Double-Down Module

NN NMENERE N L
AL A RN A A AN |
O Y R Y B MO TEY) D
r) [L JS S oy S

-+
(2]
b1
x

DDDDDDDDD

tyex thon DYADX ~ DXA2 DXAN DREXP
FREYS] ‘ J | ’ { J DKEYS? | DINV | |DSQRT| B DRLN
tCLS Rt

DASIN DACOS DATA

=

DRCL

| oRes]

=100 | | =000
JO000) OO0
JO00gd) I=m00d0d
OO0l (=B000
() L) O O (] L) O e

Double-Length Stack

| S|

Dual Number ROM

Programmed by Angel M. Martin
April 2022

© 2022 Angel Martin 1

Double-Down Module

Double-Down ROM
HP-41 Module

Introduction.

Welcome to the Double-Down Module for the HP-41, perhaps an exercise in futility for some but also
the last opportunity to equip our trusty companion with the Double length Stack that you've always
dreamed of but were too coy to ask. And a Double-Length stack you’ll find in here, complete with
all functions needed to support its double size in all the automated stack lift, stack drop and register
roll & duplication actions performed by the O/S behind the scenes when you use the calculator. The
double stack is 9 registers long; that is four more than the standard {XYZTL}. The additional four
registers {ABCD} are located in a dedicated buffer stored in the I/O area of the calculator's RAM, but
you'd never know it's there as it is completely transparent to the user.

Some precursor FOCAL programs were written in the past (see for instance Valentin Albillo’s article in
here: HP Letter 1980-09-27 - Letter from Valentin Albillo to John McGechie - 070588-90.pdf) ;
however a smooth implementation really requires MCODE to iron-out all the small wrinkles created by
the user code restrictions, really not cut for a low-level control of the stack registers — and
frustratingly slow.

This alone would have made a nice mini-module but there was yet another field pending on the task
list that fitted perfectly in the design. That field may sound corner-case or too strange but it
presented itself as a logical candidate to reusing lots of code and techniques from the 41Z Complex
Number Module. We're referring to the Dual Real numbers (the strange cousin of the complex
number); expressions of pairs of two real numbers arranged in specific manner and following well-
defined mathematical rules — as you can see in this general overview:
https://en.wikipedia.org/wiki/Dual number

The implementation is very comprehensive and surprisingly detailed for such a vague subject; all
stops have been pulled to make using it a rewarding experience for the math-inclined HP-41 user
wishing to get on new rides after all these many years. Are you intrigued yet?

Why the dual game?

Although they are two very different areas, both share common structural details that lend
themselves to a joint implementation — taking advantage of the very many routines required to
manage the buffer and the data storage & retrieval. I somehow always think of the FORTH/Assembler
ROM for the HP-71 as a similar concept, merging two distinctly different but very complementary
subjects under the same hood. All in all, a perfect fit from the programming side, and certainly also a
very nice doble-whammy in a single 4k module, so grab them while they last!

Dependencies.

This module is designed to be used on a CX O/S with the Library#4 (revision R59 or higher)
plugged in. No other dependency exists. The XROM id# is “1”, thus you can’t have this module
plugged simultaneously with the 41Z.

© 2022 Angel Martin 2

https://albillo.hpcalc.org/letters/HP%20Letter%201980-09-27%20-%20Letter%20from%20Valentin%20Albillo%20to%20John%20McGechie%20-%20070588-90.pdf
https://en.wikipedia.org/wiki/Dual_number

Double-Down Module

Without further ado, here is a list of the functions in the ROM’s FAT table.

XROM# Function Description Stack Impact / Specials
01.00 | -DBL STACK Section header n/a
01,01 | AKEYS? Bulk Key assignments
01,02 | A+ 8-level stack addition Drops stack, Duplicates D:
01,03 | A- 8-level stack subtraction Drops stack, Duplicates D:
01,04 | a* 8-level stack product Drops stack, Duplicates D:
01,05 |~/ 8-level stack Division Drops stack, Duplicates D:
01,06 | ACLST Clears all stack levels (including LastX)
01,07 | ~CLX Clears X: level Disables stack lift
01,08 ENTERAA Pushes X: up into 8-level stack Lifts stack, disables stack lift
01,09 LASTXA Recalls LastX value to X: Lifts stack
01,10 | AMOD Calculates Y MOD X Drops stack, Duplicates D:
01,11 Ap| Puts Tt in X, Lifts stack
01,12 | RAA 8-level stack Roll Up Rolls Up
01,13 ARDN 8-level stack Roll Down Rolls Down
01,14 Recall value to 8-level stack Lifts stack
01,15 | ARC+ _ _ Adds value to contents in X:
01,16 | ~RC- _ _ Subtracts value from contents in X:
01,17 | ARC* _ _ Multiplies value with contents in X:
01,18 | ~RC/ _ _ Divides content in X by value
01,19 | ASTVIEW Enumerates all 8-level registers
01,20 | Aynx 8-level Power function Drops stack, Duplicates D:
01,21 | bRCL _ Recalls buffer register to X Lifts stack
01,22 | bSTO _ Stores X in buffer register
01,23 | bVIEW _ Views contents of buffer register
01,24 | bSWAP _ Swaps X: and buffer register
01,25 -DUAL REAL# Section header n/a
01,26 | CLDST Clears Dual stack (DL included)
01,27 CLDX Clears DX level Disables stack lift
01,28 DAVIEW Presents Dual Number in LCD
01,29 DENTERA Pushes DX: up into dual stack Lifts stack, disables stack lift
01,30 DKEYS? Bulk Key assignments
01,31 DR+ Dual Number Addition Drops stack, Duplicates DT
01,32 | DR- Dual Number Subtraction Drops stack, Duplicates DT
01,33 | DR* Dual Number Product Drops stack, Duplicates DT
01,34 | DR/ Dual Number Division Drops stack, Duplicates DT
01,35 DRAN DN Power to Integer
01,36 Recall Dual Number to Stack Lifts Dual Stack
01,37 DRDN Dual stack Roll Down Rolls Down Dual Stack
01,38 DREXP Dual Exponential function
01,39 DRINV Dual Inverse function
01,40 DRLN Dual Logarithm function
01,41 DRND Dual Number Rounding
01,42 DRNEG Dual number Sign Change
01,43 DRSQRT Dual Square Root function
01,44 DRUP Dual stack Roll Up Rolls Up Dual stack
01,45 Stored DX into target dual register Prompt for target

© 2022 Angel Martin 3

Double-Down Module

01,46 DUNIT? Tests if DX is in the Unit “Circle” Skips Line if False

01,47 DX=0? Tests if DX=0 Skips Line if False

01,48 DX=X? Tests if DX=€ Skips Line if False

01,49 DX=DY? Tests if DX=DY Skips Line if False

01,59 DX<> _ Exchanges DX and target register Prompts for target

01,51 | bx<>DY Exchanges DX and DY

01,52 | px~2 Squares DX value

01,53 DYADX Dual Number Power function Drops stack, Duplicates DT
01,54 | pviEW Views Dual number in Target dual register Prompt for Target

01,55 LASTD Recalls DL into DX dual stack level Lifts Dual stack

01,56 DR-P Converts Gaussian to Polar

01,57 DP-R Converts Polar to Gaussian

01,58 DSIN Dual Sine function Angular mode independent
01,59 | DASIN Dual Inverse Sine function Angular mode independent
01,60 | DCOS Dual Cosine function Angular mode independent
01,61 | DACOS Dual Inverse Cosine function Angular mode independent
01,62 | DTAN Dual Tangent function Angular mode independent
01,63 | DATAN Dual Inverse Tangent function Angular mode independent

DENTERA

DSTO
DVIEW

LASTD

fig. 0.1.- Launcher Interrelationship

© 2022 Angel Martin 4

Double-Down Module

Part I — Double-Length Stack

© 2022 Angel Martin 5

Double-Down Module

Double Length Stack and Dual Number Stack

The same I/0 buffer object caters for the needs of both the double-stack and the dual-number stack.
The buffer has seven registers named a:, b:, c:, d:, e:, F: and G: - For the double stack the first
four are mapped to the additional stack registers { A, B, C, D } and the topmost register G: is used to
hold the LGKT (more about this later) - whereas buffer regs E: and F: are unused.

For the dual-number stack on the other hand the first six buffer registers are used, taking two of
them for each dual-number stack level as show in the figure below. Note that the Dual number LastX
level (DL) is situated at the top of the dual stack, and that the native LastX register L is not part of
the construction (used for scratch only). This design doesn’t require any ALPHA registers or Data
Registers in RAM, which can be freely used for FOCAL programs or any general purpose.

REAL Register DuUAL
LGKET G Scratch
Scrarch F DL
Scrotch g
D d DT
C C
B b: D7 Dual Mumber
Double A a: Stack
Stack -5 T T DY
z Z
¥ v D
X Lt [
! L L Scratch

There are four functions available to access the buffer registers, as follows:

e hGTH

to store the value in X into the buffer register given at the prompt

e hKRLL - to recall to X the value in buffer register given at the prompt (*)
o bGWAHP - to exchange X and the buffer register given at the prompt
o hVIEW - to view (no data movement) the contents of buffer register at the prompt.

They are prompting functions, asking for the letter of the register { a-e, F, G } in manual mode or
expecting a number { 1-7 } as a second line in program mode. This line is added automatically by the
function when entered in the program.

(*) bRCL performs a double-stack lift, adhering so to this module’s convention.

Warning note:

The buffer id#7 is the same one used by the “Shadow Stack” in the WARP_Core module, and for the
S5HF L functions in the WARP_Core and the Formula_Evaluation modules. You should refer to their
respective manuals for details. Bear this in mind if you want to use any of those modules together
with the Double-Down ROM.

© 2022 Angel Martin 6

Double-Down Module

Part | - The Double Stack.

In this section we'll describe the available new functions to manage the double stack. As mentioned
before, the double length stack has 9 registers in total: one (L) is for the LastX functionality and eight
for the actual stack levels. The stack levels are ordered in the sequence { XYZTABCD } , which is
rigorously respected in all (automatic and manual) stack lift and drop actions. For all means and
purposes the double-stack is a continuous logical entity as far as the user is concerned, so no worries
about keeping track of the actual whereabouts of the data within the calculator’s memory.

Managing the Double-Length Stack

There are two groups of functions available to support the automated implementation of the Double
Stack:

1. Stack Management functions, and
2. Math functions required to support the double length.

The table below shows the functions grouped by this criterion:

Stack Management Math Functions
XROM # Function Name XROM # Function Name

01,06 ACLST 01,02 s
01,07 CLX 01,03 /-
01,08 “NTERZA7 01,04 s |
01,09 LASTX7 01,05 2/
01,12 R27 01,10 Mo
01,13 ARIN 01,11 FI7
01,14 ARCL __ 01,20 2Y 72X
01,15 AR+ __
01,16 ARE - __ Admin Functions
01,17 ARCX __ 01.,01 JHEYGLW
01,18 AREY _ 01,19 ASTVIEN
04,26 XFILL7Z

N\ 74

Already you see the reoccurring theme in the used naming conventions, adding the /' ” character
either as prefix or postfix of the name depending on whether they drop or lift the double stack — and
to differentiate it from the native function with the same purpose.

Notice the presence of RCL Math functions, not available in the native function set but added here for
your convenience. Since they condense two operations in one, chained operations are much more
efficient and require fewer program steps.

The /K L L function group is a particularly powerful set, supporting indirect and stack addressing
across the whole range of double-stack and data registers. More about this later.

All functions are meant to be used as direct replacement of the native ones, just use them instead of
the original, 4-level stack versions. No additional steps, no modifications needed so you already know
how to use them and when. We'll see a couple of examples next.

© 2022 Angel Martin 7

Double-Down Module

Example.

Compute 1 + 2 * 2.5"(3/7) doing a left-to-right data entry (and so resisting the urge to process the
expression from “inside-out”, as learned in all your years of RPN usage):

We type:
1, ENTERAA , 2, ENTERAA, 2.5, ENTERAA , 3, ENTERAA, 7, [~/], AYAX, ,

Obtaining: => H4dHbh (Y4B 49E5

Example.

Using a strict left-to-right approach calculate the stack-breaker expression shown below:
(taken from the WP-34 manual, pg. 20)

0.3

1+‘(3—70—76><08) —(W—g)z

X {sin | @ g)] +1.7x%(65+5 9)3/7}2 ~35

Roll up your sleeves and start typing as follows:

RAD, 1, ENTERAA, 30, ENTERAA, 7, [~/] 7.6, ENTERAA, 0.8,[~A*],[A-], 4, AY~X,

1, SQRT, 6, ENTERA, 5,[A/][A-] x~2,[~-] ABS, 0.3, AYAX, [~ +],

Numerator done, 2.5 4 HE {4H 3 { .. take a deep breath and continue:

, ENTERA, 6,[~/], [~-],[~*] SIN, 1.7, ENTERA”, 6.5,
NTERAA, 7, [A7], AYAX, [A%], [Ax], X2, 35, [A-]

denominator done, . {E S HE { {9 - ready for the finishing touch now:

[~/], SQRT => ZAI4EI 19375

PI~, 7, ENTER’\’\,4,,
ENTERAA, 5.9,[~+] 3,

—|u-1

Example.

Using a strict left-to-right approach calculate the Mach number using the formula below:

0.286

3.5 -
350 * _6 —5.2656
5 ((((1+0.2(m)) —1) x (1—6.875 x 107° x 25500))+1) -1

The result is => HAS IS5 45

5, ENTERAA, 1, ENTERAA, 0.2, ENTERA, 350, ENTERAA , 661.5, [~/], X2, 3.5, AYAX, 1,
[~-],1, ENTERAA, 6.875 E-6, ENTERAA , 25500 , [~*],[~-], 5.2655. CHS , AYAX , 1, [~ 4

0.286 , AYAX , 1 ,[~-],[~*], SQRT

© 2022 Angel Martin 8

Double-Down Module

Why not a 10-level stack, given that the buffer holds enough registers for it?

First off, because with the eight levels provided you will be on the safe side even with the most
advanced equations to compute in your life as a scientist or engineer. Second, the larger the stack
the less useful it is for the automated duplication of the topmost register; and finally, this is the way
to ensure commonality between the double-stack and the dual-number stack implementations for
buffer lifting and dropping actions — since the same number of buffer registers are involved on either
one of the two cases.

Using the double-length functions in a Program.

The single one exception to the “same as the native stack” rule happens when using the functions in
a running program. In this case the automatic upper-stack lift when executing numeric steps does not
occur, so you need to do it manually. This means that an ENTER” A Jjnstruction must precede
every numeric program step. Read the next section to understand the reasons for this convention,
but before enjoy the FOCAL program example:

Program listing.

B LAEL "TGT" | gg ; :g ENTERZ7
B R / 7
;3 :HB £b 7- SZ@ ENTERZZ
ZY ENTERZ27 el X7 S{ BS
25 32 #H 7- S2 ENTERZZ
PE ENTERZ?7 #9 RIES 53 59
27 7 I8 ENTERZ7 STY o+
ge 7/ 3¢ 23 S5 7+
B9 ENTERZ27 32 AY7X SE ENTERZZ
a g 33 ;;I gg g'TER??
i { ENTER?7 N
|7 5; E 35 ENTERZ7 59 7
i3 7% g 7 EZ2 7/
iy - 47 ENTERZ2?7 B AYPX
IS ENTERZ27 38 M B2 7%
B Y 39 2/ E3 7+
(7 AYAX HZ ENTERZ7 EY X722
{BH ENTERZ27 Yi{ S ES ENTERZ7
g 54 Y2 ENTERZ7 EE 15
28 SGERT Y3 g E7 7A-
21 ENTERZ7 yy 7y E8 7/
22 b :g ;" 69 GRERT
23 ENTERZ7 o 70 ENT
23 ENTER NEREAN

There you have it, not rocket science but a solid tribute to the original designers of the RPN system.

Note the steps in red denoting the sprinkled ENTER” ~ instructions (10 in total), always preceding a
numeric program step. These are needed for running program support. Those are not required in
manual calculation mode, by virtue of the I0_SVC interrupt trick.

© 2022 Angel Martin 9

Double-Down Module

Ensuring a seamless operation: The “Last-T” Register

To ensure a seamless operation of the 8-level stack we're going to need a trigger for “upper stack
repair” actions, caused by the user entering numeric data before the execution of the dual-stack
functions. To illustrate this condition, consider the following situation:

Say that the double stack holds a relevant value in register T. We know that double-stack friendly
functions like ENTER”~” , LASTX” or PI” will take care of pushing the T: register value over the
stack divide and into the A: register; therefore, all is good. But the problem arises when the user calls
a function or performs an operation that only alters the lower-stack {XYZT} arrangement before the
next double-stack friendly function is called to properly manage things.

And no, this isn't a far-fetched scenario at all, happening only with rogue functions - since one of
those stack-altering operations is entering a new numeric value in X — just pressing any number key
in the calculator with stack lift enabled will push the T: register value off the stack, and thus
irrevocably lost for the double-stack functionality. And this happens all the time! So not good, now
you'd agree how true is the adagio “the (stack) devil is in the details”, eh?

The solution is a two-pronged mechanism that will (1:) keep a backup copy of the value in T: in a
safe place, so that (2:) recovers the backup when the need to update the upper stack occurs. The
fixing sequence would be restoring the “last-good-known” T: value (LGKT), pushing it onto the upper-
stack register A: - with the subsequent upper-stack lift.

Obviously, this necessitates the storage of such LGKT value in the safe place, and it should be done
before the user enters a new value in X. The how and when must meet this, and the only way to
do it is as follows:

e Upon the CALC_ON event, a reset is done where the “initial” value in T: is copied to the LGKT
location. Obviously, this must be repeated every time the T: register is modified. This is
ensured by updating it every time T: changes, and with the module functions we're in control
because this only happens when a two-number function or a stack admin routine is called, all
of which are double-stack friendly and thus their code (upon completion) saves the new value
in T: into the LGKT location in case it should need using afterwards.

e Each and every operation (be that double-stack function or not) needs to check whether the
conditions exist for a potential T-override, i.e. entering a new value with stack lift enabled.
Well, for our own functions in the module we could do an initial check on the status of User
fag 22 (the Data Entry flag) to figure out if a digit entry had been done prior, and deal with it
in a postponed fashion, lifting the upper-stack registers and copying the LGKT into the A:
register. But this is not the only instance of trouble, as the offending action could have been
done multiple times, overwriting T more than once - yet the UF 22 approach wouldn’t know
that. Consider for instance the 4-step sequence: { 16, SQRT, 4, X~2 }. This pushes the stack
twice, leaving previous Y,X in T,Z; "4”in Y and “8” in X, — and therefore the original contents
of Z and T have gone to see the wizard and are irrevocably lost. By the time we get to a
double-stack friendly function (such as RA”, ENTER”” or whatever) it's too late for our
repair action!

e So the UF 22 approach isn't going to cut it, and clearly we don't have any control over the
native functions from our module, therefore we need to resort to a more potent method that
keeps tabs with *every* key sequence pressed, then decide whether it's one of those
creating the problem — and right at that moment perform /n-situ the upper-stack repair, every
time it's needed instead of postponing it for when the double-stack function comes to the
picture (if it ever does). This, in MCODE parlance is called making use of the I/O_Service
interrupt polling point, and sure enough this is how it works in the module.

