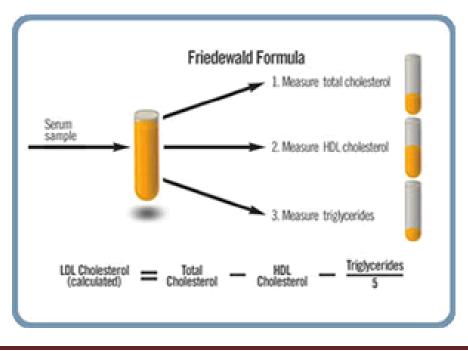

EPIJEMIES ROM

HP-41 Module

This compilation revision 1.2.2

Copyright © 2020 Ángel Martin

Published under the GNU software licence agreement.


Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow. See <u>www.hp41.org</u>

Epidemics Module - QRG

	ics SIR Models	Ángel Martin - JM Baillard
"SIR	Driver program	FOCAL
"d/dT	https://www.hpmuseum.org/forum/thread-14813.html	FOCAL
"*?	Auxiliary prompt	FOCAL
"RK4C	Runge-Kutta Method	FOCAL
"SIR+	Driver for "sir2	FOCAL
"SIR2	SIR model - normalized population	FOCAL
ЮТ	Initial Approximation	MCODE
Direct Detern	nination of Recovered Rate	Ángel Marti
"R-RT	R=R(t) - Direct Determination - uses PPCSV	FOCAL
"R <t></t>	R=R(t) - Direct Determination using SIROM	FOCAL
S <r></r>	Susceptibles Rate	MCODE
"*RT	Function to Solve	FOCAL
"*ITX	Integrand Function	FOCAL
ΙΤΧ	Aux for "*ITX	MCODE
"ITG	Numeric Integration Internal use	
"PPCSV	PPC's Solve Internal use	
Enidemiologi	c Analysis with a Programmable Calculator	E. Franco & I Simmor
"REED	Deterministic Version	FOCAL
"FROST	Stochastic version	FOCAL
	https://www.hpmuseum.org/forum/thread-12091.html	
Intra-Ocular I	Lens Power Calculator	Ángel Marti
"К	Corneal Power – simple	FOCAL
"К12	Corneal Power - Double	FOCAL
"SRK/T	SRK/T IOL Calculator	FOCAL
"HAIGIS"	Haigis IOL Calculator	FOCAL
Basic EKG C	alculations	Eddie W. Shor
"EKG	Driver Program	FOCAL
	https://www.hpmuseum.org/forum/thread-14075.html	
Friedewald F	ormula for LDL-cholesterol	Dinamarco-Diete
"DLD-CHL	Driver Program	FOCAL
	https://www.hpmuseum.org/forum/thread-12546.html	
Correlación C	Ortogonal	Juan Manual Cueva-Lovel
"CO-ORT	Driver Program	FOCAL
20-0NI	http://www.hp41.org/LibView.cfm?Command=View&Item	

Curve Length	between [a, b]	Needs SandMath	Ángel Martin
"CLEN	Curve Length w/ SandMath		FOCAL
"*CL	Integrand Function		FOCAL
"PPCIT	PPC's IT		
"CRVL	Curve Length w/ PPC Routines		FOCAL
*CV	Integrand Function		FOCAL
"PPC1D	PPC's First Derivative	Internal use	FOCAL
Cassette Tape	<u>e Design</u>		Ángel Martin
"C-TAPE	Constant Head Speed		FOCAL
	ETSII-4A		
Audia Tana Cu		2)	N 1111
	ounter / Time Conversions (24180		David Hayden
"TAPE	Tape Counter		FOCAL
"TAPE "TAPINT	1	orum/thread-14602.html?highligh	
	<u>https://www.hpmuseum.org/fc</u> UPL #2418C	orum/thread-14602.html?highligh	t <u>=tape+counter</u>
"TAPINT	<u>https://www.hpmuseum.org/fc</u> UPL #2418C	orum/thread-14602.html?highligh	
"TAPINT Diverse Utilitie	https://www.hpmuseum.org/fc UPL #2418C	orum/thread-14602.html?highligh	t <u>=tape+counter</u> Ángel Martin
"TAPINT Diverse Utilitie AINT BINET	https://www.hpmuseum.org/fc UPL #2418C es ALPHA Integer Part		<u>Ángel Martin</u> MCODE
"TAPINT Diverse Utilitie AINT	https://www.hpmuseum.org/fc UPL #2418C es ALPHA Integer Part Binet's Formula		t <u>=tape+counter</u> <u>Ángel Martin</u> MCODE MCODE
"TAPINT Diverse Utilitie AINT BINET PHI	https://www.hpmuseum.org/fc UPL #2418C es ALPHA Integer Part Binet's Formula Golden Ratio constant		Angel Martin MCODE MCODE MCODE MCODE
"TAPINT Diverse Utilitie AINT BINET PHI SIGMD	https://www.hpmuseum.org/fc UPL #2418C es ALPHA Integer Part Binet's Formula Golden Ratio constant Sigmoid Function		t <u>=tape+counter</u> <u>Ángel Martin</u> MCODE MCODE MCODE MCODE
"TAPINT Diverse Utilitie AINT BINET PHI SIGMD CTRST	https://www.hpmuseum.org/fc UPL #2418C es ALPHA Integer Part Binet's Formula Golden Ratio constant Sigmoid Function LCD Contrast (Half-Nut models)		Angel Martin MCODE MCODE MCODE MCODE MCODE MCODE
"TAPINT Diverse Utilitie AINT BINET PHI SIGMD CTRST "WOOO	https://www.hpmuseum.org/fc UPL #2418C ALPHA Integer Part Binet's Formula Golden Ratio constant Sigmoid Function LCD Contrast (Half-Nut models) Contrast Demo		Angel Martin MCODE MCODE MCODE MCODE MCODE MCODE FOCAL
"TAPINT Diverse Utilitie AINT BINET PHI SIGMD CTRST "WOOO /+/	https://www.hpmuseum.org/fc UPL #2418C ALPHA Integer Part Binet's Formula Golden Ratio constant Sigmoid Function LCD Contrast (Half-Nut models) Contrast Demo Inverses Addition: 1/Y + 1/X Three Prompts		Angel Martin MCODE MCODE MCODE MCODE MCODE MCODE FOCAL MCODE

Epidemics ROM - Introduction.

As you can see by looking at the index, this module has an eclectic collection of programs on very unrelated subjects. The main section deals with virus epidemics, including two contributions written in collaboration with Jean-Marc Baillard, as well as an old paper on the same subject from yore.

I wrote the Intra-Ocular Lens Power calculator as a response to my frustration with the medical institutions, in particular with the lack of rigor and understanding of so-called ophthalmologists. I sincerely hope you don't know what I mean...

In the spirit of free sharing other contributions are shamelessly taken from the MoHP Forum, like the EKG Calculations by Eddie Shore and the LDL-Cholesterol by Dinamarco-Dieter – somehow still related to the medical science field.

Moving onto totally unrelated subjects, the Tape Counter program from David Hayden finally motivated me to document an old mini work on cassette tape design from engineering school days, you never know when these things will come back in fashion again ;-)

A couple of other programs complete the collection, one about Orthogonal Fitting (you can never have too many of those, it seems...) plus two brute-force applications to calculate the arc length of a curve using quick & dirty routines that rely on general-purpose functions.

And last and possibly also least, a few MCODE functions either to support the FOCAL code or to fill-up the available space in the module. These include:

- Easter data finder (written by Kari Pasanen),
- display contrast Demo divertimento,
- Golden Ratio constant and Binet formula for Fibonacci numbers,
- Sigmoid function
- Sum of Inverses.

Enjoy!

Virus Epidemics - Introduction.

Chances are you're reading this from your "shelter in place" Covid-19 confinement, and thus will resonate with the concepts involved. This short program is a direct application of Jean-Marc Baillard's routines to solve a system of three ordinary differential equations (ODE).

The SIR model calculates the values of Susceptible, Infected and Removed (recovered plus dead) groups of population in a total population of N individuals. N = S + I + R.

The virus is modeled by two parameters that indicate the *infection rate* "a" and the *recovery rate* "b". These are the crux of the model, as they need to be expressed in the same units used by the ODEs to show the individual results - i.e. a=2.3 infected people per person and DAY, and b = 0.3 people recovered per DAY if we want to look at daily numbers.

Supposedly your local Covid-19 statistics could be used to estimate the parameters, but this is tricky since the reported infection cases are much lower than the actual ones. Besides, the Removed section includes both the recovered (cured) and the dead patients.

The ODEs are normalized by the total population size N, but this is transparent to the user and it's done by the routine itself. The ODE's are implemented in the LBL "d/dt" subroutine:

dS/dt = -a.I(t).S(t) dI/dt = a.S(t).I(t) - b.I(t)dR/dt = b.I(t)

Incremental Method.

The first approach is based on successive application of the Runge-Kutta method to solve the system of three ODE. As usual the accuracy and efficiency of this approach relies on a sensible step size and well-defined boundary conditions, with both attributes decreasing with the successive iterations (whereby each step is based on the results of the previous one).

Let S(t), R(t), and I(t) be the Susceptible, Recovered and infected segments of the population. Let's assume no vital dynamics (births and deaths), thus the total population N is constant and given by the relationship: N = S(t) + R(t) + I(t)

The non-linear differential equations that define this model are given below:

$$\begin{aligned} \frac{dS}{dt} &= -\frac{\beta IS}{N}, \\ \frac{dI}{dt} &= \frac{\beta IS}{N} - \gamma I, \\ \frac{dR}{dt} &= \gamma I, \end{aligned}$$

Where β and γ are the constants characterizing the dynamics of the epidemic.

Note that since the total population is constant, it follows that at any given time:

$$rac{dS}{dt} + rac{dI}{dt} + rac{dR}{dt} = 0,$$

Solving the Epidemic

The driver program **"SIR**" first prompts for the population size and initial stocks of susceptible and infected population, *but not the recovered segment as it is assumed null at the beginning* (t=0). It also prompt for the dynamic constants { a, b } corresponding to β and γ in the equations above.

By default, the program uses a step-size h= 0.1 and n=10 steps per calculation, which yields the results in intervals of one unit value. You can change these manually storing your custom constants in R05 and R06 respectively. As usual the time increments are given by the product of both parameters, i.e. tn = tn-1 + n.h

The system of ODEs is solved using the "classic", fourth-order Runge-Kutta method. I have used Jean-Marc's "**RK4C**" generic routine for this purpose, with the appropriate variable definitions - somehow tricky but conceptually simple.

The program assumes variables are stored in the following data registers:

R00 = subroutine name R01 - to, then t R02, R03, R04- initial values So, Ro, and Io R05 = h = step size R06 = N = number of steps R12 - β constant R13 - γ constant

The subroutine "d/dT" uses the three variables R(t), I(t) and S(t) in the { X,Y,Z} stack registers and calculates the three derivatives {dR/dt; dI/dt, and dS/dt} in stack registers { X, Y, Z } respectively.

Register	Input	Output
T:	t	-
Z:	S(t)	dS/dt
Y:	I(t)	dI/dt
X:	R(t)	dR/dt

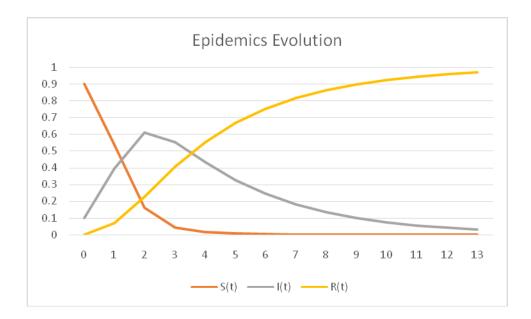
The system of ODEs is programmed as follows - Note that there is no need to use R(t) to calculate any of the three variations: with R in X:, S in Y: and I in Z:

01 LBL "d/dt"	;	09 RCL 12; a	
02 RDN	; S	10 *	;a.I.S
03 X<>Y	; I	11 ENTER^	
04 *	; S.I	12 CHS	; -a.I.S = dS/dt to Z:
05 LASTX	; I	13 X<>Y	;a.I.S
06 RCL 13	; b	14 RCL Z	;b.I = dR/dt in X:
07 *	;b.I	15 ST-Y ; (a.I.S	5 - b.I) = dI/dt in Y:
08 X<>Y	; I.S	16 RTN	

Example:- Calculate the SIR percentages of population for an epidemic represented by the constants a = 2.25 and b = 0.3, when the normalized initial conditions are:

so = 0.9, and io = 0.1

Solution.-The program prompts for the input values, suggesting those from previous executions - in which case you can simply press R/S to reuse them:


We type:	To obtain:		
XEQ " <mark>SIR</mark> "	$\omega = -7$		
2.25 , R/S	b: 7		
0.3 , R/S	N = 7	total population size	
1 , R/S	50± 7	initial susceptible	
0.9 , RS	IØ= 7	initial infected	
0.1 , R/S			

Note that the program will check that R0=0, i.e. (S0 + I0)/N = 1, and if this is not the case the prompts will be asked again until such condition is met.

