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Double-Down ROM 

HP-41 Module 

 

Introduction. 

 

Welcome to the Double-Down Module for the HP-41, perhaps an exercise in futility for some but also 

the last opportunity to equip our trusty companion with the Double length Stack that you’ve always 

dreamed of but were too coy to ask. And a Double-Length stack you’ll find in here, complete with 

all functions needed to support its double size in all the automated stack lift, stack drop and register 

roll & duplication actions performed by the O/S behind the scenes when you use the calculator. The 

double stack is 9 registers long; that is four more than the standard {XYZTL}. The additional four 

registers {ABCD} are located in a dedicated buffer stored in the I/O area of the calculator’s RAM, but 

you’d never know it’s there as it is completely transparent to the user. 

Some precursor FOCAL programs were written in the past (see for instance Valentín Albillo’s article in 

here:  HP Letter 1980-09-27 - Letter from Valentin Albillo to John McGechie - 070588-90.pdf ) ; 

however a smooth implementation really requires MCODE to iron-out all the small wrinkles created by 

the user code restrictions, really not cut for a low-level control of the stack registers – and 

frustratingly slow. 

 

This alone would have made a nice mini-module but there was yet another field pending on the task 

list that fitted perfectly in the design. That field may sound corner-case or too strange but it 

presented itself as a logical candidate to reusing lots of code and techniques from the 41Z Complex 

Number Module. We’re referring to the Dual Real numbers (the strange cousin of the complex 

number); expressions of pairs of two real numbers arranged in specific manner and following well-

defined mathematical rules – as you can see in this general overview:  

https://en.wikipedia.org/wiki/Dual_number 

The implementation is very comprehensive and surprisingly detailed for such a vague subject; all 

stops have been pulled to make using it a rewarding experience for the math-inclined HP-41 user 

wishing to get on new rides after all these many years. Are you intrigued yet? 

 

Why the dual game? 

Although they are two very different areas, both share common structural details that lend 

themselves to a joint implementation – taking advantage of the very many routines required to 

manage the buffer and the data storage & retrieval. I somehow always think of the FORTH/Assembler 

ROM for the HP-71 as a similar concept, merging two distinctly different but very complementary 

subjects under the same hood. All in all, a perfect fit from the programming side, and certainly also a 

very nice doble-whammy in a single 4k module, so grab them while they last! 

 

Dependencies. 

 

This module is designed to be used on a CX O/S with the Library#4 (revision R59 or higher) 

plugged in. No other dependency exists. The XROM id# is “1”, thus you can’t have this module 

plugged simultaneously with the 41Z. 

 

https://albillo.hpcalc.org/letters/HP%20Letter%201980-09-27%20-%20Letter%20from%20Valentin%20Albillo%20to%20John%20McGechie%20-%20070588-90.pdf
https://en.wikipedia.org/wiki/Dual_number
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Without further ado, here is a list of the functions in the ROM’s FAT table. 

 

XROM# Function Description Stack Impact / Specials 

01.00 -DBL STACK Section header n/a 

01,01 ^KEYS? Bulk Key assignments  

01,02 ^+ 8-level stack addition Drops stack, Duplicates D: 

01,03 ^- 8-level stack subtraction Drops stack, Duplicates D: 

01,04 ^* 8-level stack product Drops stack, Duplicates D: 

01,05 ^/ 8-level stack Division Drops stack, Duplicates D: 

01,06 ^CLST Clears all stack levels (including LastX)  

01,07 ^CLX Clears X: level Disables stack lift 

01,08 ENTER^^ Pushes X: up into 8-level stack Lifts stack, disables stack lift 

01,09 LASTX^ Recalls LastX value to X: Lifts stack 

01,10 ^MOD Calculates Y MOD X Drops stack, Duplicates D: 

01,11 ^PI Puts  in X,  Lifts stack 

01,12 R^^ 8-level stack Roll Up Rolls Up 

01,13 ^RDN 8-level stack Roll Down Rolls Down 

01,14 ^RCL  _ _ Recall value to 8-level stack Lifts stack 

01,15 ^RC+  _ _ Adds value to contents in X:  

01,16 ^RC-  _ _ Subtracts value from contents in X:  

01,17 ^RC*  _ _ Multiplies value with contents in X:  

01,18 ^RC/  _ _  Divides content in X by value  

01,19 ^STVIEW Enumerates all 8-level registers  

01,20 ^Y^X 8-level Power function Drops stack, Duplicates D: 

01,21 bRCL  _ Recalls buffer register to X Lifts stack 

01,22 bSTO  _ Stores X in buffer register  

01,23 bVIEW  _  Views contents of buffer register  

01,24 bSWAP  _ Swaps X: and buffer register  

01,25 -DUAL REAL# Section header n/a 

01,26 CLDST Clears Dual stack (DL included)  

01,27 CLDX Clears DX level Disables stack lift 

01,28 DAVIEW Presents Dual Number in LCD  

01,29 DENTER^ Pushes DX: up into dual stack Lifts stack, disables stack lift 

01,30 DKEYS? Bulk Key assignments  

01,31 DR+ Dual Number Addition Drops stack, Duplicates DT 

01,32 DR-  Dual Number Subtraction Drops stack, Duplicates DT 

01,33 DR*   Dual Number Product Drops stack, Duplicates DT 

01,34 DR/   Dual Number Division Drops stack, Duplicates DT 

01,35 DR^N DN Power to Integer  

01,36 DRCL  _ _ Recall Dual Number to Stack Lifts Dual Stack 

01,37 DRDN Dual stack Roll Down Rolls Down Dual Stack 

01,38 DREXP Dual Exponential function  

01,39 DRINV Dual Inverse function  

01,40 DRLN Dual Logarithm function  

01,41 DRND Dual Number Rounding  

01,42 DRNEG Dual number Sign Change  

01,43 DRSQRT Dual Square Root function  

01,44 DRUP Dual stack Roll Up Rolls Up Dual stack 

01,45 DSTO  _ _ Stored DX into target dual register Prompt for target 
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01,46 DUNIT? Tests if DX is in the Unit “Circle” Skips Line if False 

01,47 DX=0? Tests if DX=0 Skips Line if False 

01,48 DX=? Tests if DX= Skips Line if False 

01,49 DX=DY? Tests if DX=DY Skips Line if False 

01,59 DX<>  _ _ Exchanges DX and target register Prompts for target 

01,51 DX<>DY Exchanges DX and DY  

01,52 DX^2 Squares DX value  

01,53 DY^DX Dual Number Power function Drops stack, Duplicates DT 

01,54 DVIEW  _ _ Views Dual number in Target dual register Prompt for Target 

01,55 LASTD Recalls DL into DX dual stack level Lifts Dual stack 

01,56 DR-P Converts Gaussian to Polar  

01,57 DP-R Converts Polar to Gaussian  

01,58 DSIN Dual Sine function Angular mode independent 

01,59 DASIN Dual Inverse Sine function Angular mode independent 

01,60 DCOS Dual Cosine function Angular mode independent 

01,61 DACOS Dual Inverse Cosine function Angular mode independent 

01,62 DTAN Dual Tangent function Angular mode independent 

01,63 DATAN Dual Inverse Tangent function Angular mode independent 

 

 

  

 
fig. 0.1.- Launcher Interrelationship 
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Part I – Double-Length Stack 
  



 

 

 © 2022 Ángel Martin  6 

 

 Double-Down Module  

 

Double Length Stack and Dual Number Stack 

The same I/O buffer object caters for the needs of both the double-stack and the dual-number stack. 

The buffer has seven registers named  a:, b:, c:, d:, e:, F: and G: -  For the double stack the first 

four are mapped to the additional stack registers { A, B, C, D } and the topmost register G: is used to 

hold the LGKT (more about this later) - whereas buffer regs E: and F: are unused.  

For the dual-number stack on the other hand the first six buffer registers are used, taking two of 

them for each dual-number stack level as show in the figure below. Note that the Dual number LastX 

level (DL) is situated at the top of the dual stack, and that the native LastX register L is not part of 

the construction (used for scratch only). This design doesn’t require any ALPHA registers or Data 

Registers in RAM, which can be freely used for FOCAL programs or any general purpose. 

 

 

 

There are four functions available to access the buffer registers, as follows: 

•    -  to store the value in X into the buffer register given at the prompt 

•   -  to recall to X the value in buffer register given at the prompt (*) 

•   -  to exchange X and the buffer register given at the prompt 

•  -  to view (no data movement) the contents of buffer register at the prompt. 

 

They are prompting functions, asking for the letter of the register { a-e, F, G } in manual mode or 

expecting a number { 1-7 } as a second line in program mode. This line is added automatically by the 

function when entered in the program. 

(*) bRCL performs a double-stack lift, adhering so to this module’s convention. 

  

Warning note: 

The buffer id#7 is the same one used by the “Shadow Stack” in the WARP_Core module, and for the 

 functions in the WARP_Core and the Formula_Evaluation modules. You should refer to their 

respective manuals for details. Bear this in mind if you want to use any of those modules together 

with the Double-Down ROM. 
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Part I  - The Double Stack. 

In this section we’ll describe the available new functions to manage the double stack. As mentioned 

before, the double length stack has 9 registers in total: one (L) is for the LastX functionality and eight 

for the actual stack levels. The stack levels are ordered in the sequence { XYZTABCD } , which is 

rigorously respected in all (automatic and manual) stack lift and drop actions. For all means and 

purposes the double-stack is a continuous logical entity as far as the user is concerned, so no worries 

about keeping track of the actual whereabouts of the data within the calculator’s memory. 

 

Managing the Double-Length Stack 

There are two groups of functions available to support the automated implementation of the Double 

Stack:  

1. Stack Management functions, and 

2. Math functions required to support the double length. 

 

The table below shows the functions grouped by this criterion: 

Stack Management Math Functions 

XROM # Function Name XROM # Function Name 

01,06  01,02 

01,07  01,03 

01,08  01,04 

01,09  01,05 

01,12  01,10 
 



01,13  01,11 
 



01,14  01,20 

01,15    

01,16  Admin Functions 

01,17  01.,01 

01,18  01,19  

04,26    

 

Already you see the reoccurring theme in the used naming conventions, adding the “” character 

either as prefix or postfix of the name depending on whether they drop or lift the double stack – and 

to differentiate it from the native function with the same purpose. 

Notice the presence of RCL Math functions, not available in the native function set but added here for 

your convenience. Since they condense two operations in one, chained operations are much more 

efficient and require fewer program steps. 

The  function group is a particularly powerful set, supporting indirect and stack addressing 

across the whole range of double-stack and data registers. More about this later. 

All functions are meant to be used as direct replacement of the native ones, just use them instead of 

the original, 4-level stack versions. No additional steps, no modifications needed so you already know 

how to use them and when. We’ll see a couple of examples next. 
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Example. 

Compute 1 + 2 * 2.5^(3/7)  doing a left-to-right data entry (and so resisting the urge to process the 

expression from “inside-out”, as learned in all your years of RPN usage): 

We type: 

1 , ENTER^^ , 2 , ENTER^^ , 2.5 , ENTER^^ , 3 , ENTER^^, 7 ,  ^/   , ^Y^X ,  ^*  ,  ^+_  

Obtaining: => 

 

Example. 

Using a strict left-to-right approach calculate the stack-breaker expression shown below:  

(taken from the WP-34 manual, pg. 20) 

 

Roll up your sleeves and start typing as follows: 

RAD , 1 ,  ENTER^^ , 30 ,  ENTER^^ , 7 ,   ^/ ,  7.6 ,  ENTER^^ ,  0.8 ,  ^*  ,  ^- ,  4 ,  ^Y^X ,  

5.1 ,  SQRT,   6 ,  ENTER^^ ,  5 ,  ^/ ,  ^- ,  X^2 ,  ^- ,  ABS ,  0.3 , ^Y^X,  ^+ ,     

Numerator done,   … take a deep breath and continue: 

PI^ ,  7,  ENTER^^ , 4 ,  ^/ ,  5 ,  ENTER^^ , 6 ,  ^/  ,   ^-  ,  ^* ,  SIN , 1.7 ,  ENTER^^ ,  6.5 ,  

ENTER^^ ,  5.9 ,  ^+ ,  3 ,  ENTER^^ ,  7 ,  ^/  ,  ^Y^X ,  ^*  ,  ^+ ,  X^2 ,  3.5 ,  ^- , 

denominator done,  -  ready for the finishing touch now: 

 ^/ ,  SQRT   =>    

 

Example. 