© 2022 Angel Martin 10

Double-Down Module

e One last detail is crucial for the correct operation of the scheme. We've already mentioned
that the stack-repair action is only needed when the data entry is done with stack lift mode
enabled; and not for instance right after pressing ENTER”~” or ACLX. Here the O/S has
the benefit of having CPU F11 clear when the first number digits is entered, so it knows
there’s no stack lift to do. But by the time our module receives the baton (via the I0_SVC
interrupt), F11 is set again (done by the digit entry itself), thus we missed the point
completely. We need another way to tell when not to follow the general rule (upper-stack
correction), and that we have solved by anointing the user flag 01 as the “double-stack lift
mode flag”, i.e. a replica of CPU F11 but persisting until the next double-stack function is run.
If UF 01 is set, the correction is done but if it's clear then it's skipped.

For additional information, the code beeps a short tone when the correction is done, so you can
always tell when the upper stack is being “restored” to the desired status. Here’s the upper-stack
repair action described in detail:

[Desired] = [Actual] + [Pending] ; and: [Actual] is done now, [Pending] is postponed

REG# | Values | Action: | Desired | Actual | Pending
LGKT: (M) (2) (M (2) Write the new LGKT value

D: D User C D C Moved from C:

C: C inputs a B C B Moved from B:

B B numeric A B A Moved from A:

A A value, T A (T) | Recovered from LGKT

T T “N” Z Z - no action

Z Z Y Y - no action

Y Y X X - no action

X X N N N - no action
Case Scenarios: How it's handled in the module:
(1) Automatic Stack Lift
Keying a nhumber value from the keypad via the I0/SVC Polling point
RCL, LASTX, PI use ~RCL, ~"LASTX, and ~PI instead
CPU F11 clear disables stack lift UF 01 signals a previous F11 clear
(2) Automatic Stack duplication:
Two-number math functions use the module versions of the same
+,-,%,/, Y X, MOD [~A+],[~-], [~*],[~1], ~Y~X, ~MOD
(3) Other Stack altering functions:
ENTER”, RDN and R” use ENTER~” , ~RDN and R~ instead

In summary, keep the double-stack functions close to your heart (i.e. always used then instead of the
native, lesser 4-level stack counterparts) and don't worry about anything else — it’s all taken care by
the DoubleDown module.

And this is indeed a good segue way into the bulk key assignments facility ...

© 2022 Angel Martin 11

Double-Down Module

Bulk Key Assignments for Double Stack functions.

You can use the function to do a bulk assignment or removal for all double-stack
functions available in the Module, each going to their “natural” key location to replace the native
lesser counterparts. The function prompts ¥ / N7 for the assignment or removal of the KA’s,
therefore the question mark in the function name.

, only “Y” or "N” are accepted here:

or: _

The KA's removal action is followed by a memory PACKING to recover the KA's registers freed.

Note that only the KA’s on affected keys will be changed; any other KA on another key will not be
modified so you can continue to use them.

See below the complete keyboard assignments made by ~KEYS? and its counterpart DKEYS? That
will be covered in the Dual-Number section of the manual.

tyrx tmop DYADX DX*2 DXAN DREXP
+KEYS? } DKEYS? | DINV DSQRT DRLN
tcLsT Rt CLDST DRUP DASIN DACOS DATAN
’ +RDN J ’ DRDN DSIN DCOS DTAN
bSTO bRCL bSWAP
tRCL DSTO DRCL DR<>
v
CATALOG 1CLX X DENTER DNEG CLDX
ENTER 14+ <« ENTER 11 <«
tRC- DX=DY?
t- DR-
tRC+ DX=27 DP-R DR-P
1+ DR+
tRC* STVIEW DUNIT? DRND STVIEW
s = s = =
tx DR*
1RC/ tPI +LASTX bVIEW DX=0? tPI LASTD DVIEW
t/ DR/ DAVIEW
hp-41 Double Stack hp-41 Dual Reals
LT LI 1 [

Double-Length Stack Dual Number ROM

© 2022 Angel Martin 12

Double-Down Module

The New Recall, now double-length stack aware.

An important addition to the module has been a new version of the RCL function present in the
SandMath and WARP_Core modules. Like those, the new ~ARCL includes the in-place math operations
so sorely missing in the native function set, i.e. ARC+, ~RC-, ~RC* and RC/ . But in addition to
that, the new ~ARCL is also fully double-stack aware, thus not only the double-stack is lifted
respecting the T/A divide, but also (and better yet) it can be used to read data stored *anywhere*
(*) in the calculator’s standard RAM, be that data registers Rnn or double-stack registers { X-F }. You
can also use any of these as pointer forthe TN If and IN I % T operation, which is not a small
feat if you think about it — and in fact requires a substantial amount of code to pull it off.

(*) With the single exception of the status registers above "Q” i.e. {a, b, ¢, d, ¢ K} They had to
yield their place to the newcomers, the buffer registers { A, B, C, D, E, F }. Not a complete loss, you
can still access them using the standard RCL wy/ the AMC_0OS/X module plugged in of course.

USER RRD 1 USER RAD 1

= r T Ti = r T |
ARCL "INI _ _ }[JPL"SI _
7 . ; etc.

The U/I is smart enough to allow for in-situ changes between the different functions, just pressing
the arithmetic keys or the key while the prompt is displayed. Try it to get the feeling of the
operation.

In terms of Stack-lift properties ~ARCL behaves exactly like the simpler ALSTX and ~PI - the stack
will be lifted when F11 is set, but not if F11 is clear. Unlike the simpler two, ~RCL internal code re-
uses F11 so its status is transferred to UF 01 upon initialization, and UF 01 is used at the end to
decide whether to lift the buffer. As always, UF 01 is left set upon completion (by virtue of the
synchronization routine to refresh the Last-T register).

Example. Store the value -44 in the data register R04, and then use stack register "D” to retrieve
R04's value using the indirection capability of ~RCL

-44 ,STO 04, ~CLX, 4,bSTO "d”, “RCL IND D => -~HYAZRAX AL U

So now you have the capability to recall values from any register, including stack and indirect
addressing, but how can you store them in the upper-stack registers to begin with?

Clearly there’s no ~STO companion function for that, but the module comes with buffer-register
handling functions to manage the contents of the upper-stack registers, even if in a way separate
from the rest.

o bGTEH - to store the value in X into the buffer register given at the prompt
o bGSWHF - to exchange X and the buffer register given at the prompt
o hVIEW - to view (no data movement) the contents of buffer register at the prompt.

They are prompting functions, asking for the letter of the register { a-e, F, G } in manual mode or
expecting a number { 1-7 } as a second line in program mode. This line is added automatically by the
function when entered in the program.

With these dedicated functions most of the use cases are well covered, with the exception of the
view, storage and exchange actions with indirect stack addressing for the upper-stack registers.

© 2022 Angel Martin 13

Double-Down Module

Summary of Memory handling functions and use cases

| ARCL | ARCL_ _ for Data Regs Rnn<199
ARCL ST _ for Stack {XYZT|L} and Buffer {ABCD|EF |G}
ARCLIND _ _ for ALL Data Regs Rnn
ARCLIND ST _ for Stack {XYZT|L} and Buffer {ABCD|EF|G}
bRCL _ for buffer {ABCD|EF| G}, but not needed.
STO ‘ STO _ _ for Data Regs Rnn
STOIND _ _ for ALL Data Regs Rnn
STO ST _ for Stack {XYZT|L}
bSTO _ for buffer {ABCD | EF| G}
STO IND ST _ for Stack {XYZT|L}
X<> ‘ X<> for Data Regs Rnn<199
X<>IND _ _ for ALL Data Regs Rnn
X<>ST _ for Stack {XYZT|L}
bSWAP _ for buffer {ABCD | EF| G}
X<>IND ST _ for Stack {XYZT|L}

Besides being a very powerful function by itself, ~RCL has a double-duty role as a launcher for the
“cluster” of related functions, as follows:

—

~RCL__—

x| vlmlc|v|=|wn

Py, A=
@HHHHMH
Sy

—

bSTO _ DSTO _ _

bVIEW _ [RIS] DVIEW _ _

bSWAP _ [ssT | DR<> _ _

DRCL _ _ -< USER ARCL _ _ (%) full circle!
ENTERA A ENTER DENTERA

ASTVIEW PRGM ASTVIEW

~AKEYS? [XEQ] DKEYS?

—

(*) Both RCL launchers are interconnected with each other, so you have access to all of the “parallel”
cluster functions also starting from this launcher.

ZRCL ' _ _

USER FRRD

n

=)
=X

Lest we forget the in-place ~RCL-Math functions as well:

~RCL _ _

SRy

RC

-~

~RC+ _ _

~RC- _ _
~RC* _ _
~“RC/ _ _
~RCL _ _

This justifies that the buffer register functions { bRCL, bSTO, bSWAP and bVIEW } are not
assigned by ~KEYS? in the bulk option: having too many key assignments takes more I/O memory
and clutters the USER keyboard with conflicting function for program operation. It's not a problem
since they can still be conveniently accessed to via the ~RCL route.

© 2022 Angel Martin

14

Double-Down Module

Snooping the Double Stack with | ~sTviEw

The module comes with its own spyware application so you can always look at the COMPLETE double
stack not altering the register order or contents. The function 2STVIEW will produce a sequential
enumeration of all registers, with the register name preceding the values.

You can halt the listing be pressing any key, and the numeration will continue after you release it. If a
printer is connected the listing will be printed with user flag F15 set, as you can see in the snapshot
from the ILPER below:

Printer

~STVIEW

: 3.500000000
- 24 _ 16586115
- 0000000000
.000000000
_353332038
.353333038
.353333033
.353338038
.353333033
L 00o00oagan
.000000000
_353332038

[T e B O I e T O
(o e e T T e

Note how register G: has a copy of the T register, in its LGTK role explained before.

Filling the Double-Stack with the value in X:

The automatic D: register duplication on stack drop is a handy feature for diverse arithmetic
calculations such as polynomial evaluation, etc. but using it efficiently in an 8-level stack needs a
more involved preparation to fill D: with the duplicating value.

The long way to do this is pressing ENTER” ~ seven times, a tedious 14-byte sequence not very
elegant to say the least.

An alternative would be using three times ENTER” (the native function) to fill the lower stack, plus
four bSTO calls to fill the upper-stack half. This is also very inefficient and takes 11 bytes, not state
of the art either.

That’s why the companion DUAI_APPS Module has the function | XFILL” |to do a complete stack
filling using the value in the X-register. A two-byte, one instruction solution to patch this gap at
MCODE speed — perfect for the job, and a good reason to have the DUAL_APPS module also plugged
in.

© 2022 Angel Martin 15

Double-Down Module

Trapping the Back-Arrow action

This boundary condition required additional consideration in the I/O_SVC coding. It's funny how such
simple operations are taken for granted but have strong implications in the design of system
enhancements like the double-length stack.

During the data entry process the back-arrow is used to do corrections, be that for a single digit or
when pressed repeated times clearing all digits, to invoke the native CLX function - which in turn
clears F11 to disable the automatic stack lift, and thus allowing that the following value replace the
zero that was put in X.

Alright then, so it's clear that this contingency needs to be covered in the I/O_SVC control code,
clearing UF 01 when the back-arrow-invoked CLX disables the automatic stack lift — or, in other
words, when a back-arrow keypress causes a F11 clear condition.

With this boundary condition under our belt, all the needed use cases are solved. The summary table
below details the different possible scenarios that need to be managed by the module.

Function Stack Lift Stack Drop Clears F11 Trapped?
ENTERA Yes when F11 set No Yes Yes
CLX No No Yes Yes
Back-arrow No No Yes if Last Digit Yes
LASTX, RCL, PI Yes when F11 set No No Yes
Two-number Fnc. No Yes No Yes
RDN, R” Roll Up/Down No Yes
EMTERA® ALASTX Ran ARDM
™ L, ¢ Tml ¢ B¢ o [x]
e e
. . B A
L e
A 1y T A Ty T A ey T A |* B
T 1y 2 T |, 12 T], z T J* A
v T]y x| v x| v
- - Y . z
X 4 X X - . L X 7 D X ¥
L L L t»1L L L L L |

[From: -> To:] diagrams for the “Fantastic Four”

© 2022 Angel Martin 16

Double-Down Module

Automated actions and Controls.

There are several actions performed behind the scenes every time a double-length stack function is
used. Even if they're done in automatic fashion, the user needs to understand them to have a good
grasp of the conditions for data input/output.

1. Every single function except ACLX and ACLDST saves the argument in X: into the L: stack
level. This is equally done for one- and two-argument functions.

2. Any function that alters the content of the T: register ("CLST ~RDN, RA~, ENTERAA
and all two-number functions (A4, ~-, A%, A/, AMOD and AY~X) will, upon completion,
make a copy of the value in the stack T: register into the LGTK register to ensure that it is
up-to-date when/if needed.

3. All two-number functions (~+ , -, A%, A, AMOD and AY~X) will also perform a stack
drop, duplicating the value in D: into the C: double-length stack level. This is done *before*
T: is copied into LGTK, obviously.

4. Pressing ENTER”” or just typing numbers using the calculator numeric keys does an
automated stack lift, losing the value that was in T: before. This is corrected by the I0_SVC
control, restoring the value saved in LGTK back in stack register A: - where it should have
been placed had it not been lost. You'll hear a short tone each time this correction action
takes place, so you know your back is covered ;-)

5. ENTER~” and ACLX will clear both CPU F11 and user flag UF 01 upon completion, signaling
a stack lift disable condition for the subsequent operation.

6. All other functions need to leave UF 01 set upon completion. This also done by the I0_SVC
control, which sets it when the LGTK doesn't need updating or when the pressed key isn't a
numeric key (thus covering the whole range of scenarios).

7. "LASTX, ~PI and ~RCL will use the signal left by the pair above to replace X: with the
recalled argument, without pushing the stack first and then writing it into the X: stack level.
If F11 / UF 01 are set the operation will perform normally, that is making the stack lift and
copying the recalled value into X:

p] s z z z z

= il I y y z z

Y| ¥ X X y z

X| «x X a a-x y(a-x)
Keys: a =] (x]

Figure 1 — When things were simple...

© 2022 Angel Martin 17

Double-Down Module

Figure 0.- 4-Bar mechanism

© 2022 Angel Martin 18

Double-Down Module

Part II — Dual Numbers

- . A O ———

Y o

© 2022 Angel Martin 19

Double-Down Module

Part Il - Dual Numbers.

In this section we'll describe the functions and capabilities provided by the DoubleDown module to
operate with Dual Numbers and to manage the Dual-stack required for them. If you're familiar with
the 41Z Module you'll recognize the concepts and this section will be a breeze; but if you're new to
the game get ready for a fun ride with a not steep learning curve.

Managing the Dual Number Stack

There are two groups of functions available to support the Implementation of the Dual Number
module:

3. Stack Management functions, and
4. Math functions for dual numbers.

The table below shows the functions grouped by this criterion:

Admin / Stack Management Math Functions
XROM # Function Name XROM # Function Name
01,26 CLIOST 01,31 IR+
01,27 CLIX 01,32 IR -
01,28 IRVIEMNW 01,33 IRX
01,29 IENTERZ 01,34 IR/
01,30 IKEYSL™Y 01,35 IR7”N
01,36 IRCL __ 01,38 IREXF
01,37 IRIN 01,39 IRINYV
01,41 IRNI 01,40 IRLN
01,44 IRUP 01,42 TRNEDR
01,45 5T __ 01,43 ORSNRT
01,46 TUNIT? 01,53 Iv /7 oxX
01,47 Ix=2%7 01,56 IR-F
01,48 IX=3%7 01,57 IP-R
01,49 IX=Ivy"%w 01,58 AR
01,50 IXsN - 01,59 OIHCOS
01,51 IXZNTY 01,60 I5IN
01,54 IVIEW 01,61 AHSIN
01,55 LHSTI 01,62 ITHN
01,63 IHTHN

Dual numbers have a real and a dual part. The convention used in this module is that the aual part is
stored in the Y-register, and the real part is stored in the X-register. Besides the functions on the
table above, the double-length stack functions ~PI and ENTER”” described in the previous
chapter also belong to this section. ENTER” ” plays a crucial role for dual number data entry, so you
need to be familiar with it as well.

The data entry process is then: { dual part, | ENTER~” |, real part }

© 2022 Angel Martin 20

Double-Down Module

Bulk Key Assignments for Dual Number functions.

You can use the function to do a bulk assignment or removal for all double-stack
functions available in the Module, each going to their “natural” key location to replace the native
lesser counterparts. The function prompts ¥ / N'# for the assignment or removal of the KA's,
therefore the question mark in the function name.

, only “*Y” or "N” are accepted here:

or. _

The KA's removal action is followed by a memory PACKING to recover the KA's registers freed. Note
that only the KA's on affected keys will be changed; any other KA on another key will not be modified
SO you can continue to use them.

Besides being a very powerful function by itself, DRCL has a double-duty role as a launcher for the
“cluster” of associated functions, as follows:

~ [sTO] DSTO _ _ ~ [sTO] bSTO _
[RIS] DVIEW _ _ RIS] bVIEW _
|SST| DR<> _ _ SST | bSWAP _
DRCL _ _) [USER ARCL _ _ -(USER ARCL _ _ full circle!
ENTER DENTERA” ENTER ENTERAA
PRGM ASTVIEW PRGM ASTVIEW
XEQ DKEYS? XEQ AKEYS?

Notice how we can navigate across the two function clusters using the main anchor function as a
passageway across them:

=
=3

© 2022 Angel Martin

Double-Down Module

Test Functions

The module includes four test functions that operate on the dual-register value as a whole unit. They
compare the specific condition and return a Boolean YES/NO in manual mode, plus the customary
“skip next line if false” in a running program.

