RCL Z
176 ISG 02
177 GTO 19
178 RCL 02
179 RCL 00
180 -
181 X<>Y
182 STO IND Y
183 X<> Z
184 STO IND 02
185 RCL 12
186 ST- 13
187 FS? 00
188 XEQ 29
189 SF 05
190 RCL 16
191 XEQ 21
192 RCL 17
193 CF 05
194 XEQ 21
195 RCL 13
196 RCL 12
197 X#Y?
198 GTO 20
199 SF 06
200 GTO 10
201*LBL 21

202 RCL 06
203 STO 10

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 28

204 X<>Y
205 RCL 18
206*LBL 22

207 RCL Y
208 X<>Y
209 MOD
210 ST- Y
211 X<>Y
212 LASTX
213 /
214 LASTX
215 RCL Z
216 X=0?
217 GTO 23
218 X<>Y
219 ST* IND 10
220 FS? 05
221 ISG IND 10
222 ""
223 X<>Y
224*LBL 23

225 X<> Z
226 X<>Y
227 ISG 10
228 GTO 22
229 RTN
230*LBL 29

231 RCL 13
232 RCL 12
233 X=Y?
234 RTN
235 RCL 00
236 RCL 11
237 /
238 RCL 12
239 +
240 STO 14
241 2
242 STO 08
243 RCL 00
244 RCL 13
245 -
246 "STEP "
247 FIX 0
248 ARCL X
249 "`:"
250 AVIEW
251 RCL 03
252 STO 09
253 RCL 13
254 RCL 11

255 /
256 RCL 12
257 +
258 STO 02
259*LBL 30

260 CLA
261 ARCL 02
262 "`: a"
263 RCL 14
264 STO 07
265 RCL IND 09
266 RCL 08
267*LBL 31

268 RCL Y
269 X<>Y
270 MOD
271 ST- Y
272 X<>Y
273 LASTX
274 /
275 X<>Y
276 X#0?
277 ARCL 07
278 X<>Y
279 X=0?
280 GTO 32
281 LASTX
282 ISG 07
283 GTO 31
284*LBL 32

285 "`: "
286 FIX 2
287 RCL 09
288 RCL 00
289 +
290 RCL IND X
291 RND
292 X=0?
293 FIX 5
294 ARCL IND Y
295 AVIEW
296 ISG 09
297 ""
298 FIX 0
299 ISG 02
300 GTO 30
301 RTN

302*LBL "SHANN"

303*LBL A

304 RCL 05
305 RCL 00

306 2.5
307 *
308 +
309 INT
310 XROM "*SZ"
311 CF 06
312 RCL 05
313 RCL 12
314 -
315 STO 13
316 XEQ 14
317 X<>Y
318 STO 17
319 CLX
320 STO 16
321 RCL 00
322 RCL 11
323 /
324 RCL 12
325 +
326 XROM "PUSH"
327*LBL 03

328 XROM "POP"
329 X=0?
330 GTO 10
331 INT
332 LASTX
333 FRC
334 RCL 11
335 *
336 STO 04
337 X<>Y
338 STO 03
339 X<>Y
340 RCL 13
341 +
342 RCL 11
343 /
344 +
345 RCL 13
346 +
347 STO 02
348 STO 15
349 CLX
350 STO 07
351 STO 08
352*LBL 06

353 RCL IND 02
354 ST+ 08
355 ISG 02
356 GTO 06

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 29

357 RCL 15
358 STO 02
359 RCL 12
360 STO 14
361*LBL 07

362 RCL IND 02
363 STO 09
364 ST- 08
365 ST+ 07
366 RCL 08
367 RCL 07
368 -
369 ABS
370 RCL 14
371 X<Y?
372 GTO 08
373 X<>Y
374 STO 14
375 ISG 02
376 GTO 07
377*LBL 08

378 RCL 02
379 INT
380 RCL 05
381 -
382 RCL X
383 RCL 11
384 /
385 RCL 03
386 +
387 X<>Y
388 RCL 04
389 RCL 11
390 /
391 RCL 12
392 +
393 +
394 X<>Y
395 STO 03
396 X<>Y
397 STO 04
398 FC? 00
399 GTO 28
400 X<>Y
401 INT
402 LASTX
403 FRC
404 RCL 11
405 *
406 "T: "
407 FIX 0

408 ARCL Y
409 "`-"
410 ARCL X
411 RCL 04
412 INT
413 LASTX
414 FRC
415 RCL 11
416 *
417 "` "
418 ARCL Y
419 "`-"
420 ARCL X
421 AVIEW
422*LBL 28

423 RCL 04
424 RCL 06
425 INT
426 RCL 12
427 -
428 RCL X
429 RCL 11
430 /
431 +
432 +
433 STO 02
434 2
435 STO 09
436*LBL 04

437 RCL IND 02
438 RCL 09
439 *
440 RCL 12
441 +
442 STO IND 02
443 ISG 02
444 GTO 04
445 RCL 04
446 ISG 04
447 XROM "PUSH"
448 RCL 03
449 RCL 06
450 INT
451 RCL 12
452 -
453 RCL X
454 RCL 11
455 /
456 +
457 +
458 STO 02

459*LBL 05

460 RCL IND 02
461 ST+ IND 02
462 ISG 02
463 GTO 05
464 RCL 03
465 ISG 03
466 XROM "PUSH"
467 GTO 03

468*LBL "PUSH"