Using a strict left-to-right approach calculate the Mach number using the formula below: 

 

The result is  =>   

5 , ENTER^^,  1 , ENTER^^, 0.2 , ENTER^ , 350 , ENTER^^ , 661.5 ,  ^/  ,  X^2 , 3.5 , ^Y^X , 1 ,    

|  ^-  , 1 ,  ENTER^^ , 6.875 E-6 , ENTER^^ , 25500 ,  ^*  ,  ^-  , 5.2655 .  CHS  , ^Y^X  , 1 ,  ^+   

0.286  , ^Y^X  ,  1  ,  ^-  ,  ^*  , SQRT 
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Why not a 10-level stack, given that the buffer holds enough registers for it?  

First off, because with the eight levels provided you will be on the safe side even with the most 

advanced equations to compute in your life as a scientist or engineer. Second, the larger the stack 

the less useful it is for the automated duplication of the topmost register; and finally, this is the way 

to ensure commonality between the double-stack and the dual-number stack implementations for 

buffer lifting and dropping actions – since the same number of buffer registers are involved on either 

one of the two cases. 

 

Using the double-length functions in a Program. 

The single one exception to the “same as the native stack” rule happens when using the functions in 

a running program. In this case the automatic upper-stack lift when executing numeric steps does not 

occur, so you need to do it manually. This means that an ENTER^^ instruction must precede 

*every* numeric program step. Read the next section to understand the reasons for this convention, 

but before enjoy the FOCAL program example: 

Program listing. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69   
70  

 

There you have it, not rocket science but a solid tribute to the original designers of the RPN system. 

Note the steps in red denoting the sprinkled ENTER^^ instructions (10 in total), always preceding a 

numeric program step. These are needed for running program support. Those are not required in 

manual calculation mode, by virtue of the IO_SVC interrupt trick. 
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Ensuring a seamless operation: The “Last-T” Register 

To ensure a seamless operation of the 8-level stack we’re going to need a trigger for “upper stack 

repair” actions, caused by the user entering numeric data before the execution of the dual-stack 

functions. To illustrate this condition, consider the following situation: 

Say that the double stack holds a relevant value in register T. We know that double-stack friendly 

functions like ENTER^^ , LASTX^ or PI^ will take care of pushing the T: register value over the 

stack divide and into the A: register; therefore, all is good. But the problem arises when the user calls 

a function or performs an operation that only alters the lower-stack {XYZT} arrangement before the 

next double-stack friendly function is called to properly manage things.  

And no, this isn’t a far-fetched scenario at all, happening only with rogue functions - since one of 

those stack-altering operations is entering a new numeric value in X – just pressing any number key 

in the calculator with stack lift enabled will push the T: register value off the stack, and thus 

irrevocably lost for the double-stack functionality. And this happens all the time!  So not good, now 

you’d agree how true is the adagio “the (stack) devil is in the details”, eh? 

The solution is a two-pronged mechanism that will (1:) keep a backup copy of the value in T: in a 

safe place, so that (2:) recovers the backup when the need to update the upper stack occurs. The 

fixing sequence would be restoring the “last-good-known” T: value (LGKT), pushing it onto the upper-

stack register A: - with the subsequent upper-stack lift.  

Obviously, this necessitates the storage of such LGKT value in the safe place, and it should be done 

*before* the user enters a new value in X. The how and when must meet this, and the only way to 

do it is as follows: 

• Upon the CALC_ON event, a reset is done where the “initial” value in T: is copied to the LGKT 

location. Obviously, this must be repeated every time the T: register is modified. This is 

ensured by updating it every time T: changes, and with the module functions we’re in control 

because this only happens when a two-number function or a stack admin routine is called, all 

of which are double-stack friendly and thus their code (upon completion) saves the new value 

in T: into the LGKT location in case it should need using afterwards. 

 

• Each and every operation (be that double-stack function or not) needs to check whether the 

conditions exist for a potential T-override, i.e. entering a new value with stack lift enabled. 

Well, for our own functions in the module we could do an initial check on the status of User 

fag 22 (the Data Entry flag) to figure out if a digit entry had been done prior, and deal with it 

in a postponed fashion, lifting the upper-stack registers and copying the LGKT into the A: 

register. But this is not the only instance of trouble, as the offending action could have been 

done multiple times, overwriting T more than once - yet the UF 22 approach wouldn’t know 

that. Consider for instance the 4-step sequence: { 16, SQRT, 4, X^2 }. This pushes the stack 

twice, leaving previous Y,X in T,Z; “4” in Y and “8” in X, – and therefore the original contents 

of Z and T have gone to see the wizard and are irrevocably lost. By the time we get to a 

double-stack friendly function (such as R^^, ENTER^^ or whatever) it’s too late for our 

repair action! 

 

• So the UF 22 approach isn’t going to cut it, and clearly we don’t have any control over the 

native functions from our module, therefore we need to resort to a more potent method that 

keeps tabs with *every* key sequence pressed, then decide whether it’s one of those 

creating the problem – and right at that moment perform in-situ the upper-stack repair, every 

time it’s needed instead of postponing it for when the double-stack function comes to the 

picture (if it ever does). This, in MCODE parlance is called making use of the I/O_Service 

interrupt polling point, and sure enough this is how it works in the module. 
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• One last detail is crucial for the correct operation of the scheme. We’ve already mentioned 

that the stack-repair action is only needed when the data entry is done with stack lift mode 

enabled; and not for instance right after pressing ENTER^^ or ^CLX.  Here the O/S has 

the benefit of having CPU F11 clear when the first number digits is entered, so it knows 

there’s no stack lift to do. But by the time our module receives the baton (via the IO_SVC 

interrupt), F11 is set again (done by the digit entry itself), thus we missed the point 

completely. We need another way to tell when not to follow the general rule (upper-stack 

correction), and that we have solved by anointing the user flag 01 as the “double-stack lift 

mode flag”, i.e. a replica of CPU F11 but persisting until the next double-stack function is run. 

If UF 01 is set, the correction is done but if it’s clear then it’s skipped. 

 
For additional information, the code beeps a short tone when the correction is done, so you can 

always tell when the upper stack is being “restored” to the desired status. Here’s the upper-stack 
repair action described in detail: 

 

     [Desired] = [Actual] + [Pending]  ;    and:  [Actual] is done now, [Pending] is postponed 
 

REG# Values Action: Desired Actual Pending  

LGKT: (T)  
User 

inputs a 
numeric 

value, 

“N” 

(Z) (T) (Z) Write the new LGKT value 

D: D C D C Moved from C: 

 C: C B C B Moved from B: 

B: B A B A Moved from A: 

A: A T A (T) Recovered from LGKT 

T: T Z Z - no action 
Z: Z Y Y - no action 
Y: Y X X - no action 
X: X N N N - no action 

  

 

 
Case Scenarios:     How it’s handled in the module: 

 

(1) Automatic Stack Lift 
Keying a number value from the keypad  via the IO/SVC Polling point 

RCL, LASTX, PI     use ^RCL, ^LASTX, and ^PI instead 

CPU F11 clear disables stack lift   UF 01 signals a previous F11 clear 
 

(2) Automatic Stack duplication: 
Two-number math functions   use the module versions of the same 

+ ,- , * , / , Y^X, MOD     ^+  ,  ^-  ,  ^*  ,  ^/  , ^Y^X , ^MOD 

 
(3) Other Stack altering functions: 
ENTER^, RDN and R^    use ENTER^^ , ^RDN and R^^ instead 

 
 

In summary, keep the double-stack functions close to your heart (i.e. always used then instead of the 
native, lesser 4-level stack counterparts) and don’t worry about anything else – it’s all taken care by 

the DoubleDown module. 

 
And this is indeed a good segue way into the bulk key assignments facility … 
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Bulk Key Assignments for Double Stack functions. 

You can use the function  ^KEYS?   to do a bulk assignment or removal for all double-stack 

functions available in the Module, each going to their “natural” key location to replace the native 

lesser counterparts. The function prompts  for the assignment or removal of the KA’s, 

therefore the question mark in the function name. 

 

,  only “Y” or ”N” are accepted here: 

  or:   

The KA’s removal action is followed by a memory PACKING to recover the KA’s registers freed. 

Note that only the KA’s on affected keys will be changed; any other KA on another key will not be 

modified so you can continue to use them. 

 

See below the complete keyboard assignments made by ^KEYS? and its counterpart DKEYS? That 

will be covered in the Dual-Number section of the manual. 
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The New Recall, now double-length stack aware. 

An important addition to the module has been a new version of the RCL function present in the 

SandMath and WARP_Core modules. Like those, the new ^RCL includes the in-place math operations 

so sorely missing in the native function set, i.e. ^RC+, ^RC-, ^RC* and RC/ . But in addition to 

that, the new ^RCL is also fully double-stack aware, thus not only the double-stack is lifted 

respecting the T/A divide, but also (and better yet) it can be used to read data stored *anywhere*  

(*) in the calculator’s standard RAM, be that data registers Rnn or double-stack registers { X-F }. You 

can also use any of these as pointer for the  and  operation, which is not a small 

feat if you think about it – and in fact requires a substantial amount of code to pull it off. 

(*) With the single exception of the status registers above “Q”, i.e. { a, b, c, d, e,  K}. They had to 

yield their place to the newcomers, the buffer registers { A, B, C, D, E , F }. Not a complete loss, you 

can still access them using the standard RCL w/ the AMC_OS/X module plugged in of course. 

 

 ;  ; etc. 

The U/I is smart enough to allow for in-situ changes between the different functions, just pressing 

the arithmetic keys or the  RCL  key while the prompt is displayed. Try it to get the feeling of the 

operation. 

In terms of Stack-lift properties ^RCL behaves exactly like the simpler ^LSTX and ^PI - the stack 

will be lifted when F11 is set, but not if F11 is clear. Unlike the simpler two, ^RCL internal code re-

uses F11 so its status is transferred to UF 01 upon initialization, and UF 01 is used at the end to 

decide whether to lift the buffer. As always, UF 01 is left set upon completion (by virtue of the 

synchronization routine to refresh the Last-T register). 

 

Example.  Store the value -44 in the data register R04, and then use stack register “D”  to retrieve 

R04’s value using the indirection capability of ^RCL 

-44 , STO 04 , ^CLX ,  4 , bSTO “d” , ^RCL IND D  =>    

 

So now you have the capability to recall values from any register, including stack and indirect 

addressing, but how can you store them in the upper-stack registers to begin with?  

Clearly there’s no ^STO companion function for that, but the module comes with buffer-register 

handling functions to manage the contents of the upper-stack registers, even if in a way separate 

from the rest.  

•    -  to store the value in X into the buffer register given at the prompt 

•   -  to exchange X and the buffer register given at the prompt 

•  -  to view (no data movement) the contents of buffer register at the prompt. 

 

They are prompting functions, asking for the letter of the register { a-e, F, G } in manual mode or 

expecting a number { 1-7 } as a second line in program mode. This line is added automatically by the 

function when entered in the program. 

With these dedicated functions most of the use cases are well covered, with the exception of the 

view, storage and exchange actions with indirect stack addressing for the upper-stack registers. 
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Summary of Memory handling functions and use cases 

^RCL ^RCL _ _ for Data Regs Rnn<199 

 ^RCL ST _ for Stack {XYZT|L}  and Buffer {ABCD|EF|G} 

 ^RCL IND _ _ for ALL Data Regs Rnn 

 ^RCL IND ST _ for Stack {XYZT|L}  and Buffer {ABCD|EF|G} 

 bRCL _  for buffer {ABCD|EF|G}, but not needed. 