There are no order relationships in the dual number plane, so the tests are limited to equal
comparisons, both between the stack levels DX and DY as well as checking for dual-zero and (1+e).

Notable case is DUNIT?, which here is simpler than in the complex world as the “modulus” is just the
real part: |z] = x.

OJUNIT® Checks for x = +-1
Ix=-a7 Checks for x=y=0
IXxX=-x7 Checks for x=0 and y=1
IX=-TYw? Checks for X=2, and Y=T

These functions are totally analogous to the native set of functions in the base machine for standard
registers, do there’s no point describing them at length. Instead, how about a glimpse of the actual

MCODE under the hood?

3 a

1 DX=0? Header A3DG6 0BF e

2 DX=0? Header a3p7 30 "g" IsDR=g?

3 DX=0? Header A3DS 03D = must have a=0 and b=1
4 DX=0? Header a3ps 'Dis e

5 DX=0? Header azpA ooa "p" Angel Martin

6 DX=0? |D}(=0? A3IDB OF8 READ 3[}(1 a

7 DX=0? A3DC 2EE PCHO ALL

8 DX=0? a3pD D67 JC +12d [5KP]

9 D¥=07? A3DE 0B& READ 2(Y)

10 D¥=07? A3DF 2EE PCHO ALL

11 D¥=07? A3ED 04F Jc+#H9 ——» [sKP]

12 DX=D? A3El D83 INC+16d [NOSKP]

1 DR=g? Header A3E2 OBF e

2 DR=£? Header A3E3 04E “n IsDR=g?

3 DR=g? Header A3E4 03D = must have a=0 and b=1
4 DR=£? Header a3Es Dis N

5 DR=g? Header A3E6 D04 "p" Angel Martin

6 DR=g? [DR=g? AE7T OF8 READ 3(X) a

7 DR=g? A3EB 2EE PCHO ALL

8 DR=g? |‘SKIP AZES 0B NCGO «— False

9 DR=g? A3EA 05A -=162E [skP]

10 DR=g? A3ZEB 00E A=0 ALL

11 DR=g? AZEC 35C PT=12 Builds "1"in A

12 DR=g? AZED g2 A=A+1 @PT

13 DR=g? A3EE 0BE READ 2(Y)

14 DR=g? A3ZEF 36E TARC ALL a#1?

15 DR=g? A3FO 3CF Jc 07

16 DR=g? NOSKIP A3F1 065 NEC GO e — True i
17 DR=g? A3F2 05A -=1619 [NOSKP] :

© 2022 Angel Martin

22

Double-Down Module

A brief intro to Dual numbers

See: https://en.wikipedia.org/wiki/Dual number

In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century.
They are expressions of the form a + bg, where a and b are real numbers, and ¢ is a nilpotent

number taken to satisfy €22 =0 ; but € # 0.

Thus, the dual numbers are elements of the 2—dimensional real algebra

D=R[]|={z=z+yc|(z,y) ERQ,EQZDaDdE#U},

Dual numbers were introduced in 1873 by William Clifford, and were used at the beginning of the
twentieth century by the German mathematician Eduard Study, who used them to represent the dual
angle which measures the relative position of two skew lines in space. Study defined a dual angle as
8 + de, where 0 is the angle between the directions of two lines in three-dimensional space and d is a
distance between them.

This nice concept has lots of applications in many fields of fundamental sciences; such, algebraic
geometry, Riemannian geometry, quantum mechanics and astrophysics. Dual numbers find
applications in mechanics, notably for kinematic synthesis. For example, the dual numbers make it
possible to transform the input/output equations of a four-bar spherical linkage, which includes only
rotoid joints, into a four-bar spatial mechanism (rotoid, rotoid, rotoid, cylindrical)

The dual numbers were originally introduced within the context of geometrical studies. They were
later exploited to deal with problems in pure and applied mechanics. For instance, it has been
demonstrated how to formulate the equations of rigid body motion in terms of just three "dual"
equations instead of their six "real" counterparts (thereby realizing an equivalence between
spherical and spatial kinematics). More recently, their importance has been recognized in numerical
analysis to reduce round-off errors.

Note: The concept of a non-zero value that becomes zero when squared is a conflicting one at first
sight — but not more so than the imaginary unit when it began to be used in complex number theory.
I found the notion of -0 somehow helped me to accept the scheme, although there isn’t such a thing
as -0 of course, but it offers certain symmetry if we parallel it to: x"~2 = (-x)"2

Another interpretation of € (and probably more founded) assigns for it an infinitesimally small value
that, even if not zero, it becomes zero when squared.

In the module the Greek character sigma “X” is used to represent “epsilon”. This can be seen in some
function names, as well as the standard presentation of the dual values in the display:

S5+ L4 g+ 8c58
UZER RRD 1 or: UZER RAD 1
, Or.

Note how for integer values the presentation omits the unneeded decimal digits for clarity.

This presentation is done automatically in manual mode by all the dual number functions. In program
mode it is not shown (imagine the clutter?), thus the function DAVIEW can be used at the end of
the program to produce the display.

© 2022 Angel Martin 23

https://en.wikipedia.org/wiki/Dual_number
https://en.wikipedia.org/wiki/Mechanics

Double-Down Module

Dual Number representations: The Unit “Circle .

Dual numbers can be represented as follows:

e (Gaussian representation: z = x + y&.
e Polar representation: z = x (1 + € arg z) , where arg z = y/x, x # 0, is the argument of z.

How this relates to the exponential form used with complex numbers can be seen if we consider that
the "unit circle" of dual numbers consists of those with a = %1, since these satisfy z * z~ =1

However, note that the exponential map applied to the €-axis covers only half the "circle":

R (O
e —ZT—1+bE,

n=0 , using this expression in the definition or argument:

z=x(1+¢€argz)=x.e"(e.argz) ; identical form as the complex number z = |z|.e~(i. argz)

Therefore, the modulus (or norm) of a dual number is its real part, and its argument is the dual part
over the real part, when the real part is not zero. For example:

<=>

The conversions between Rectangular and Polar are available with functions DR-P and DP-R

All throughout the module the dual numbers are represented in gaussian form.

(a) Unit circle € < € in (b) Unit circle ID < ID

complex number plane. dual number plane.

© 2022 Angel Martin 24

Double-Down Module

The Dual RCL, STO, View and Exchange.

By the very definition dual numbers are formed by two real numbers, and therefore use two data
registers. This makes memory handling functions like the native STO and RCL ill-prepared to handle
them and thus we need to replace them with dual-stack aware counterparts.

The set of Dual doppelgangers have the same capabilities in terms of indirect and stack register
addressing, as well as the dual register index. Note that each dual register takes two data registers
thus their indexes really point at the double number:

e DSTO n saves the real part in X to R(2n) and the dual partin Y to R(2n+1)

e DRCL n recalls the registers R2n and R(2n+1) to X,Y respectively.

¢ DX<> n exchanges the said pair of registers, and

e DVIEW n shows the contents of R2n and R(2n+1) as a dual number in the display.

The stack addressing supports the five levels of the dual stack. DX, DY, DZ, DT, and DL

SJRCL IS5 _
UZER RAD 1

, valid entries: { X,Y,Z,T,L }
The INDirect stack addressing supports a// status registers as targets:

T T T Ml T T -
35T IND ST _
USER RAD 1

, valid entries: { X.Y.Z.T.M.N.O.P.Q.K a.b.c.d.e}

Don't mistake them with the upper-stack registers { ABCDEF|G} — those are already part of {
DX,DY,DZ,DT,DL } and thus not suitable for an indirect addressing!

Note that there’s no support for in-place RCL or STO math operations, sorry but that was beyond the
project scope at this time.

Stack Mechanics of DRCL and LASTD.

Here again we encounter the stack-lift topic in our path, a real trademark of the RPN stack design
that needs to be looked at carefully in the context of dual number stack as well. Mimicking the
standard native operation with (single) real numbers, both DRCL and LASTD should check whether
the stack lift is enabled prior to pushing the recalled value into it.

Two problems arise that need to be addressed - one is solved but the other is not.

e The easier one is deciding whether to lift the dual stack. We know that this is signaled by the
0O/S using CPU Flag 11, thus we'll check if F11 is set - not a difficult thing to do just checking
its status. The code will also clear User Flag 01 if F11 is set on entry, and UF 01 will remain
clear during the execution of the function. Both DRCL and LASTD will use this simple
approach, so all it's good here.

e The difficult one is making the disabled stack-lift condition persist until both components of
the dual number are entered. For all purposes the O/S is going to clear F11 when the first
part is introduced, and therefore we would need an additional marker to be used as
semaphore in the subsequent action, entering the second part of the dual number. The
potential solution would then use the proxy UF 01 as deciding factor.

© 2022 Angel Martin 25

Double-Down Module

Stack Mechanics of DENTER” and CLDX

There is an important fact in the way these two functions work in the Dual stack implementation:
contrary to their “native” counterparts, the stack lift is only half-way disabled upon their termination.
The implications of this are that typing new digits after CLDX or DENTER” works as expected, thus
overwriting the X-register (i.e. the value is not pushed). However, introducing the second part of the
dual number finds both F11 and UF 01 set, and the second value is pushed into the stack — mangling
the dual-number stack into a straddled arrangement.

This applies to the following scenarios:

a. Use CLDX fo replace DX with a new Dual value, not lifting the stack
b. Use DENTERA to push DX into DY and enter a new argument in DX for a dual number
operation.

Unless taking corrective action, after CLDX or DENTER” the DX stack level will not be properly
overwritten with newly entered digits, rather the second part will be pushed up into the stack. This is
an undesired situation that need to be avoided.

Register Initial cLox digit entry Register Initial DENTERA digit entry
F DL DL D¥ Real Part F DL oT DT Real Part
zj DT zj DZ

: DT DT : DT Dz
C: D7 C DY
b: b:
- DZ Dz - DZ DY
T: DY T: DX
E: DY DY 2: DY DX
\r: 0 ‘H‘: DX
: DX 0 — : DX DX —
X new digits or: X new digrts

Although it's unfortunately not possible to prevent this issue from happening, there is an easy way to
avoid the problem to begin with - not ideal but not insurmountable either, and arguably easy-peasy
with a little discipline:

Press ENTER™ " jnstead of the offending function CLDX or DENTER”

Enter the digits for the dual part , as you always do

Press X<>Y and CLX, to move it to the Y: register, and to disable UF 01 again
then enter the digits for real part, and you're done.

A=

If that's so, then why having the CLDX and DENTERA functions at all? Just because there are
genuine reasons to either clear the DX level (instead of typing { ENTER”~~ , 0, ENTER”~A, 0 } or to
copy it into DY while you do other calculations with the original saved in DX

This is a byproduct of the dual stack design, which doesn’t have any “scratch pad” reserved for
auxiliary operations or number data entry. The buffer model used here is certainly simpler (and
faster) than the model used in the 41Z Module, but the “fly in the ointment” is this inconsistent
behavior — divergence from the native real stack.

Why not use the same 41Z Buffer design, I hear you asking? Well, as I mentioned it's faster &
nimbler — but the main reason is because this one here serves a dual purpose, not only for the Dual-
Real numbers but also for the Double Length stack, remember? Killing two birds with the same buffer
#7 stone has this small drawback but it's worth the price of admission.

© 2022 Angel Martin 26

Double-Down Module

Automated actions and Controls.

There are several actions performed behind the scenes every time a dual number function is used.
Even if theyre done in automatic fashion, the user needs to understand them to have a good grasp
of the conditions for data input/output. Note that points #4 and #6 were already explained in the
double-length stack section, but they are repeated here for completion’s sake as it’s also appropriate
and useful.

1. Every single function except DRNEG, CLDX and CLDST saves the original dual argument in
DX into the DL dual stack level. This is equally done for one- and two-argument function.

2. Any function that alters the content of the T: register (CLDST DRDN, DRUP, DENTER”
and all two-number functions (DR+, DR-, DR*, DR/ and DY~DX) will, upon completion,
make a copy of the value in the stack T: register into the LGTK register to ensure that it is
up-to-date when/if needed.

3. All two-number functions (DR+, DR-, DR*, DR/ and DY~DX) will also perform a stack
drop, duplicating the value in DT into the DZ dual stack level. This is done *before* T: is
copied into LGTK, obviously.

4. Pressing ENTER”” or just typing numbers using the calculator numeric keys does an
automated stack lift, losing the value that was in T: before. This is corrected by restoring the
value saved in LGTK back in stack register A: - where it should have been placed had it not
been lost. You'll hear a short tone each time this correction action takes place, so you know
your back is covered ;-)

5. DENTERA and CLDX will clear both CPU F11 and user flag UF 01 upon completion, signaling
a stack lift disable condition for the subsequent operation. Note: if you want the following
operation to lift the stack you need to re-enable it, and in a running program this requires to
set UF 01 in an explicit program step.

6. All other functions need to leave UF 01 set upon completion. In manual mode this also done
by the I0_SVC control, which sets it when the LGTK doesn't need updating or when the
pressed key isn't a numeric key (thus covering the whole range of scenarios). Yet in a
running program there may be required to set UF 01 in an explicit program step.

7. LASTD and DRCL will use the signal left by the pair above to replace DX with the recalled
argument, without pushing the stack first and then writing it into the DX stack level. If F11 /
UF 01 are set the operation will perform normally, that is making the stack lift and copying
the recalled value into DX.

DEMNTER™ LASTD" DRUP DRDM
F: DL F: DL F: DL F: DL
E: E: E: E:
D: D: D: D:
DT T — DT
¢ |11 c ¢ c ¢ |
B: B: B: B:
L1 DZ | |DZ DZ
A A A A 7
T: T T: T:
oy Y O
Z: _'/* Z: _jﬁ\p Z Z]
¥: ¥: ¥: ¥:
L | DX DX DX j
X: X: X: X: S

© 2022 Angel Martin 27

Double-Down Module

Dual Number algebraic functions.

The Dual Number algebraic rules, summarized below, are a straightforward consequence of the
previous identity (with z=x + eyand w = u + gv):

Component-wise algebraic addition Inverse
z+w=x+u+e(y+v) 3—1:1(1_€£) (x #0)
Product 3 -

Power

z-w = xu+ e(xv+ yu) o y
2t =x (1 - ne‘l—_) (n € Zsg, x #0)

This multiplication is commutative, associative and distributes over addition.

The algebra of dual numbers D has the numbers €y, y € R, as divisors of zero. No number gy has an
inverse in the algebra D.

The Power to an integer function expects the dual number stored in a hybrid way, in the stack
registers { Y,Z }, and the exponent n in the X-register. This is the natural logic for the date entry, for

instance let's calculate (2+3¢)74 :

3, ENTERA~, 2, ENTERAA , 4, DRAN => {5+

LAJ
gl

You can verify it by squaring the argument twice:

,_
|

(|

+XH

[
M

LASTD , DX~2 , DX"2 => |

Division of dual numbers is defined when the real part of the denominator is non-zero. The

division process is analogous to complex division in that the denominator is multiplied by its
conjugate in order to cancel the non-real parts.

The conjugate z~ of the dual number z = x + ey is defined by z~ = x — gy, s0: z * z~ = x"2
Thus, the division z1 / z2 is possible and unambiguous if x2 # 0.

2 zz iy + (Y — DoY) €
R T 2
Z9 2929 s

Because we're not familiar with double numbers we tend to expect similar results to those in complex
numbers, but that’s not always the case. Some of the expressions strike an unfamiliar chord, and sure
enough the results are at times very counter intuitive. For example:

/
s/

e
-t

DM - X
+Y) A7 = +
X

L"'l

{
DI
Y:

{

1
/
\

[

E"l

\ A
s

/
\

L.J
[

andingeneral: (X+yeg)"2=x"2+2xy¢

© 2022 Angel Martin 28

Double-Down Module

Other Holomorphic Functions of Dual Numbers

The following formulas have been used to program the functions in the module.
Note the differences with the complex number expressions across the board!

Powers:

(a + be)*"™ = a° + ca® be + In(a)ade.
which is going to require the logarithm, not a surprise here.

Example:

(1+e)7(1-€) = 1+¢€
(1+e)M(2+0e) = (142¢) ;

Transcendental functions:

exp(z) =¢" =e"+e"ye =" (1 +ye).

Very easy to deduce using the power series expression for exp(z) and considering that all terms with
€”n | n>=2 are null.

0 ‘
log = :lOgIJriEIIOQ;;EJr(aIgZ)E Ve R, xR CD.
x

Also easy to
come to using the polar representation of the dual number, of course.
Example: Ln(1+€) = € ; e~(1+€) = e (1+€)
Trigonometric functions:
sinz =sinx + (cosx)ye Yz € D,
cosz = cosx — (sinx)ys Vz € D,
1y sin 2
tan z = tanr — ———¢ = VoeD-{(2k+1)m ke Z} xR
cos~ I COS z

Note that the angular mode has no relevance on these.

Examples:

Sin(1+&) =dHY (4 TYHS+ XA SHA A0S 905

Cos (1+4&) =S A0 b ~-XAHEY 1M TAHES
z

Tan (1+€) = L5504 705+

© 2022 Angel Martin 29

Double-Down Module

The Hyperbolic functions are also easy to figure out using their exponential forms:

z z

—

e- — e
sinhz = — Vz e D,) .
2 ' sinh z = sinh x + (coshx) ye Vz € D,
eF+e 7 .osh > — cosh inh Vs c D
cosh » — VoD — cosh z = cosha + (sinhz) ye V2 € D,
AN A 2 s . -
sinh z
e? — 77 tanz = —— Vz € D.
tanhz = — V2 € D. cosh
e* + e ~*

e

These are not included in the module (no more FAT entries were left!) but a very simple FOCAL
program can be used — and it serves as a good example of the utilization in a program of the other

functions as well, see below.

Note that this program uses ENTER”A A and ~/ (steps #07, 10, 19 and 22). This method preserves
the integrity of the DY and DZ dual stack levels (only the dual part of the DT level is lost). Otherwise
we would end up with a straddled situation, where the logical dual number occupies the wrong

locations in the double-stack.