Entering all the known parameters at the corresponding prompts, we obtain the following results table:

Time	S(t)	I(t)	R(t)
0	0.9	0.1	0
1	0.5366	0.3944	0.0689
2	0.1627	0.6092	0.2281
3	0.0429	0.5513	0.4058
4	0.0142	0.4324	0.5534
5	0.0061	0.3271	0.6668
6	0.0032	0.2448	0.7520
7	0.0020	0.1824	0.8157
8	0.0014	0.1356	0.8630
9	0.0011	0.1007	0.8982
10	0.0009	0.0748	0.9243
11	0.0008	0.0555	0.9437
12	0.0007	0.0412	0.9581
13	0.0006	0.0306	0.9688

Which can be represented graphically, obtaining the well-known SIR shape as expected:

Alternative program: "SIR2+"

This version uses a consolidated form of the different routines into a single FOCAL program, which makes it slightly faster (pre-compiled jumps instead of global label searches). The input values needed are the same as the previous case, as it is the data output sequence, the only difference being that the total population size is assumed to be one, i.e. the entry is for the **percentages** of the susceptible, infected and recovered segments.

It also uses a step size of h =0.1, and the number of steps is n =10 so the results are identical to the default case used in "**SIR**"

Here too a check is made for the initial conditions to comply with the requirement s0+ro+io=1. Should that not be the case the program will throw an error message like the one shown below:

R(0)#0

Data Register map:

R11 – a R12 – b R01 – to, then t R02, R03, R04 – Initial values So, Io, Ro respectively R05 – h/2R06 – n

The driver program prompts for the input values and then calls "**SIR2**", where all the number crunching occurs.

Note. The table below shows the subroutines used in each of the two versions:

Routine	SIR	SIR2+	Direct Method
Runge-Kutta	RK4C	SIR2	n/a
System of OED	d/dT	LBL 10	n/a
Prompting	<u>**?</u> "	<u>**?</u> "	``*? ' '

Program Listings.-

01 *LBL "SIR"	33 *	65	AINT
02 02*LBL A	34 "10="	<u>66</u>	>`="
03 RCL 12	35 ARCL X	67	ARCL Z
04 "a="	36 "`?"	68	PROMPT
05 ARCL X	37 PROMPT	<u>69</u>	"R"
06 "`?"	38 RCL 14	70	AINT
07 PROMPT	39 /	71	>"="
08 STO 12	40 STO 03	72	ARCL T
09 RCL 13	41 0	73	PROMPT
10 "b="	42 STO 04	74	"d/dT"
11 ARCL X	43 STO 01	75	ASTO 00
12 "`?"	44 0.1	76	XROM "RK4C"
13 PROMPT	45 STO 05	77	GTO C
14 STO 13	46 10	78	RTN
15 <u>*LBL B</u>	47 STO 06	79	*LBL "d/dT"
16 RCL 14	48 <u>*LBL C</u>	80	RDN
17 <i>"N=</i> "	49 RCL 04	81	Х<>Ү
18 ARCL X	50 RCL 14	82	*
19 "`?"	51 *	83	LASTX
20 PROMPT	52 RCL 03	84	RCL 13
21 STO 14	53 RCL 14	85	*
22 RCL 02	54 *	86	X<>Y
23 *	55 RCL 02	87	RCL 12
24 "SO="	56 RCL 14	88	*
25 ARCL X	57 *	89	ENTER^
26 "`?"	58 RCL 01	90	CHS
27 PROMPT	59 "S"	91	X<>Y
28 RCL 14	60 AINT	92	RCL Z
29 /	61 >"="	93	ST- Y
30 STO 02	62 ARCLY	94	END
31 RCL 03	63 PROMPT		
32 RCL 14	64 "I"		

Program Listing – SIR2+

01	*LBL "SIR2+"	51	ARCL Y	101 R^
			PROMPT	102 ST+ 07
	<u>*LBL A</u> 11		XROM "SIR2"	103 ST+ 07
	"a"		GTO C	104 RCL 02
	XROM "?"		55*LBL "SIR2"	105 +
	12			106 XEQ 10
06	12 "b"		RCL 06	107 RCL 05
		57		108 ST+ 01
	XROM "?"		GTO 01	109 ST+ X
	<u>*LBL B</u>		<u>*LBL 10</u> RCL Y	110 ST* Z
10 <i>11</i>	2 "S0"	61	*	111 ST* T
	XROM "?"		RCL 11	112 *
	3	63	*	113 ST+ 09
			ENTER^	114 X<>Y
	XROM "?"		CHS	115 ST+ 08
	RCL 02		X<> Z	116 RCL 03
17			RCL 12	117 +
18		68		118 R^
	X=Y?		ST- Y	119 ST+ 07
	GTO 01		RTN	120 RCL 02
	TONE 0		<u>*LBL 01</u>	121 +
	"R0#0"		RCL 03	122 XEQ 10
	PROMPT		RCL 02	123 RCL 05
	GTO B		XEQ 10	124 ST* Z
25	*LBL 01		RCL 05	125 ST* T
	CLX		ST+ 01	126 *
	STO 04		ST* Z	127 RCL 09
	STO 01		ST* T	128 +
29	.05	79	*	129 3
30	STO 05	80	STO 09	130 /
31	10	81	X<>Y	131 ST+ 04
32	STO 06	82	STO 08	132 X<>Y
33	<u>*LBL C</u>	83	RCL 03	133 RCL 08
34	RCL 02	84	+	134 +
35	RCL 03	85	R^	135 3
36	RCL 04	86	STO 07	136 /
37	RCL 01	87	RCL 02	137 ST+ 03
38	"S("	88	+	138 R^
39	AINT	89	XEQ 10	139 RCL 07
40	"`)="	90	RCL 05	140 +
41	ARCL T	91	ST* Z	141 3
42	PROMPT		ST* T	142 /
43	"I("	93	*	143 ST+ 02
	AINT	94	ST+ 09	144 DSE 10
45	"`)="	95	ST+ 09	145 GTO 01
46	ARCL Z	96	Х<>Ү	146 RCL 04
	PROMPT		ST+ 08	147 RCL 03
48	"R("		ST+ 08	148 RCL 02
	AINT		RCL 03	149 RCL 01
50	"`)="	100) +	150 END

Direct Method.

Because the third differential equation is on a single variable only, it is possible to prepare an explicit form for the equations, although requiring an iterative approach.

The resulting expression is as follows:

$$b.t = \int_0^{r(t)} \frac{dx}{io - x - so. \left[exp(-x a/b) - 1\right]}$$

Where all segments are normalized, i.e. percentual of the total population:

$$s = S/N; i = I/N, r = R/N$$

Here the iteration process will consist of finding the appropriate upper integration limit r(t) that makes the integral value equal to the left side of the equation, b.t – a direct function of the chosen time value. This is in turn solved as a root for the function f(t) = b.t - INTG, so you see we'll need a nested implementation of INTEG within a SOLVE loop, which explains the hefty time requirements of this implementation.

While it's true that the execution time is longer than using the successive approximation method, on the other hand it can be used to directly obtain the results at the desired time without the need to calculate all previous values.

Choosing a good initial guess is also important to reduce thenumber of iterations needed for convergence, and therefore also the total execution time. I have used the estimation for r(t) given by the formula:

$$r = -\frac{b}{a}.[(a.so - b).t - Ln(so)]$$

Once obtained the percentage of recovered population it is trivial to calculate the other two segments:

$$s(t) = so . \exp\left[-r(t).\frac{a}{b}\right],$$
 Eq. II

and from the defining relationship:

$$i(t) = 1 - r(t) - s(t)$$
. Eq. III

and thus the population segments are fully characterized for the instant t - in a process that will need to be repeated for all instants to complete the dynamic response of the epidemic.

The module includes built-in routines to solve for the equation root ("**PPCSLV**") and to perform the numerical integral ("**ITG**"), so there is no need to use additional modules. However, the user may want to use the MCODE versions of the same routines (**FINTG** and **FROOT**) available in the SIROM Module, which for some cases will yield more accurate results in shorter time.

The main programs available are shown in the table below, as well as the subroutines used for each one:

Routine	Solve	Integration
R=RT	PPCSLV	ITG
R <t></t>	FROOT	FINTG

Remember that the accuracy of the solution is determined by the number of decimal places set in the calculator (FIX nn) - and that this will have a direct impact on the execution time.

Example.- Calculate the normalized population segments at the instant **t=5** for the same epidemic of the previous example, a=2.25; b=0.3; s0=0.9 and i0=0.1

Let's use FIX 4 for accuracy settings.

We type:	To obtain:
FIX 4	
XEQ "R=RT"	$\omega = 7$
2.25, R/S	6 ± 7
0.3, R/S	50 ± 7
0.9, R/S	IØ = 7
0.1, R/S	T ± 7
5, R/S	long calculation time
	R (T) ± Ø.6634
R/S	5 (T) <u>+</u> 0.0052
R/S	I (T) = 0.3 3 0 3

- Pressing R/S here or the local label [C] at any time will prompt for a new time instant.
- Pressing the local label [A] will prompt for initial boundary conditions So, Ro, Io then continue with time instant prompt.

R/S	$T \equiv 7$
1, R/S	long calculation time
	R (T) <u>=</u> 0.0689
R/S	5 (T) <u>-</u> 0.5366
R/S	I (T) <u>=</u> 0.3944

As you can see the results are comparable to those obtained using the successive approximation method(s) seen in previous sections.

Using the SIROM MCODE routines for the same case:

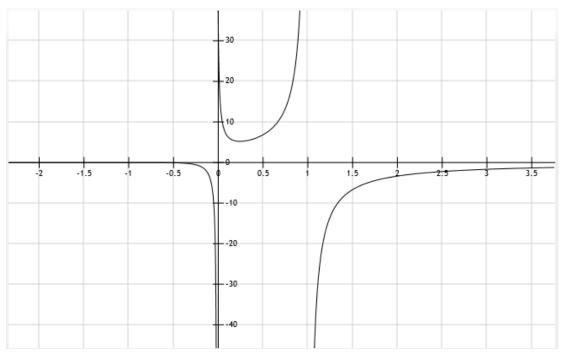
We type:	To obtain:
XEQ "R <t>" 2.25, R/S 0.3, R/S 0.9, R/S 0.1, R/S 5, R/S</t>	a = 7 b = 7 50 = 7 I0 = 7 I = 7 long calculation time $R \langle I \rangle = 0.6668$ $5 \langle I \rangle = 0.006$
R/S R/S	I (I) = 0.327 (
R/S 1, R/S	T=? <i>long calculation time</i> R 〈 I 〉 = 0.0 5 8 9
R/S R/S	5 (T) = 0.5366 I (T) = 0.3944

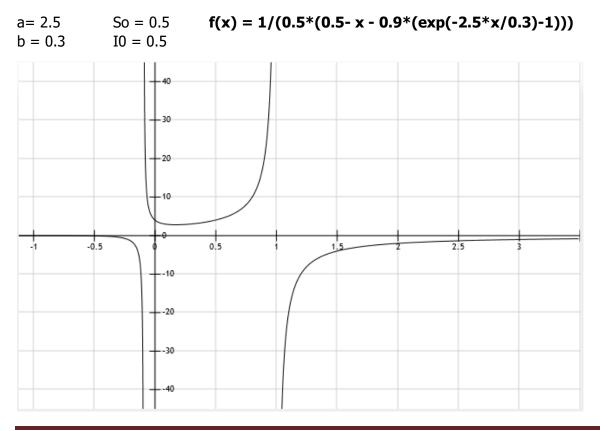
Program Listing. - "R<T>". - Uses {R10 - R15 }

		_			
01	*LBL "ITG"	21	XEQ IND 10	41	RCL 14
02	ASTO 10	22	STO 15	42	ST+ 11
03	STO 13	23	RCL 12	43	RCL 11
04	RDN	24	XEQ IND 10	44	XEQ IND 10
05	STO 12	25	ST+ 15	45	4
06	X<>Y	26	RCL 14	46	*
07	STO 11	27	ST+ 11	47	ST+ 15
08	08*LBL 09	28	RCL 11	48	DSE 13
09	RCL 13	29	XEQ IND 10	49	GTO 02
10	ST+ X	30	4	50	RCL 15
11	STO 13	31	*	51	RCL 14
12	2	32	ST+ 15	52	*
13	+	33	33*LBL 02	53	3
14	RCL 12	34	RCL 14	54	/
15	RCL 11	35	ST+ 11	55	RTN
16	-	36	RCL 11	56	STO 13
17	X<>Y	37	XEQ IND 10	57	GTO 09
18	/	38	ST+ X	58	END
19	, STO 14	39	ST+ 15		
20	RCL 11	40	DSE 13		

Register Map.-

R00 - T R01 - so R02 - io R03 - r(t)R04 - a


R05 - b


		1			
01	*LBL "R <t>"</t>	30	STO 03	59	CHS
02	SF 01	31	<u>*LBL C</u>	60	"I(T)="
03	GTO A	32	"T=?"	61	ARCL X
04	*LBL "R=RT"	33	PROMPT	62	PROMPT
05	CF 01	34	STO 00	63	GTO C
06	*LBL A	35	0	64	*LBL "*RT"
07	4	36	ENTER^	65	0
08	"a"	37	.9	66	X<>Y
09	XROM "?"	38	"*RT"	67	"*ITX"
10	5	39	FC? 01	68	FS? 01
11	"b"	40	XROM "PPCSV"	69	GTO 01
12	XROM "?"	41	FS? 01	70	E1
13	*LBL B	42	FROOT	71	XROM "ITG"
14	<u>E</u>	43	STO 03	72	<u>*LBL 01</u>
15		44	"R(T)="	73	FS? 01
16	XROM "?"	45	ARCL X	74	FINTG
17	2	46	PROMPT	75	RCL 00
18		47	RCL 04	76	-
19	XROM "?"	48	RCL 05	77	RTN
20	RCL 01	49	RCL 01	78	*LBL "*ITX"
21	+	50	R^	79	SIGN
22	E	51	S <r></r>	80	RCL 04
23	 X=Y?	52	<mark>"S</mark> (T)="	81	RCL 05
24	GTO 01	53	ARCL X	81	RCL 01
		54	PROMPT	83	RCL 02
25	"R0#0"				
25 26	" <i>R0#0"</i> PROMPT	55	RCL 03		
26	PROMPT	55 56	RCL 03 +	84	ΙΤΧ
26 27	PROMPT GTO B				
26	PROMPT	56	+	84	ΙΤΧ

Note the call to **ITX** in step 84. This is an auxiliary MCODE function to calculate the integrand of the numeric integral, done to expedite the calculations as much as possible. The function expects the input parameters a, b, So and io in the stack registers {TZYX} respectively, and returns the value of the integrand.