   
STO STO _ _ for Data Regs Rnn 

 STO IND _ _ for ALL Data Regs Rnn 

 STO ST _ for Stack {XYZT|L}  

 bSTO _ for buffer {ABCD|EF|G} 

 STO IND ST _ for Stack {XYZT|L}   

   
X<> X<> _ _ for Data Regs Rnn<199 

 X<>IND _ _ for ALL Data Regs Rnn 

 X<> ST _ for Stack {XYZT|L}  

 bSWAP _ for buffer {ABCD|EF|G} 

 X<>IND ST _ for Stack {XYZT|L}   

 

 

Besides being a very powerful function by itself, ^RCL has a double-duty role as a launcher for the 

“cluster” of related functions, as follows:  

   STO   bSTO  _   STO   DSTO  _ _ 

   R/S   bVIEW  _   R/S    DVIEW  _ _  

   SST   bSWAP  _   SST     DR<>  _ _ 

^RCL _ _  USER   DRCL _ _   USER   ^RCL  _ _     (*) full circle! 

   ENTER  ENTER^^   ENTER  DENTER^ 

   PRGM   ^STVIEW   PRGM   ^STVIEW 

   XEQ    ^KEYS?   XEQ   DKEYS? 

(*) Both RCL launchers are interconnected with each other, so you have access to all of the “parallel”  

cluster functions also starting from this launcher. 

 

        

 

Lest we forget the in-place ^RCL-Math functions as well: 

    +    ^RC+ _ _   

    -    ^RC-  _ _  

^RCL  _ _   *    ^RC*  _ _    

    /    ^RC/ _ _  

   RCL   ^RCL  _ _ 

 

This justifies that the buffer register functions { bRCL, bSTO, bSWAP and bVIEW } are not 

assigned by ^KEYS? in the bulk option: having too many key assignments takes more I/O memory 

and clutters the USER keyboard with conflicting function for program operation. It’s not a problem 

since they can still be conveniently accessed to via the ^RCL route. 
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Snooping the Double Stack with  ^STVIEW-    

The module comes with its own spyware application so you can always look at the COMPLETE double 

stack not altering the register order or contents. The function ^STVIEW will produce a sequential 

enumeration of all registers, with the register name preceding the values. 

You can halt the listing be pressing any key, and the numeration will continue after you release it. If a 

printer is connected the listing will be printed with user flag F15 set, as you can see in the snapshot 

from the ILPER below: 

 

Note how register G: has a copy of the T register, in its LGTK role explained before. 

 

 

Filling the Double-Stack with the value in X: 

The automatic D: register duplication on stack drop is a handy feature for diverse arithmetic 

calculations such as polynomial evaluation, etc. but using it efficiently in an 8-level stack needs a 

more involved preparation to fill D: with the duplicating value.  

The long way to do this is pressing ENTER^^ seven times, a tedious 14-byte sequence not very 

elegant to say the least.  

An alternative would be using three times ENTER^ (the native function) to fill the lower stack, plus 

four bSTO calls to fill the upper-stack half. This is also very inefficient and takes 11 bytes, not state 

of the art either. 

That’s why the companion DUAl_APPS Module has the function  XFILL^  to do a complete stack 

filling using the value in the X-register.  A two-byte, one instruction solution to patch this gap at 

MCODE speed – perfect for the job, and a good reason to have the DUAL_APPS module also plugged 

in. 
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Trapping the Back-Arrow action  

This boundary condition required additional consideration in the I/O_SVC coding. It’s funny how such 

simple operations are taken for granted but have strong implications in the design of system 

enhancements like the double-length stack. 

During the data entry process the back-arrow is used to do corrections, be that for a single digit or 

when pressed repeated times clearing all digits, to invoke the native CLX function - which in turn 

clears F11 to disable the automatic stack lift, and thus allowing that the following value replace the 

zero that was put in X. 

Alright then, so it’s clear that this contingency needs to be covered in the I/O_SVC control code, 

clearing UF 01 when the back-arrow-invoked CLX disables the automatic stack lift – or, in other 

words, when a back-arrow keypress causes a F11 clear condition. 

 

With this boundary condition under our belt, all the needed use cases are solved. The summary table 

below details the different possible scenarios that need to be managed by the module. 

 

Function Stack Lift Stack Drop Clears F11 Trapped? 

ENTER^ Yes when F11 set No Yes Yes 

CLX No No Yes Yes 

Back-arrow No No Yes if Last Digit Yes 

LASTX, RCL, PI Yes when F11 set No No Yes 

Two-number Fnc. No Yes No Yes 

RDN, R^ Roll Up/Down No Yes 

 

 

 

 

 

 

 

                   

[ From: -> To: ] diagrams for the “Fantastic Four”  
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Automated actions and Controls. 

There are several actions performed behind the scenes every time a double-length stack function is 

used. Even if they’re done in automatic fashion, the user needs to understand them to have a good 

grasp of the conditions for data input/output.  

 

1. Every single function except ^CLX and ^CLDST saves the argument in X: into the L: stack 

level. This is equally done for one- and two-argument functions.  

 

2. Any function that alters the content of the T: register (^CLST, ^RDN, R^^, ENTER^^ 

and all two-number functions (^+, ^-, ^*, ^/ , ^MOD and ^Y^X) will, upon completion, 

make a copy of the value in the stack T: register into the LGTK register to ensure that it is 

up-to-date when/if needed. 

 

3. All two-number functions  (^+ , ^- , ^* , ^/ , ^MOD and ^Y^X) will also perform a stack 

drop, duplicating the value in D: into the C: double-length stack level. This is done *before* 

T: is copied into LGTK, obviously. 

 

4. Pressing ENTER^^ or just typing numbers using the calculator numeric keys does an 

automated stack lift, losing the value that was in T: before.  This is corrected by the IO_SVC 

control, restoring the value saved in LGTK back in stack register A: - where it should have 

been placed had it not been lost. You’ll hear a short tone each time this correction action 

takes place, so you know your back is covered ;-) 

 

5. ENTER^^ and ^CLX will clear both CPU F11 and user flag UF 01 upon completion, signaling 

a stack lift disable condition for the subsequent operation. 

 

6. All other functions need to leave UF 01 set upon completion. This also done by the IO_SVC 

control, which sets it when the LGTK doesn’t need updating or when the pressed key isn’t a 

numeric key (thus covering the whole range of scenarios). 

 

7. ^LASTX, ^PI and ^RCL will use the signal left by the pair above to replace X: with the 

recalled argument, without pushing the stack first and then writing it into the X: stack level. 

If F11 / UF 01 are set the operation will perform normally, that is making the stack lift and 

copying the recalled value into X:  

 

 

 

 

Figure 1 – When things were simple… 
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Figure 0.- 4-Bar mechanism 



 

 

 © 2022 Ángel Martin  19 

 

 Double-Down Module  

 

Part II – Dual Numbers 
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Part II  - Dual Numbers. 

In this section we’ll describe the functions and capabilities provided by the DoubleDown module to 

operate with Dual Numbers and to manage the Dual-stack required for them. If you’re familiar with 

the 41Z Module you’ll recognize the concepts and this section will be a breeze; but if you’re new to 

the game get ready for a fun ride with a not steep learning curve.  

 

Managing the Dual Number Stack 

There are two groups of functions available to support the Implementation of the Dual Number 

module:  

3. Stack Management functions, and 

4. Math functions for dual numbers. 

 

The table below shows the functions grouped by this criterion: 

Admin / Stack Management Math Functions 

XROM # Function Name XROM # Function Name 

01,26  01,31 

01,27  01,32 

01,28  01,33 

01,29  01,34 

01,30  01,35 
 



01,36  01,38 
 



01,37  01,39 

01,41  01,40 

01,44  01,42 

01,45  01,43 

01,46  01,53 

01,47  01,56 

01,48  01,57 

01,49  01,58 

01,50  01,59 

01,51  01,60 

01,54  01,61 

01,55  01,62 

  01,63 

 


 

 

Dual numbers have a real and a dual part. The convention used in this module is that the dual part is 

stored in the Y-register, and the real part is stored in the X-register. Besides the functions on the 

table above, the double-length stack functions ^PI and  ENTER^^ described in the previous 

chapter also belong to this section. ENTER^^ plays a crucial role for dual number data entry, so you 

need to be familiar with it as well.  

The data entry process is then:   { dual part,   ENTER^^  ,  real part  } 
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Bulk Key Assignments for Dual Number functions. 

You can use the function  DKEYS?   to do a bulk assignment or removal for all double-stack 

functions available in the Module, each going to their “natural” key location to replace the native 

lesser counterparts. The function prompts  for the assignment or removal of the KA’s, 

therefore the question mark in the function name. 

 

,  only “Y” or ”N” are accepted here: 

  or:   

The KA’s removal action is followed by a memory PACKING to recover the KA’s registers freed. Note 

that only the KA’s on affected keys will be changed; any other KA on another key will not be modified 

so you can continue to use them. 

Besides being a very powerful function by itself, DRCL has a double-duty role as a launcher for the 

“cluster” of associated functions, as follows:  

   STO   DSTO _ _   STO   bSTO  _ 

   R/S   DVIEW _ _   R/S    bVIEW  _  

   SST   DR<> _ _   SST     bSWAP  _ 

DRCL _ _  USER   ^RCL _ _   USER   ^RCL  _ _ full circle! 

   ENTER  DENTER^   ENTER  ENTER^^ 

   PRGM   ^STVIEW   PRGM   ^STVIEW 

   XEQ    DKEYS?   XEQ   ^KEYS? 

 

Notice how we can navigate across the two function clusters using the main anchor function as a 

passageway across them: 
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Test Functions 

The module includes four test functions that operate on the dual-register value as a whole unit. They 

compare the specific condition and return a Boolean YES/NO in manual mode, plus the customary 

“skip next line if false” in a running program. 

There are no order relationships in the dual number plane, so the tests are limited to equal 

comparisons, both between the stack levels DX and DY as well as checking for dual-zero and (1+e). 

Notable case is DUNIT?, which here is simpler than in the complex world as the “modulus” is just the 

real part: |z| = x. 

 Checks for x = +-1 

 Checks for x=y=0 

 Checks for x=0 and y=1 

 Checks for X=Z, and Y=T 

 

These functions are totally analogous to the native set of functions in the base machine for standard 

registers, do there’s no point describing them at length. Instead, how about a glimpse of the actual 

MCODE under the hood? 
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A brief intro to Dual numbers 

See: https://en.wikipedia.org/wiki/Dual_number 

 

In algebra, the dual numbers are a hypercomplex number system first introduced in the 19th century. 

They are expressions of the form a + bε, where a and b are real numbers, and ε is a nilpotent 

number taken to satisfy ε^2 = 0  ; but  # 0.  

Thus, the dual numbers are elements of the 2−dimensional real algebra 

 

Dual numbers were introduced in 1873 by William Clifford, and were used at the beginning of the 

twentieth century by the German mathematician Eduard Study, who used them to represent the dual 

angle which measures the relative position of two skew lines in space. Study defined a dual angle as 

θ + dε, where θ is the angle between the directions of two lines in three-dimensional space and d is a 

distance between them. 

This nice concept has lots of applications in many fields of fundamental sciences; such, algebraic 

geometry, Riemannian geometry, quantum mechanics and astrophysics. Dual numbers find 
applications in mechanics, notably for kinematic synthesis. For example, the dual numbers make it 
possible to transform the input/output equations of a four-bar spherical linkage, which includes only 
rotoid joints, into a four-bar spatial mechanism (rotoid, rotoid, rotoid, cylindrical) 
 

The dual numbers were originally introduced within the context of geometrical studies. They were 
later exploited to deal with problems in pure and applied mechanics. For instance, it has been 

demonstrated how to formulate the equations of rigid body motion in terms of just three "dual" 

equations instead of their six "real" counterparts (thereby realizing an equivalence between 
spherical and spatial kinematics). More recently, their importance has been recognized in numerical 

analysis to reduce round-off errors. 
 

Note: The concept of a non-zero value that becomes zero when squared is a conflicting one at first 

sight – but not more so than the imaginary unit when it began to be used in complex number theory. 