01 LBL “DSINH” 14 DREXP
02 DREXP 15 LASTD

03 LASTD 16 DRNEG

04 DRNEG 17 DREXP

05 DREXP 18 DR+

06 DR- 19 ENTER~MA

07 ENTERAA 20 2

08 2 21 ST/ Z

09 ST/ Z 22~/

10 ~/ 23 DAVIEW

11 DAVIEW 24 RTN

12 RTN | 25 LBL "DTANH"

| 13 LBL "DCOSH” | 26 DREXP

Examples:

Sinh(1+g)= L (152U {94+ 4ddHEB (B (kY
Cosh (1+€)= (SHAMHY L AL+ A5 A 96
Tanh (1+€)= . 1h (S5 {(Sh+TdH (55 T4 IHS

© 2022 Angel Martin

27
28
29
30
31
32
33
34
35
36
37
38
39

DENTER”
LASTD
DRNEG
DREXP
DENTER~
DRUP
DR+
DRDN
DR-
DRUP
DR/
DAVIEW
END

30

Double-Down Module

Dual Number Inverse Trigonometric functions

I didn't find any reference in the available literature to the calculation of inverse trigonometric
functions, so I had to come up with my own approach. The basis takes advantage of the automatic
differentiation of analytical dual functions, whereby:

0o fgln) n n
fla + be) = Z [t

n=I(

- f({l) + b_f"({l)é',

n!

With that in mind it's a simple matter to obtain the inverse trigonometric functions from their
derivatives, which thankfully don’t need any direct trigonometric functions at all:

1
i.Eu'csin(z) = —; z# —1,+1
dz /1 — 22
d 1
— arccos(z) = —— ; z# —1,+1
dz /1 - 22
1
— arcta = — —i, +1
~ar n(z) T z# —i,+1

This round-about approach may seem a little complicated but in fact the resulting code is very simple
and short, so I'm more than happy with the end result.

asin (x+yg) = asin(x) + € y / sqrt(1-x"2)
acos (x+ye) = acos(x) - € y / sqrt(1-x"2)
atan (x+ye) = atan(x) + e y / (1+x"2)

Examples:

asin (sin (1+¢))=asin (0.841 +€0.540)=1+¢1
acos (cos(1+g))=acos (0.540-€0.841)=1+¢1
atan (tan(1l+¢)) = atan (1.557 + €3.426) =1 + £ 1.000

and if you want to impress your friends press this mutually cancelling sequence of keys:

1, ENTERAA, 1, DSIN, DCOS, DTAN, DATAN, DACOS,DASIN=> { + X1

Interestingly the cumulative error in DATAN is cancelled back in the complete chain, so the final result
is accurate to 10 decimal places using the internal O/S 13-digit routines.

© 2022 Angel Martin 31

Double-Down Module

Dual Number Inverse Hyperbolic functions

Now that we've developed a working system I's a simple matter to come up with the expressions for
both the inverse hyperbolic functions.

The derivatives are very resemblant of the trigonometric case, with only a transposition of terms
and/or signs:

1
— arsinhey = —
His $2+1
1
— arcoshy = — l<x
dx 2 —1
1
— artanhaz = ——— z| <1
T 1— x2

Hence:
asinh (x+ye) = asinh(x) + € y / sqrt(1+x"2)
acosh (x+yeg) = acosh(x) - e y / sqrt(x"2 - 1)
atanh (x+yeg) = atanh(x) + € y / (1-x"2)

Where the main annoyance resides in the lack of real variable hyperbolic functions in the native
function set, and therefore we need to include the MCODE for them as well.

Examples:

asinh (sinh (1+g))=asinh (0.175 +€1.543)=1+¢1
acosh (cosh(1+¢))=acosh (1.543 -¢ 1.175)=1+¢1
atanh (tanh(1+¢g)) = atanh (0.762 + £0.420) =1 + £ 1.000

The all-around test yields a slightly less accurate final result:

1, ENTERAA, 1, DSINH, DCOSH , DTANH , DATANH , DACOSH, DASINH =>

LA VA VA VA VA VA VA VA VA KA {
(VA NANARARANAN AN ANA} i Z 1

missing out only in the tenth decimal digit, not bad at all even if not perfect.

Note that although these functions are included in the DBLDOWN ROM, the FAT was already full so
their calling entry points are in the DUAL_APPS ROM .

© 2022 Angel Martin 32

Double-Down Module

Dual Number AGM and HGM.

As a direct application of addition, product and square roots we can proceed with the calculation of
the Arithmetic-Geometric Mean AGM, and the Harmonic-Geometric Mean (GHM).

In mathematics, the arithmetic—geometric mean (AGM) of two positive real numbers x and y is
defined as follows: First compute the arithmetic mean of x and y and call it al. Next compute the
geometric mean of x and y and call it g1; this is the square root of the product xy. Then iterate this

operation with al taking the place of x and g1 taking the place of y. In this way, two sequences (an)
and (gn) are defined:

1
1y = E(I + y} fln41 = (aﬂ- + gn}

g1 = /Y On+1 = v/ nfn

These two sequences converge to the same number, which is the arithmetic-geometric mean of x
and y; it is denoted by M(X, y), or sometimes by agm(x, y).

o] =

The Geometric-Harmonic Mean on the other hand can be obtained from the AGM using the
relationship show below:

1
!y

Programming these expressions is easy using our dual number function set. The only needed
precaution is that we must set the number of decimal digits to 8 to avoid oscillations in the partial
results that would delay or event prevent the convergence altogether. That's why we use a rounded
comparison instead of a full-fledge one.

02 SF 00 ; flag case 20 2
. 21 ST/ Z
v — N AT
05 SF 00 ; flag case ;43} BQSEDY f;?’]utr)lged
DRINV i sar
06 j invert a0 25 DRSQRT ; sqrt(an.bn)
07 DX<>DY ; Swap arguments 26 DRND - rounded
08 DRINV ; invert bo 27 DX=DY? : are equal?
| 09 LBL 00 ; common code | 28 GTO 02 ; yes, exit
10 FIX 8 ; adjust precision 29 GTO 01 ; NO, next iteration
|11 LBLOL | |30 LBLO2
12 DENTER” ;bn in DZ 31 FS? 00 ; HGM case?
13 DENTER/\ ; bn !n DT 32 DRINV ; yes, invert value
14 DRSP ; bnin DX 33 FIX3 ; restore defaults
15 DR ; an-_bn 34 DAVIEW ; show value
16 DRUP ; bnin DX 35 END ; all done.
17 LASTD ; bn
18 DR+ ; an+bn

© 2022 Angel Martin 33

Double-Down Module

Examples:
AGM [(8+¢), (23+¢)] = (M5 (b (YHYE+X 4 1HY (114X
HGM [(8+¢), (23+¢€)] = (b 1S54 YY (H+X LiHEYA 1145

Corollary: Complete Elliptic Integral of 1. kind via the AGM.

Here's another low-hanging fruit that is begging to be picked — so ready or not here we go ; even if
this is likely not relevant in this domain.

The trigonometric and Legendre forms of the Complete Elliptic Integral are as follows:

> 1
K(k):/2 do :f dt ,
0 1— k2sin% 6 0 /(1—12)(1—k¢2)

We can re-write the expression using the agm, as follows:

s

20gm(1, VT~)

K(k) =
, for k"2 <1

Here’s the FOCAL program used for the calculation. Note that for the most part we don't care about
the dual stack condition because DAGM is going to use it all up anyway.

01 LBL “DELK” 11 XEQ “DAGM”

02 DX~2 12 2

03 DRNEG 13 ST*Z

04 E 14 *

05 + 15 DRINV

06 DRSQRT 16 PI

07 ENTERAA 17 ST*Z

08 0 18 *

09 ENTERAA 19 DAVIEW

10 E 20 END
Example:

ELK (0.54¢) = ~ b dHNE { 15+X

X
oo
LA
x|
o
[yl
=3
(|
LA
oo

© 2022 Angel Martin 34

Double-Down Module

Dual Number Lambert function.

Now going for the stretch goal — suffice it to say I have no idea if this is a regular option with dual
numbers, but I thought it'd be very interesting to explore the concept. Obviously, the singular form of
the exponential function hugely facilitates things, so we take good advantage of it.

The Lambert function W(z) is defined such as: ~ W(z) . exp[W(z)] =z

Let z = a+be ; and W(z) = u + ve

Using the defining equation for W(z):

atbe = (u+ve). exp(u+ve) = (utve) eu (1+ve) = eu Ju + v(1+u)g]
equating the real and dual parts on both sides of the expression:

a = u.e’u, => u=Wo(a)
b=eMuv(l+u), => v=he?-u)/(1+u)

regrouping the terms, we have the final expression below — certainly a beauty:

be~W(@)

W(z) =u+ ve =W(a)+em

So there you have it, to my knowledge another “original” contribution to the field — or a flunk of
biblical proportions ;-)

Since we have reduced the problem to the real number domain, we can program this expression
using WLO, the Lambert function for real numbers included in the SandMath module. The short
program below does the job “in-place”, i.e. only using the DX level and therefore preserving the other
dual stack values:

01 LBL“DRW” ;ainX: binY: 09 X<>L ;» W(a)
02 WLO ; W(a) 10 CHS : -W(a)
03 SIGN ;1inX, W@@)inL 11 E~X ; en-W(a)
04 ST+ L s 1+4W(a) in L 12 ST*Y ; b. er-W()/[1+W(a)] in Y:
05 X<>L ; 1+W(a) 13 CLX
06 ST/ Y ; b/(1+W(a)) in Y: 14 LASTX ; -W(a)
07 X<>L i1 15 CHS ; W)
08 ST-L ; W) in L: 16 DAVIEW
17 END

Example: calculate the Lambert function for: z=1+&

AN
L"'
o
-

,"--{:{,-_-“ T] (ol el]

A Aah (HY5SS

=

1, ENTERM , XEQ “DRW” =>

where in this case the real part is W(1) = Q ; the Omega constant.

© 2022 Angel Martin 35

Double-Down Module

Dual Gamma and Psi functions.

Now boldly going to no-man’s territory and possibly breaking all conventional math’s rules, let’s push
forward this route calculating the Gamma and Psi (Digamma) functions.

Using once again the automatic differentiation rule it's feasible to obtain an expression to calculate
the Gamma function for dual numbers, assisted by the real number versions fg Gamma and Psi
available in the SandMath.

I(x+ye)=Tx)+yIr'x) e ;

and I''(x) is derived from the relationship linking it with Psi and Gamma itself:
YX)=T'(xX)/T(x); hence: T'(x)=T(x).¥()

Substituting in the initial expression we obtain the resulting formula:
I(x+ye) =TX)+yI'xX) e=T'(xX)+ €y TI'(x).¥(X)

The mini-routine below calculates the Gamma value for a dual number zin DX. The calculation is done
in-place, so ¥(z) replaces z in DX and the dual stack levels DY, DZ and DT remain unaltered.

01 LBL "DGAMMA” 05 LASTX ;X
02 PSI :P(X) 06 GAMMA ; T(X)
03 ST*Y SYP(X) in Y: 07 ST*Y ;Y. IT(X).P(x) inY:
04 CLX ; disables stack lift 08 DAVIEW ; show the world
09 END ; done!
Example: T (1+€) = {~X WS 11 {Shh5

For large values of the argument we run into range limitations of the machine, so it's always good to
have LogGamma (natural logarithm of Gamma) in the function set. Besides, this one is a double-win
(pun intended) of the method, almost too easy to be true but that’s how the cookie crumbles in this
case.

We'll apply the automatic differentiation rule to the definition of the LNGAM function:
f(z) = Ln(I'(z)) = Ln(I"(x) + ¢ y d(LnI"(x))/dx

f'(z)=1"(2)/ T(z) =Y¥(z) ; thus we have:

Ln('(z)) =Ln(I'(x) +ey Y(X)

This can be easily programmed in the super short routine below, which returns the value in the DX
stack level. Note that the routine does the job “in-place” (preserves DT, DZ and DY) and it uses no
data register.

01 LBL "DLNGM” | 05 LASTX s X
02 PSI 06 LNGM 7 Ln(G(x))
03 ST*Y 07 DAVIEW
04 CLX ; disable stack lift 08 END
Example: LnI" (1+€) = -2 048 E-2Y9 ~ZUS 772 (SRS
Thus: XEQ “DREXP” => { ~X U517 (5hhb

© 2022 Angel Martin 36

Double-Down Module

Finally, what about the dual number Psi function?

The approximation formula used for Psi is as follows:

1 1 |

. i
V(x) =log(z) = 5=~ 153 + 1907 ~ 2528 T ¢ (F)
,orusing w = 1/x:

Psi(z) = —| L +W+W2 1 W2(1 10 2)
sz = WS T 10 21"

This is a regular calculus using our dual number functions, with the only condition imposed by the
inversion rule being that the real part of the argument cannot be zero. Thus, we can consider Psi
available in the dual number domain.

This formula is accurate to at least 9 decimal figures for arguments with real part x > 9. For smaller
arguments we'll use the following recurrence relationship:

Y(x) = W(x+9) - Z [1/(x-k-1) ; k=1,2..9
We'll apply the approximation formula to calculate W(x+9), and then subtract the correction.

You can find the program that calculates its value in next page. Note the use of some double-length
stack functions along with the dual number functions, in a wonderful demonstration of the common
synergies between both subjects of this module.

Example. Calculate ¥(1+¢)

[
L

—
-
E3
L
~

1, ENTERAA, 1, XEQ"DPSI” => -5 1 i {Shbh5-X LthYY

Note that the program returns real numbers when the argument has a null dual part, which is rather
logical if you ask me. For instance:

Y(+0g)=-AS 72 (SERS+Z U ; the opposite of Euler’s y constant
Y (+0g) = HAMHIZ THHIGR+AZ A
Plot Plot
. - — 15
2 _—
1 ,///J
o~ 10
‘/
L v, -
, 1 6 8 10 /,/
/ 5 -
1 ‘J /‘,
.'l -
2t | L — .
I 2 4 £ 8 10
HX) Ln(r1x)

© 2022 Angel Martin 37

Double-Down Module

Program listing:

01 LBL“DPSI” ;zin DX 33 E
02 STOM ; save for later 34 M+ ; 1-wn2*(..)/10
03 ENTER~~ ; push for input 35 DR* ; WA2(1+wn2(..)/12)
04 9 : scale factor 36 ENTER"M”
05 STOO : save for later 37 12
06 "+ 5 94X 38 ST/ Z
07 X<>Y 39 ~/ ; (...) partial result
08 STON : save for later 40 DX<>DY ;W
09 X<>Y 41 DRLN ; Ln(w)
10 DRINV P W 42 LASTD ;W
11 DENTER”A ; win DX and DY 43 ENTER™”
12 DX~2 ; WA2 44 2
13 DENTERA ; wA2in DX and DY 45 ST/ Z
14 ENTER~~ : stack lift 46 ~/ ; wW/2
15 10 :10in X: 47 DR+ ; W/2 + Ln(w)
16 ENTERAA : stack lift 48 DR+ ; Ln(w) + w/2 + (..)
17 21 :21inY: 49 DRNEG ; unscaled result
18 ~/ :10/21 ‘ 50 LBL 0O ; correction steps
19 ST*Z 51 RCLM ; original x
20 ~* ; 10.wn2 /21 52 RCLO ; index k
21 DRNEG 53 DSE X ; k-1
22 ENTERAN 54 NOP
23 E 55 + ; X+k-1
24 "N+ ;1-10wn2/21 56 RCLN ; original y
25 DRCLY ; W2 57 X<>Y ; dual number in DX
26 DR* ; WA2*(..) 58 DRINV 5 1/[(x+k-1)+ye]
27 ENTER"# 59 DR- ; subtract from result
28 10 60 DSE O ; next index
29 ST/ zZ 61 GTO 00 ; loops 9 times
30~/ FWA2* () /12 62 DAVIEW ; show it
31 DRNEG 63 END
32 ENTERAAN
1] — g2 1
P(z) = — v+ dx
o L=

Fig.1: Integral representation of Psi

© 2022 Angel Martin 38

Double-Down Module

Dual Bessel functions of first kind.

We manage this one as another direct application of the automatic differentiation rule whereby:

J(n,z2)=J(n,x)+y.J’(n,x) €

Using the derivative formula below:
ZJy-‘I (Z) - Ju—l (Z) - Jv—l—l (Z)

We can substitute the term J'(n,x) with the equivalent given by the formula, resulting:

J(n,2) =J(n, x) + € y.[I(n-1, x) - I(n+1, x)] / 2

Again, this is another straightforward application of the SandMath JBS function. The program below
expects n in register Z: and z = (x+yeg) in stack registers {X,Y} - as you'd get them by typing:

“n” , ENTER™, “y", ENTERM, “X”, ENTERM

Note that except for JBS and DAVIEW, only standard functions are used, thus this program operates
strictly within the “lower stack” XYZY and leaves the upper part alone. That’s always an option, with
the advantage of keeping DZ and DT untouched but obviously it destroys the data in the DY level.
Also, there are several stack functions needed due to the format of JBS output, leaving the result in X
and half the order (n/2) in Y.

01 LBL“DIBS” ;ninZ:;xyin{XY} | 15 JBS : J(n-1,)

02 STO 00 16 R”

03 RCLZ in 17 RA

04 STO 01 18 RCLZ

05 E 19 - ; J(n+1) — J(n-1)

06 + s n+1 20 2

07 X<>Y s xin X: 21 / ;

08 JBS ; J(n+1, x) 22 * ; dual part

09 X<>Y 23 RCL 00

10 RDN ; X in X 24 RCL 01

11 RCLO1 ;N 25 JBS ; real part

12 E 26 X<>Y

13 - ' n-1 27 RDN

14 RCL 00 X 28 DAVIEW ; show result
29 END ; end

With just a few modifications the same program can be used to calculate the derivative of the
modified Bessel function of first kind, just replacing the JBS lines with IBS, and using “+" in line 19
instead.

Example: Calculate J[1, (1+¢€)]

1, ENTER~AA, ENTERAA, ENTERM, XEQ “DIBS” => UMM S SHE - X .4

ol
LA
-
—

E3

© 2022 Angel Martin 39

Double-Down Module

Dual-Step Root Finding for Real Functions

For the skeptical amongst you (oh faithless!), here’s the clear proof that the dual number field has
practical applications.

The concept of ‘Dual-Step” is borrowed from complex analysis, where the Complex-Step derivative is
a well-known method to calculate the derivative of a real function; just by evaluating the equivalent
complex function instead, displaced an incremental amount and taking the imaginary part (see the
41Z Deluxe manual for details).

F'(z) = Im(F(zo + ih))/h
, with “h” sufficiently small.

We can use the analogous scheme with dual numbers, where we have the advantage of a
simultaneous calculation of the real function and its derivative already built in the very result of each
equivalent dual-function evaluation (a.k.a. the automatic differentiation rule). Moreover, this leaves
things neatly prepared for a direct root-finding application using Newton’s method, where the
iterative correction factor is already known:

The trick is using the value “1’ for the dual part and thus calculating:
DF(x+¢) = f(x) + ¢ f'(x)
Say, what's that for direct applicability of a result with no need for additional steps?