Examples of integrand function, helpful to gauge the job of the numerical integral.

a= 2.5	So = 0.9	f(x) = 1/(0.3*(0.1-x-0.9*(exp(-2.5*x/0.3)-1)))
b = 0.3	IO - 0.1	

MCODE Routine listing:

!3-digit routines are used where possible, contributing to more accurate results.

Data input:	T: a	Output: X: resul	't
	Z: b		
	Y: so	$f = \frac{1}{i\rho - x - s\rho}$	$\frac{1}{[exp(-x a/b)-1]}$
	X: io		[[[]]
	098	"X"	Initegrand function
	014	"T"	1/{b.[lo-x-So.(exp(-a.x/b)-1)]
	009	<i>" "</i>	Ángel Martin
	138	READ 4(L)	x
	070	N=C ALL	
	10E	A=C ALL	
	046	C=0 S&X	
	270	RAMSLCT	
	038 351	READATA	a
	050	?NC XQ ->14D4	(includes SETDEC)
	135	->14D4 ?NC XQ	[CHK_NO_S1] a.x
	060	->184D	(MP2_10)
	078	READ 1(Z)	b
	2BE	C=-C-1 MS	Sign change
	269	?C XQ	-a.x/b
	061	->189A	[DV1_10]
	048	SETF 4	substract one: e^x-1
	035	?NC XQ	13-digit precision here
	068	->1A0D	[EXP13]
	088	READ 2(Y)	So
	13D	?NC XQ	So.[exp(-a.x/b)-1]
	060	->184F	[MP1_10]
	0B0 025	C=N ALL ?NC XQ	X
	025	->1809	x + So.[exp(-a.x/b)-1] [AD1_10]
	2BE	C=-C-1 MS	Sign change
	11E	A=C MS	
	0F8	READ 3(X)	lo
	025	?NC XQ	lo - x - So.[exp(-a.x/b)-1]
	060	->1809	[AD1_10]
	078	READ 1(Z)	b
	13D	?NC XQ	b.So.[exp(-a.x/b)-1]
	060	->184F	[MP1_10]
	239	?NC XQ	
	060	->188E	<u>(ON/X13</u>
	331	?NC GO	Overflow, DropST, FillXL & Exit
	002	->00CC	[NFRX]

Intra-Ocular Lens Power calculator.

These routines are an approximation to IOL power calculation – a very wide and deep subject not entirely free from its dose of alchemy judging from the statements of some so-call ophthalmologists. In truth many different formulas exist, and most of them have undergone their own evolution so one talk about "generations" of formulas, each with more accuracy than the preceding one – at least in theory.

The formula used is the SRK/T – first developed by Sanders, Retzlaff and Kraff and still useful for understanding the relation of the variables involved and the IOL power.

The formula is a simple arithmetic of diopter terms, starting with a "fudge factor" known as the "A" constant - which in reality is not a constant as it depends on numerous factors like type, material and position of the IOL, as well as surgeon dependent and technique of incision.

This initial term is offset by two others, one based on the net corneal power K (keratometry value in diopters) and another on the Axial Length, AL in mm:

P = A - 0.9 K - 2.5 AL

This is admittedly a very crude expression, no doubt lacking refinement and other additional corrections, most notably those attempting to predict the Effective Lens Positioning (ELP) beforehand.

Corneal Power

For the calculation of the corneal power we have used a simple relationship based on the geometry of the cornea and average values of the refraction indexes in the three media: air (no), cornea (n1), and the aqueous humor inside the eye (n2) These standard values are suggested by the program. At the prompts and you can use them as default (pressing R.S) or change them as you want simply typing your own.

Default values:

n0 = 1 n1 = 1.376 n2 = 1.336		\vdash	- r.
The external and internal radius are obtained during the optical biometry and are therefore known.			
Let k1 = (n1-n0)/r1,		D	
and $K2 = (n2=n1)/r2$	n	n 1	n ₂
The expression used is as follows:	0	ſ	2
K = k1 + k2 - k1 .k2. (r1-r2)/na	AIR	CORNEA	AQUEOUS
With na being the refractive index of the cornea and aqueous humor combined, typically of a value 1,3375.			/

Example.

Calculate the power of an IOL to be implanted in a patient's eye with the following biometric data:

Axial length = 24.06 mm r1 = 7.97 mm r2 = 7.91 mm

You can assume the standard values for all refractive indexes n, na, n1 n2.

Use a "custom" A-term value: A=118.90

Solution:

We type	to obtain:
XEQ "K12" 7.97 , R/S R/S 7.91 , R/S R/S	R (= 7 N (= 13767 R2= 7 N2= 13367 K (2=42.13 (
R/S or XEQ ``SRK/T " R/S 24.06 , R/S 118.9 , R/S	K = 42, 13, 17 RL = - 7 R = 1, 18, 17 P = 20,832 - 1

The IOL to implant should have 20.832 diopters to avoid any "refractive surprises"...

Simplified Corneal Power

The module also includes another routine (LBL K'') to calculate the corneal power using a simplified expression, only involving the average cornea radius R and the combined refractive index na:

K = (na - n0)/R

You can use this method instead of LBL "K12" and plug the resulting K value into the first prompt:

Using the same example, with R = 7.94 mm

XEQ "K"	R = 7
7.94 , R/S	N = 13387
R/S	K = 42.506
XEQ " <mark>SRK/T</mark> "	K = 7
42.506 , R/S	RL = 24.067
R/S	R = 118.17
118.9 , R/S	P = 20.900 D

References:

https://eyewiki.aao.org/Biometry_for_Intra-Ocular_Lens_(IOL)_power_calculation

Program Listing.-

1	*LBL "K"	32	RCL 01	63	PROMPT
2	*LBL A	33	/	64	*LBL "SRK/T"
3	"R=?"	34	STO 00	65	*LBL C
4	PROMPT	35	2	66	0
5	1/X	36	"R2"	67	"K"
6	1.3375	37	XROM "?"	68	XROM "?"
7	"Na="	38	1.336	69	1
8	ARCL X	39	STO 04	70	"AL"
9	"`?"	40	4	71	XROM "?"
10	PROMPT	41	"N2"	72	118.1
11	E	42	XROM "?"	73	STO 02
12	-	43	RCL 03	74	2
13	*	44	-	75	"A"
14	E3	45	RCL 02	76	XROM "?"
15	*	46	/	77	RCL 00
16	"K="	47	RCL 00	78	.9
17	ARCL X	48	X<>Y	79	*
18	PROMPT	49	ST+ 00	80	-
19	GTO A	50	*	81	RCL 01
20	RTN	51	RCL 01	82	2.5
21	*LBL "K12"	52	RCL 02	83	*
22	E	53	-	84	-
23	_ "R1"	54	*	85	STO 03
24	XROM "?"	55	1.3375	86	"P="
25	1.376	56	/	87	ARCL X
26	STO 03	57	ST- 00	<u>88</u>	"`D"
27	3	58	E3	89	PROMPT
28	"N1"	59	ST* 00	90	GTO C
29	XROM "?"	60	RCL 00	91	89 END
30	1	61	"K12="		
31	-	62	ARCL X		

Relations between optimized IOL constants

A (SRK/T)	pACD	sf	a0	al	a 2
118.90	5.46	1.67	1.243	0.400	0.100
		A (SRK/T) pACD	A (SRK/1) pACD st	A (SRK/T) pACD st a0	A (SRK/T) pACD st a0 a1

http://ocusoft.de/scripts2/ciolc.php?ctyp=2&cnst=118.9&subm=Convert+IOL+constant

Haigis Formula

Wolfgang Haigis introduced some corrections to the basic IOL power equation. For starters he addressed the A-constant limitations by replacing it by a system of three constants . $\{a0. a1, a2\}$ and expressed the Effective Lens Position ELP as a function of them:

$$ELP = a0 + a1 . [ACD] + a2 . [AL]$$

Where [ACD] is the anterior chamber depth and [AL] is the axial length measured in the biometry.

Moreover, the constants are based on the statistical averages of axial length (23.39 mm) and anterior chamber depth (3.37 mm) across population samples, as an attempt to correlate the with experimental data, using the A-constant provider by the IOL manufacturer as starting point. This is shown below:

$$a0 = ACD-Constant - a1 . 3.37 a2 . 23.39$$

where the literature suggests the following fix values for a1 and a2:

a1 = 0.4; a2 = 0.1

and the following relationship links the ACD-Constant and the [A] constant provided by the IOL manufacturer (note that different sources give different values!):

ACD-Constant = 0.62467 . [A] - 68.747 ADC-Constant = 0.58357 . [A] - 63.896=

With these considerations the expression for the effective lens position results:

ELP = (0.62467.[A] - 68.747) + 0.4. [ACD] + 0.1. [AL]

Finally, the IOL power equation also considers the desired refraction Ref, added in a correction term to the corneal power value K, as shown below:

 $z = K + \text{Ref}/(1-Vx \cdot \text{Ref})$; with:

K = corneal power, andVx = vertex distance = 12 mm

With these two considerations the Haigis IOL equation has the expression below:

 $P = n \{1/(AL-ELP) - 1/(n/z - ELP]$

with n = 1.336 the refraction index of the cornea.

<u>Note</u>: the free literature is sketchy about these terms and even has contradictory values for the averages used in the determination of a0 and other coefficients. This may be due to different population samples or to source policy, not strange in special iced scientific fields like this one that try to protect the knowhow used in commercially available products.

01*LBL "HAIGIS"	25 ENTER^	49 1/X
02 0	26.1	50 RCL 05
03 <i>"K"</i>	27 *	51 *
04 XROM "?"	28 -	52 RCL 00
05 1	29 <i>"a0="</i>	53 +
06 <i>"AL"</i>	30 ARCL X	54 1/X
07 XROM "?"	31 PROMPT	55 1.336 E3
08 2	32 .4	56 *
09 "ACD"	33 RCL 02	57 RCL 04
10 XROM "?"	34 *	58 -
<u>11*LBL A</u>	35 +	59 1/X
12 3	36 .1	60 CHS
13 "A"	37 RCL 01	61 RCL 01
14 XROM "?"	38 *	62 RCL 04
15 .58357	39 +	63 -
16 *	40 STO 04	64 1/X
17 63.896	<u>41*LBL C</u>	65 +
18 -	42 5	66 1.336 E3
19 3.37	43 <i>"REF"</i>	67 *
20 ENTER^	44 XROM "?"	68 "P="
21.4	45 -12 E-3	69 ARCL X
22 *	46 *	70 PROMPT
23 -	47 1	71 GTO C
24 23.39	48 +	72 END

Register Map:

R00 - K R01 - AL R02 - ADC R03 - A R04 - ELP Ref - R05

Example. Using the same data as for the SRK/T section, calculate the IOL power if the ACD is 2.98 mm.

Solution:

Ref (D)	IOL Power (D)
0.5	P=19.5404
0	P=20.2756
-0.5	P=20.9986

Hill-RBF: 5th.-Generation IOL Formulas

Artificial Intelligence components applied to the calculation of IOL power.