I found the notion of -0 somehow helped me to accept the scheme, although there isn’t such a thing 

as -0 of course, but it offers certain symmetry if we parallel it to:  x^2 = (-x)^2 

Another interpretation of  (and probably more founded) assigns for it an infinitesimally small value 

that, even if not zero, it becomes zero when squared.  

 

In the module the Greek character sigma “” is used to represent “epsilon”. This can be seen in some 

function names, as well as the standard presentation of the dual values in the display: 

   , or:  

Note how for integer values the presentation omits the unneeded decimal digits for clarity. 

This presentation is done automatically in manual mode by all the dual number functions. In program 

mode it is not shown (imagine the clutter?), thus the function DAVIEW can be used at the end of 

the program to produce the display. 

 

https://en.wikipedia.org/wiki/Dual_number
https://en.wikipedia.org/wiki/Mechanics
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Dual Number representations: The Unit “Circle”. 

Dual numbers can be represented as follows: 

• Gaussian representation: z = x + y.  

• Polar representation: z = x (1 +  arg z) , where arg z = y/x, x # 0, is the argument of z. 

How this relates to the exponential form used with complex numbers can be seen if we consider that 

the "unit circle" of dual numbers consists of those with a = ±1, since these satisfy z * z~ = 1  

However, note that the exponential map applied to the ε-axis covers only half the "circle": 

 , using this expression in the definition or argument:   

 z = x (1 +  arg z) = x . e^(. argz)  ; identical form as the complex number z = |z|.e^( i. argz) 

Therefore, the modulus (or norm) of a dual number is its real part, and its argument is the dual part 

over the real part, when the real part is not zero.  For example: 

      <=>   

The conversions between Rectangular and Polar are available with functions DR-P and DP-R 

All throughout the module the dual numbers are represented in gaussian form. 
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The Dual RCL, STO, View and Exchange. 

By the very definition dual numbers are formed by two real numbers, and therefore use two data 

registers. This makes memory handling functions like the native STO and RCL ill-prepared to handle 

them and thus we need to replace them with dual-stack aware counterparts. 

The set of Dual doppelgangers have the same capabilities in terms of indirect and stack register 

addressing, as well as the dual register index. Note that each dual register takes two data registers 

thus their indexes really point at the double number: 

• DSTO n saves the real part in X to R(2n) and the dual part in Y to R(2n+1) 

• DRCL n recalls the registers R2n and R(2n+1) to X,Y respectively. 

• DX<> n exchanges the said pair of registers, and  

• DVIEW n shows the contents of R2n and R(2n+1) as a dual number in the display. 

The stack addressing supports the five levels of the dual stack: DX, DY, DZ, DT, and DL 

  , valid entries:  { X,Y,Z,T,L }   

The INDirect stack addressing supports all status registers as targets: 

  

, valid entries: { X.Y.Z.T.M.N.O.P.Q.K a.b.c.d.e} 
 

Don’t mistake them with the upper-stack registers { ABCDEF|G} – those are already part of { 

DX,DY,DZ,DT,DL } and thus not suitable for an indirect addressing! 

Note that there’s no support for in-place RCL or STO math operations, sorry but that was beyond the 

project scope at this time. 

 

 

Stack Mechanics of DRCL and LASTD. 

Here again we encounter the stack-lift topic in our path, a real trademark of the RPN stack design 

that needs to be looked at carefully in the context of dual number stack as well. Mimicking the 

standard native operation with (single) real numbers, both DRCL and LASTD should check whether 

the stack lift is enabled prior to pushing the recalled value into it. 

Two problems arise that need to be addressed - one is solved but the other is not.  

• The easier one is deciding whether to lift the dual stack. We know that this is signaled by the 

O/S using CPU Flag 11, thus we’ll check if F11 is set -  not a difficult thing to do just checking 

its status. The code will also clear User Flag 01 if F11 is set on entry, and UF 01 will remain 

clear during the execution of the function. Both DRCL and LASTD will use this simple 

approach, so all it’s good here. 

 

• The difficult one is making the disabled stack-lift condition persist until both components of 

the dual number are entered. For all purposes the O/S is going to clear F11 when the first 

part is introduced, and therefore we would need an additional marker to be used as 

semaphore in the subsequent action, entering the second part of the dual number. The 

potential solution would then use the proxy UF 01 as deciding factor. 
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Stack Mechanics of DENTER^ and CLDX 

There is an important fact in the way these two functions work in the Dual stack implementation:  

contrary to their “native” counterparts, the stack lift is only half-way disabled upon their termination. 

The implications of this are that typing new digits after CLDX or DENTER^ works as expected, thus 

overwriting the X-register (i.e. the value is not pushed). However, introducing the second part of the 

dual number finds both F11 and UF 01 set, and the second value is pushed into the stack – mangling 

the dual-number stack into a straddled arrangement. 

This applies to the following scenarios: 

a. Use CLDX to replace DX with a new Dual value, not lifting the stack  

b. Use DENTER^ to push DX into DY and enter a new argument in DX for a dual number 

operation. 

Unless taking corrective action, after CLDX or DENTER^ the DX stack level will not be properly 

overwritten with newly entered digits, rather the second part will be pushed up into the stack. This is 

an undesired situation that need to be avoided. 

 

    or:                

Although it’s unfortunately not possible to prevent this issue from happening, there is an easy way to 

avoid the problem to begin with - not ideal but not insurmountable either, and arguably easy-peasy 

with a little discipline: 

1. Press ENTER^^ instead of the offending function CLDX or DENTER^   

2. Enter the digits for the dual part , as you always do 

3. Press X<>Y and CLX, to move it to the Y: register, and to disable UF 01 again 

4. then enter the digits for real part, and you’re done. 

 

If that’s so, then why having the CLDX and DENTER^ functions at all? Just because there are 

genuine reasons to either clear the DX level (instead of typing { ENTER^^ , 0, ENTER^^, 0 } or to 

copy it into DY  while you do other calculations with the original saved in DX 

This is a byproduct of the dual stack design, which doesn’t have any “scratch pad” reserved for 

auxiliary operations or number data entry. The buffer model used here is certainly simpler (and 

faster) than the model used in the 41Z Module, but the “fly in the ointment” is this inconsistent 

behavior – divergence from the native real stack.  

Why not use the same 41Z Buffer design, I hear you asking?  Well, as I mentioned it’s faster & 

nimbler – but the main reason is because this one here serves a dual purpose, not only for the Dual-

Real numbers but also for the Double Length stack, remember? Killing two birds with the same buffer 

#7 stone has this small drawback but it’s worth the price of admission. 
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Automated actions and Controls. 

There are several actions performed behind the scenes every time a dual number function is used. 

Even if they’re done in automatic fashion, the user needs to understand them to have a good grasp 

of the conditions for data input/output.  Note that points #4 and #6 were already explained in the 

double-length stack section, but they are repeated here for completion’s sake as it’s also appropriate 

and useful. 

1. Every single function except DRNEG, CLDX and CLDST saves the original dual argument in 

DX into the DL dual stack level. This is equally done for one- and two-argument function.  

 

2. Any function that alters the content of the T: register (CLDST, DRDN, DRUP, DENTER^ 

and all two-number functions (DR+, DR-, DR*, DR/ and DY^DX) will, upon completion, 

make a copy of the value in the stack T: register into the LGTK register to ensure that it is 

up-to-date when/if needed.  

 

3. All two-number functions  (DR+, DR-, DR*, DR/ and DY^DX) will also perform a stack 

drop, duplicating the value in DT into the DZ dual stack level. This is done *before* T: is 

copied into LGTK, obviously. 

 

4. Pressing ENTER^^ or just typing numbers using the calculator numeric keys does an 

automated stack lift, losing the value that was in T: before.  This is corrected by restoring the 

value saved in LGTK back in stack register A: - where it should have been placed had it not 

been lost. You’ll hear a short tone each time this correction action takes place, so you know 

your back is covered ;-) 

 

5. DENTER^ and CLDX will clear both CPU F11 and user flag UF 01 upon completion, signaling 

a stack lift disable condition for the subsequent operation. Note:  if you want the following 

operation to lift the stack you need to re-enable it, and in a running program this requires to 

set UF 01 in an explicit program step. 

 

6. All other functions need to leave UF 01 set upon completion. In manual mode this also done 

by the IO_SVC control, which sets it when the LGTK doesn’t need updating or when the 

pressed key isn’t a numeric key (thus covering the whole range of scenarios). Yet in a 

running program there may be required to set UF 01 in an explicit program step.  

 

7. LASTD and DRCL will use the signal left by the pair above to replace DX with the recalled 

argument, without pushing the stack first and then writing it into the DX stack level. If F11 / 

UF 01 are set the operation will perform normally, that is making the stack lift and copying 

the recalled value into DX.  
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Dual Number algebraic functions. 

The Dual Number algebraic rules, summarized below, are a straightforward consequence of the 

previous identity (with z = x + y and w = u + v): 

 

  

This multiplication is commutative, associative and distributes over addition. 

The algebra of dual numbers D has the numbers y, y ∈ R, as divisors of zero. No number y has an 

inverse in the algebra D. 

The Power to an integer function expects the dual number stored in a hybrid way,  in the stack 

registers { Y,Z }, and the exponent n in the X-register. This is the natural logic for the date entry, for 

instance let’s calculate (2+3)^4 : 

3 , ENTER^^ , 2 , ENTER^^ , 4 , DR^N  =>  

 You can verify it by squaring the argument twice: 

LASTD , DX^2 , DX^2  =>   

 

Division of dual numbers is defined when the real part of the denominator is non-zero. The 

division process is analogous to complex division in that the denominator is multiplied by its 

conjugate in order to cancel the non-real parts.  

The conjugate z~ of the dual number z = x + y  is defined by z~ = x – y, so:  z * z~ = x^2 

Thus, the division z1 / z2 is possible and unambiguous if x2 # 0. 
 

   

 

Because we’re not familiar with double numbers we tend to expect similar results to those in complex 

numbers, but that’s not always the case. Some of the expressions strike an unfamiliar chord, and sure 

enough the results are at times very counter intuitive.  For example: 

  

  

   

and in general:  ( x + y )^2 = x^2 + 2 x.y  
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Other Holomorphic Functions of Dual Numbers 

The following formulas have been used to program the functions in the module. 

Note the differences with the complex number expressions across the board! 

 Powers: 

 

 

which is going to require the logarithm, not a surprise here. 

Example:  

(1+)^(1-) = 1+ 

(1+)^(2+0) =  (1+2 )  ;  

 

Transcendental functions: 

 
Very easy to deduce using the power series expression for exp(z) and considering that all terms with 

^n | n>=2 are null. 

Also easy to 

come to using the polar representation of the dual number, of course. 

Example: Ln(1+) =   ;  e^(1+) = e (1+) 

 

 

Trigonometric functions: 

 

Note that the angular mode has no relevance on these. 

Examples: 

Sin (1+) =  

Cos (1+) =  

Tan (1+) =    
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The Hyperbolic functions are also easy to figure out using their exponential forms: 

  

These are not included in the module (no more FAT entries were left!) but a very simple FOCAL 

program can be used – and it serves as a good example of the utilization in a program of the other 

functions as well, see below.  

Note that this program uses ENTER^^ and ^/ (steps #07, 10, 19 and 22). This method preserves 

the integrity of the DY and DZ dual stack levels (only the dual part of the DT level is lost). Otherwise 

we would end up with a straddled situation, where the logical dual number occupies the wrong 

locations in the double-stack. 