The routine below exploits this idea and can be used to replace your trusty SOLVE or FROOT. All you
need is a global program in memory for the Dual-Number function equivalent to the real function
whose roots you want to calculate.

01 LBL “"DFX=0" 15 XEQIND M ; evaluate fnc.
02 "GUESS=?" 16 X<>Y : F(X)
03 PROMPT ; input guess 17 / ; FOQ/E(x)
04 STO 00 ; Xi in ROO 18 ST-00 ; X(i+1) in ROO
05 "FNAME?” 19 FS? 10
06 AON 20 VIEW 00 ; show current
07 PROMPT ; input name 21 RND ; round value
08 AOFF 22 X#0? ; equal?
09 ASTO X ; temporary 23 GTOC ; no, do next
10 STO M ; saves one data reg. 24 RCL 0O ; yes, recall result
11 FIX9 ; for rounding 25 FIX3 ; reset defaults
12 LBLC ; subroutine entry 26 CLD ; Clear LCD

. 28 GTOC
14 RCL 00 ; real part

The routine uses ALPHA (register M), data register RO0 and stack registers.

© 2022 Angel Martin 40

Double-Down Module

Let's see a couple of examples to get familiar with the approach.

1. Calculate the real root of f(x) = e~x -5
2. Solve the Kepler equation M = x - E sin(x) ; for E=M=0.5

To tackle the first example, we write a small routine to program the equivalent DUAL function, i.e.
DF(z) = exp(z) - 5
For the second example the DUAL function is Kepler’s equation with explicit parameters, i.e.

DF(z) = z—-0.5sin(z) — 0.5 ; or easier: DF2(z) = 2z —sin(z) - 1

This is how they’ve been programmed:

| 01 LBL “DF1”

| 09 LBL “DF2”

02 DREXP 10 DSIN
03 ENTER” 11 LASTD
04 0 12 2
05 ENTER~M™ 13 ST*Z
06 5 14 *
07 DR- 15 DR+
08 RTN 16 1

17 -

18 END

Running our root-finding program couldn’t be any easier, say we use an initial guess of x=1 for both:

XEQ “DFX=0" GUESG =T

1, R/S FNHAME

DF1, R/S => R R I R
XEQ “DFX=0" DESS =

1, R/S FNHME

DF2, R/S => AAdA5H (HAdc

© 2022 Angel Martin 41

Double-Down Module

Dual Error Function and Exponential Integrals.

A final relapse to the special functions analysis that — again - takes advantage of the automatic
differentiation in tight collaboration with the SandMath for the real variable functions. It;s just too
convenient not to keep coming to it over and over again!

Error function: definition and derivative.

z d 2
erfz = l / e_t2 dt. —erfz = —e_zz.
T d

Z iy
and:

Exponential Integral: Definition and derivative.

. ' T1—et d -z
Ei(z) = —y —Inz +/ —° = (Bi(z)) = - —
N 0 t dﬂ: T
and:
Sine and Cosine Integrals.

T gi c-::nsht -1

hi(z) = / Emht Chi(z) =~ +Inz +f e
1] t , and:

The derivative is a trivial exercise from the definition.

The calculation method is always the same:

Save the DX argument in the DL dual stack level, where it remains untouched,

Start with the real variable circulation using the SandMath functions to get the real part,
Recall the dual argument and perform the derivative calculations to obtain the dual part.
Show the dual result.

Si(x)
R e = aEE R SRR =
1t
i
|4 /N s 10 15
N_— — X
_17

See the program in next page that applies the described technique.

© 2022 Angel Martin 42

Double-Down Module

Program listing:

01 LBL “DERF” 28 X<>Y ; put in place
02 DSTOL : save argument 29 DAVIEW ; show result
03 ERF ; Error function 30 RTN ; done.
04 DX<>DY : move result to DY [31 LBL “DSI"
05 CLDX ; get rid of scratch 32 RAD
06 LASTD ; DX, stack not lifted 33 DSTO L
07 X~2 34 SI ; Sine Integral
08 CHS 5 =XN2 35 DX<>DY ; move result to DY
09 E~X ; enN(-xN2) 36 CLDX ; get rid of scratch
10 ST+ X ; 2.eMN(-xN2) 37 LASTD ; DX, stack not lifted
11 ~PI 38 SIN ; sin(x)
12 SQRT ; sqrt(r) 39 GTO 00
13 ~/ 40 LBL “DCI”
14 ~* ; mult by dual “y” 41 RAD
15 X<>Y ; put in place 42 DSTOL ; save argument
16 DAVIEW ; show result 43 CI ; Cosine Integral
17 RTN ; done. 44 DX<>DY : move result to DY
18 LBL “"DEI” 45 CLDX ; get rid of scratch
19 DSTO L ; save argument 46 LASTD ; DX, stack not lifted
20 EI ; exponential Int. 47 COS ; cos(x)
21 DX<>DY ; move result to DY | 48 LBL 00
22 CLDX ; get rid of scratch 49 LASTXA~ ;X
23 LASTD ; DX, stack not lifted 50 ~/ ; cos(X) / x
24 E~NX ; e7X 51 ~* 5 y.cos(x) / x
25 LASTX~” ;X 52 X<>Y ; put in place
26 ~* ; X.e7NX 53 DAVIEW ; show result
27 ~/ ;Y [x.enx 54 END ; DONE.
Remarks:

The SandMath functions use the “lower stack”, thus the dual value in DY will be trashed.

However, we're using a combination of dual number and double-length stack functions in the
calculation of the dual parts to preserve the dual values in DZ and DT. This can be seen in the use of
DX<>DY , CLDX right after the SandMath function, which will make the LASTD argument to overwrite
the DX level , not lifting the dual stack.

Examples:
DERF(0.5+05¢) =SS HH TH+ X A AHAY (dHY
DEI(1+¢g)= (HYS {{7TH {1+Xdbh TH 194 |
DSI(1+¢)= AHYMEUAHAE TH+ZAEY (Y I0SHS
DCI(1+¢)= HAdd MO A+ XSRS AANS A5

© 2022 Angel Martin 43

Double-Down Module

Poly-Dual-Nomials, - come again?

Reeling it back a tad, let’s end this chapter with a few routines covering basic aspects of Polynomials
in the Dual number plane, should we?

There's noting strange in the poly-dual-nomial concept (yes, the new name is officially coined, and it
will stick!) thus we'll assume both the coefficients and the variable are dual numbers. We'll write Data
Input and Evaluation routines and will try to get to the Root finding subject using the automatic
differentiation. By the way, the Dual plane is not as forgiving as the Complex plane in that the
formulas used must watch for the same data error situation as the real numbers, such as square
roots of negative numbers, and set the necessary error trapping to avoid the crash.

We'll use the naming convention where the n-th. Index is for the coefficient of the x”n term;

Data Input and Evaluation routines.

The program below can be used to enter the coefficients and to evaluate the polydualnomial at a
given data point of the variable. If its degree is "N” we'll store the N+1 coefficients always in dual
data registers starting with R01, that is { R01 to RN+1 }, using the control word “1,00(n+1)" to
define it (in bbb.eee format).

| 01 LBL “DINPT” | 24 ~RCLZ
02 "W=r" - Pol. degree 25 STO 01 ; keep a backup
03 PROMPT 26 FRC
04 E3/E+ ; counter format 27 ENTERAA
05 STO 00 ; used as scratch 28 E3

- mai 29 ~x* ; degree

06 LBL 00 ; main loo !

| 07 "DN” . coeff valpu A 30 STO 00 ; counter to ROO
08 RCL 00 ' ' 31 ~RDN ; get it off the way
09 E 32 DENTER® ; push DX to DY
10 - 33 CLDX ; initial value
11 AINT : adds index 2: E;L()él ;fnablle stack lift
12 “/-=? ; as question ; term loop
13 PROMPT 36 DRCLY ; get current value
14 DSTOINDL ; saved in Dual Reg 37 DRCL IND 00 ; coefficient
15 ISG 00 ; next index 38 DR* ; product
16 GTO 00 ; loop till done 39 DR+ ; updated value
17 LASTX ; counter 40 DSE 00 ; decrease counter
18 FRC 41 GTO 01 ; loop for next
19 RTN : entl. word in X 42 DAVIEW ; show the world

| 20 LBL DPVL” ; Cntl. word in X | :2 ;{‘T'T\IC'- 01 fcon;rol word
21 "DX=?" ; evaluation point 45 GTO A f rer; y -
22 PROMPT ; input DX 46 END ; fun agai

| 23 LBLA ; subroutine entry ‘

© 2022 Angel Martin 44

Double-Down Module

Note: DAVIEW is a resource-hungry function, it uses all scratch area, L and ALPHA to do the job. This
forces us to use ROO for a backup of the control word.

Step #32 deserves some comments as well. We know that the I/0_SVC does the housekeeping for
the LGKT:, ensuring there’s no data loss across the double-stack divide (i.e. stack <-> buffer) and
keeping UF 01 in sync with CPU F11. However, this only happens in manual mode and not under a
running program, which leaves us with a manual refresh of UF 01 so stack lift is enabled again for the
instruction DENTER right after LBL 01.

Note that we've used Honer’s (or Ruffini's) method to write the polynomial taking common factor
from right to left — This is the most efficient way to evaluate it as it only does multiplications, avoiding
altogether all power operations, more time consuming and less accurate.

Example. Enter the coefficients and evaluate at z=(5+5¢) the polynomial:
P(z) = (-1-1€) + (1+1¢g) z + (2+2¢€) z~2 + (3+3¢€) z"3
Or, rewritten using Honer’s method:

P(z) =(-1-1e) + z{ (1+1e) + z[(2+2¢e) + z(3+3¢)] }

1.004 , XEQ "DPVL” => IX =7
5,ENTERAA, 5,R/S => INZA=T7
-1, ENTERAA, -1, R/S => IN (=7
1,ENTERAA ,1,R/S => INZ=T7
2,ENTERAA,2,R/S => INF=T7
3,ENTERAA,3,R/S => 25+3 54

Polynomial Derivative Evaluation

A routine to evaluate the derivative at a given point is given below. Notice that this is a stand-alone
version but there are common code sections with the polydualnomial evaluation, so the proper
approach is consolidating both into a single program to leverage from the code reuse.

| 01 LBL“dDPVL" ; Cntl. word in X | 17 DRCLY
09 OxX=7" ~eval. point 18 DRCL IND 00 ; Ck coeff.
03 PROMPT : input DX 19 DR*
| 04 LBLB ; subroutine entry ‘ ;2 g:EC; 01 , E"‘l
05 ~RCL z %> NOP '
06 STO 01 ; keep backup 3 ST* 7 . ROk
07 FRC 24 A% ’
gg E?TERAA 25 DR+ ; add to current
10 A~* : degree 26 DSE 00 ; decrease counter
11 STO 00 ; counter to M 378 (I;-Il:\(\)IIOEZW ; loop for next
12 “RON s get It off the way 29 ~RCL 01 ; control word
1 pmrpenoxnor o
; initial value .
15 SFO1 enable stack lift g; S;CD) B ; for new data point
| 16 LBL 02 |

© 2022 Angel Martin

45

Double-Down Module

Example: evaluate the derivative of the same polydualnomial at the same data point we did its
evaluation before.

P'(z) = (1+41¢) + z [2¥(2+2¢€) + z 3*(3+3¢)]

Since the coefficients are already in memory, we can skip the data entry section and jump directly to
the subroutine entry point LBL B — but not without typing the input parameters of course:

N
(|

1.004 , ENTER* , 5, ENTERM , 5, XEQB => R DR

=3

Regrouping for a moment, we're now equipped to give the root finding solution a good go — since we
can calculate both P(z) and P’(z) with the routines above. All that's left is having a sensible driver
program asking for the initial guess and orchestrating the iterations till convergence is (hopefully)
reached.

Polydualnomial Twice-Roots.

By virtue of the automatic differentiation, finding roots of a polydualnomial is equivalent to finding the
roots of the real polynomial that are also roots of its derivative polynomial:

Let z= x+ye, with y#0 then:

P(2) =P(x) + &y P’(x)
IfP(z)=0 => P(x)=0 and P’(x)=0

So, it imposes a double condition that makes the search twice as interesting, if not complicated. You'd
allow me to coin the term “twice-roots” for them, although I agree all this naming is getting funky.

We know from calculus and polynomial algebra that the roots of the polynomial and its derivative are
related by the Rolle’s theorem, whereby if d1 is a real root of the derivative then it is placed in-
between two real roots of the polynomial, r1 and r2. Let m1 and m2 the multiplicity of said roots,
then we have:

di=(ml.rl1+m2.r2)/(ml+ m2)

The elephant in the room is that obviously we're going to have non-real roots in many cases, and we
don't have any way to handle them. This is not different from the real field, where some roots are
complex and therefore escape the Real domain into the Complex plane, right? Likewise, here we'll
have some of the polydualnomial roots as Dual Complex numbers, instead of Dual Real. Yes, the thick
plottens, as they say...

Dual Complex root: z + iw = (a+bg) + i (c+dg)

Just to touch lightly on the subject we'll attempt Newton’s method to find double real roots,
combining it with the automatic differentiation and hoping to get assistance from the SandMath
prowess on real-variable calculations.

Starting from an initial guess x0, the successive iterations are given by the expression:

© 2022 Angel Martin 46

Double-Down Module

Using the automatic differentiation, we can re-write it as:
z(k+1) = zk — [P(zKk) / [P(xk) + € yk P’(xk)]
where: zk = xk + yk €
The numerator P{zk) can be evaluated using the routine DPVL, which returns a dual number.

If restricted it to real coefficients (not dual numbers) both P(xk) and P’(xk) in the denominator can be
obtained using the functions PVL and dPVL available in the SandMath, so no need to re-write then
again. They expect the evaluation point and control word with the information of the location of the
coefficients.

However, if we also allow dual-number coefficients then the polynomial will have both real and dual
parts, even for real variable x. We need to write another routine to evaluate the polydualnomial
derivative, not a big deal anyway so let's go this route for a general-purpose approach.

The routine below is such a driver program. It assumes the polydualnomial coefficients are saved in
data registers RO1 to RN+1, and expects the control word in X:

01 LBL“DP=0" ;cntl word in X: 17 DRCL 10 ; Zk

02 “bbb.eee=?" 18 DX<>DY

03 PROMPT 19 DR- ; Zk — P(zK)/P'(zk)
04 “GUESS=?" 20 DSTO 10 s Zk+1

05 PROMPT 21 LASTD ; P/P’

06 DSTO 10 22 DRND ; rounded
| 07 LBL 10 ; iterations loop g: g;‘;fl"i’ © foun

- " , Foot roun
XE \\Bn . ’

oy e 25 ARCLOL ;cntl. word

10 DSTO11 ; P(zk) 26 DRCL10 ;zk

11 RAA ; cntiwd. back to X: 27 _GTO 10 ; repeat loop

12 DRCL 10 ; 7k 28 LBL 11

13 XEQ“A” ; P(zK) 29 DRCL 10 ; solution

14 ~RDN : get rid of cntl. word 30 DAVIEW ; show the world
15 DRCL 11 ; P(zK) 31 END ; done.

16 DR/ ; P/P’

Realize than more often than not this is not going to converge because of the twice-root condition on
the real polynomial and its derivative, so without dual-complex support this is quite limited, just an
academic exercise without much chances to become a fruitful method.

We can of course try it for a spin building a bespoken polydualnomial from its dual real roots, let’s
say:

P(2) = [z - (1+ye)].[(z - (2+2¢)]"2 ;
P(2)= 2°3 + 22 (1+2€) + z (2+2¢) + (4+10¢)

which supposedly has a twice-root in:

Left for the reader to complete ;-)

© 2022 Angel Martin 47

Double-Down Module

CODA: What about out trusty quadratic equation?

Sure enough, we're going to check if this works - at the very least as a programming exercise using
the dual number functions.

The equation is Q(z) = Az~2 + Bz + C, where A,B,C are dual numbers.

The routine below expects the three coefficients A, B,C in the dual stack levels DZ, DY and DX. It
leaves the two roots in DY and DY — or comes back with a DATA ERROR if the discriminant of the
square root is, dare I say, “negative” (i.e. the two roots are dual-complex numbers).

| 01 LBL "DQUAD" ‘ 17 X<0? ; is Re(D)<0?
02 DRCLZ : A to DX 18 SF 00 ; yes, set flag
03 DR/ : C/A 19 ABS ; absolute value
04 DR<>Z ; A to DX 20 DRSQRT ; sart(D)
05 DR/ : B/A 21 FS? 00 ; was D<0?
06 ENTER~AA : lifts d-stack 22 RTN ; Dual Complex result
07 2 23 DR- ;z1
08 ST/Z 24 DRUP ; -B/2A to DX
09 ~/ : B/2A 25 LASTD ; sqrt(D)
10 DRNEG ; -B/2A 26 DR+ ;22
11 DENTERA 27 DAVIEW ; show first root
12 DENTER~ 28 PSE ; catch a glimpse
13 DX~2 ; (B/2AN2) 29 DX<>DY ; swap them
14 DRUP : C/A to DX 30 DAVIEW ; shows second root
15 DR- ; (b/23)"2 - ¢/a 31 END ; done/
16 CF00 ; default

Example:

Get the two roots of Q(z) =[z—-(1+¢) 1.[z— (1-2¢)]

First we expand the polydualnomial:, Q(z) = z2 + (-2+¢€) z + (1-€)

We type (dual part first, remember):

0, ENTERAA, 1, ENTERAA, 1, ENTERAA, -2, ENTERAA, -1, ENTERAA, 1, XEQ “DQUAD”

Resulting:
1= { AT A A A A A A AT
Z - 1 AP AN AN ANANAN/ANANA}
—_ (.. A VA VA VA VA VA VA VA VA
zZ2 = {20 50000888

Lo and behold, this is not the expected result! — but certainly the value (1-£/2) is a root of Q(z):

Q(1-€/2) = 0, and being a double root we can re-write the polydualnomial as follows:

Qz)=[z-1-€/2)1"2 =272 + (1-€/2)"2 - 22 (1-€/2) = 22 + z (-2+€) + (1-€)
Therefore, we've found FOUR roots of the quadratic equation, say what??

Interesting and confusing dual nhumbers to say the least — but nevertheless it's proof that the routine
is working right... oris it? Keep reading to know more...

© 2022 Angel Martin 48

Double-Down Module

CODA2.- Heresy or Paradox? Understanding this mess.