See reference paper at: <u>https://www.haag-streit.com/fileadmin/Haag-</u> <u>Streit Diagnostics/biometry/EyeSuite IOL/Brochures Flyers/White Paper Hill-</u> <u>RBF Method 20160819 2 0.pdf</u>

See website for on-line calculator: https://rbfcalculator.com/online/index.html

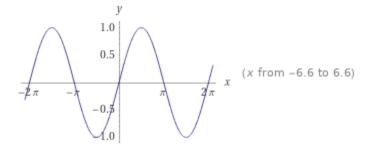
The example below shows the IOL Calculation results for the author's biometry:

Curve Length - Introduction.

Two programs are included in the module with the calculation of the arc length of a curve. Both are a brute-force approach based on the definition of arc length, which requires a numerical integration of the first derivative of the curve.

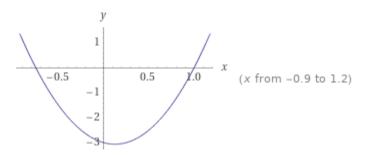
$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} \, dx$$

The difference between them is which routines have been used, as shown in the table below. Basically the first option is a self-contained implementation using FOCAL routines copied from the PPC ROM, whereas the second option needs the SandMath MCODE functions **DERV** and **FINTG**:


Program	Derivative	Integration	
CLEN	DERV	FINTG	
CRVLN	"PPC1D"	"ITG"	

Be aware that both methods are *very* slow, therefore a TURBO emulator (or the CL) are strongly recommended. Also the decimal places determine the accuracy and the execution time.

The routines expect the abscissas delimiting the arc of the curve in the X,Y registers, and the global label name of the function in ALPHA .


Example: Calculate the arc length between 0 and π rad of the function: y = sin(x)

Result: L = 3.820197800

Example: Obtain the arc length of $y = 4x^2-x-3$ between -0,75 and 1

Result: L = 6.517551583

The references below use more interesting approaches to the task:

https://forum.swissmicros.com/viewtopic.php?f=19&t=2302

http://hp41programs.yolasite.com/arclength.php

Program Listing.-

01*LBL "CRVLN"	21 CLA	
02 ASTO 00	22 ARCL 10	
03 "*CV"	23 END	
04 E1		
05 XROM "ITG"	01*LBL "CLEN"	; Needs SandMath
06 RTN	02 ASTO 05	
07*LBL "*CV"	03 "*CL"	
08 CLA	04 FINTG	
09 ARCL 00	05 RTN	
10 STO 08	06*LBL "*CL"	
11.1	07 CLA	
12 STO 02	08 ARCL 05	
13 8	09 .1	
14 STO 01	10 X<>Y	
15 CF 09	11 DERV	
16 XROM "PPC1D"	12 X^2	
17 X^2	13 E	
18 E	14 +	
19 +	15 SQRT	
20 SQRT	16 END	

Compact Cassette Design - Introduction.

This program was part of a project on synthesis of mechanisms undertook in Engineering school many moons ago. The objective was to design a novel mechanism capable to maintain a constant sliding speed of the tape on the reading/recording head, only driven by the winding motors and thus without any friction roller on the head itself.

The program uses the equations derived from the theory to calculate the angular velocity of the driving spindle at any given time, which obviously must vary with the instant radius of the tape mini-reels to ensure a constant linear velocity at the recording head.

Geometric Dimensions

Let Ro and Rmax be the minimum and maximum radius of the tape reel, corresponding to no tape or all tape spooled in the reel respectively.

Let e be the thickness of the tape, typically expressed in mm. and L the total length, usually expressed in meters.

The general expression for the reel radius at a given time "t" is:

$$r(t) = \sqrt{(Ro^2 + \frac{e.L}{\pi})}$$

Kinematics of the problem.

Let V the linear speed of the tape sliding on the recording head, usually given in cm/s.

Let T the total time capacity of one side of the tape, i.e. T=45 min for a C-90 cassette.

The first relation between these is obviously given by: L = V.T

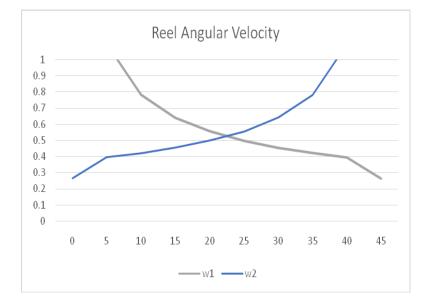
The formulas below give the angular velocity needed on each reel to have a constant tape linear speed V on the recording head:

$$\omega 1(t) = \frac{v}{r_1(t)} = \frac{v}{\sqrt{(Ro^2 + \frac{e.L}{\pi})}};$$
 for the driving spindle

$$\omega 2(t) = \frac{v}{r_2(t)} = \frac{v}{\sqrt{(Ro^2 + \frac{e}{\pi}(L - t. V))}};$$
 for the rolling spindle

Note that the program asks for the input values expressed in specific units, you need to convert them to them is your data is not in the same units. Likewise, the output results are given in pre-defined units as well.

Example.


What would be the outside cartridge dimension of a C-90 cassette tape with a thickness of 0.2 mm., if the spindle radius is 0.4 cm. Calculate the angular velocities of the drive and loose spindles at t=22,5 min if we want the linear tape speed on the recording head to be 2.38 cm/s

Solution.

We type:	to Obtain:
XEQ "C-TAPE"	RØ=7 (EM)
0.4, R/S	V=7 (EM/S)
2.38, R/S	e=₽ (MM)
0.2, R/S	E-T=7 (MIN)
45, R/S	L = 6 4.2 6 0 0 M
R/S	RMRX±0.0641 M
R/S	727 (5)
1350 , R/S	W (± 0.5242 Rod/5
R/S	$W = 2 S = 4 S = - R = 4 \times S$

Shouldn't surprise us that both angular velocities are equal because 45 min is the mid-point of the tape, where r1(t) = r2(t). Pressing R/S at this point takes the execution to a new time prompt, (LBL B), so you can prepare a table of angular velocities as a function of time with repeated executions.

t (min)	w1	w2
0	5.95	0.2629
5	1.0972	0.3938
10	0.7825	0.4209
15	0.6408	0.4544
20	0.5557	0.4975
25	0.4975	0.5557
30	0.4544	0.6408
35	0.4209	0.7825
40	0.3938	1.0972
45	0.2629	5.95

HP-41 Module

Register Map.-

R00 - Ro in cm R01 - V in cm/s R02 - e in mm R03 - T in min R04 - L = [60.T * V/100] in m R05 - Rmax = sqrt(Ro^2 + e.L/ π)

Program Listing.

			70 /////////	
01*LBL "C-TAPE"	37 RCL 04		73 "W1="	
02 RCL 00	38 *		74 ARCL X	
03 <i>"R0=? (CM)"</i>	39 PI		75 >" Rad/S"	
04 PROMPT	40 /		76 STO 07	
05 STO 00	41 +		77 PROMPT	
06 RCL 01	42 SQRT		78 RCL 04	; L
07 "V=? (CM/S)"	43 STO 05	; Rmax	79 RCL 06	; t
08 PROMPT	44 "RMAX="		80 RCL 01	; V
09 STO 01	45 ARCL X		81 E2	
10 RCL 02	46 <i>>"M</i> "		82 /	
11 "e=? (MM)"	47 PROMPT		83 *	; V.t
12 PROMPT	<u>48*LBL B</u>		84 -	; (L – V.t)
13 STO 02	49 <i>"T=? (S)"</i>		85 RCL 02	; e
14*LBL A	50 PROMPT		86 E3	
15 RCL 03	51 STO 06		87 /	
16 "C-T=? (MIN)"	52 RCL 01	; V	88 *	; e.(L-V.t)
17 PROMPT	53 E2		89 PI	
18 STO 03	54 /		90 /	
19 60	55 *	; V.t	91RCL 00	
20 *	56 RCL 02	; e	92 E2	
21 RCL 01	57 E3		93 /	
22 E2	58 /		94X^2	; Ro^2
23 /	59 *	; e.V.t	95 +	
24 *	60 PI		96 SQRT	
25 STO 04 ; L	61/		97 1/X	
26 "L="	62 RCL 00	; Ro	98 RCL 01	
27 ARCL X	63 E2		99 E2	
28 >" M"	64 /		102 /	
29 PROMPT	65 X^2	; Ro^2	103 *	
30 RCL 00	66 +		104 "W2="	
30 KCL 00 31 E2	67 SQRT		105 ARCL X	
32 /	68 1/X		106 >" Rad/S"	
32 / 33 X^2	69 RCL 01	; V	107 PROMPT	
33 X ² 34 RCL 02	70 E2	, -	108 GTO B	
34 RCL 02 35 E3	71/		109 END	
35 E3 36 /	72 *	; w1	100 110	
ן טכ	<i>, _</i>	,		

Display Contrast Demo.

This small divertimento showcases the contrast setting capability in the HalfNut models (and V41 emulator). It's supposed to ne a spooky sequence of "WOOO...." displays with varying contrast settings, from faintest to darkest – repeated cyclically. Just fun fun!

H0000000, , ,	H0000000	, , ,
USER RAD PRGM	USER RAD	PRGM

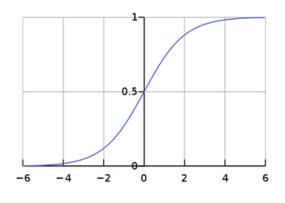
The demo has two components:

- A contrast-setting MCODE function that uses the value in X to set the darkness of the LCD font, ranging from 0 to 15. This function is taken from the HEPAX module where it first appeared.
- A short FOCAL routine that drives **CTRST** in a repeated loop exercising all ranges, first ascending with ISG control and then descending with DSE control.

Program Listing:

01 <u>LBL "WOOO"</u>			
02 ^{••} WOOOOOOOO, , , <i>"</i>	094	"T"	
03 AVIEW	013	"S"	
04 <u>LBL 02</u>	012	"R"	
	014	"T"	
05 ,015	003	"C"	Michael Katz
06 <u>LBL 00</u>	0F8	READ 3(X)	
07 INT	38D	?NC XQ	
08 CTRST	008	->02E3	[BCDBIN]
09 LAST X	0A6	A<>C S&X	
10 ISG X	130	LDI S&X	
11 GTO 00	010	CON: 16	
12 15	306	?A <c s&x<="" td=""><td></td></c>	
13 <u>LBL 01</u>	01F	JC +03	
14 INT	085	?NC GO	
- · - · · ·	0A2	->2821	
15 CTRST	270	RAM SLCT	
16 LAST X	3F0	PRPH SLCT	
17 DSE X	0A6	A<>C S&X	
18 GTO 01	168	WRIT 5(M)	
19 GTO 02	149	?NC GO	Select Chip0
20 END	026	->0952	[ENCPO0]

Other Auxiliary Functions.


A few auxiliary functions are also included in the module to support the FOCAL programs or to complete the sections taking advantage of available space in the ROM. These are listed in the table below:

Function	Description	Notes	Author
AINT	Appends integer to ALPHA	Uses value in X register	Fritz Ferwerda
SIGMD	Sigmoid Function	Uses input in X:	Ángel Martin
/+/	Inverses Sum	1/x + 1/y	Ángel Martin
3PMT	Three Prompts	Prompts for input	Ángel Martin
EASTER	Calculates Easter Date	Year in X:	Kari Pasanen

Routines Listing.-

OAF	"/"	Inverses Sum
02B	"+"	1/x + 1/y
02F	"/"	Ángel Martin
1A5	?NC XQ	Check for valid entries
100	->4069	[CHKST2]
22D	?NC XQ	
060	->188B	[1/X_10]
089	?NC XQ	1/x
064	->1922	<u>ISTSCR1</u>
0B8	READ 2(Y)	
22D	?NC XQ	
060	->188B	[1/X_10]
	?NC XQ	1/x
064	->1934	[RCSCR]
031	?NC XQ	1/x + 1/y
060	->180C	[AD2-13]
369	?NC GO	Overflow, DropST, FillXL & Exit
002	->00DA	[NFRXY]
084	"D"	
00D	"M"	Sigmoid Function
007	"G"	$sig = 1/(1 + e^{-x})$
009	"/"	
013	"S"	Ángel Martin
OF8	READ 3(X)	
361	?NC XQ	(includes SETDEC)
050	->14D8	[CHK_NO_S]
2BE	C=-C-1 MS	Sign change
044	CLRF 4	standard version (w/out "-1")
029	?NC XQ	e^-x
068	->1A0A	[EXP10]
001	?NC XQ	1+e^-x
060	->1800	[ADDONE]
239	?NC XQ	1/(1+e^-x)
060	->188E	<u>[ON/X13</u>
331	?NC GO	Overflow, DropST, FillXL & Exit
002	->00CC	[NFRX]

$$S(x) = rac{1}{1+e^{-x}} = rac{e^x}{e^x+1}.$$

Friedewald Formula to evaluate LDL Cholesterol

https://blog.healthmatters.io/2018/05/28/how-to-calculate-your-ldl-cholesterol/

LDL Cholesterol is often not measured directly, but calculated using an equation which uses the other components of the lipid profile: <u>Total Cholesterol</u>, <u>HDL Cholesterol</u> and <u>Triglycerides</u>. If the LDL is not calculated directly, we call this "**Friedewald derived LDL-cholesterol**".