 

01  LBL “DSINH” 

02  DREXP 

03  LASTD 
04  DRNEG 

05  DREXP 
06  DR- 

07  ENTER^^ 

08  2 
09  ST/ Z 

10  ^/ 
11  DAVIEW 

12  RTN 

13  LBL “DCOSH” 

14  DREXP 

15  LASTD 

16  DRNEG 
17  DREXP 

18  DR+ 
19  ENTER^^ 

20  2 

21  ST/ Z 
22  ^/ 

23  DAVIEW 
24  RTN 

25  LBL “DTANH” 

26  DREXP 

27  DENTER^ 

28  LASTD 

29  DRNEG 
30  DREXP 

31  DENTER^ 
32  DRUP 

33  DR+ 

34  DRDN 
35  DR- 

36  DRUP 
37  DR/ 

38  DAVIEW 
39  END 

 
 

Examples:  
 

Sinh (1+) =     

Cosh (1+) =    

Tanh (1+) =    
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Dual Number Inverse Trigonometric functions 

I didn’t find any reference in the available literature to the calculation of inverse trigonometric 

functions, so I had to come up with my own approach. The basis takes advantage of the automatic 

differentiation of analytical dual functions, whereby: 
 

 

 

With that in mind it’s a simple matter to obtain the inverse trigonometric functions from their 

derivatives, which thankfully don’t need any direct trigonometric functions at all: 

 

 

This round-about approach may seem a little complicated but in fact the resulting code is very simple 

and short, so I’m more than happy with the end result. 

asin (x+y) = asin(x) +  y / sqrt(1-x^2) 

acos (x+y) = acos(x) -  y / sqrt(1-x^2) 

atan (x+y) = atan(x) +  y / (1+x^2) 

 

Examples:  

asin (sin (1+)) = asin (0.841 +  0.540) = 1 +  1 

acos (cos(1+)) = acos (0.540 –  0.841) = 1 +  1 

atan (tan(1+)) = atan (1.557 +  3.426) = 1 +  1.000 

 

and if you want to impress your friends press this mutually cancelling sequence of keys: 

1 , ENTER^^, 1 , DSIN,  DCOS , DTAN , DATAN ,  DACOS, DASIN =>     

 

Interestingly the cumulative error in DATAN is cancelled back in the complete chain, so the final result 

is accurate to 10 decimal places using the internal O/S 13-digit routines. 
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Dual Number Inverse Hyperbolic functions 

Now that we’ve developed a working system I’s a simple matter to come up with the expressions for 

both the inverse hyperbolic functions. 

The derivatives are very resemblant of the trigonometric case, with only a transposition of terms 

and/or signs: 

  

Hence: 

asinh (x+y) = asinh(x) +  y / sqrt(1+x^2) 

acosh (x+y) = acosh(x) -  y / sqrt(x^2 - 1) 

atanh (x+y) = atanh(x) +  y / (1-x^2) 

 

Where the main annoyance resides in the lack of real variable hyperbolic functions in the native 

function set, and therefore we need to include the MCODE for them as well. 

 

Examples: 

asinh (sinh (1+)) = asinh (0.175 +  1.543) = 1 +  1 

acosh (cosh(1+)) = acosh (1.543 –  .175) = 1 +  1 

atanh (tanh(1+)) = atanh (0.762 +  0.420) = 1 +  1.000 

 

The all-around test yields a slightly less accurate final result: 

1 , ENTER^^, 1 , DSINH,  DCOSH , DTANH , DATANH ,  DACOSH, DASINH  =>      



 

missing out only in the tenth decimal digit, not bad at all even if not perfect. 

 

Note that although these functions are included in the DBLDOWN ROM, the FAT was already full so 

their calling entry points are in the DUAL_APPS ROM . 
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Dual Number AGM and HGM. 

As a direct application of addition, product and square roots we can proceed with the calculation of 

the Arithmetic-Geometric Mean AGM, and the  Harmonic-Geometric Mean (GHM). 

In mathematics, the arithmetic–geometric mean (AGM) of two positive real numbers x and y is 

defined as follows: First compute the arithmetic mean of x and y and call it a1. Next compute the 

geometric mean of x and y and call it g1; this is the square root of the product xy. Then iterate this 

operation with a1 taking the place of x and g1 taking the place of y. In this way, two sequences (an) 

and (gn) are defined: 

            
 

These two sequences converge to the same number, which is the arithmetic–geometric mean of x 

and y; it is denoted by M(x, y), or sometimes by agm(x, y). 

The Geometric-Harmonic Mean on the other hand can be obtained from the AGM using the 

relationship show below: 

   

 

Programming these expressions is easy using our dual number function set. The only needed  

precaution  is that we must set the  number of decimal digits to 8 to avoid oscillations in the partial 

results that would delay or event prevent the convergence altogether. That’s why we use a rounded 

comparison instead of a full-fledge one. 

01 LBL “DAGM” 

02 SF 00  ; flag case 

03 GTO 00  ; merge 

04 LBL “HGM” 

05 SF 00  ; flag case 

06 DRINV  ; invert a0 

07 DX<>DY ; swap arguments 

08 DRINV  ; invert bo 

09 LBL 00  ; common code 

10 FIX 8  ; adjust precision 

11 LBL 01 

12 DENTER^ ;bn in DZ 

13 DENTER^ ; bn in DT 

14 DRUP^  ; bn in DX 

15 DR*  ; an.bn 

16 DRUP  ; bn in DX 

17 LASTD  ; bn 

18 DR+  ; an+bn 

19 ENTER^^ 

20 2 

21 ST/ Z 

22 ^/  ; (an+bn)/2 

23 DRND  ; rounded 

24 DX<>DY ; an.bn 

25 DRSQRT ; sqrt(an.bn) 

26 DRND  ; rounded 

27 DX=DY? ; are equal? 

28 GTO 02  ; yes, exit 

29 GTO 01  ; no, next iteration 

30 LBL 02 

31 FS? 00  ; HGM case? 

32 DRINV  ; yes, invert value 

33 FIX 3  ; restore defaults 

34 DAVIEW ; show value  

35 END  ; all done. 
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Examples:  

 

AGM [(8+), (23+)] = 

HGM [(8+), (23+)] =  
 

 

Corollary: Complete Elliptic Integral of 1st. kind via the AGM. 
 

Here’s another low-hanging fruit that is begging to be picked – so ready or not here we go ; even if 
this is likely not relevant in this domain. 

 

The trigonometric and Legendre forms of the Complete Elliptic Integral are as follows: 
 

 
 
 

We can re-write the expression using the agm, as follows: 
 

, for k^2 <1 

 

Here’s the FOCAL program used for the calculation.  Note that for the most part we don’t care about 
the dual stack condition because DAGM is going to use it all up anyway. 

 

 

01 LBL “DELK” 

02 DX^2 
03 DRNEG 

04 E 
05 + 

06 DRSQRT 

07 ENTER^^ 
08 0 

09 ENTER^^ 
10 E 

11 XEQ “DAGM” 

12 2 
13 ST* Z 

14 * 
15 DRINV 

16 PI 

17 ST* Z 
18 * 

19 DAVIEW 
20 END 

 

Example:  
 

ELK (0.5+) =   
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Dual Number Lambert function. 

Now going for the stretch goal – suffice it to say I have no idea if this is a regular option with dual 

numbers, but I thought it’d be very interesting to explore the concept. Obviously, the singular form of 

the exponential function hugely facilitates things, so we take good advantage of it. 

The Lambert function W(z) is defined such as:     W(z) . exp[W(z)] = z 

Let z = a+b  ;  and W(z) = u + v 

Using the defining equation for W(z): 

a+b = (u+v). exp(u+v) = (u+v) e^u (1+v) = e^u [u + v(1+u)] 

equating the real and dual parts on both sides of the expression: 

a = u.e^u,   =>  u = W(a) 

b = e^u.v(1+u),  =>  v = b.e^(-u) / (1+u) 

regrouping the terms, we have the final expression below – certainly a beauty: 

 

 𝑊(𝑧) = 𝑢 + 𝑣𝜀 = 𝑊(𝑎) + 𝜖
𝑏𝑒−𝑊(𝑎)

1+𝑊(𝑎)
 

 

So there you have it, to my knowledge another “original” contribution to the field – or a flunk of 

biblical proportions ;-) 

Since we have reduced the problem to the real number domain, we can program this expression 

using WL0, the Lambert function for real numbers included in the SandMath module. The short 

program below does the job “in-place”, i.e. only using the DX level and therefore preserving the other 

dual stack values: 

 

01 LBL “DRW” ; a in X:, b in Y: 

02 WL0  ; W(a) 

03 SIGN  ; 1 in X, W(a) in L 

04 ST+ L  ; 1+W(a) in L 

05 X<> L  ; 1+W(a) 

06 ST/ Y  ; b/(1+W(a)) in Y: 

07 X<> L  ; 1 

08 ST- L  ; W(a)  in L: 

09 X<> L        ; W(a) 

10 CHS        ; -W(a) 

11 E^X        ; e^-W(a) 

12 ST* Y        ; b. e^-W(a)/[1+W(a)] in Y: 

13 CLX 

14 LASTX        ; -W(a) 

15 CHS        ; W(a) 

16 DAVIEW 

17 END 

 

Example: calculate the Lambert function for:  z = 1+ 

1,  ENTER^^ , XEQ “DRW”  =>     

where in this case the real part is W(1) =   ;  the Omega constant. 
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Dual Gamma and Psi functions. 

Now boldly going to no-man’s territory and possibly breaking all conventional math’s rules, let’s push 

forward this route calculating the Gamma and Psi (Digamma) functions.  

Using once again the automatic differentiation rule it’s feasible to obtain an expression to calculate 

the Gamma function for dual numbers, assisted by the real number versions fg Gamma and Psi 

available in the SandMath. 

( x + y) = (x) + y ’ (x)   ; 

and ’(x) is derived from the relationship linking it with Psi and Gamma itself: 

 (x) =  ' (x) /  (x) ;  hence:    ’ (x) = (x) . (x)  

Substituting in the initial expression we obtain the resulting formula: 

( x + y) = (x) + y ’(x)  = (x) +  y (x) . (x)  

The mini-routine below calculates the Gamma value for a dual number zin DX. The calculation is done 

in-place, so (z) replaces z in DX and the dual stack levels DY, DZ and DT remain unaltered. 

01 LBL “DGAMMA” 

02 PSI  ; (x) 

03 ST* Y  ; y.(x) in Y: 

04 CLX  ; disables stack lift 

05 LASTX  ; x 

06 GAMMA ; (x) 

07 ST* Y  ; y.(x).(x) in Y: 

08 DAVIEW ; show the world 

09 END  ; done!

Example:   (+) =    

 

For large values of the argument we run into range limitations of the machine, so it’s always good to 

have LogGamma (natural logarithm of Gamma) in the function set. Besides, this one is a double-win 

(pun intended) of the method, almost too easy to be true but that’s how the cookie crumbles in this 

case.  

We’ll apply the automatic differentiation rule to the definition of the LNGAM function: 

f (z) = Ln((z)) = Ln((x) +  y d(Ln(x))/dx 
 

f ’ (z) = '‘(z) / (z)  = (z)  ;  thus we have: 

Ln((z)) = Ln((x) +  y  (x) 

This can be easily programmed in the super short routine below, which returns the value in the DX 

stack level. Note that the routine does the job “in-place” (preserves DT, DZ and DY) and it uses no 

data register. 

01 LBL “DLNGM” 

02 PSI 

03 ST* Y 

04 CLX  ; disable stack lift 

05 LASTX  ; x 

06 LNGM  ; Ln(G(x)) 

07 DAVIEW 

08 END 

Example: Ln (+)  =     

Thus:  XEQ “DREXP”  =>    
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Finally, what about the dual number Psi function?  

The approximation formula used for Psi is as follows: 

, or using w = 1/x: 

𝑃𝑠𝑖(𝑧) =  − ( 𝐿𝑛 𝑤 +
𝑤

2
+

𝑤2

12
(1 −

𝑤2

10
(1 −

10

21
𝑤2))) 

This is a regular calculus using our dual number functions, with the only condition imposed by the 

inversion rule being that the real part of the argument cannot be zero. Thus, we can consider Psi 

available in the dual number domain. 

This formula is accurate to at least 9 decimal figures for arguments with real part x > 9. For smaller 

arguments we’ll use the following recurrence relationship: 

(x) = (x+9) –  [1/(x-k-1)  ; k= 1,2...9 

We’ll apply the approximation formula to calculate (x+9), and then subtract the correction. 

You can find the program that calculates its value in next page. Note the use of some double-length 

stack functions along with the dual number functions, in a wonderful demonstration of the common 

synergies between both subjects of this module. 