The issue we've run into can be explained by going up one level to the actual polydualnomials we're
trying to get the roots of. The vagaries of dual numbers are playing the trick on us because several
polydualnomials reduce to the same polynomial when expanding their terms — sometimes they even
reduce to “standard” polynomials of real variable.

Take for instance the polydualnomial formed from the roots (1+¢) and —(1+¢), i.e:
P(z) =[z-(1+&)] [z+ (1+¢)],
Expanding it:

P(z) = z2 = z (1+g) — z(1+¢) = z”2, with a double root in z=0

Another example showing the same dichotomy would be using the roots (1+¢) and (1-¢):
Q2)=[z-(A+e)][z-(1-e)]=2"2-z(1-e)—z(14+e)+ 1= z"2-2z+ 1
With double root z = 1

Note how they're twice-roots of both the polynomial and its derivative, so at least that part holds
water-tight not creating more paradoxes:

plot xXF-2x+1 0to2 plot 2x-2 002
Plot Plot
10§ J 2
N\ / ' ~
08} \ / | ,-"/
\ / 1 ~
\ / ~
0.6 ! / | e
: \ / -
i \\ .,"’ | //
A i/ -
04! \\ /ﬁ 0.5 10 1.5 2.0

PS. Somehow this duality brings to mind the quantum mechanics field paradoxes. I wonder if that’s
one reason why dual numbers are also applied in that field or if all this is just rubish to the square...

© 2022 Angel Martin 49

Double-Down Module

Part III — MCODE Listings

R - o g Pl -
i

© 2022 Angel Martin 50

Double-Down Module

I/0_SVC Monitoring Routine.

This is the heart of the double length stack, and the best example of how MCODE facilitates things
when really pushing the envelope. The routine filters the events by the following criteria:

Checks that ALPHA is not ON and that there’s not a program running
Rejects calls from ROMs other than ROM #0

Rejects calls from routines different from [PARSE], at 0x0C93
Rejects keypresses not from the numeric keypad

o

If any of the above is false the routine sets UF 01 if CPU F11 is set, and then returns the polling
vector back to the O/S to resume with the bus enumeration.

The first digit finds UF 01 clear, so it immediately sets it and proceeds to copy the contents of the T:
register into the LGKT location, “last Good Known T" in buffer register G: It makes an audible sound
to let the user know the backup has been made.

If however, UF 01 is found set that indicates a repeat digit event, and since we don’t want to restore
the LGTK value to the T: register with each digit entered the code exits as explained before.

See below the actual code with the details:

1 UPDATE |UPDATE A226 0oC ?FSET 3 PRGM maode on?

2 UPDATE A227 09F JC +19d ——— yes, never mind!

3 UPDATE A228 28C PFSET 7 is ALPHA moade on??

4 A229 08F IC +17d —> yes, never mind!

5 this is the soul of the machine, A22A 1B0 POPADR OK, grab the calling oddress

6 First we discard calls not made a228 Mi7o PUSHADR put it back

7 from ROM#O A22C 15C PT=6

8 a0 ez C=C-1 @PT calling from ROM-G7

3 UPDATE a8 b6z INC +12d —> no, ignore -= [LB_AB2B]

10 UPDATE A22F 03C RCR 3 yes, only three digits

11 a2z0 Mos A=C 58X put in A for compares

12 then we check whio's calling, A231 ﬁ_BO TV R I T _!
13 discarding if not [PARSE] a232 Moz [PARSE] address for digit entry |
14 A233 1F6 ccecxs [T gez"]
153 UPDATE A234 1FG C=C+C X5 "ca3"

16 UPDATE A235 E66 PARC S&X got a match?

17 236 ‘D4z INC+08 —— yes, take care of it

18 this catches all ather functions A237 18C PFSET 11 ' stack lift enable?

19 even the native ones ! A238 } ets Uflag 01

20 A239 [SFO1]

21 UPDATE | IGNORE A23A 198 C=MALL << restore polling vector

22 UPDATE A23B 58 5T=C ¥P B restore status bits

23 UPDATE A23C 3CD NC GO resume polling process
24 UPDATE A23D 09E -=27F3 [RMCK10] '
25 UPDATE [DIGITS? A23E 1130 LDIS&X <« !
26 UPDATE A23F w018 con: |keycode limit _.
27 AZ40 lﬁT}ﬁ A=C 58X

28 third, which key was pressed? A241 a6 C=05&X valid keys are:

29 anly care for numeric pad A242 39C PT=0 {10-189 } 0-9 digits,

30 AZ43 GET:) C=G @PT,+ {1A, 1B} EEX and RADIX

31 UPDATE AZ44 31C PT=1

32 UPDATE AZ45 62 TARC @PT isit "1"

33 UPDATE AZ46 38F JC -15d ——> no, ignore -

34 UPDATE AZ47 Bo6 PA<C S&X is KY="18"

35 UPDATE AZ48 37F JC -17d yes, ignare

36 UPDATE DIGITS AZ45 3B8 READ 14(d)

37 UPDATE A24A 1FE C=C+C M5

38 UPDATE AZ4B 1FE C=C+C M3 setscarry if UF1 is SET

39 a2ac B73 INC-18d ——> it's clear, no need to update!

© 2022 Angel Martin 51

Double-Down Module

40 will only be done ance A24D Clears Uflag 01 to i

41 ta account for the first digit A24E

42 for the stack update A24F @ T makeasound T
43 A250 C ONEZ]

44 UPDATE A251 : : -k buffer id#7 - > header

45 UPDATE A252 4 49D A [CHKBFR#7] - returns addr in A.X

46 UPDATE A253 3 PORT DEP: Lift buffer regs - always!

47 UPDATE A254 {03C xa Expects header addr in A.X

48 UPDATE A2 {bss ->A096 [BLIFT] - Ends w/ Chip0 Sel

45 UPDATE AZ56 146 A=A-1 58X header addr in A.X

S0 UPDATE a2s7 Mao O loiskx T T T T T I _i
51 UPDATE A258 o7 cON:F | |offsettoGireg _;
22 UPDATE A255 l6_0'6 C=A+C S&X points at Gu:

33 UPDATE AZ5A 570 RAMSLCT selects G:

24 UPDATE A25B 03 READATA LGKTinC

35 UPDATE A25C 0AE A<>C ALL header

26 UPDATE A25D P26 C=C+1 5&X pointer to A:

37 UPDATE AZ5E 570 RAMSLCT selects A:

28 UPDATE A25F 0OAE A<>C ALL Az addr to AX

29 UPDATE AZ60 1A6 A=A-1 58X header addr in A.X

60 UPDATE A261 puts G:in A:

61 UPDATE A262 [WRTSEL] - selects ChipQ

62 UPDATE A263 current T

63 UPDATE AZ64 parkitin B

64 UPDATE a26s Mao loiskx T T T T T T T T T |
65 UPDATE A266 |offsettoGireg i
66 UPDATE A267 l’z!_Dﬁ C=A+C S&X points at G:

67 UPDATE AZ68 570 RAMSLCT selects G:

68 UPDATE A265 OCE C=

69 UPDATE AZ6A FNCXC puts T in LGKT

70 UPDATE AZBB 124 ->450 [WRTSEL] - selects Chip0

71 UPDATE A26C 273 INC -50d

It's important to realize the the I/O_SVC event is received by the module *after* the action has
occurred, so it's not a true interrupt because we cannot intercept it and thus prevent the event from
happening. In other words, when we react to it the T: register has already been deleted and the
lower stack lifted to push the new digit into the X: register.

That's why we need to have a method to keep a backup copy of the T: register always up to date, in
case there’s a data entry event at any given moment. This backup is made as a follow-up task by all
functions that alter the double-stack arrangement, either by directly handling their registers (like
ENTERAN, RAN, ARDN, NLASTX, etc.) or indirectly as part of the automated stack drop and register
duplication after a two-number function execution.

Finally, the last touch still needed is keeping UF 01 status always in sync with CPU F11 — as a proxy
that can be interrogated at our discretion even *after* the O/S has dealt with the stack lift condition
and thus it has re-set F11. Remember that our code is receiving the message *after the fact*, so
checking F11 at that point is useless but UF 01 is still a valid marker for or purposes.

UF 01 is first set when the calculator is switched ON using the CALC_ON polling point. From that
moment on, it's always refreshed by those functions that clear F11 (such as ~CLX, ENTER~~, CLDX
and DENTER”), and by the I/O_SVC routine itself — remember it’s the last thing it does upon a false
event execution.

That's in a nutshell all there’s to it — not rocket science but clever just the same, really a lot of fun to
put together in such an interesting way.

© 2022 Angel Martin 52

Double-Down Module

Buffer Drop routine

Used to drop the upper-stack registers as part of the complete Stack drop, for instance in ~RDN, and
the two-number Math functions.

1 BDROP Header A1SC 090 upn A-=CPU(B)

2 BDROP Header AlBD O0F "o" A=B

3 BDROP Header Al1BE 012 E=C

4 BODROP Header A1BF o4 c=D

5 BDROP Header a190 "oz D stays put !

6 BDROP |BDRDP A191 369 Check buffer id#7 - = header in C
7 BDROP A192 [CHKBF#7] - returns a
8 BDROP A193 ! Drop buffer regs, Saves bl in B
9 BDROP Al94 {03C Xa Expects header addr in A.X
10 BODROP Al155 ?198 ->A198 [BDROP]

11 BODROP Al96 i3c1 NC GO

12 BDROP A197 :%GQ -=00F0 [NFRPU]

13 BDROP BDROP A198 0AB A<>CSEBX

14 BDROP A159 226 C=C+1 S&X pointer to A

15 BDROP ALSA 570 RAMSLCT selects A

16 BODROP Al15B Fos A=C 58X park pt in A.X

17 BODROP AlSC GET:] READATA A contents

18 BDROP AlSD OEE C==B ALL saves b1{A) in B

15 BDROP A19E 1A6 A=A-1 S&X paints at header

20 BDROP ALSF 01C PT=3 repeat three times
21 BODROP LOOP3 ALAD 0AB A>CSEBH points to bR-1

22 BODROP AlAl 226 C=C+1 S&X points ot bR

23 BODROP AlA2 P26 C=C+1 S&X points ot bR+1

24 BDROP AlA3Z B70 RAMSLCT selects bR+1

25 BDROP AlAd Fos A=C 58X park pt in A.X

26 BDROP ALAS (ET:] READATA bR+1 contents

27 BODROP AlAB OAE A<=C ALL points ot bR+1

28 BODROP AlAT 266 C=C-1 S&X points at bR

25 BDROP AlAZ 70 RAMSLCT selects bR

30 BDROP AlAS OAE A<>C ALL

31 BDROP ALAA 2F0 WRTDATA puts bR+1 in bR

32 BDROP ALAB 3D4 PT=PT-1

33 BODROP ALAC B94 PT=0

34 BODROP AlAD 398 INC-13d S——

35 BDROP AlAE JBEO RTN why stop here?

This routine saves A: into the CPU register [B], and moves { DCB } down to { CBA }. It leaves D
unchanged and ends with the register A: selected, not the Status regs (!).

Note that a complete stack drop requires additional code to deal with the lower-stack registers and
(critically) to “stitch” the upper and level parts adequately, so data moves up and down seamlessly.

In this case the lower stack will need to be drop as well, and the backup copy of A: saved in the CPU
register [B] will need to be copied into T:

© 2022 Angel Martin 53

Double-Down Module

Buffer Lift routine

Used to lift the upper-stack registers as part of the complete Stack drop, for instance in R %,
ALASTX, ~PI and ENTERAA,

BLIFT Header aozs 'osg 3

0 D=C

0 BLIFT Header ADBA "Bo6 "F" C=8B

0 BLIFT Header noze "Bos " B=A

0 BLIFT Header ADBC ooc " A=T

0 BLIFT Header a0 ‘B0z "g" T=A=>B->C->D

0 BLIFT [BLIFT ADBE &l PNCXC Check buffer id#7 - > header in C
1 BLIFT ADSF ->43 [CHKBF#7] - returns addr in A.X
2 BLIFT |BLIFI'? A0S0 04 C=058&X

3 A031 R70 RAMSLCT

4 contingent to UF 01 status: AD92 3B8 READ 14(d) buffer lift is conditioned

5 won't do if UF 01 is clear ADS3 1FE C=C+C M5 to the stock-lift being SET

6 ADS4 1FE C=C+CMS sets carry if UF1 js SET

7 BLIFT AD95 3A0 INCRTN 1l
8 BLIFT [BUFT AD96 N30 LDI S&X !
9 BLIFT a0s7 foos con:es |offsetteoe [
10 BLIFT A038 s A=A+C SEX points at £

11 BLIFT ADSS 01C PT=3 will do three times

12 BLIFT REPEAT ADSA 0AB A=C SEBX painter to bR+2

13 BLIFT AOSB P66 C=C-1 5&X points to bR+1

14 BLIFT ADSC %66 C=C-15&X points to bR

15 BLIFT ADSD B70 RAMSLCT selects bR

16 BLIFT ADSE Flos A=C 58X bR adr to AX

17 BLIFT ADSF '03s READATA reads bR contents

18 BLIFT ADAD OAE A<=CALL pointer to bR

15 BLIFT ADAL %26 C=C+1 5&X pints to bR+1

20 BLIFT ADAZ 570 RAMSLCT selects bR+1

21 BLIFT ADA3 0AE A<>C ALL bR+1 adr to A.X

22 BLIFT ADAL 2F0 WRTDATA puts bR in bR+1

23 BLIFT ADAS aD4 PT=PT-1

24 BLIFT ADAG B9 PT=0

23 BLIFT ADAT 398 INC-13d

26 BLIFT ADAR "ba6 C=05&X

27 BLIFT ADAS 570 RAMSLCT selects T

28 BLIFT aoan as READATA T contents

29 BLIFT ADAB DAE A<=CALL pointer to B in C.X

30 BLIFT AQAC P66 C=C-1 5&X points to A:

31 BLIFT aoaD 270 RAMSLCT selects A:

32 BLIFT ADAE DAE A<=C ALL A: adrto AX; Tvalue to C

33 BLIFT ADAF NC GO :

34 BLIFT ADBOD D [WRTSEL] - selects Chip0

This routine first moves { ABC } into { BCD }, and then copies the contents of T: in the A: register
prepare for further actions. The reoutine ends with the status registers selected.

Note that a complete stack lift requires additional code to deal with the lower-stack registers and
(critically) to “stitch” the upper and level parts adequately, so data moves up and down seamlessly.

In this case the lower stack will be lifted for ENTER” and ~LASTX, and possibly a copy of D: should
be copied into X if we're performing RA.

© 2022 Angel Martin 54

Double-Down Module

Stack Roll Up, *PI and "LASTX routines.

Here’s an example that demonstrates the utilization of [BLIFT]. Note how in this case we rely on CPU
F11 to divert the execution to the O/S in those instances when that’s possible.

1 RAn Header AOCE 0SE L

2 RAn Header ADCS DI1E L

3 R Header aoca D12 "R" Angel Martin

4 R |Rnn ADCE EliE NCXQ Check buffer id#7 - = header in C
7 R AOCC bZ -=49DA [CHKBF#7] - returns addr in A.X

g RAM aoco B I
9 R noce foos _coma] pointstoD_ _ _ _ _ _ ___ !
10 RAM AQCF Bos C=A+C 58X points at D

11 RAA aoD0 70 RAMSLCT selects D

12 RAA AOD1 GET] READATA contents of D

13 R aop2 070 N=C ALL save for the end

14 Ran |RUP" A0D3 379 PORT DEP: Lift buffer reqgs - always!

15 R T>A=8-=C->0D (AOD4 03C xa Expects header addr in A.X

16 RAn ADDS D96 -=A036 [BLIFT] - Ends w. Chip0 Sel

13 RAn |WRPUP2 AODB 3B5 NCXQ X=Y¥Y>7>T=X

14 RAn ADD7 050 -=14ED [RASUB]

15 RAn |WRPUP3 AOD8 0BO C=N ALL

16 Rea AODS 'OEE WRIT 3(X)

17 R AODA 379 PORT DEP: Saves current T as LGKT

18 RAn ADDB 103C Xa leaves buf addr in A.X

19 RAA ropc 272 >A272 [PSTECH] - Ends w/ Chip0 Enabled
20 RAn AODD 3B9 NC GO

21 RAA AODE 002 -=00EE [NFRPR]

1 LASTXA Header AODF 09E L

2 LASTXA Header AQEOQ 1g X"

3 LASTXA Header AQE1 14 T

4 LASTXA Header A0E2 D13 g

5 LASTXA Header A0E3 Doz A"

6 LASTXA Header ADE4 0oc " Angel Martin

7 LASTXA |LAST}(“ ADES 18C ?FSET 11

8 LASTXA ADEG DAl NC GO the OS will ddo the job

5 LASTXA ADET 044 -»1228 [LASTX]

10 LASTXA AODEE 38 READ 4L)

11 LASTXA AOES B70 MN=C ALL

12 LASTX" WRAPUP AOQEA C

13 LASTX" AQEB

14 LASTX” AMOEC {379 PORT DEP: Lift buffer regs *if* F1 is set |
15 LASTXA ADED {03C Xa Expects header addr in A.X
16 LASTX" AOEE ,’099 ->A090 [BLIFT?] - Ends w/ Chip0 Sel :
17 LASTX" AQEF 33B INC-25d [WRPUPZ]

1 pin Header ADFD 089 i

2 PIA Header AoF1 'Bio npr

3 PI~ Header AOF2 01E R Angel Martin

4 P~ |PI“ ADF3 18C ?FSET 11

3 P~ AOQF4 rIDS NC GO the OS5 will ddo the job

& PIA ADFS {04A ->1242 [P}

7 P~ AOF6 240 SETDEC

g pin AOF7 769 NCXQ

9 P~ ADFE .5?54 -=199A PI/2

10 P~ ADFS 1EE C=C+C ALL

11 P~ ADFA 23A C=C+1 M rounding?

12 P~ AOFB Bae C=0 S&X truncation to 10-digit

13 PI~ aorc 70 N=C ALL save for the end

14 P~ AOQFD 260 SETHEX

15 PI™ AOFE 63 INC-20d [WRAPUP]

© 2022 Angel Martin 55

Double-Down Module

Clear Dual/Double Stack routines.

Here’s the combination of ACLST and CLDST routines, controlled by CPU F7. Very straight forward
and not really challenging, so we do it nice and clean.