If calculated using all concentrations in **mg/dL** then the equation is:

[LDL] = [Total Cholesterol] – [HDL] – [(Triglycerides/5)]

Take your total cholesterol level, subtract the HDL, and subtract the triglycerides (that have been divided by 5).

The Friedewald formula is known to be quite inaccurate at extremes of triglycerides and total cholesterol $[\underline{R}]$. The difference between measured and calculated LDL-C increases as the triglyceride level increases $[\underline{R}]$.

Program Listing.-

01*LBL "LDL-CHL"	15 RDN
02 "TOT-C? MG/DL"	16 AVIEW
03 PROMPT	17 PSE
04 "HDL-C? MG/DL"	18 GTO 02
05 PROMPT	<u>19*LBL 01</u>
06 -	20 RDN
<u>07*LBL 02</u>	21 5
08 "TRIGL? MG/DL"	22 /
09 PROMPT	23 -
10 400	24 "LDL-L="
11 X>Y?	25 AINT
12 GTO 01	26 AVIEW
13 "MUST BY <"	27 END
14 AINT	

HP 41C and DM41L: Basic EKG Calculations

Introduction

The program calculates the following:

- * Lead II magnification, in mm
- * The mean axis deviation
- * The mean axis magnitude

Given:

- * Lead I positive deflection, in mm
- * Lead III negative deflection, in mm

The mean axis deviation and magnitude are calculated by a rectangular conversion by the following coordinates:

X: Lead I positive deflection - Lead I negative deflection Y: Net Lead I deflection * 0.5774 + Net Lead III deflection * 1.1547 Mean axis deviation: θ - 57°

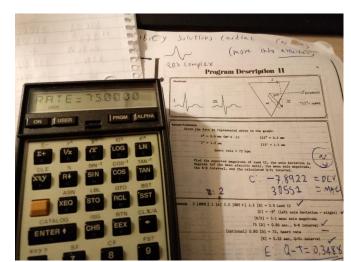
The program also:

* Converts between the heart rate (rpm) and the R-R interval * Use either parameter to calculate the Q-T interval, in seconds

heart rate = 60/R-RQ-T interval = $\sqrt{(R-R)*0.39}$

The program is a translation of HP 67/HP 97 Basic EKG Determination, which itself is a translation of Steven A. Conrad's HP-65 program (HP-65 Users' Library Program). See the source listed below.

Notes:


1. Clear the assignments of keys [A] (Σ +) through [E] (LN) before running the program. This must be done outside the programming environment. Clear assignments to keys by ASN (blank) (designated key).

Example: Clear assignment from [A]: [shift] (ASN) [ALPHA] [ALPHA] [Σ +]

2. Running EKG will turn the User Keyboard on.

3. The program will set the calculator to degrees mode.

4. This program was entered on an HP 41C, and it should work on any simulator and Swiss Micros DM41.

Instructions

Assuming USER mode is ON

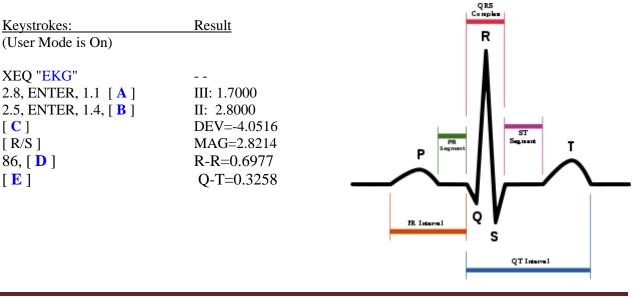
1. Run EKG.

2. Determine Lead I net deviation and store it to register 01: positive deviation Lead I, [ENTER], negative deviation Lead I, [A]

3. Determine Lead II net deviation, storing net Lead III net deviation to register 03 and Lead II net deviation to register 02: positive deviation Lead III, [ENTER], negative deviation Lead III, [**B**] Result: Lead II net deviation

4. Compute Mean Axis:
[C] deviation is displayed, [R/S] magnitude is displayed

5a. Convert heart rate to R-R: heart rate (bpm), [**D**]


-or-

5b. Convert R-R to heart rate: R-R, [D]

6. Compute Q-T. press [E]

Example

I+=2.8 mm, I-=1.1 mmIII+=2.5 mm, III-=1.4 mmHeart Rate = 86 bpm

Source:

"Basic EKG Determinations" HP-67/97 User's Library Solutions: Cardiac. Hewlett Packard. Corvallis, OR. (no date given, but I estimate this to be circa 1974)

HP 41C/DM41 Program: EKG

01 L	BL "EKG"	27	ENTER↑	53	X<=Y?
02 S	F 27	28	1.1547	54	GTO 05
03 G	GTO 00	29	*	55	"RATE="
	BL A	30	+	56	ARCL X
05 -		31	ENTER↑	57	AVIEW
	STO 01	32	RCL 01	58	RTN
	III: "	33	R-P	59	LBL 05
	ARCLX	34	Х<>Л	60	" $R-R=$ "
	VIEW	35	57	61	ARCL X
10 R		36	-	62	AVIEW
	BL B	37	"DEV="	63	RTN
12 -		38	ARCL X	64	LBL E
	STO 03	39	AVIEW	65	X>Y?
	RCL 01	40	STOP	66	X<>A
15 +		41	Х<>Л	67	SQRT
	STO 02	42	ABS	68	0.39
	`II: ″	43	"MAG="	69	*
	ARCL X	44	ARCL X	70	Q-T=''
-	VIEW	45	AVIEW	71	ARCL X
20 R		46	RTN	72	AVIEW
	BL C	47	LBL D	73	RTN
	RCL 01	48	ENTER↑	74	LBL 00
	INTER↑	49	ENTER↑	75	RTN
	.5774	50	60	76	END
25 *		51	Х<>Х		
-	RCL 03	52	/		
-					

Appendixes.

2418C PROGRAM DESCRIPTION I

Page 1 of 11

Program Title Audio tape counter / tin	ne conversions				
Contributor's Name David Hayden					
Address 2 Farnsworth Ave					
City Bordentown	State/Country	NJ	Zip Code 08505		

Program Description, Equations, Variables:

Tape Counters measure not how much tape has gone by the heads, but rather how many revolutions one reel has undergone. Because the amount of tape that wraps onto a reel depends on how much tape is already there, the tape counter does not directly reflect the length of tape (and hence time) that has elapsed. The actual relation between counter reading and elapsed time is:

$$t = \frac{2\pi r_0 \alpha}{v} c + \frac{T\pi \alpha^2}{v} c^2$$

Where:

t = elapsed time	r_0 = radius of tape hub
α = revolutions per counter reading	v = tape velocity (speed)
c = counter reading	T = tape thickness.

See the appendix for the derivation of this formula. *T*, *v*, r_0 , π , and α are all constants so the formula is simply $t = Ac + Bc^2$. The TAPINT procedure figures these constants from easily found experimental data. Once the constants are stored, the program is fully operational. You can skip passages (given counter reading at beginning of passage and length of passage to get counter reading at end of passage), figure elapsed time from counter reading, and vice versa, and get the elapsed time between two readings.

Necessary Accessories The program works better if you have a tape deck to use it with.... Aside from that, any HP-41 can use it.

Operating Limits and Warnings Be as accurate as possible when using the TAPINT program, your results will only be as good as your measurements. You will need to re-run TAPINT should any of the variables T, v, r_0 , or α change. Note that 60, 90, and 120 minute cassette tapes <u>all</u> have different thicknesses. Finally, the program assumes that counter reading 0000 corresponds to a fully rewound tape.

References This one's entirely my fault.

This program has been verified Only with respect to the numerical example given in *Program Description* II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

2418C PROGRAM DESCRIPTION II Page 2

Sample Problem: Determine constants for a 90 minute tape on a Nakamichi 480 and play with the program.

Put a 90 minute tape in the deck, rewind it, reset the counter, and start it playing. After exactly 20 minutes, the counter reads 406. After 45 minutes it reads 749.

- 1. A song begins at counter reading 214 and is 6m24s long. At what reading does it end?
- 2. Another song starts at counter reading 314 and ends at counter reading 510. How long is it?
- 3. A tape has been playing for 8m34s. What is the counter reading?
- 4. If the counter reads 522, for how long have you been listening to the tape?

INPUT	FUNCTION	DISPLAY	COMMENTS
Load TAPINT			
	XEQ "TAPINT"	TIME1?	Enter time in MM.SS format
20.00	RUN	COUNT1?	Enter corresponding counter reading.
406	RUN	TIME2?	Enter second time in MM.SS format
45.00	RUN	COUNT2?	Enter corresponding counter reading
749	RUN		Constants A and B are stored and the program is ready to run.
Load TAPE and			
set USER mode			
1.			
	XEQ A	COUNT=?	Enter initial counter reading
214	RUN	TIME (MM.SS)?	Enter time in MM.SS format.
6.24	RUN	COUNT=333.	The desired counter reading
2.	VEO D	COUNT10	
014	XEQ B	COUNT1?	Enter first counter reading
314	RUN	COUNT2?	Enter second counter reading
510	RUN	TIME=12.14	Time in MM.SS format
3			
	XEQ C	MM.SS?	Enter time
8.34	RUN	COUNT=200	Desired counter reading
4.			
	XEQ D	COUNT?	Enter counter reading
522	RUN	TIME=27.37	Desired time

This program has been verified Only with respect to the numerical example given in *Program Description* II. User accepts and uses this program material AT HIS OWN RISK, in reliance solely upon his own inspection of the program material and without reliance upon any representation or description concerning the program material.

NEITHER HP NOR THE CONTRIBUTOR MAKES ANY EXPRESS OR IMPLIED WARRANTY OF ANY KIND WITH REGARD TO THIS PROGRAM MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER HP NOR THE CONTRIBUTOR SHALL BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING OUT OF THE FURNISHING, USE OR PERFORMANCE OF THIS PROGRAM MATERIAL.

USER INSTRUCTIONS

TAPE Program

Page 3 of 11

SIZE: 011 (HP-41C)

				(HP-41C)
STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Ensure constants A and B are in proper registers. Run TAPINT if not.			
2	Enter program, set USER mode.			
3	To skip a passage:		(A)	COUNT=?
	Enter counter reading at beginning of passage	c	RUN	TIME(MM.SS)?
	Enter time of passage in correct format	MM.SS	RUN	COUNT=ccc
	To Calculate time between two readings:		(B)	COUNT1?
	Enter first reading	c1	RUN	COUNT2?
	Enter second reading	c2	RUN	TIME=MM.SS
	To calculate reading from elapsed time:		(C)	MM.SS?
	Enter elapsed time	MM.SS	RUN	COUNT=ccc
	To calculate elapsed time from counter reading		(D)	COUNT?
	Enter counter reading	с	RUN	TIME=MM.SS
4.	To repeat any conversion, go to step 3			

USER INSTRUCTIONS

Page 4 of 11

TAPINT Program

STEP	INSTRUCTIONS	INPUT	FUNCTION	DISPLAY
1	Enter program			
2	Put a tape of the desired type into/on the machine. Rewind it, reset the counter and then simultaneously start the tape playing and start a timer. A wrist watch with a sweep second hand will do, a stop watch is better.			
	After the tape is about half way done, note the counter reading and the <u>exact</u> time elapsed. You will probably want to write these values down. When the tape is almost done, take the <u>exact</u> time for another counter reading.			
3	Calculate the constants:		XEQ "TAPINT"	TIME1?
	Enter time in MM.SS format from the first reading – elapsed time pair.	t1	RUN	COUNT1?
	Enter counter reading for the above time	c1	RUN	TIME2?
	Enter second time reading (MM.SS)	t2	RUN	COUNT2?
	Enter corresponding counter reading	c2	RUN	
	The constants A and B are now stored in their proper registers.			