 

Example:  Calculate (  +  ) 

1 , ENTER^^, 1 , XEQ “DPSI”  =>  

 

Note that the program returns real numbers when the argument has a null dual part, which is rather 

logical if you ask me. For instance: 

 (+) =    the opposite of Euler’s  constant

 (+) =     

 

 

        

(x)              Ln((x))  
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Program listing: 

01 LBL “DPSI” ; z in DX 

02 STO M  ; save for later 

03 ENTER^^ ; push for input 

04 9  ; scale factor 

05 STO O  ; save for later 

06 ^+  ; 9+x 

07 X<>Y 

08 STO N  ; save for later 

09 X<>Y 

10 DRINV  ; w 

11 DENTER^ ; w in DX and DY 

12 DX^2  ; w^2 

13 DENTER^ ; w^2 in DX and DY 

14 ENTER^^ ; stack lift 

15 10  ; 10 in X: 

16 ENTER^^ ; stack lift  

17 21  ; 21 in Y: 

18 ^/  ; 10/21  

19 ST* Z 

20 ^*  ; 10.w^2 / 21 

21 DRNEG 

22 ENTER^^   

23 E 

24 ^+  ; 1 - 10.w^2 / 21 

25 DRCL Y ; w^2 

26 DR*  ; w^2*(..) 

27 ENTER^^ 

28 10 

29 ST/ Z 

30 ^/   ; w^2 * (..) / 12 

31 DRNEG 

32 ENTER^^ 

33 E 

34 ^+  ; 1-w^2*(..)/10 

35 DR*  ; w^2(1+w^2(..)/12) 

36 ENTER^^ 

37 12 

38 ST/ Z 

39 ^/  ; (…) partial result 

40 DX<>DY ; w 

41 DRLN  ; Ln(w) 

42 LASTD  ; w  

43 ENTER^^ 

44 2 

45 ST/ Z 

46 ^/  ; w/2 

47 DR+  ; w/2 + Ln(w) 

48 DR+  ; Ln(w) + w/2 + (…) 

49 DRNEG ; unscaled result 

50 LBL 00  ; correction steps 

51 RCL M  ; original x 

52 RCL O  ; index k 

53 DSE X  ; k-1 

54 NOP   

55 +  ; x+k-1 

56 RCL N  ; original y 

57 X<>Y  ; dual number in DX 

58 DRINV  ; 1/[(x+k-1)+y 

59 DR-  ; subtract from result 

60 DSE O  ; next index 

61 GTO 00  ; loops 9 times 

62 DAVIEW ; show it 

63 END 

 

 

 

 

 

 

 

Fig.1: Integral representation of Psi  



 

 

 © 2022 Ángel Martin  39 

 

 Double-Down Module  

 

Dual Bessel functions of first kind. 

We manage this one as another direct application of the automatic differentiation rule whereby: 

J( n, z) = J (n, x) + y. J’(n, x)  

Using the derivative formula below: 

 

We can substitute the term J’(n,x) with the equivalent given by the formula, resulting: 

J(n, z) = J(n, x) +  y.[ J(n-1, x) – J(n+1, x)] / 2 

 

Again, this is another straightforward application of the SandMath JBS function. The program below 

expects n in register Z: and z = (x+y) in stack registers {X,Y} - as you’d get them by typing: 

 “n”  , ENTER^^, “y” , ENTER^^, “x” , ENTER^^ 

Note that except for JBS and DAVIEW, only standard functions are used, thus this program operates 

strictly within the “lower stack” XYZY and leaves the upper part alone. That’s always an option, with 

the advantage of keeping DZ and DT untouched but obviously it destroys the data in the DY level. 

Also, there are several stack functions needed due to the format of JBS output, leaving the result in X 

and half the order (n/2) in Y. 

 

01 LBL “DJBS” ; n in Z:, x,y in {XY} 

02 STO 00 

03 RCL Z  ; n 

04 STO 01  

05 E   

06 +  ; n+1 

07 X<>Y  ; x in X: 

08 JBS  ; J(n+1, x) 

09 X<>Y 

10 RDN  ; x in X 

11 RCL 01  ; n 

12 E 

13 -  ; n-1 

14 RCL 00  ; x 

15 JBS  ; J(n-1, x) 

16 R^ 

17 R^ 

18 RCL Z 

19 -  ; J(n+1) – J(n-1) 

20 2 

21 /  ; 

22 *  ; dual part 

23 RCL 00 

24 RCL 01 

25 JBS  ; real part 

26 X<>Y 

27 RDN 

28 DAVIEW ; show result  

29 END  ; end 

With just a few modifications the same program can be used to calculate the derivative of the 

modified Bessel function of first kind, just replacing the JBS lines with IBS, and using “+” in line 19 

instead. 

Example: Calculate J[1, (+) 

1, ENTER^^,  ENTER^^, ENTER^^,  XEQ “DJBS”  =>   


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Dual-Step Root Finding for Real Functions 

For the skeptical amongst you (oh faithless!), here’s the clear proof that the dual number field has 

practical applications.  

The concept of ‘Dual-Step” is borrowed from complex analysis, where the Complex-Step derivative is 

a well-known method to calculate the derivative of a real function; just by evaluating the equivalent 

complex function instead, displaced an incremental amount and taking the imaginary part (see the 

41Z Deluxe manual for details). 

,  with “h” sufficiently small. 

We can use the analogous scheme with dual numbers, where we have the advantage of a 

simultaneous calculation of the real function and its derivative already built in the very result of each 

equivalent dual-function evaluation (a.k.a. the automatic differentiation rule). Moreover, this leaves 

things neatly prepared for a direct root-finding application using Newton’s method, where the 

iterative correction factor is already known: 



The trick is using the value “1’ for the dual part and thus calculating: 

  DF(x+) = f(x) +  f’(x) 

Say, what’s that for direct applicability of a result with no need for additional steps? 

The routine below exploits this idea and can be used to replace your trusty SOLVE or FROOT. All you 

need is a global program in memory for the Dual-Number function equivalent to the real function 

whose roots you want to calculate.  

 

01 LBL “DFX=0” 

02 “GUESS=?” 

03 PROMPT ; input guess 

04 STO 00  ; xi in R00 

05 “FNAME?” 

06 AON 

07 PROMPT ; input name 

08 AOFF 

09 ASTO X  ; temporary 

10 STO  M  ; saves one data reg. 

11 FIX 9  ; for rounding 

12 LBL C  ; subroutine entry 

13 E  ; dual part 

14 RCL 00  ; real part 

15 XEQ IND M ; evaluate fnc. 

16 X<>Y  ; f’(x) 

17 /  ; f(x)/f’(x) 

18 ST- 00  ; x(i+1) in R00 

19 FS? 10 

20 VIEW 00 ; show current 

21 RND  ; round value 

22 X#0?  ; equal? 

23 GTO C  ; no, do next 

24 RCL 00  ; yes, recall result 

25 FIX 3  ; reset defaults 

26 CLD  ; clear LCD 

27 RTN  ; all done. 

28 GTO C 

 

The routine uses ALPHA (register M), data register R00 and stack registers. 
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Let’s see a couple of examples to get familiar with the approach. 

1. Calculate the real root of f(x) = e^x – 5 

2. Solve the Kepler equation M = x -  E sin(x)   ; for E=M=0.5 

To tackle the first example, we write a small routine to program the equivalent DUAL function, i.e. 

DF(z) = exp(z) - 5 

For the second example the DUAL function is Kepler’s equation with explicit parameters, i.e. 

DF(z) = z – 0.5 sin(z) – 0.5  ; or easier:  DF2(z) = 2z – sin(z) - 1 

 

This is how they’ve been programmed: 

01 LBL  “DF1” 

02 DREXP 

03 ENTER^ 

04 0 

05 ENTER^^ 

06 5 

07 DR- 

08 RTN 

 

 

09 LBL  “DF2” 

10 DSIN 

11 LASTD 

12 2 

13 ST* Z 

14 * 

15 DR+ 

16 1 

17 - 

18 END 

Running our root-finding program couldn’t be any easier, say we use an initial guess of x=1 for both: 

XEQ “DFX=0”   

1, R/S   

DF1,  R/S =>  

XEQ “DFX=0”  

1, R/S   

DF2 , R/S => 



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Dual Error Function and Exponential Integrals. 

A final relapse to the special functions analysis that – again - takes advantage of the automatic 

differentiation in tight collaboration with the SandMath for the real variable functions. It;s just too 

convenient not to keep coming to it over and over again! 

 

Error function: definition and derivative. 

    and:    

 

Exponential Integral: Definition and derivative. 

                       and:     

   

Sine and Cosine Integrals. 

  

 

 , and:  

 

 

The derivative is a trivial exercise from the definition. 

 

The calculation method is always the same:  

• Save the DX argument in the DL dual stack level, where it remains untouched, 

• Start with the real variable circulation using the SandMath functions to get the real part, 

• Recall the dual argument and perform the derivative calculations to obtain the dual part. 

• Show the dual result. 

 

  

 

See the program in next page that applies the described technique. 
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Program listing: 

01 LBL “DERF” 

02 DSTO L ; save argument 

03 ERF  ; Error function 

04 DX<>DY ; move result to DY 

05 CLDX  ; get rid of scratch 

06 LASTD  ; DX, stack not lifted 

07 X^2   

08 CHS  ; -x^2 

09 E^X  ; e^(-x^2) 

10 ST+ X  ; 2.e^(-x^2) 

11 ^PI   

12 SQRT  ; sqrt() 

13 ^/   

14 ^*  ; mult by dual “y” 

15 X<>Y  ; put in place 

16 DAVIEW ; show result  

17 RTN  ; done. 

18 LBL “DEI” 

19 DSTO L ; save argument 

20 EI  ; exponential Int. 

21 DX<>DY ; move result to DY 

22 CLDX  ; get rid of scratch 

23 LASTD  ; DX, stack not lifted 

24 E^X  ; e^x 

25 LASTX^ ; x 

26 ^*  ; x.e^x 

27 ^/  ; y / x.e^x 

28 X<>Y  ; put in place 

29 DAVIEW ; show result 

30 RTN  ; done. 

31 LBL “DSI” 

32 RAD 

33 DSTO L 

34 SI  ; Sine Integral 

35 DX<>DY ; move result to DY 

36 CLDX  ; get rid of scratch 

37 LASTD  ; DX, stack not lifted 

38 SIN  ; sin(x) 

39 GTO 00 

40 LBL “DCI” 

41 RAD 

42 DSTO L ; save argument 

43 CI  ; Cosine Integral 

44 DX<>DY ; move result to DY 

45 CLDX  ; get rid of scratch 

46 LASTD  ; DX, stack not lifted 

47 COS  ; cos(x) 

48 LBL 00 

49 LASTX^ ; x 

50 ^/  ; cos(x) / x 

51 ^*  ; y.cos(x) / x 

52 X<>Y  ; put in place 

53 DAVIEW ; show result 

54 END  ; DONE.

 

Remarks: 

The SandMath functions use the “lower stack”, thus the dual value in DY will be trashed. 

However, we’re using a combination of dual number and double-length stack functions in the 

calculation of the dual parts to preserve the dual values in DZ and DT. This can be seen in the use of 

DX<>DY , CLDX right after the SandMath function, which will make the LASTD argument to overwrite 

the DX level , not lifting the dual stack. 

 

Examples: 

DERF (0.5 + 0.5 ) =  

DEI (1 + ) = 

DSI (1 + ) = 

DCI (1 + ) =     
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Poly-Dual-Nomials,  - come again? 

Reeling it back a tad, let’s end this chapter with a few routines covering basic aspects of Polynomials 

in the Dual number plane, should we? 

There’s noting strange in the poly-dual-nomial  concept (yes, the new name is officially coined, and it 

will stick!) thus we’ll assume both the coefficients and the variable are dual numbers. We’ll write Data 

Input and Evaluation routines and will try to get to the Root finding subject using the automatic 

differentiation. By the way, the Dual plane is not as forgiving as the Complex plane in that the 

formulas used must watch for the same data error situation as the real numbers, such as square 

roots of negative numbers, and set the necessary error trapping to avoid the crash. 