1 CLDST Header Al1BO GEY] "T"

2 CLDST Header AlB1 Y] -

3 CLDST Header a2 "oo4 "p"

4 CLDST Header A1B3 ooc "

5 CLDST Header aiga Doz " Angel Martin

6 CLDST [cLpsT aB5 P88 SETF7

7 CLDST AlB6 . Check bujfer id#7 - >

8 CLDST ALB7

9 CLDST A1B8 04E C=0 ALL

10 CLDST A1BS 15C PT=6 will do 6 times

11 CLDST ALBA 058 INC+11d —

1 CLSTA Header AlBB GEY] "T"

2 CLSTA Header Al1BC VK] -

3 CLSTA Header A1BD ooc "

4 CLSTA Header A1BE oz "c"

5 CLSTA Header A1BF 01F s Angel Martin

6 CL5T" |CLST“ A1CO 284 CLRF7

7 CLST" AlC1 3653 NC Check buffer id#7 - > header in C
3 CLST" AlC2 24 / {KBR#7] - returns addr in A
9 CLSTA A1C3 04E C=0 ALL

10 CLSTA AlC4A 05C PT=4 will do 4 times

11 CL5TA NXTBRG ALCS ODAE A<>C ALL |

12 CL5T" ALCE %26 C=C+1 5&X points ta next bR

13 CLSTA ALCT 70 RAMSLCT selects bR

14 CLSTA ALCE OAE A<>CALL zeroto C

15 CLSTA ALCS 2F0 WRTDATA clears bR

16 CLSTA ALCA 3D4 PT=PT-1

17 CL5TA A1CB Baa PT=0

18 CL5T" A1CC 3CB INC-07 [NXTBRG]

19 CL5T" A1CD 04E C=0 ALL

20 CLSTA ALCE B70 RAMSLCT

21 CLSTA ALCF [WRIT 0(T)

22 CLSTA A1DO [WRIT 1(Z)

23 CLSTA A1D1 WRIT 2(Y)

24 CL5T" Al1D2 I WRIT 3(X)

25 CLST" A1D3 : NCXQ Clears Uflag 01 !

26 CL5TA AlD4 4 -=4108 [cFo1]

27 CLST" A1DS PORT DEP: Saves current T as LGKT
28 CLSTA AID6 103C xa leaves buf addr in A.X
29 CLSTA a107 P72 =A272 [BSTEGH] - Ends w/ Chip0 Enabled
30 CL5T" A1DE 28C FSET 7 "DR" case?

31 CLSTA AlDS 309 NC GO no, to the 0/5

32 CLSTA aipa ooz -=00C2 [NFRSIG]

31 CLSTA DUALREL ALDB 369 PORT DEP: Show result

32 CLSTA A1DC 03cC GO

33 CLSTA ALDD 2A8 -xA2A8 [DVIEW?]

© 2022 Angel Martin 56

Double-Down Module

Double Stack Math routines.

1 MATH Header A10D 0AA e

2 MATH Header A10E 01E -5 Angel Martin

3 MATH [MuLTr A10F 084 CLRF 5

4 MATH Al110 23 INC+04 —

5 MATH Header Al111 OAF Ve

6 MATH Header A112 01F e Angel Martin

7 MATH DIv» Al113 '0as SETF5S

8 MATH BOTH1 All4 Fas SETF B -

5 MATH AllS 048 JNC +09

10 MATH Header Alle 0AB "

11 MATH Header A117 01F -5 Angel Martin

12 MATH [PLUSA a118 084 CLRF 5

13 MATH Al19 0232 INC+04 —

14 MATH Header Al1A 0AD -

15 MATH Header AllB O1E — Angel Martin

16 MATH MINUS" Al11C "0as SETF5S

17 MATH BOTHZ2 Al11D Faq

18 MATH MERGE A11E Check for valid entries

15 MATH Al1F -=4063 "HKST2] - sets DEC mode
20 MATH Al120 14C ?FSET 6 DIv/muTL?

21 MATH Al21 b4z INC+08 —— no, skip over

22 MATH Al22 08C PFSET S

23 MATH DIV/MLT Al23 261 cxa

24 MATH Al24 061 -»1898 [ov2 10]

25 MATH Al25 08C PFSET S

26 MATH Al26 135 NC XA

27 MATH Al127 D60 ->184D [MP2-10]

28 MATH Al128 038 INC +07 _—

29 MATH |PLUS,-‘I‘.-"IIN Al29 0&C PFSETS +—

30 MATH ALZA 12 INC +02

31 MATH Al2B 2BE C=-C-1 M5

32 MATH [PLUS a12c oo NOP let carry settle

33 MATH Al2D o010 NC XA

34 MATH AlZE D60 ->1807 fAD2-10]

35 MATH |CODA2 A12F 70 N=C ALL — the result

36 MATH Al30 0AS NCXQ

37 MATH Al31 650 -=1429 [OVFL10]

38 MATH Al32 oD4 PT=10

39 MATH Al33 289 G0 bad boy

40 MATH Al34 003 -=0042 [ERROF]

41 MATH REPL D Al35 260 SETHEX

42 MATH Al36 : NCXQ Check buffer id#7 - > header in C
43 MATH A137 & - [CHKBF#7] - returns addr in A.X
a4 MATH Al3g 379 PORT DEP: Drop buffer regs, Savesblin B
45 MATH A139 {03C Xxa Expects header addr in A.X '
46 MATH AL3A ?;{98 -=A158 [BODROF]
a7 MATH Al3B Bas C=058X
48 MATH Al3C %70 RAMSLCT
49 MATH Al3D GET] READATA T contents
30 MATH A13E 10E A=CALL save it in AALL
51 MATH a1zF o7 READ 1(Z)
32 MATH Al40 OAS WRIT 2(Y) putsZinY

53 MATH Al4l DAE A<=C ALL

54 MATH a142 "oes WRIT 1(Z) puts TinZ

35 MATH Al43 OCE C=B ALL recovers b1 contents

56 MATH a1aa o2s WRIT 0{T) puts Azin T

37 MATH Al45 379 PORT DEP: Saves current T as LGKT
58 MATH Al46 03C XQ leaves buf addr in A.X

29 MATH Al47 72 -=A272 [PSTFC#] - Ends wy/ Chip0 Enabled
60 MATH Al48 0BO C=N ALL

61 MATH Al45 331 NC GO

62 MATH AL4A ;502 -=000C [NFRX]

© 2022 Angel Martin 57

Double-Down Module

Termination of DRCL, DSTO, DR<> and DVIEW

This was one of the more finicky routines to write, mostly because it's common to the four dual-
number memory actions: recalling, storing, exchanging and viewing dual number values in RAM.

Starting with SWAP and VIEW, the first think we need to determine is where in RAM is the target dual
number: either in data registers, in lower-stack location (the native stack) or in upper-stack location
(i.e. buffer #7).

1 SWPSTO | ENDSWP ATES 0BB READ 2(Y) get X.Yin B,M
2 ATES T M=C ALL so they con be accessed
3 common entry point for ATEGR OF8 READ 3(X) while Chip0 is not active
! both SWAP and 3TO ATET QEE Be»CALL I
5 ATER FILSD LD SEX STACK RG# |
a7es 004 _ DSTKlevelsteft _ _ |volue fimie !
I5TO RCL ATEA EDE A=C SEX
ATEB 0BO C=M ALL recall REG# adr
atec 306 PA<C SEX isC>47
ATED "ie7 JC +60d E— yes, recall REG# adr
ATEE Bes C=C-15&X L=07
ATEF DAF JC +21d yes, do nothing -> [DAVIEW]
13 SWPSTO ATFO Bes C=C-1 S&X L=17
14 SWPSTO ATF1 188 INC +49d no, must be 2 or 3 -> [DX<>BF]
15 SWPSTO =1 ATF2 38C PFSET O SWAP case?
16 SWPSTO ATF3 023 INC+H — no, we're STORING
17 SWPSTO ATF4 341 PORT DEP: yes, do DX==0V
18 SWPSTO ATFS 08C G0
19 SWPSTO ATFG JAC -=A3AC [DX=>D¥]
20 SWPSTO DYUPDT ATF7 198 C=M ALL «—
21 SWPSTO ATFE To28 WRIT O(T)
22 SWPSTO ATF9 OCE C=B ALL
23 SWPSTO ATFA "oes WRIT 1(Z)
24 SWPSTO ATFB 04B INC+H9 —> [oAviEew;
25 EMDRCL ENDVEW ATFC 1130 LDI SEX STACK RG# |
26 EMDRCL ATFD ﬁlt}!_ ___ DsTK levelsteft | | | _ |volve fimieg | i
27 EMDRCL ATFE "os A=C SEX
28 ENDRCL ATFF 0BO C=M ALL recall REG# adr
29 ENDRCL ABDO %08 PAC SEX sC=47
30 EMDRCL ABD1 a7 JC +40d > yes, recall REG# adr
31 EMDRCL ABD2 Pes C=C-1 S&X L=07
32 ENDRCL ABD3 023 INC+H — no, SKip over
33 ENDRCL |LEVL=D ABD4 341 PORT DEP: Show result
34 ENDRCL ABDS 08C GO
35 EMDRCL ABDE 248 -=4A2A8 [DVIEW?]
36 EMDRCL |NO'IZER ABD7 (] C=C-1 SEX «— LEVL =17
37 ENDRCL ABDB oD3 INC+26d —» na, recall STKBUF adr
38 ENDRCL LEVL=1 ABD9 341 PORT DEP: Show result
39 EMDRCL ABDA 08C G0
40 EMDRCL ABDB 2AE -2A2AE [DYWIEW]
41 ENDRCL EMDRCL ABOC 1130 LDI SEX STACK RG# |
42 ENDRCL 2200 Y004 DSTKflewelstefr | | _|valvetimie .
43 EMDRCL ABDE "os A=C SEX
44 EMDRCL ABOF 0BO C=M ALL recall REG# adr
4810 306 PA<C S&X isCx47
ISTO RCL AB11 ocy JC +24d — yes, recall REG# adr
AB12 P66 C=C-1 S&X Level =07
AB13 GEE INC+H06 no, -= [NOTZER]
AB14 isc ?FSET 11 stack lift enabled?
AB1S 1Dg JNC +59d ne, just show resuit
AB16 ,’5’41 PORT DEP: yes, divert to DENTER
52 EMDRCL AB1T EDSC G0 ie RCLSTX
53 EMDRCL AR1R 5’59 -24359 [DENTER*]

© 2022 Angel Martin 58

Double-Down Module

The RCL part uses the status of F11 to determine whether to lift the stack before copying the target
dual number into the DX stack level. We can do it this way because F11 is sync’d back with UF 01 by
the DRCL main function code, not shown here as it occurs prior to this section.

L e e e e e = R = R = R R = R R = R R R R R BT |
- R R SRR R R~ - R = (R R ST S SR T R R R R

|
[=RRT-RN- -]

00 G0 00|00 00 0 00| 60 =
(= R R SRR TR =

m

[TR R =]

[=1]

(=B =R =Y = T Y= T W=]
-

0o a

= |y
=Tt
[=]

[y
=
=1

102
103
104
105

106

ENDRCL
ENDRCL
ENDRCL
ENDRCL
ENDRCL
ENDRCL
ENDRCL
ENDRCL
ENDRCL
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO
SWPSTO

[NOTZER s819 266 C=C-1 58 <— Level = 17
AB1A 043 INC +0B ——> no, recall STKBUF adr
Level=1 a818 Das =0 5&X
ag1ic 7m0 RAMSLCT
gD D3 READATA
ABIE Fsg M=C ALL puts Tin M
ABIF Tors READ 1(Z)
ARID B<>C ALL puts Z in B
AB21 [MERGE]
D¥<>BF AB22 Ch uffer id#7 - = header in C
AR2ZS [CHKBF&7] - returns addr in A
AB24 level#: 2or3
AB2S geitherlaor2
AB2G either2ord
ABR2T either 1 ar 3
ABZB bR oddr
[DX<=RG AB29 « select Br/ Regé
ABZA Ros A=C SEX save addr in AX for later
unused if 5TQ ABZB ET] READATA bR contents
ABIC OEE B<>C ALL bring X volue to C
AB2D 20C PFSET 2 RCL / VIEW cases?
g2 17 JC +02 yes, skip
ABIF 2F0 WRTDATA puts X In bR
| RCL1 AB3D 0AB AL SEX pointer to bR in CX
unused if 5TQ AB31 P26 C=C+1 S&X points at bR+1
AR32 B70 RAMSLCT selects bR+1
AB3S (5T READATA BR+1 contents
AR34 1D8 C<>MW1 ALL bring X value to ©
AB3S 28C PFSET 7 VIEW case?
AB36 058 INC +11d — na, skip
SHOWRG a837 Thas =0 S&X
ARZE B70 RAMSLCT selects Chipd
AB3D OCE C=B ALL
nzsa Mg WRIT 4(L) real part
4838 Mo C=M ALL
agac ‘om N=C ALL dual part
AB3D Baa CLRF 9 RECT mode
AB3E 341 PORT DEF: Show resuit
AB3F 08c GO even if running PRGM
ABAD 201 -=A2C1 [DAVEWSE]
|NO\-’IEW AB41 200 PFSET 2 <— RCL case?
AB42 017 JC +02 VES, SKIip
AB43 2F0 WRTDATA puts ¥in bR+1
[rCLMRG AB44 5 C=058K <«
AB4S B0 RAMSLCT selects Chipd
ABLE 200 PFSET 2 RCL case?
aga7 oa3 INC+ 08 ——— no, skip Stack Lift
AB4E 18C PFSET 11 stack lift enabied?
agag a3 INC +08 —— o, skip DS lift
ABdn BB SETF 5 subroutine mode
AB4B 349 PORT DEP: Lift compiete D-Stack
ABAC 08C xa Buffer and Stock
ABAD 35E -=435E [DSTLFT] -uses N

The View routine pointed at here is shared by the DAVIEW and the DVIEW functions. It's also the
ending part of every dual-number function when used in manual mode, so the display presents the
combination of but real and dual parts in the proper format.

© 2022 Angel Martin

59

Double-Down Module

Some instructions are not needed for all cases but keeping them makes the routine compatible for
the four actions, so as long as they don’t mangle the source data they're run even if not necessary.

On the other hand, some other instructions are only executed when needed, as controlled by the

appropriate case-telling flags.

[= 'R

LT RTTRRTT TR TE T
(Y= =1

a |
2 e
=1

[
[
!

a
a

[
[
I

RCL case?

SWPSTO | NOVIEW AR41 20C PFSET2 <—!
SWPSTO AR4D 017 Ic +02 yes, skip
SWPSTO ARB43 2F0 WRTDATA puts ¥ in bR+1
SWPSTO |RELMRG AB44 046 C=058Y «—
SWPSTO ABAS R70 RAMSLCT selects Chipl
SWPSTO ARG 20C PFSET 2 RCL case?
SWPSTO ABRAT (IE] INC + 08 ——— no, skip Stack Lift
SWPSTO AR 18C PFSET 11 stack lift enabled?
SWPSTO AR4D (e INC +08 —— no, skip DS lift
SWPSTO A4 ‘088 SETF 5 subroutine mode
SWPSTO AB4AB 349 PORT DEP: Lift complete D-Stack
SWPSTO ABAC 0sc Xa Buffer and Stock
SWPSTO ABAD 35E -=A35E [DSTLFT] -uses N
SWPSTO ABAE 018 INC +03 —»
SWPSTO |DK'."I.-'R'I'? ABAF 38C PFSETO «—— SWAP case?
SWPSTO ABS0 028 INC +05 no, skip DX updote
SWPSTO |DEUPDT AB51 DCE C=B ALL <=— bR contents
SWPSTO ABE2 ToES WRIT 3(X) puts bR in X
SWPSTO ABS3 Mgg C=M ALL bR+1 contents
SWPSTO ABSS DAR WRIT 2(Y) puts bR+1in ¥
SWPSTO DEHOW ABSS Res SETF 11 <— enable stack lift!
ABSE 341 PORT DEP: Save LAST & Show result
SWPSTO ABET 08c GO
SWPSTO ABSE 2A5 -=4245 [LETSHW?]

From here the execution moves to write the T: register into the LGKT location (setting UP 01 if
needed), and then to show the result in the display if we're in manual mode:

L | |

EN A= AT R

s D | Ga

LGKT |POSTFC A270 Sets Uflag 01

LGKT A271 [sFo1]

LGKT [psTFCH a7

LGKT A273 270 RAMSLCT

LGKT A274 038 READATA current T

LGKT A275 OEE B<=C ALL parkitin B

LGKT A2TG 365 Q Check buffer id#7 - > header in C
LGKT A277 24 [CHKBR#7] - returns addr in A.X

LGKT a27s N

LGKT 279 ooz coN: 7 offset to G: reg

LGKT azza Thos ceascsE@X pointsatc:
LGKT A27B %70 RAMSLCT selects G:

LGKT A27C

LGKT A2TD puts T in LGKT

LGKT A2TE [WRTSEL] - selects Chip0

© 2022 Angel Martin

60

Double-Down Module

Dual-Number Stack Roll Up

Here’s the complete DRUP routine code. Note the two calls to the buffer drop routine, and to the
[RASUB] routine to deal with the regular stack — as well as the stitching components to keep things
in good shape.