PROGRAM LISTING

Page 5 of 11

				1	age
STEP/ KEY LINE KEYENTRY (67/97	CODE 7 only) COMMENTS	STEP/ LINE KEY ENTRY	KEYCODE (67/97 only)	COMMENTS	
01 LBL "TAPE"		53 /	t/B	CONTRACTO	
*02 LBL A		54 RCL 09	A		
03 "COUNT=?"		55 RCL 10	В		
04 PROMPT		56 /	A/B		
05 XEQ 21	Count to seconds	57 2	A/D		
06 "TIME <mm.ss>?</mm.ss>		58 /	A/2B		
07 PROMPT		59 STO Z	A/ZD		
			(2	
08 HR	Convert MM.SS to	60 X^2	(A/2E		
09 60	decimal seconds	61 +	t/B +	- (A/2B) ²	
10 *		62 SQRT			
11 +		63 X<>Y			
12 XEQ 22	Seconds to count		RT(t/B <u>+ (A/</u>		
13 RTN		65 FIX 00	Displ	ay count	
		66 "COUNT="			
14 LBL B		67 ARCL X			
15 "COUNT1?"		68 FIX 02			
16 PROMPT		69 AVIEW			
17 XEQ 21	Count1 to seconds	70 RTN			
17 XEQ 21 18 "COUNT2?"	country to seconds	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
19 PROMPT		ר זם ד 71	ר ז	ave time	
		71 LBL 23	ומצות	ay time	
20 XEQ 21	Count2 to seconds	72 FIX 02			
21 -	Time1 - Time2	73 "TIME="			
22 ABS	<u>Make time positive</u>	74 ARCL X			
23 60	Convert seconds	75 AVIEW			
24 /	to MM.SS	76 END			
25 HMS					
26 GTO 23	Display time				
27 LBL C 28 "MM.SS?" 29 PROMPT					
30 HR	Convert MM.SS to				
30 HR 31 60	seconds				
32 *	SECONDS				
	Concerdents second				
33 XEQ 22 34 RTN	Seconds to count				
*35 LBL D					
36 "COUNT?"					
37 PROMPT					
38 XEQ 21	Count to seconds				
39 60	Seconds to MM.SS				
40 /					
41 HMS					
42 GTO 23	Display time				
*43 LBL 21	count to seconds				
44 RCL X	С				
45 RCL 10	В				
46 *	cB				
47 RCL 09	А				
48 +	A+cB				
49 *	$c(A+cB) = Ac+Bc^2$				
50 RTN					
51 LBL 22	seconds to count				
52 RCL 10	В				
JZ KCH TU	<u>ں</u>				

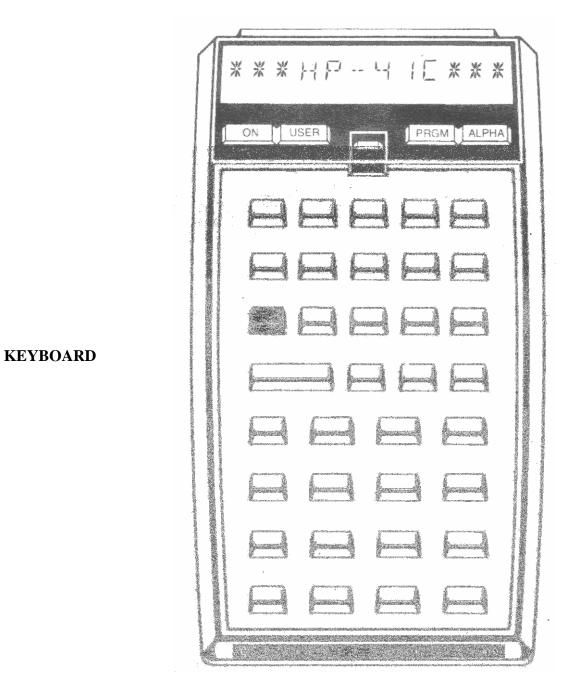
PROGRAM LISTING

STEP/		Y ENTRY	KEYCO	DDE nly) COMMENTS	
		"TAPIN"			
		1111 11. (E1?"	-	Input 2 pairs of	
	PRON			experimental data	
	HR	IF I			
	60			Convert to seconds	
06	*			Convert to seconds	
07		01			
		JNT1?"			
	PRON				
	STO				
		4E2?"			
12	PRON	IPT			
	HR				
14	60				
15	*				
16	STO	03			
17	" COI	JNT2?"			
18	PRON	IPT			
19	STO	04			
	RCL			Calculator	
	RCL	04		determinant	
	X^2				
25	*				
	RCL				
	RCL	02			
	X^2				
27	*				
28	- amo	0.0			
	STO				
	RCL				
	RCL	04		Calculate and	
-	X^2				
55	*	0.2		store A	
-	RCL				
35	RCL	02			
36 27	x^2 *				
37 38	_				
	- RCL	00			
	/	00			
40 41		09			
	RCL				
43	RCL				
44	*			Calculate and	
45	RCL	04		store B	
45	RCL				
40 47	ксц *	0 T			
48	_				
	RCL	00			
50	/				
51	, STO	10			
52	END				
	_			See the appendix for an	
				explanation of how this	
				works.	

Page 7 of 11

REGISTERS, STATUS, FLAGS, ASSIGNMENTS

Т	A	DF
ь.	н	F E


STATUS		
SIZE 011 TOT. REG. 037 USER MODE		
ENG FIX 2 SCI ON XX OFF		
DEG RAD GRAD		
FLAGS		
# S/C SET INDICATES CLEAR INDICATES		
ASSIGNMENTS		
FUNCTION KEY FUNCTION KEY		

TAPINT

	DATA REGISTERS	STATUS		
R00	Determinant	SIZE 011 TOT. REG. 037 USER MODE		
R01	Time 1	ENG FIX 2 SCI ON XX OFF		
R02	Count 1	DEG RAD GRAD		
R03	Time 2	FLAGS		
R04	Count 2	INIT # S/C SET INDICATES CLEAR		
R09	А	INDICATES		
R10	В	ASSIGNMENTS		
		FUNCTION KEY FUNCTION KEY		

APPENDIX

Page 8 of 11

SYSTEM CONFIGURATION

		TAPE		Track 1,2 c
Count, time \rightarrow count	Count, count \rightarrow time	Time \rightarrow count	Count \rightarrow time	

APPENDIX

Derivation of general formula

At any given time, the length of tape *s* that winds onto the take-up reel is given by the equation

$$ds = rd\theta$$

where *r* is the radius of the circle formed by the hub and the tape already on the hub, and θ is in radians. But at any time, the radius of this circle is given by

$$r = r_0 + \frac{\theta}{2\pi}T$$

where T is the thickness of the tape. This equation says that the radius is equal to the radius of the hub plus the thickness of the tape times the number of revolutions the hub has undergone. Substituting into the first equation we have

$$ds = \left(r_0 + \frac{\theta}{2\pi}T\right)d\theta$$

Integrating the left and right sides from 0 to s and 0 to θ respectively gives:

$$s = r_0\theta + \frac{T}{2\pi}\frac{\theta^2}{2}$$

We now have to make some substitutions to get this into the final form. The substitutions used are

$$s = vt$$
$$\theta = 2\pi n$$
$$n = \alpha c$$

Substituting these in one at a time and simplifying we get:

$$vt = r_0\theta + \frac{T}{2\pi}\frac{\theta^2}{2}$$

$$vt = r_0 2\pi n + \frac{T}{2\pi}\frac{(2\pi n)^2}{2}$$

$$vt = r_0 2\pi n + \frac{T}{4\pi}4\pi^2 n^2$$

$$vt = r_0 2\pi n + T\pi n^2$$

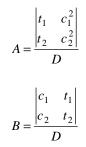
$$vt = r_0 2\pi\alpha c + T\pi a^2 c^2$$

$$t = \frac{2\pi r_0 \alpha}{v} c + \frac{T\pi \alpha^2}{v} c^2$$

Explanation of TAPINT

Given our equation $t = Ac + Bc^2$, we can solve for A and B if we know 2 time-counter reading pairs that satisfy the equation as follows:

We know that
$$t_1 = Ac_1 + Bc_1^2$$
$$t_2 = Ac_2 + Bc_2^2$$



Page 11 of 11

If we let $D = \begin{vmatrix} c_1 & c_1^2 \\ c_2 & c_2^2 \end{vmatrix}$ then by Cramer's rule:

and

2418C

TAPINT uses these formulas.

Epidemiologic Programs for Computers and Calculators

SIMPLE ALGORITHMS FOR THE REPRESENTATION OF DETERMINISTIC AND STOCHASTIC VERSIONS OF THE REED-FROST EPIDEMIC MODEL USING A PROGRAMMABLE CALCULATOR

EDUARDO L. F. FRANCO¹ AND A. RAY SIMONS²

Franco, E. L. F. (Ludwig Institute for Cancer Research, São Paulo, SP 01509, Brazil) and A. R. Simons. Simple algorithms for the representation of deterministic and stochastic versions of the Reed-Frost epidemic model using a programmable calculator. *Am J Epidemiol* 1986;123:905–915.

Two programs are described for the emulation of the dynamics of Reed-Frost progressive epidemics in a handheld programmable calculator (HP-41C series). The programs provide a complete record of cases, susceptibles, and immunes at each epidemic period using either the deterministic formulation or the trough analogue of the mechanical model for the stochastic version. Both programs can compute epidemics that include a constant rate of influx or outflux of susceptibles and single or double infectivity time periods.

epidemiologic methods; disease outbreaks; models, theoretical; probability

One of the most powerful models used to illustrate the dynamics of infectious disease epidemics was originally developed by Lowell J. Reed and Wade Hampton Frost at The Johns Hopkins University School of Hygiene and Public Health (1). This model was derived from the one originally proposed by Soper (2) and has been used extensively as a teaching and research tool in epidemiology (3). Although stringent in algebraic formulation, the Reed-Frost model is versatile enough to represent theoretical progressive epidemics in deterministic or stochastic versions.

The deterministic formulation provides

a method for stepwise calculation of the number of new cases of a disease at successive time intervals. Given initial conditions for the spread of the disease, e.g., number of susceptible individuals and index cases, and the probability of infective contact between any two individuals in the population, it is possible to calculate recursively the frequencies of new cases and susceptibles remaining during all subsequent time periods (1). The stochastic version illustrates the effects of the random variation that exists among epidemic trials performed sequentially and is intended to approach in fit the types of epidemic curves seen in natural settings (4).

Perhaps the most remarkable aspect of the Reed-Frost epidemic theory was the development of mechanical analogues for the stochastic formulation. Horiuchi and Sugiyama (5) proposed one such method which used a Monte Carlo approach based on shuffled "chips" to randomize their epidemic trials. However, the simplest and most didactic method was the one described

Received for publication June 24, 1985, and in final form September 20, 1985.

¹Ludwig Institute for Cancer Research, São Paulo Branch, Rua Prof. Antonio Prudente, 109, São Paulo, SP 01509, Brazil. (Reprint requests to Dr. Eduardo L. F. Franco.)

² Division of Laboratory Training and Consultation, Centers for Disease Control, Atlanta, GA.

The authors are indebted to Bernard Greenberg, School of Public Health, University of North Carolina, for his guidance.

by Elveback and Varma (6). In this method (credited by the authors to Reed and Frost) the epidemic process can be visualized and measured through the random alignment of colored balls into a narrow trough. Each color corresponds to the individual's status during each epidemic cycle, i.e., whether he was a case, a susceptible, or an immune. In addition to these types, the method employed balls of a fourth color to represent boundaries (blocks) of effective contact among individuals. The probability of effective contact between any two individuals was a function of the number of these blocks which could be varied as desired. Each epidemic period is drawn by pouring the previously randomized population of balls into the trough. All "susceptible" balls falling in segments between blocks containing at least one "case" ball will be considered to have had effective "infectious" contact and, for the next period, they will be replaced by an equal number of "case" balls. Likewise, "case" balls during each period become "immune" balls for the next one. losing their "infective" nature. After all replacements have been made, the process is repeated, i.e., randomizing, pouring, and counting, for each subsequent period.

This trough method has been the mechanical analogue of choice for empirical samplings of the stochastic Reed-Frost epidemic process. Nevertheless, despite being didactic in principle, the trough method may be time-consuming and error-prone when used for multiple samplings. Repeated trials are best accomplished using a computer through programs that generate random numbers to simulate binomial trials (6). Use of microcomputers enhances tremendously the usefulness of the model, enabling classroom or field demonstration. Therefore, we have developed simple algorithms for computation of deterministic and stochastic Reed-Frost epidemics which can be used with a handheld programmable calculator. In its stochastic version the actual trough method is emulated pictorially, allowing a better appraisal of contacts made during each epidemic period.

MATERIALS AND METHODS Equipment

Programs were written for an HP-41CV programmable calculator (Hewlett-Packard Co., Corvallis, OR). The minimal system configurations enabling execution of the two programs are 1) the basic HP-41C calculator equipped with two HP-82106A memory modules or one HP-82170A Quad memory module, or 2) an HP-41CV or an HP-41CX calculator. Use of the HP-82182A time module enables generation of automatic time-dependent random number seeds. Although this would have represented a desirable feature for the stochastic version, we resorted to a keyboard-entered, user-chosen seed to reset the generator. The programs contain several instructions to allow printing of the output. We used an HP-82143A printer (Hewlett-Packard Co.) to obtain a permanent record of the results, i.e., frequencies of cases, susceptibles, and immunes at each epidemic period and a pictorial representation of the aligned balls in the trough. However, use of a printer is not mandatory since all results, except the trough picture, will be displayed in the calculator also. Unattended program execution is possible only with the printer present in the system. Use of the HP-82104A card reader is optional.

Model formulations

The basic assumptions for the Reed-Frost model were adapted by Abbey (4) from Frost (7). (Frost's statements had been divulged in 1928 but were published only in 1976.) They were maintained in the present method with the minor nonrestrictive modifications of allowing two different infectivity times and influx or outflux of susceptibles into the population. The conventional notation for the deterministic and stochastic equations uses a common set of variables. S_t , C_t , and I_t are the numbers of susceptibles, cases, and immunes, respectively, in the population during epidemic time period t (the next period is represented as t + 1, and the preceding one as t - 1; p, or its complement, 1 - q,

represents the binomial probability that any two randomly selected individuals from the population will have effective contact during one time period.