We’ll use the naming convention where the n-th. Index is for the coefficient of the x^n term; 

  

 

 

 

Data Input and Evaluation routines. 

The program below can be used to enter the coefficients and to evaluate the polydualnomial at a 

given data point of the variable. If its degree is “N” we’ll store the N+1 coefficients always in dual 

data registers starting with R01, that is { R01 to RN+1 }, using the control word “1,00(n+1)” to 

define it (in bbb.eee format). 

 

01 LBL “DINPT” 

02 “N=?”  ; Pol. degree 

03 PROMPT 

04 E3/E+  ; counter format 

05 STO 00  ; used as scratch 

06 LBL 00  ; main loop 

07 “DN”  ; coeff. value 

08 RCL 00 

09 E 

10 - 

11 AINT  ; adds index 

12 “|-=?  ; as question 

13 PROMPT 

14 DSTO IND L ; saved in Dual Reg 

15 ISG 00  ; next index 

16 GTO 00  ; loop till done 

17 LASTX  ; counter 

18 FRC 

19 RTN  ; cntl. word in X 

20 LBL “DPVL” ; Cntl. word in X 

21 “DX=?”  ; evaluation point 

22 PROMPT ; input DX 

23 LBL A  ; subroutine entry 

24 ^RCL Z 

25 STO 01  ; keep a backup 

26 FRC 

27 ENTER^^ 

28 E3 

29 ^*  ; degree 

30 STO 00  ; counter to R00 

31 ^RDN  ; get it off the way 

32 DENTER^ ; push DX to DY 

33 CLDX  ; initial value 

34 SF 01  ; enable stack lift 

35 LBL 01  ; term loop 

36 DRCL Y ; get current value 

37 DRCL IND 00 ; coefficient 

38 DR*  ; product 

39 DR+  ; updated value 

40 DSE 00  ; decrease counter 

41 GTO 01  ; loop for next 

42 DAVIEW ; show the world 

43 ^RCL 01 ; control word 

44 RTN  ; ready 

45 GTO A  ; run again 

46 END 
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Note: DAVIEW is a resource-hungry function, it uses all scratch area, L and ALPHA to do the job. This 

forces us to use R00 for a backup of the control word. 

Step #32 deserves some comments as well. We know that the I/O_SVC does the housekeeping for 

the LGKT:, ensuring there’s no data loss across the double-stack divide (i.e. stack <-> buffer) and 

keeping UF 01 in sync with CPU F11. However, this only happens in manual mode and not under a 

running program, which leaves us with a manual refresh of UF 01 so stack lift is enabled again for the 

instruction DENTER^ right after LBL 01.  

Note that we’ve used Honer’s (or Ruffini’s) method to write the polynomial taking common factor 

from right to left – This is the most efficient way to evaluate it as it only does multiplications, avoiding 

altogether all power operations, more time consuming and less accurate. 

Example. Enter the coefficients and evaluate at z=(5+5) the polynomial: 

 P(z) = (-1-1) + (1+1) z + (2+2) z^2 + (3+3) z^3 

Or, rewritten using Honer’s method: 

P(z) = (-1-1) + z { (1+1) + z [ (2+2) + z (3+3) ] }  

1.004 , XEQ “DPVL” => 

5 , ENTER^^,  5 , R/S => 

-1, ENTER^^, -1 , R/S => 

1 , ENTER^^ , 1 , R/S =>  

2 , ENTER^^ , 2 , R/S => 

3 , ENTER^^ , 3 , R/S =>   

 

Polynomial Derivative Evaluation 

A routine to evaluate the derivative at a given point is given below. Notice that this is a stand-alone 

version but there are common code sections with the polydualnomial  evaluation, so the proper 

approach is consolidating both into a single program to leverage from the code reuse. 

 

 

01 LBL “dDPVL” ; Cntl. word in X 

02 “DX=?”  ; eval. point 

03 PROMPT ; input DX 

04 LBL B  ; subroutine entry 

05 ^RCL Z 

06 STO 01  ; keep backup 

07 FRC 

08 ENTER^^ 

09 E3 

10 ^*  ; degree 

11 STO 00  ; counter to M 

12 ^RDN  ; get it off the way 

13 DENTER^ ; push DX to DY 

14 CLDX  ; initial value 

15 SF 01  ; enable stack lift 

16 LBL 02 

17 DRCL Y 

18 DRCL IND 00 ; Ck coeff. 

19 DR* 

20 ^RCL 01 ; k+1 

21 DSE X  ; k 

22 NOP 

23 ST* Z  ; k*Ck 

24 ^* 

25 DR+  ; add to current 

26 DSE 00  ; decrease counter 

27 GTO 02  ; loop for next 

28 DAVIEW 

29 ^RCL 01 ; control word 

30 RTN 

31 GTO B  ; for new data point 

32 END 
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Example: evaluate the derivative of the same polydualnomial at the same data point we did its 

evaluation before. 

P’(z) =  (1+1) + z [ 2*(2+2) + z 3*(3+3) ]   

Since the coefficients are already in memory, we can skip the data entry section and jump directly to 

the subroutine entry point LBL B – but not without typing the input parameters of course: 

1.004 , ENTER^^ , 5 , ENTER^^ , 5 , XEQ B  =>  

 

Regrouping for a moment, we’re now equipped to give the root finding solution a good go – since we 

can calculate both P(z) and P’(z) with the routines above. All that’s left is having a sensible driver 

program asking for the initial guess and orchestrating the iterations till convergence is (hopefully) 

reached. 

 

Polydualnomial Twice-Roots.  

By virtue of the automatic differentiation, finding roots of a polydualnomial is equivalent to finding the 

roots of the real polynomial that are also roots of its derivative polynomial: 

Let z= x+y, with y#0 then: 

P(z) = P(x) + y P’(x)  

If P(z) = 0   =>  P(x) = 0  and  P’(x) = 0 

So, it imposes a double condition that makes the search twice as interesting, if not complicated. You’d 

allow me to coin the term “twice-roots” for them, although I agree all this naming is getting funky. 

We know from calculus and polynomial algebra that the roots of the polynomial and its derivative are 

related by the Rolle’s theorem, whereby if d1 is a real root of the derivative then it is placed in-

between two real roots of the polynomial, r1 and r2. Let m1 and m2 the multiplicity of said roots, 

then we have: 

d1 = (m1. r1 + m2. r2) / (m1 + m2) 

 

The elephant in the room is that obviously we’re going to have non-real roots in many cases, and we 

don’t have any way to handle them. This is not different from the real field, where some roots are 

complex and therefore escape the Real domain into the Complex plane, right? Likewise, here we’ll 

have some of the polydualnomial roots as Dual Complex numbers, instead of Dual Real. Yes, the thick 

plottens, as they say… 

Dual Complex root:  z + i w = (a+b) + i (c+d) 

Just to touch lightly on the subject we’ll attempt Newton’s method to find double real roots, 

combining it with the automatic differentiation and hoping to get assistance from the SandMath 

prowess on real-variable calculations. 

Starting from an initial guess x0, the successive iterations are given by the expression: 
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Using the automatic differentiation, we can re-write it as: 

z(k+1) = zk – [ P(zk) / [ P(xk) +  yk P’(xk) ] 

where:  zk = xk + yk  

The numerator P{zk) can be evaluated using the routine DPVL, which returns a dual number. 

If restricted it to real coefficients (not dual numbers) both P(xk) and P’(xk) in the denominator can be 

obtained using the functions PVL and dPVL available in the SandMath, so no need to re-write then 

again. They expect the evaluation point and control word with the information of the location of the 

coefficients. 

However, if we also allow dual-number coefficients then the polynomial will have both real and dual 

parts, even for real variable x. We need to write another routine to evaluate the polydualnomial 

derivative, not a big deal anyway so let’s go this route for a general-purpose approach. 

The routine below is such a driver program. It assumes the polydualnomial coefficients are saved in 

data registers R01 to RN+1, and expects the control word in X: 

  

01 LBL “DP=0” ; cntl word in X:  

02 “bbb.eee=?” 

03 PROMPT 

04 “GUESS=?” 

05 PROMPT 

06 DSTO 10 

07 LBL 10  ; iterations loop 

08 XEQ “B”  ; derivative 

09 ^RDN  ; P’ in DX 

10 DSTO 11 ; P’(zk) 

11 R^^  ; cntlwd. back to X: 

12 DRCL 10 ; zk 

13 XEQ “A”  ; P(zk) 

14 ^RDN  ; get rid of cntl. word 

15 DRCL 11 ; P’(zk) 

16 DR/  ; P/P’ 

17 DRCL 10 ; zk 

18 DX<>DY  

19 DR-  ; zk – P(zk)/P’(zk) 

20 DSTO 10 ; zk+1 

21 LASTD  ; P/P’ 

22 DRND  ; rounded  

23 DX=0? 

24 GTO 11  ; root found 

25 ^RCL 01 ; cntl. word  

26 DRCL 10 ; zk  

27 GTO 10  ; repeat loop 

28 LBL 11   

29 DRCL 10 ; solution 

30 DAVIEW ; show the world 

31 END  ; done. 

 

Realize than more often than not this is not going to converge because of the twice-root condition on 

the real polynomial and its derivative, so without dual-complex support this is quite limited, just an 

academic exercise without much chances to become a fruitful method. 

We can of course try it for a spin building a bespoken polydualnomial from its dual real roots, let’s 

say:  

P(z) = [z - (1+y)].[(z - (2+2)]^2  ; 

P(z)= z^3 + z^2 (1+2) + z (2+2) + (4+10) 

which supposedly has a twice-root in: 

z = [(1+1) + 2(2+2)] /3 = (5 +5) / 3 =    

 

Left for the reader to complete ;-) 
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CODA: What about out trusty quadratic equation? 

Sure enough, we’re going to check if this works - at the very least as a programming exercise using 

the dual number functions.  

The equation is Q(z) = A z^2 + B z + C , where A,B,C are dual numbers. 

The routine below expects the three coefficients A, B,C in the dual stack levels DZ, DY and DX. It 

leaves the two roots in DY and DY – or comes back with a DATA ERROR if the discriminant of the 

square root is, dare I say, “negative” (i.e. the two roots are dual-complex numbers). 

 

01 LBL “DQUAD” 

02 DRCL Z ; A to DX 

03 DR/  ; C/A 

04 DR<> Z ; A to DX 

05 DR/  ; B/A  

06 ENTER^^ ; lifts d-stack 

07 2  

08 ST/ Z   

09 ^/  ; B/2A 

10 DRNEG ; -B/2A 

11 DENTER^ 

12 DENTER^ 

13 DX^2  ; (B/2A^2) 

14 DRUP  ; C/A to DX 

15 DR-  ; (b/2a)^2 - c/a 

16 CF 00  ; default 

17 X<0?  ; is Re(D)<0? 

18 SF 00  ; yes, set flag 

19 ABS  ; absolute value 

20 DRSQRT ; sqrt(D) 

21 FS? 00  ; was D<0? 

22 RTN  ; Dual Complex result 

23 DR-  ; z1 

24 DRUP  ; -B/2A to DX 

25 LASTD  ; sqrt(D) 

26 DR+  ; z2 

27 DAVIEW ; show first root 

28 PSE  ; catch a glimpse 

29 DX<>DY ; swap them 

30 DAVIEW ; shows second root 

31 END  ; done/ 

  

 

Example:  

Get the two roots of  Q(z) = [ z – (1+) ].[ z – (1-2) ] 

First we expand the polydualnomial:, Q(z) = z^2 + (-2+) z + (1-) 

We type  (dual part first, remember): 

0, ENTER^^, 1, ENTER^^, 1, ENTER^^, -2, ENTER^^, -1, ENTER^^, 1, XEQ “DQUAD”  

Resulting: 

z1 =     

z2 =  

Lo and behold, this is not the expected result! – but certainly the value (1-/2) is a root of Q(z): 

Q(1-/2) = 0, and being a double root we can re-write the polydualnomial as follows: 

Q(z) = [ z – (1 – /2) ]^2 = z^2 + (1-/2)^2 – 2z (1-/2) = z^2 + z (-2+) + (1-) 

Therefore, we’ve found FOUR roots of the quadratic equation, say what?? 