1 DRUP Header AZEB GET] "p"

2 DRUP Header AZEC 15 e DR Roll Up

3 DRUP Header AZED D1z "R"

4 DRUP Header AZEE Angel Martin

5 DRUP |DRUP A2EF 369 : heck buffer i

6 DRUP A2F0 - KBF#7] - retur

7 DRUP A2F1 A< SEX buffer header

8 DRUP AZF2 o6 A=CS&X keep im AX

9 A2F3 Fisg M=C ALL save in M far later

10 first backup {C,.D}in {B,N} L E T I _i
11 AFs foos con:4 | offettod . _
12 DRUP A2FB 5_06 C=A+C S&X points at D

13 DRUP A2FT B70 RAMSLCT selects D

14 DRUP A2FB Fo6 A=C S&X D addr to A.X

15 DRUP A2F3 GET:] READATA D contents

16 DRUP AZFA 70 N=CALL putsDin N

17 DRUP AZFB 0AB A<=C SBX

18 DRUP AZFC P66 C=C-158X points at C

19 DRUP AZFD 570 RAMSLCT

20 DRUP AZFE GET:] READATA

21 DRUP AZFF OEE B<>»C ALL puts Cin CPU-B

22 DRUP ZXLIFT A300 Figg C=M ALL header addr to C.X

23 A301 Mioe A=C S&X needed by [BLIFT]

24 D B A302 379 PORT DEP: Lift buffer regs

25 cC A A303 03C Xa Expects header addr in A.X
26 B T A304 {o9s >A096 [BLIFT] - Ends wy/ Chip0 Sel
27 A 7 A305 3B5 NCXQ X>2Y2Z>T=X

28 T Y A306 050 -=14ED [RASUB]

29 I X A307 98 C=m ALL heoder addr to C.X

30 Y D azs "os A=C 58X needed by [BLIFT]

31 X C A30S 379 PORT DEP: Lift buffer regs

32 A30A 03C Xa Expects header addr im A.X
33 DRUP azoe fogs =A096 [BLIFT] - Ends wy/ Chip0 Sel
34 DRUP A30C 3B5 PNC XQ Xz2Y>2Z>T=X

33 DRUP A30D 050 -=14ED [RASUB]

36 DRUP A30E oBo C=MNALL

37 DRUP A30F 0A3 WRIT 2(Y) putsDinY

38 DRUP A310 0OCE C=B ALL

35 DRUP Azl es WRIT 3(x) puts Cin X

40 DRUP A3l2 369 PORT DEF: Save LAST & Show resulf
41 DRUP A313 03c GO0

42 DRUP A314 2A5 -=A2A5 LSTSHW?,

© 2022 Angel Martin 61

Double-Down Module

Dual-Number Stack Roll Down

Here’s the complete DRDN routine code, a bit more involved that the previous case. Note how we
deal with the stack registers first, and afterwards we take care of the buffer registers with the two
calls to the buffer drop routine as well. The final part copies the original {X,Y} registers to the buffer
top registers {C,D}, notice the numerous RAMSLCT/READATA instructions making the usual mess to
move between different RAM areas.

DRDN Header A316 D8E "W

2 DRDN Header 317 'ooa "D" DR Roll Down

3 DRDN Header A318 D12 "R"

4 DRDN Header a319 'oog "n" Angel Martin

5 DRDN |DRDN A31A OF8 READ 3(X)

6 DRDMN A31B 268 WRIT 5(Q) first we save X, Y in N,Q

7 DRDN A31C oBg READ 2(Y) needed for later

8 DRDN A31D 70 N=C ALL

5 DRDN XY¥<=ZT A31E 385 NCXQ

10 DRDN A31F o50 -=14ED [RASUB]

11 DRDN A320 3B5 NCXQ

12 DRDN A321 [RASUB]

13 DRDN 2XDROP A322 : { Check buffer ic#7 - > header in C
14 DRDN A323 24 / [CHKBF#7] - returns addr in A.X

15 DRDN A324 0AB AZ=C S&X buffer header

16 DRDN A325 Fios A=C S&X keep in AX

17 DRDN A3z6 "iss M=C ALL save in M for later

18 DRDN A327 379 PORT DEP: Drop buffer regs, Saves [Alin B
19 DRDN A328 03C Xa Expects header addr in A.X

20 DRDN A329 Fiag -=A198 [BDROP]

21 A32A & C=0 S&X

22 D Y A32B B70 RAMSLCT select chip0

23 C X A32C 0OCE C=B ALL A contents

24 B D A3zD D68 WRIT 1(Z) puts AIN Z

25 A C A32E iss C=M ALL buffer header

26 T B azzF - Fioe A=C 5&X needed by [BDROP]

27 Z A A3z 37 PORT DEP: Drop buffer regs, Saves JAlin B |
28 Y T A331 l03C Xa Expects header addr in A.X
29 X Z A332 ,’193 >A198 [BDROP]
30 a3z 'B46 T C=058X

31 DRDN A334 %70 RAMSLCT select chip0

32 DRDN A335 0OCE C=B ALL B contents

33 DRDN A336 028 WRIT 0(T) puts Bin T

34 DRDN XY -=(CD A337 s C=M ALL

35 DRDN A338 o6 A=C 5&X buffer header

36 DRDN A333 278 READ 5(Q) original X

37 DRDN A33A Fiss M=C ALL X saved in M

33 DRDN azs fizo ois&x [|
39 DRDN A33C H]ﬂ# CON: 4 offset to D |
40 DRDN A33D %06 CeA+CSRX pointsat 0 B
41 DRDN AJ3E R70 RAMSLCT selects D

42 DRDN A33F o6 A=C S&X addr ta A.X

43 DRDN A340 0BO C=N ALL

44 DRDN A34]l 2F0 WRTDATA puts Yin D

45 DRDN A342 oAB Az=C S&X

46 DRDN A343 66 C=C-158&X

47 DRDN A3d4d B0 RAMSLCT

45 DRDN A345 Figs C=M ALL

43 DRDN A346 2F0 WRTDATA puts XinC

50 DRDN A347 a6 C=0 5&X

51 DRDN A343 B70 RAMSLCT

52 DRDN A345 369 PORT DEP: Sove LAST & Show resulf
53 DRDN AZ4A 03c G0 .
54 DRDN AZ4B 2A5 -=AZA5 LSTSHW? '

© 2022 Angel Martin 62

Double-Down Module

Dual Number Math routines.

The structure for all math functions is the same: there is a main program that orchestrates the admin
tasks and calls the specific math subroutine that does the actual legwork, using the O/S 13-digit
routines as often as possible. This brings a lot of consistency to the code and makes editing and
maintenance much easier. See below the Trigonometric functions example:

47 DTRIG Header ABBE D8E '

43 DTRIG Header ABBS o9 " Dual Sine
49 DTRIG Header ABEA D13
50 DTRIG Header ABEB
51 DTRIG IDSIN ABBC
52 DTRIG ABED -=4069
53 DTRIG SETHEX
54 DTRIG ABBF 36D PORT DEP: Save DX in LastDX
53 DTRIG AZS0 08C XQ
56 DTRIG AB91 000 -=A400 [D2LAST]
57 DTRIG ABS2 379 PORT DEF: Calculate Sin z
58 DTRIG AB93 03C Xa writes resulf in X.Y
59 DTRIG AZS4 05A -=A85A [DSINE]
60 DTRIG |DSHOW AB95 341 PORT DEP: Show resulf
61 DTRIG ABSG6 08C GO
62 DTRIG ABST7 2A8 -=A2A8 [DVIEW?]
63 DTRIG Header ABSE 033 e
64 DTRIG Header ABSS 00F "g" Dual Cosine
63 DTRIG Header ABIA 003 et
66 DTRIG Header ag98 'Dog "D" Angel Martin
67 DTRIG |DEDS AB9C kX, ¥} data
68 DTRIG ABSD - sets DEC
69 DTRIG ABSE SETHEX
70 DTRIG ABSF ESED PORT DEP: Save DX in LastDX
71 DTRIG ABAD DSC Xq
72 DTRIG ASAL ;'DDD -=A400 [D2LAST]
73 DTRIG AZA2 ,!%?5‘ PORT DEF: Calculates Cos {X, Y}
74 DTRIG ABA3Z EDEC xa
73 DTRIG ASAL ' 06E -=A86E [DCos#]
76 DTRIG ABAS §&3 INC-16d
77 DTRIG Header ABAD Dual Tangent
78 DTRIG Header ABAT Dtanz =Dsinz / Dcos 2
79 DTRIG Header ABAE
20 DTRIG Header ABAS
81 DTRIG |DTAN ASAA
822 DTRIG ABAB
83 DTRIG ABAC
84 DTRIG ABAD 36D PORT DEF: Save DX in LastDX
85 DTRIG ABAE D&C Xxq
86 DTRIG ASBAF 000 -=A400 [D2LAST]
a7 DTRIG ABBO ’:%?S' PORT DEP: Calculgte Sin z
B8 DTRIG AZB1 03C Xa writes result in X.Y
29 DTRIG ABB2 05A ->A85A [DSINE]
0 DTRIG ABB3 g SETF4 silent mode
91 DTRIG ABB4L Daa CLRF 5 na truncation
2 DTRIG ABBS Fioa CLRF & LASTD option
93 DTRIG ABBG %49 PORT DEF: Subroutine entry for DBLIFT
94 DTRIG ABB7 0&c XQ Buffer and Stack
95 DTRIG ABBE 35E -=A35E [DSTLFT] - uses N
96 DTRIG ABBS9 379 PORT DEP: Caleulates Cos X, ¥}
97 DTRIG ABBA 03c Xa writes result in X.Y
98 DTRIG ABBB 06E -=A86E [DCOSH]
99 DTRIG ABBC 260D PORT DEP: Caleculates {Z, 71/ X, Y]
100 DTRIG ABBD [08C XQ and checks overflow
101 DTRIG ABBE 048 -=A448 [DRDIV#H]
102 DTRIG ABBF 333 INC -26d

© 2022 Angel Martin 63

Double-Down Module

In fact this example makes an exception in the DTAN sace, which is calculated based on the [DSIN#]
and [DCOS#] subroutines instead of having its own dedicated one.

Common to the three functions you see the initial check for ALPHA data and saving of the argument
in the DL stack level (call to [D2LAST]}. In the ending part is the final diversion to the [OVFL2] code to
check the integrity of the calculated results. The final values are not written into XY if any of the two
the overflow tests fail.

[

ol R RN = R R SRR N]

DTRIG [Dsing ASSA 2A0 SETDEC .

DTRIG AB5B 3C4 5T-0 skips [TRGSET] sm(u T ve
DTRIG Asc fbas seTFA resutinRAD __ _ __ .. _l
DTRIG ABSD OF8 READ 3(X) X

DTRIG asse 7o N=C ALL required by [TRGI00]

DTRIG ABSF {23D NCXQ Cos{y) - skipping [TRGSET]

DTRIG Ass0 1048 ->1288 [cos1]

DTRIG AS61 11E A=C M5 bug or what??

DTRIG ABG2Z 0BS READ 2{Y) y

DTRIG AB63 13D NCXQ

DTRIG Agsa 060 ->184F [MP1-10]

DTRIG A865 28 WRIT 4(L) dual part

DTRIG ABGE 3c4 st=0 T |skips [TRGSET] -
DTRIG AZ67 foas SETF 4 resultinRAD _
DTRIG AB6E OF8 READ 3(X) X

DTRIG Asss 70 N=C ALL required by [TRGI00]

DTRIG ABBA 2EE PCH0 ALL bug when zero!

DTRIG assB 1229 cxa sinfy} - skipping [TRGSET]

DTRIG assc 049 -=1284 [sin]

DTRIG AS6D 0A3 JNC+20d [WRAPUF]

DTRIG DCOS# ASGE 2A0 SETDEC

DTRIG ABGF 3C4 5T=0 skips [TRGSET] !
DTRIG As70 [Dag SETF4 result in RAD |
DTRIG AB71 OF8 READ 3(X) y T
DTRIG as7z Tozo N=CALL required by [TRGI00]

DTRIG as73 a9 ANCXQ Sinfy) - skipping [TRGSET]

DTRIG Ag7a 048 ->128A [sina]

DTRIG AB7S 2BE C=-C-1MS

DTRIG AB76 11E A-CMS COs 2 = COoS T — (&
DTRIG AB77 0BS READ 2({Y) ¥

DTRIG AB78 13D nNCXQ

DTRIG As79 Toe0 ->184F [MPI1-10]

DTRIG ABTA 28 WRIT 4{L)

DTRIG As7B aca st=0 | T |skips frRaser]]
DTRIG ag7c [bas SETF4 result in RAD |
DTRIG AS7D OF8 READ () | | T
DTRIG as7e Toro N=CALL required by [TRG100]

DTRIG AB7F 22D NCXQ Cos{y) - skipping [TRGSET]

DTRIG Ass0 P48 -=1288 Jcos1]

DTRIG WRAPUP AS81 070 N=C ALL real part to N

DTRIG AB82 '138 READ 4{L)

DTRIG ABE3 OEE B==C ALL dual part to B

DTRIG Asga a0 SETHEX

DTRIG agas 365 PORT DEP: puts result in {X, Y]

DTRIG ABS6 [08C GO and checks overflow

DTRIG agg7 M6l ->AS561 [DOVFL2]

© 2022 Angel Martin

64

Double-Down Module

Appendix.- Valentin Albillo’s STKN FOCAL Program

Here’s a verbatim copy of Valentin article contributed to the Melbourne PPC Chapter. See this
reference for all the details.

Program characteristics. —

This program simulates a N-level RPN stack, that is a stack with n registers (not just the 4 registers of
the standard, built-in, 4-level stack). The value n is chosen by the user, and is limited only by
available memory. Several functions are provided, ENTER, X<>)Y ,RDN, CLST, +, -, *,/, Y/X,
LASTX, PI, and RCL. The rest of the functions are the built-in functions, for instance, GTO is the built-
in GTO, SQRT, SIN, etc.

The program is 159 lines, 343 bytes. It requires SIZE n+12 for a n-level stack. All operations are very
fast, even for large n, so the program may be used as easi4r as if it were the standard 4-level stack.
All functions are supposed to be assigned to keys for its execution in USER mode.

ET (Enter) is assigned to 41 (ENTER), RD (Roll Down) to 22 (RDN), +N (addition) to 61 (+), -N
(subtraction) to 51 (-), *N (multiplication) to 71 (*), /N (division) to 81 (/), PI to -82 (PI), CLN (Clear
Stack) to -21 (CLX), RCLN (Recall) to 34 (RCL), XY (exchange to 21 (X<>Y), and ~N (power) to -12
(YAX).

The stack behaves exactly like the original one. it lifts and performs the same, register duplication,
etc, but for a minor detail: RCL after ENTER does not overwrite the number in X but the stack is
lifted. This has been done intentionally but can be changed to the overwrite mode easily. Except for
this sequence, all other functions perform as you would expect, the upper register replicates each
time the stack drops because of a two-umber operation, etc.

RCLN, when executed, prompts for an argument with the standard RCL _ _ , and the program stays
in a PSE loop, waiting for you to enter-the argument for the desired register. This can be 00 thru 10
(both included) and from n+12 upwards, where n is the number of levels of your stack. So, when
using STO, remember that you have registers 00 thru 10 and n+12 upwards for your

use. R11, R12 are used as scratch, and R13 thru R(n+11) are used to store part of the stack.

Instructions.

- Make all the necessary assignments, set USER mode

- Use the stack as normal, first, XEQ "STKN" => N=?

- Enter the desired number of levels, n R/S =>READY

- From now on, think of the 41C as a n-level stack machine, and execute desired functions
accordingly. Take into account that STO should be used only with addresses 00 thru 10 and n+12 up,
and the same is true for RCL. The argument for RCL is entered during a pause. RCL after ENTER does
not overwrite X but lifts the stack first.

So, you. see, it is as easy to use as if it were the normal stack. Now let’s compute an example taken
from TI adds...

Compute 1 + 2 * 2.57(3/7) =7?
-if' we want to key in the problem left-to-right, we need a 5-level stack (minimum),

XEQ "STKN” =>N=?,
5 R/S => READY'
1 ENTER 2 ENTER 2.5 ENTER 3 ENTER 7[/N|=> 0.43

=>1.48 =>2.96 ,[+N]=>3.96, FIX9 => 3.961936296

© 2022 Angel Martin 65

Double-Down Module

so, the problem was keyed in left-to-right. This is a very good advantage of a n-level stack, you can
hold up to n-1 pending operations. Using the standard 4-level stack, up to 3 operations may be left
pending, and problems requiring more pending operations cannot be keyed left-to-right and have to
be rearranged. But, using a, say, 15-1evel stack, you can hold as many as 14 pending operations,
and thus, you can confidently key in any - problem left to right, without rearranging anything. That’s
the usefulness of the program. You can also use it when leaving someone your 41c, and that perscn
is not very used to RPN, show him how to use ENTER ,RIN ,and X<>Y, and let the 15 (say) level

stack do the rest !

RPN _STACK COF N LEVELS

01 IBLMSTEN" 41 RCL 12
GE ||H_'?rl 42 o+

03 FRQMET 43 x() 1
o4 11 44 STO L
05 + 45 RIN

06 1 B3 46 .012
o1/ AT ST+ 12
08 13 48 RIN

09 + 49 RTN

10 STO 11 50 L2L

11 13.012 51 Forec o4
12 3TO 12 52 CF 22
13 X2Q"CLH" 53 FOTC 22
14 "READY" 54 GTO 06
15 PROMPT 55 X()Y
16 LEL"KY" 56 XEQ 06
17 Fs57C 57 X()Y
18 CP 22 58 IBL 06
19 F5?C 22 59 I3G 11
20 GTO 10 60 ISG 12
21 X() 1D 11 61 GTO 02
zg BRTH 62 STO IND 11
23 13L 10 63 BTN

24 TEQ 06 64 IBL 02
25 X()¥ 65 134012
26 RN 66 STO 12
27 LBL"RD" 67 RIN

28 XEQ 68 LASTX
29 DSE 12 69 () 11
30 DSE 11 70 FRC

31 GTO O 71 13

32 BTN TE +

33 L8L 01 73 %() 11
34 LASTK 74 STO L
35 X() 11 75 RIN

36 FRC 76 STO IND 11
3T 3ro 12 77 BN

8 1E3 78 LBL"ET"
9= 12 XE2Q 07
40 X() 12 80 SP 04

© 2022 Angel Martin

81 @

82 1aL 03
83 F37C ¢4
84 CF 22
85 F37C 22
&6 R
a7 130
88 gTo
89 RCL
90 FRC
91 13
92 +
93 3TO
Q94 RN
95 IBL 10

96 RCL IND 11
97 %()} mD 12
98 RCL 11

99 FRC

100 RCL 12

101 IMT

102 +

103 5T0 11

104 RIN

105 x()Y

106 DSE 12
10T ISE 11

108 @70 01

109 RTN

110 IBL"+H"
111 XEQ 03

112 +

113 BTN

114 LBL"-H"
119 Xzq 03
116 =

117 RTN

-”,B IBL"=N"
119 XBq 03

120 =

11
10
11

11

(by Valentin Albillo) (4747)

121 RTW

122 LBL"A"
123 Eg 03
124 /

125 BT

126 LBL" 1]
127 1EQ G%
128 ¥&

129 RTN

130 LBL"LX"
131 B3 O7
132 LASTX

133 RTH

134 LEL"PI"
135 1EQ 07
136 PI

137 RTN

118 LBL'CIH"
139 EQ O1
140 CLST

141 CF 04

142 CF 22

143 LBEL 05
144 3TO0 IND 11
145 DZE 12
146 DSE 11
147 133 12
148 GTO 05
149 RTN

150 LBL"RCIN"
151 X8q 07
152 "BCL "
153 AVIEW

154 LBL 04
155 PS8

156 FCC 22
157 GTO 04
158 RCL IND X
15% END

66