Using such a notation, the deterministic formulation of the model can be summarized with three equations:

$$C_{t+1} = S_t (1 - q^{C_t}) \tag{1}$$

$$S_{t+1} = S_t - C_{t+1}$$
(2)

$$I_{t+1} = I_t + C_t \tag{3}$$

Enhancements were added to the above set of equations to enable simulation of situations where cases may be infective for an additional period before becoming immune and, as a consequence with the present algorithm, idle with respect to the dynamics of the epidemic. In addition, the present algorithms permit a constant influx or outflux of susceptibles into the population to simulate the effects of migration. With these enhancements the deterministic equations become:

$$C_{t+1} = S_t (1 - q^{C_t})$$
(1a) if infectivity time = 1
$$C_{t+1} = S_t (1 - q^{C_t + C_{t-1}})$$
(1b) if infectivity time = 2
$$S_{t+1} = S_t - C_{t+1} + S_f$$
(2a)
$$I_{t+1} = I_t + C_t$$

(3a) if infectivity time = 1

$$I_{t+1} = I_t + C_{t-1}$$
(3b) if infectivity time = 2

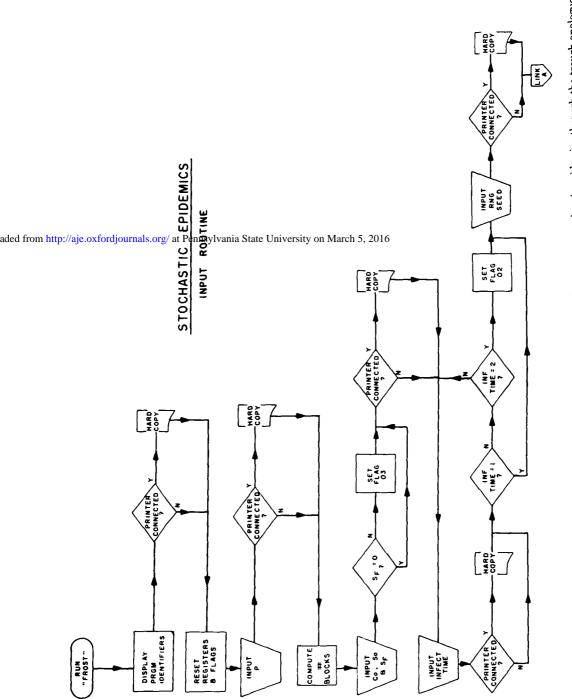
where S_f is the influx or outflux (when negative) of susceptibles in the population and newly computed C values are keyed into the other expressions only after being rounded to its nearest integer.

Using the same convention, the stochastic formulation (4, 8) is represented by the binomial probabilistic equation:

$$Prob(C_{t+1}) = [S_t!(1 - q^{C_t})^k (q^{C_t})^{S_t - k}] / [k!(S_t - k)!]$$

where $k = C_{t+1}$ and thus, $S_t - k = S_{t+1}$

Iterative computation of S_{t+1} and I_{t+1} with respect to C_t , C_{t+1} , and S_f is done as above for the deterministic formulation.


For the trough analogue the number of blocks b can be calculated (8) from a given infectivity value p as follows: p = (1 - q) = 2/(b + 2) and solving for b; b = (2/p) - 2.

Fine (8) pointed out that the basic deterministic formulation does not provide a suitable estimator for the expected number of cases to be obtained with the stochastic trough device. This is because the latter mechanism tends to underestimate the probability that a susceptible contacts at least one of many cases. Therefore, in order to control for this bias, a second formula for the deterministic version was utilized whenever average observed stochastic epidemics had to be compared with the expected results from the deterministic formulation. The new equation, as suggested by Fine (8), is obtained by replacing the term q^{C_t} in the above expressions 1 and 1a by:

 $b(b + 1)/[(b + C_t)(b + C_t + 1)]$ (4)

Description of the algorithms

The two programs, REED and FROST, although totally independent with respect to register usage, flag control, and execution, share the same basic structure. Both programs are divided into two major routines: input and data processing. Numerical values for input in both programs are p, C_0 , S_0 , S_t , and infectivity time. Discrimination by the programs of nonzero S_f values and different infectivity times is achieved through flag control. In the stochastic version the program has an additional prompt for a seed to be keyed into the pseudorandom number generator. Computation of C, S, and I is straightforward in the deterministic version, REED. Computation of Cvalues in each period through the stochastic version, FROST, is done as an emulation of the balls-and-trough method. Instead of color-coded balls the program collates the letters C, S, and I, and the symbol "*" (asterisk) to represent the trough alignment of cases, susceptibles, immunes, and

block balls, respectively. When the printer is connected to the system the trough sequence is represented in successive segments of 24 balls each. Each ball is drawn independently using a Monte Carlo approach through random sampling without replacement from four registers containing the frequencies b, b + C, b + C + S, and b+ C + S + I. Generation of random numbers is done with a previously described device (9):

$$r_{i+1} = \text{Int}[s_{i+1}(b + C + S + I)] + 1$$

where

$$s_i = \operatorname{Frac}(9,821 \times s_{i-1} + 0.211367).$$

The algorithms for the above routines in flow chart form are presented in figures 1 and 2.

RESULTS

Program operation

Complete listings of the programs are provided in the appendix. Magnetic card copies of the two programs can be furnished by either author (requests should be accompanied by five blank cards). The operating instructions for each program are given in table 1. Program REED occupies 300 bytes of memory, requiring a size configuration of 007 to be executed. Program FROST is longer, taking 482 bytes and a size of 015. Computation of deterministic epidemics (program REED) is fast, taking less than 10 seconds per epidemic period. This contrasts with the several minutes to a few hours which it may take to complete certain stochastic epidemics presenting nonzero S_f

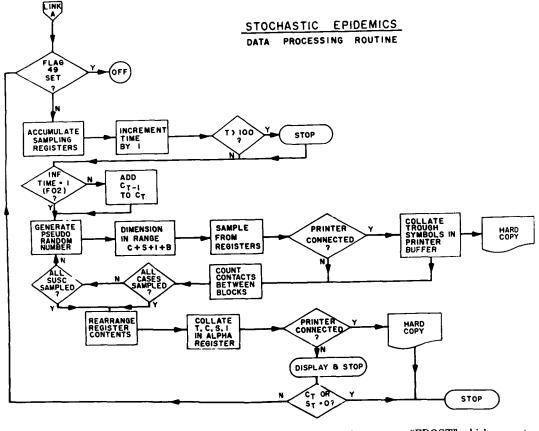


FIGURE 2. Flow diagram representing the data processing routine for program "FROST" which generates stochastic epidemics through the trough analogue of the mechanical model of the Reed-Frost epidemic formulation.

FRANCO AND SIMONS

	TABLE 1	
Operating instructions	for programs REED and	FROST in user mode

Program step	Procedure	Input*	Output
	REED		
1	Load and run program (deterministic)		Identifiers
2	Entry of epidemic startup values as		
	prompted in the display		
	Enter p	р	
	Enter C	С	
	Enter S	\boldsymbol{S}	
	Enter S_t	S_{t}	
	Enter infectivity time	ÍT	Sets flag 00 if $IT = 1$
3	Computation of frequencies at each period.		T, C, S, and I; I is fur
	If printer is not attached, program in-		nished only if $S_t = 0$
	terrupts at the end of each period		5 1
	(press R/S to resume)		
4	Execution terminates when $C = 0$. For a		End of epidemic
-	new set of data, key A and proceed with		
	step 2 above. To reset press B		
	FROST		
1	Load and run program (stochastic)		Identifiers
2	Entry of epidemic startup values as		
-	prompted in the display		
	Enter p	р	
	Enter C	Č	
	Enter S	s	
	Enter S_t	\tilde{S}_{f}	Sets flag 03 if $S_f \neq 0$
	Enter infectivity time	\tilde{IT}	Sets flag 02 if $IT = 2$
	Enter seed ($\leq 9,999$)	Seed	
3	Filling of the trough with balls according to	0000	(Trough)
ů.	random sampling. If printer is present,		(11048)
	trough segments are formed.		
	Computation of frequencies at each period.		T, C, S, and I; I is fur-
	If printer is not attached, program in-		nished only if $S_f = 0$
	terrupts at the end of each period		
	(press R/S to resume)		
4	Execution terminates when $C = 0$ or $S = 0$.		End of epidemic
•	Proceed as with step 4 above.		

* R/S must be pressed after values are keyed in.

values (a low battery condition will interrupt execution because flag 49 is tested at the beginning of every period). If the thermal paper printer is connected to the calculator, it must be turned on to avoid interruption of program execution.

Epidemic simulations

Figure 3 shows three examples of printouts resulting from the execution of the deterministic epidemic program, REED, with startup conditions of C = 1, S = 100, $S_f = 0$, and infectivity time of 1. Printouts represent results with the above set of conditions for each of three p values, 0.02, 0.03, and 0.04. Figure 4 shows a complete epidemic using one of the above set of conditions (p = 0.04) but performed with the stochastic model program, FROST. As discussed, the letters C, S, and I, and the asterisk represent case, susceptible, immune, and block balls, respectively. The

REED-FROST EPIDENICS	REED-FROST EPIDEMICS	REED-FROST EPIDEMICS
(Deterministic)	<deterministic></deterministic>	<deterministic></deterministic>
P? =0.020	P? =0.030	P? =0.040
C0? =1	C0? =1	C0? =1
S0? =100	S0? =100	S0? =100
S. INFLUX? =0	S. INFLUX? =0	S. INFLUX? =0
INF. TIME? =1	INF. TIME? =1	INF. TIME? =1
T=1 C=2 S=98 I=1 T=2 C=4 S=94 I=3 T=3 C=7 S=87 I=7 T=4 C=11 S=76 I=14 T=5 C=15 S=61 I=25 T=6 C=16 S=45 I=40 T=7 C=12 S=33 I=56 T=8 C=7 S=26 I=68 T=9 C=3 S=23 I=75 T=10 C=1 S=22 I=78 T=11 C=0 S=22 !=79 END OF EPIDEMIC	T=1 C=3 S=97 I=1 T=2 C=8 S=89 I=4 T=3 C=19 S=70 I=12 T=4 C=31 S=39 I=31 T=5 C=24 S=15 I=62 T=6 C=8 S=7 I=86 T=7 C=2 S=5 I=94 T=8 C=0 S=5 I=96 END OF EPIDEMIC	T=1 C=4 S=96 I=1 T=2 C=14 S=82 I=5 T=3 C=36 S=46 I=19 T=4 C=35 S=11 I=55 T=5 C=8 S=3 I=90 T=6 C=1 S=2 I=98 T=7 C=0 S=2 I=99 END OF EPIDEMIC

FIGURE 3. Three examples of printed output from program "REED" which is based on the deterministic formulation. The three epidemics displayed differed in the magnitude of the p values: 0.02, 0.03, and 0.04, respectively.

"<" and ">" symbols represent the left and right extremities of the trough, respectively. It is noteworthy that the printing of the trough is not necessarily completed at every period, e.g., T = 1 and T = 6 in figure 4. This is because the forwarding balance of each period is immediately calculated as soon as a block is aligned to the right of a segment containing the last drawn C or S ball.

Table 2 presents the numbers of cases produced at each epidemic period for 25 calculator-generated trough stochastic trials (listed in ascending order of duration). The combination of startup conditions chosen, p = 0.04, C = 1, S = 100, S_{f} = 0, and infectivity time of 1, was also used to generate two deterministic sequences. one by the general term formula (equation 1a), and the other with the alternative equation based on the number of blocks b(using expression 4 as replacement term). The observed mean stochastic epidemics did not differ significantly ($\chi^2 = 2.47, p =$ 0.4807) from the expected deterministic epidemics generated by the latter process. However, the observed mean frequencies of cases at all periods were significantly different from the expected set of values computed by the original general term (equation 1a) deterministic formula ($\chi^2 = 8.82$, p = 0.0318). This is in agreement with the study on the mechanical analogue done by Fine (8) who suggested the modified formula as a better estimator of the expected number of cases obtained with the trough model.