469 RCL 12
470 ST+ 16
471 CLX
472 RCL 16
473 RCL 17
474 +
475 X<>Y
476 STO IND Y
477 RTN

478*LBL "POP"

479 RCL 16
480 X=0?
481 RTN
482 RCL 16
483 RCL 17
484 +
485 RCL IND X
486 RCL 12
487 ST- 16
488 X<>Y
489 RTN
490*LBL 10

491 "0"
492 ASTO 18
493 "1"
494 ASTO 19
495 RCL 06
496 STO 02
497 2
498 STO 08
499 LN
500 STO 09
501*LBL 09

502 "C"
503 RCL 02
504 RCL 06
505 INT
506 -
507 RCL 12
508 +
509 FIX 0

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 30

510 ARCL X
511 "`="
512 FS? 06
513 GTO 24
514 RCL IND 02
515 STO 03
516 XEQ 55
517 RCL 08
518 X<>Y
519 Y^X
520 STO 04
521 ST- 03
522*LBL 11

523 RCL 08
524 ST/ 04
525 RCL 03
526 RCL 04
527 X<=Y?
528 ST- 03
529 X<=Y?
530 ARCL 19
531 X>Y?
532 ARCL 18
533 RCL 12
534 RCL 04
535 X>Y?
536 GTO 11
537 GTO 25
538*LBL 24

539 RCL 08
540 RCL IND 02
541*LBL 26

542 RCL 12
543 X=Y?
544 GTO 25
545 RDN
546 X<>Y
547 RCL Y
548 X<>Y
549 MOD
550 X=0?
551 ARCL 18
552 X#0?
553 ARCL 19
554 ST- Y
555 X<>Y
556 LASTX

557 /
558 LASTX
559 X<>Y
560 GTO 26
561*LBL 25

562 PROMPT
563 ISG 02
564 GTO 09
565 RCL 06
566 STO 02
567 CLX
568 STO 18
569*LBL 12

570 RCL IND 02
571 XEQ 55
572 RCL 02
573 RCL 00
574 -
575 X<>Y
576 RCL IND Y
577 *
578 ST+ 18
579 ISG 02
580 GTO 12
581 "M/="
582 FIX 4
583 ARCL 18
584 PROMPT

585*LBL H

586 RCL 01
587 STO 02
588 CLX
589 STO 19
590*LBL 13

591 RCL IND 02
592 1/X
593 2LD
594 RCL IND 02
595 *
596 ST+ 19
597 ISG 02
598 GTO 13
599 "H="
600 FIX 5
601 ARCL 19
602 PROMPT
603 RCL 18

604 RCL 19
605 -
606 RCL 18
607 /
608 "RR="
609 E2
610 *
611 FIX 2
612 ARCL X
613 "` %"
614 PROMPT
615 GTO 10

616*LBL "*SZ"

617 SF 25
618 RCL IND X
619 FS? 25
620 X<>Y
621 RCL 12
622 +
623 FC?C 25
624 PSIZE
625 RTN
626*LBL 27

627 "ERROR: P"
628 FIX 0
629 RCL 00
630 RCL 12
631 +
632 ARCL X
633 "`P"
634 ARCL 00
635 PROMPT
636 RTN
637*LBL 55

638 RCL 08
639 RCL Y
640 2LD
641 INT
642 RCL 12
643 +
644 Y^X
645 X>Y?
646 DSE L
647 LASTX
648 END

CRYPTO-41 Module

© 2015 ‘Angel Martin Page 31

SEMIO ; Semiotic Analysis.

To complete the collection here is the simplest application of semiotic analysis: calculate the frequency of
appearance of each character in a given text. The program will allow you to enter a very long text in segments

of up to 24 characters each, storing them in data registers as you go. You can run the analysis at any

intermediate stage or at the end of the process, as offered by the menu-driven choices:

• Press the [A] key to continue adding more text, and

• Press the [C] key to run the analysis of the partial (or final) text.

Each time you request the analysis it’ll show you the total number of characters and the relative frequency of

each character’s appearance, until the list is complete (and the sum equals 100%).

 , , etc…

Program listing:

01*LBL "SEMIO"

 02 CLRG
 03 SIZE?
 04 30
 05 X>Y?
 06 PSIZE

 07*LBL J

 08 "ADD SHOW"
 09 PROMPT
 10 GTO J

 11*LBL A

 12 CLA
 13 PMTA
 14*LBL 00

 15 ATOX
 16 X=0?
 17 GTO 02
 18 62
 19 -
 20 ISG IND X
 21 ""

 22 GTO 00
 23*LBL 02

 24 STO 02
 25 GTO J

 26*LBL C

 27 3.03
 28 STO 00
 29*LBL 10

 30 RCL IND 00
 31 ST+ 02
 32 ISG 00
 33 GTO 10
 34 "CHR: "
 35 ARCL 02
 36 PROMPT
 37 CLX
 38 STO 01
 39 3.03
 40 STO 00
 41*LBL 05

 42 RCL IND 00

 43 X#0?
 44 XEQ 09
 45 ISG 00
 46 GTO 05
 47 GTO J
 48*LBL 09

 49 RCL 02
 50 RCL IND 00
 51 %CH
 52 E2
 53 +
 54 CLA
 55 ARCL X
 56 "`%("
 57 RCL 00
 58 62
 59 +
 60 XTOA
 61 "`)"
 62 PROMPT
 63 END