Interesting and confusing dual numbers to say the least – but nevertheless it’s proof that the routine 

is working right…  or is it?  Keep reading to know more… 
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CODA2.- Heresy or Paradox? Understanding this mess. 

The issue we’ve run into can be explained by going up one level to the actual polydualnomials we’re 

trying to get the roots of. The vagaries of dual numbers are playing the trick on us because several 

polydualnomials reduce to the same polynomial when expanding their terms – sometimes they even 

reduce to “standard” polynomials of real variable. 

 

Take for instance the polydualnomial formed from the roots (1+) and –(1+), i.e:  

P(z) = [ z - (1+)] [ z+ (1+)],  

Expanding it:  

P(z) = z^2 = z (1+) – z(1+) = z^2, with a double root in z=0 

 

Another example showing the same dichotomy would be using the roots (1+) and (1-): 

Q(z) = [ z – (1+) ] [ z – (1-) ] = z^2 – z (1-) – z (1+) + 1 =  z^2 - 2 z + 1 

With double root z = 1   

Note how they’re twice-roots of both the polynomial and its derivative, so at least that part holds 

water-tight not creating more paradoxes: 

      

 

PS. Somehow this duality brings to mind the quantum mechanics field paradoxes. I wonder if that’s 

one reason why dual numbers are also applied in that field or if all this is just rubish to the square…  
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Part III – MCODE Listings 
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I/O_SVC Monitoring Routine. 

This is the heart of the double length stack, and the best example of how MCODE facilitates things 

when really pushing the envelope. The routine filters the events by the following criteria: 

1. Checks that ALPHA is not ON and that there’s not a program running 

2. Rejects calls from ROMs other than ROM #0 

3. Rejects calls from routines different from [PARSE], at 0x0C93 

4. Rejects keypresses not from the numeric keypad 

If any of the above is false the routine sets UF 01 if CPU F11 is set, and then returns the polling 

vector back to the O/S to resume with the bus enumeration. 

The first digit finds UF 01 clear, so it immediately sets it and proceeds to copy the contents of the T: 

register into the LGKT location, “last Good Known T” in buffer register G: It makes an audible sound 

to let the user know the backup has been made. 

If however, UF 01 is found set that indicates a repeat digit event, and since we don’t want to restore 

the LGTK value to the T: register with each digit entered the code exits as explained before. 

See below the actual code with the details: 
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It’s important to realize the the I/O_SVC event is received by the module *after* the action has 

occurred, so it’s not a true interrupt because we cannot intercept it and thus prevent the event from 

happening. In other words, when we react to it the T: register has already been deleted and the 

lower stack lifted to push the new digit into the X: register. 

That’s why we need to have a method to keep a backup copy of the T: register always up to date, in 

case there’s a data entry event at any given moment. This backup is made as a follow-up task by all 

functions that alter the double-stack arrangement, either by directly handling their registers (like 

ENTER^^, R^^, ^RDN, ^LASTX, etc.) or indirectly as part of the automated stack drop and register 

duplication after a two-number function execution. 

Finally, the last touch still needed is keeping UF 01 status always in sync with CPU F11 – as a proxy 

that can be interrogated at our discretion even *after* the O/S has dealt with the stack lift condition 

and thus it has re-set F11. Remember that our code is receiving the message *after the fact*, so 

checking F11 at that point is useless but UF 01 is still a valid marker for or purposes. 

UF 01 is first set when the calculator is switched ON using the CALC_ON polling point. From that 

moment on, it’s always refreshed by those functions that clear F11 (such as ^CLX, ENTER^^, CLDX 

and DENTER^), and by the I/O_SVC routine itself – remember it’s the last thing it does upon a false 

event execution. 

 

That’s in a nutshell all there’s to it – not rocket science but clever just the same, really a  lot of fun to 

put together in such an interesting way. 
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Buffer Drop routine 

Used to drop the upper-stack registers as part of the complete Stack drop, for instance in ^RDN, and 

the two-number Math functions. 

 

 

 

This routine saves A: into the CPU register [B], and moves { DCB } down to { CBA }. It leaves D 

unchanged and ends with the register A: selected, not the Status regs (!). 

 

Note that a complete stack drop requires additional code to deal with the lower-stack registers and 

(critically) to “stitch” the upper and level parts adequately, so data moves up and down seamlessly. 

In this case the lower stack will need to be drop as well, and the backup copy of A: saved in the CPU 

register [B] will need to be copied into T: 

  



 

 

 © 2022 Ángel Martin  54 

 

 Double-Down Module  

 

Buffer Lift routine 

Used to lift the upper-stack registers as part of the complete Stack drop, for instance in R^^, 

^LASTX, ^PI and ENTER^^. 

 

 

 

This routine first moves { ABC } into { BCD }, and then copies the contents of T: in the A: register 

prepare for further actions. The reoutine ends with the status registers selected. 

 

Note that a complete stack lift requires additional code to deal with the lower-stack registers and 

(critically) to “stitch” the upper and level parts adequately, so data moves up and down seamlessly. 

In this case the lower stack will be lifted for ENTER^ and ^LASTX, and possibly a copy of D: should 

be copied into X if we’re performing R^^. 
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Stack Roll Up , ^PI and ^LASTX routines. 

Here’s an example that demonstrates the utilization of [BLIFT]. Note how in this case we rely on CPU 

F11 to divert the execution to the O/S in those instances when that’s possible. 
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Clear Dual/Double Stack routines. 

Here’s the combination of ^CLST and CLDST routines, controlled by CPU F7. Very straight forward 

and not really challenging, so we do it nice and clean.  
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Double Stack Math routines. 
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Termination of DRCL, DSTO, DR<> and DVIEW 

This was one of the more finicky routines to write, mostly because it’s common to the four dual-

number memory actions: recalling, storing, exchanging and viewing dual number values in RAM. 

Starting with SWAP and VIEW, the first think we need to determine is where in RAM is the target dual 

number: either in data registers, in lower-stack location ( the native stack) or in upper-stack location 

(i.e. buffer #7).  
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The RCL part uses the status of F11 to determine whether to lift the stack before copying the target 

dual number into the DX stack level. We can do it this way because F11 is sync’d back with UF 01 by 

the DRCL main function code, not shown here as it occurs prior to this section. 

 

 

 

The View routine pointed at here is shared by the DAVIEW and the DVIEW functions. It’s also the 

ending part of every dual-number function when used in manual mode, so the display presents the 

combination of but real and dual parts in the proper format. 
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Some instructions are not needed for all cases but keeping them makes the routine compatible for 

the four actions, so as long as they don’t mangle the source data they’re run even if not necessary. 

On the other hand, some other instructions are only executed when needed, as controlled by the 

appropriate case-telling flags. 

 

 

 

From here the execution moves to write the T: register into the LGKT location (setting UP 01 if 

needed), and then to show the result in the display if we’re in manual mode: 
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Dual-Number Stack Roll Up 

Here’s the complete DRUP routine code. Note the two calls to the buffer drop routine, and to the 

[R^SUB] routine to deal with the regular stack – as well as the stitching components to keep things 

in good shape. 
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Dual-Number Stack Roll Down 

Here’s the complete DRDN routine code, a bit more involved that the previous case. Note how we 

deal with the stack registers first, and afterwards we take care of the buffer registers with the two 

calls to the buffer drop routine as well. The final part copies the original {X,Y} registers to the buffer 

top registers {C,D}, notice the numerous RAMSLCT/READATA instructions making the usual mess to 

move between different RAM areas. 
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Dual Number Math routines. 

The structure for all math functions is the same: there is a main program that orchestrates the admin 

tasks and calls the specific math subroutine that does the actual legwork, using the O/S 13-digit 

routines as often as possible. This brings a lot of consistency to the code and makes editing and 

maintenance much easier. See below the Trigonometric functions example: 
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In fact this example makes an exception in the DTAN sace, which is calculated based on the [DSIN#] 

and [DCOS#] subroutines instead of having its own dedicated one. 

Common to the three functions you see the initial check for ALPHA data and saving of the argument 

in the DL stack level (call to [D2LAST]}. In the ending part is the final diversion to the [OVFL2] code to 

check the integrity of the calculated results. The final values are not written into XY if any of the two 

the overflow tests fail. 
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Appendix.- Valentín Albillo’s STKN FOCAL Program 

Here’s a verbatim copy of Valentín article contributed to the Melbourne PPC Chapter. See this 

reference for all the details. 

Program characteristics. –  

 
This program simulates a N-level RPN stack, that is a stack with n registers (not just the 4 registers of 

the standard, built-in, 4-level stack). The value n is chosen by the user, and is limited only by 
available memory. Several functions are provided, ENTER, X<>)Y ,RDN,  CLST, +, -, *, / , Y^X, 

LASTX, PI, and RCL. The rest of the functions are the built-in functions, for instance, GTO is the built-

in GTO, SQRT, SIN, etc.  
 

The program is 159 lines, 343 bytes. It requires SIZE n+12 for a n-level stack. All operations are very 
fast, even for large n, so the program may be used as easi4r as if it were the standard 4-level stack. 

All functions are supposed to be assigned to keys for its execution in USER mode. 

 
ET (Enter) is assigned to 41 (ENTER), RD (Roll Down) to 22 (RDN), +N (addition) to 61 (+), -N 

(subtraction) to 51 (-), *N (multiplication) to 71 (*), /N (division) to 81 (/), PI to -82 (PI), CLN (Clear 

Stack) to -21 (CL), RCLN (Recall) to 34 (RCL), XY (exchange to 21 (X<>Y), and ^N (power) to -12 

(Y^X). 
 

The stack behaves exactly like the original one. it lifts and performs the same, register duplication, 
etc, but for a minor detail: RCL after ENTER does not overwrite the number in X but the stack is 

lifted. This has been done intentionally but can be changed to the overwrite mode easily. Except for 

this sequence, all other functions perform as you would expect, the upper register replicates each 
time the stack drops because of a two-umber operation, etc. 

 
RCLN, when executed, prompts for an argument with the standard RCL _ _  , and the program stays 

in a PSE loop, waiting for you to enter-the argument for the desired register. This can be 00 thru 10 
(both included) and from n+12 upwards, where n is the number of levels of your stack. So, when 

using STO, remember that you have registers 00 thru 10 and n+12 upwards for your 

use. R11, R12 are used as scratch, and R13 thru R(n+11) are used to store part of the stack. 
 

Instructions. 
 

- Make all the necessary assignments, set USER mode  

- Use the stack as normal, first, XEQ "STKN"  => N=?  
- Enter the desired number of levels, n R/S  =>READY 

- From now on, think of the 41C as a n-level stack machine, and execute desired functions 
accordingly. Take into account that STO should be used only with addresses 00 thru 10 and n+12 up, 

and the same is true for RCL. The argument for RCL is entered during a pause. RCL after ENTER does 
not overwrite X but lifts the stack first. 

 

So, you. see, it is as easy to use as if it were the normal stack. Now let’s compute an example taken 
from TI adds… 

 
Compute 1 + 2 * 2.5^(3/7) = ? 

-if' we want to key in the problem left-to-right, we need a 5-level stack (minimum), 

 
XEQ "STKN”  =>N=? ,   
5  R/S   => READY' 

1  ENTER  2  ENTER  2.5  ENTER  3  ENTER  7  /N  => 0.43 

 YX  => 1.48   *N  => 2.96  ,  +N  => 3.96 , FIX 9  => 3.961936296 
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so, the problem was keyed in left-to-right. This is a very good advantage of a n-level stack, you can 

hold up to n-1 pending operations. Using the standard 4-level stack, up to 3 operations may be left 
pending, and problems requiring more pending operations cannot be keyed left-to-right and have to 

be rearranged. But, using a, say, 15-1evel stack, you can hold as many as 14 pending operations, 
and thus, you can confidently key in any - problem left to right, without rearranging anything. That’s 

the usefulness of the program. You can also use it when leaving someone your 41c, and that perscn 

is not very used to RPN, show him how to use ENTER ,RIN ,and X<>Y, and let the 15 (say) level 
stack do the rest ! 
 
 

  