DISCUSSION

The low speed of execution of program FROST is certainly a drawback if the user intends to run repeated trials of stochastic epidemics. This problem is even more pronounced with very low "infectivity" p values, which implies that a very high number of blocks (b) must be computed for sampling. Likewise, larger population sizes at the onset of the epidemics contribute to increase execution time for the same reason, i.e., by increasing the number of passes

REED-FROST EPIDEMICS (STOCHASTIC>(TROUGH>	
P? =0.040	
C0? =1	
S9? =10 0	<c*ci***iiii**s*i****c*i< td=""></c*ci***iiii**s*i****c*i<>
S. INFLUX? =0	CCSIII*IIC*IIC***I*I*CC*
INF. TIME? =1	*CSIICCICCSS*IIII*II*CI*
SEED<=9999?=7460	IICII**IIISI**III**CCCII
	*SSSC*SCISIII*CC**IICIII
\$\$**\$\$*\$\$\$\$*\$	SS*CCC**S*CCIII*C******
\$\$\$\$\$\$	SSICSI>
T=1 C=15 S=85 I=1	T=4 C=14 S=3 I=84
*\$**\$\$*\$*\$C\$\$*\$\$\$ I*\$*[*	<*]] *] ***]] *]CIIC *] *]]]*
SCS+SCSCSSS+S+SSSSSSS+S+C	ICIII**I*II*I*IIICICIS*I
SSSS**S*SSSSSSSS**SSCSS*S	*I]***C*I**I*IIII*I****!
\$ *\$C*\$\$\$**C\$ \$\$\$ * \$\$ * \$*\$*	II**IIIII*CIIICI*IIIII*S
\$ *\$*\$\$\$\$**\$C\$\$*C\$\$\$\$ *\$\$\$	IIIIC**IC*IISI***IICCII*
SCCSSSSSC+SSSS++S+S+S+S	III*III**I*III*III*III
****\$C>	+CICII>
T=2 C=37 S=48 I=16	T=5 C=2 S=1 I=98
<\$*I#I#II\$***\$\$\$CI##C####	<[****]]*]]][**]]]]]**]]]]]]
*SCCI*SS*CS*SSI*IISISSS#	* <u> </u> **** * * *
CS*CS*CC*C*S*SSICC*+]*]**]]*** []]]]]]]]]]*]]**
SSC*CSCCC**SICIS*CS*S*SS	I****IIIC**IIIII*III*III
C*SSS*S***CCICICSSCSCCCS	III*IIIIIIIS*CII*
*C*C*SCSSSIS***SSCS*C*SS	
CCCSSC>	T=6 C=0 S=1 I=100
T=3 C=31 S=17 I=53	END OF EPIDEMIC

FIGURE 4. Example of printed output from program "FROST" which is based on the stochastic formulation. The output emulates the trough model as a mechanical analogue where each successive period is composed of one or more "window" segments on the ball-filled trough and the resulting statistics for the next period.

through the Monte Carlo sampling device at each epidemic period. Reduction in execution time is possible by direct implementation of the binomial probabilistic equation since this would provide direct calculation of frequencies of cases, susceptibles, and immune at a single randomization pass. However, such a shortcut method would not be nearly illustrative of the dynamics of the epidemics as the balls-and-trough method which has a dramatic didactic appeal. Adaptation of the same algorithm for execution as a microcomputer BASIC program is another solution for the slow exe-

cution time caused by the multiple iterations for the computation of the trough sequence.

Although these algorithms are presented here as independent programs, they can be easily adapted to be used as subroutines of larger main programs. Such larger programs could be designed to include additional features such as computation of descriptive statistics and other values. With the increasing availability of lower cost and powerful microcomputers and programmable, interface-ready calculators, algorithms containing iterative Monte Carlo devices

Seedt		Epidemic period								C'		Tanath
	2	3	4	5	6	7	8	9	- Size	Peak	Length	
1,416	0									0	0	0
8,963	0									0	0	0
1,489	0									0	0	0
9,873	0									0	0	0
951	0									0	0	0
2,568	1	0								1	1	1
6,537	9	31	45	10	0					95	45	4
4,168	12	33	37	16	0					98	37	4
236	4	10	31	36	13	0				94	36	5
1,435	5	9	28	37	16	0				95	37	5
1,587	10	31	37	15	3	0				96	37	5
1,569	7	23	34	28	4	0				96	34	5
125	2	18	50	23	4	0				97	50	5
7,460	15	37	31	14	2	0				99	37	5
4,128	6	33	39	21	1	0				100	39	5
5,681	2	8	22	36	22	5	0			95	36	6
2,581	3	11	30	41	11	1	0			97	41	6
215	3	3	16	47	24	5	0			98	47	6
5,629	13	23	34	15	11	2	0			98	34	6
1,254	3	12	32	33	15	4	0			99	33	6
1,235	7	20	31	23	10	3	1	0		95	31	7
547	2	3	12	34	29	11	4	0		95	34	7
5	4	26	41	22	3	1	1	1	0	98	41	7
8,573	3	9	22	24	23	8	1	1	0	91	24	8
256	2	6	9	34	24	14	3	1	0	93	34	8
Mean	4.5	17.3	30.6	26.8	11.3	3.2	1.0	0.4	0.0	96.3	37.2	5.8
Original‡	4	14	36	35	8	1	0			98	36	6
Modified [‡]	4	14	33	32	11	2	0			96	33	6

Numbers of cases generated in 25 trials* of the calculator-emulated trough model mechanical analogue of the Reed-Frost stochastic epidemic formulation. Comparison with two deterministic formulations

* Based on the following conditions at period zero: C = 1, S = 100, p = 0.04, $S_f = 0$, and infectivity time of 1.

† Used to recycle pseudo random number generator before each trial.

‡ Results with two deterministic formulations: original (as in program REED) and modified (using expression 4) equations.

will become more useful in epidemiology. The one presented here was implemented in a fully portable system and has the desirable trough emulation feature which characterizes the most didactic mechanical analogue of the stochastic Reed-Frost epidemic model.

References

- 1. Maia JOC. Some mathematical developments on the epidemic theory formulated by Reed and Frost. Hum Biol 1952;24:167-200.
- 2. Soper HE. Interpretation of periodicity in disease prevalence. J Roy Stat Soc 1927;92:34-73.

- 3. Sartwell PE. Memoir on the Reed-Frost epidemic theory. Am J Epidemiol 1976;103:138-40.
- Abbey H. An examination of the Reed-Frost theory of epidemics. Hum Biol 1952;24:201-33.
- Horiuchi K, Sugiyama H. On the importance of Monte Carlo approach in the research of epidemiology. Osaka City Med J 1957;4:59-62.
- Elveback L, Varma A. Simulation of mathematical models for public health problems. Public Health Rep 1965;80:1067-76.
- Frost WH. Some conceptions of epidemics in general. Am J Epidemiol 1976;103:141-51.
- Fine PEM. A commentary on the mechanical analogue to the Reed-Frost epidemic model. Am J Epidemiol 1977;106:87-100.
- 9. Heyman VK. Random number generators. 65 Notes 1977;8:1-6.

APPENDIX: PROGRAM LISTINGS

01+LBL "REE D" 02 "REED-FR OST" 03 "+ EPIDE MICS" 04 AVIEW 05 " <determ INISTIC>" 06 AVIEW 07 ADV 08+LBL A 09 1 E-1 10 STO 04 11 CLX 12 STO 05 13 STO 04 11 CLX 12 STO 05 13 STO 06 14 CF 00 15 FIX 3 16 1 17 TONE 9 18 "P? =" 19 PROMPT 20 - 21 STO 00 22 ARCL L 23 FS? 55 24 PRA 25 CF 25 26 FIX 0 27 TONE 9 28 "C0? =" 29 PROMPT 30 STO 02 31 ARCL X 32 FS? 55 33 PRA 34 TONE 9 35 "S0? ="</determ 	51 PROMPT 52 ARCL X 53 FS? 55 54 PRA 55 ADV 56 2 57 X=Y? 58 GTO 01 59 CLX 60 1 61 X \neq Y? 62 GTO 00 63 SF 00 64 $+$ LBL 01 65 ISG 04 66 GTO 02 67 TONE 9 68 STOP 69 $+$ LBL 02 70 RCL 00 71 RCL 00 71 RCL 02 72 FC? 00 73 XEQ 03 74 Y \uparrow X 75 1 76 - 77 CHS 78 RCL 03 79 * 80 RND 81 "T=" 84 ARCL X 85 RCL 04 83 "H C=" 84 ARCL X 85 RCL 06 86 RCL 02 87 FS? 00 88 ST+ 05 89 STO 06 90 RDN 91 FC2 00	101 GTO 04 102 "F I=" 103 ARCL 05 104+LBL 04 105 FC? 55 106 PROMPT 107 FS? 55 103 PRA 109 RCL 02 110 X=0? 111 GTO 05 112 GTO 01 113+LBL 03 114 RCL 06 115 + 116 RTN 117+LBL 05 118 TONE 9 119 "END OF EPIDEMIC" 120 AVIEW 121 ADV 122 RTN 123+LBL B 124 CF 00 125 SF 29 126 FIX 2 127 END LBL*REED END 300 BYTES

REED

REED-FROST EPIDEMIC MODEL

		121 FRC	181 FC? 02
01+LBL "FRO St"	61 "INF. TI ME? ="	121 FRC 122 STO 08	181 FC 02
02 "REED-FR	62 PROMPT	123 RCL 03	183 STO 14
OST"	63 ARCL X	124 *	184 RDN
03 "H EPIDE	64 FS? 55	125 INT	185 FS? 02
MICS"	65 PRA	126 1	186 ST+ 07
04 AVIEW	66 1	127 +	187 RDN
05 " <stocha< td=""><td>67 X=Y?</td><td>128+LBL 09</td><td>188 ST- 05</td></stocha<>	67 X=Y?	128+LBL 09	188 ST- 05
STIC>"	68 GTO 05	129 RCL IND	189 STO 06
06 "HKTROUG	69 CLX	11	190 RCL 12
H>"	70 2	130 X<>Y	191 ST+ 05
07 AVIEW	71 X≠Y?	131 X<=Y?	192 0 193 STO 09
08 ADV	72 GTO 04 73 SF 02	132 GTO IND 11	193 310 09
09+LBL A 10 1 E-1	73 SF 02 74+LBL 05	133 ISG 11	195 FS? 55
11 STO 13	75 TONE 9	134 GTO 09	196 PRBUF
12 CLX	76 "SEED<=9	135 ">"	197 ADV
13 STO 07	9997="	136 FS2 55	198 "T="
14 STO 09	77 PROMPT	137 ACA	199 ARCL 13
15 STO 10	78 ARCL X	138 GTO 13	200 "⊢ C="
16 STO 14	79 FS? 55	139+LBL 00	201 ARCL 06
17 CF 00	80 PRA	140 "*"	202 "H S="
18 CF 01	81 ADV	141 SF 01	203 ARCL 05
19 CF 02	82 1 E4	142 1	204 FS? 03
20 CF 03	83 /	143 GTO 10	205 GTO 14 206 "⊢ I="
21 FIX 3	84 STO 08	144+LBL 01	206 "⊢ I=" 207 ARCL 07
22 2	85+LBL 06	145 "S" 146 1	208+LBL 14
23 TONE 9	86 FS? 49 87 OFF	146 I 147 ST+ 10	209 AVIEW
24 "P? =" 25 prompt	87 UFF 88 "<"	148 GTO 10	210 FC? 55
26 ARCL X	89 FS? 55	149+LBL 02	211 STOP
27 FS? 55	90 ACA	150 °C"	212 CLD
28 PRA	91 RCL 07	151 SF 00	213 ADV
29 CF 29	92 RCL 06	152 1	214 RCL 06
30 FIX 0	93 RCL 05	153 GTO 10	215 X>0?
31 /	94 RCL 04	154+LBL 03	216 RCL 05
32 2	95 STO 00	155 "I"	217 X>0?
33 -	96 +	156 1	218 GTO 06 219 TONE 9
34 RND	97 STO 01	157+LBL 10	220 "END OF
35 STO 04	98 +	158 ST- IND 11	EPIDEMIC"
36 TONE 9 37 "C0? ="	99 STO 02 100 FC? 03	159 ISG 11	221 AVIEW
37 "C0? =" 38 prompt	100 FC 205	160 GTO 10	222 ADV
39 STO 06	102 STO 03	161 FS? 55	223 RTN
40 ARCL X	103 ISG 13	162 ACA	224+LBL B
41 FS? 55	104 GTO 08	163+LBL 11	225 CF 00
42 PRA	105 BEEP	164 FC?C 01	226 CF 01
43 TONE 9	106 STOP	165 GTO 07	227 CF 02
44 " SØ? ="	107•LBL 08	166+LBL 13	228 CF 03
45 PROMPT	108 FC? 02	167 FC?C 00	229 SF 29 230 FIX 3
46 STO 05	109 GTO 07	168 GTO 12	230 FIX 3 231 END
47 ARCL X	110 RCL 14	169 RCL 10 170 ST+ 09	231 END
48 FS? 55	111 ST+ 02 112 ST+ 03	170 ST+ 09 171+LBL 12	
49 PRA 50 TONE 9		172 0	
50 TONE 9 51 "S. INFL	113+LBL 07 114 .003	173 STO 10	LBL'FROST
UX? ="	115 STO 11	174 RCL 01	END
52 PROMPT	116 RCL 08	175 RCL 02	482 BYTES
53 STO 12	117 9821	176 X>Y?	
54 ARCL X	118 *	177 GTO 07	
55 X≠0?	119 .211327	178 RCL 09	SIZE = 015
56 SF Ø3	120 +	179 RCL 14	
57 FS? 55		180 PCL 06	
58 PRA			
59 TONE 9			
60♦LBL 04			

FROST