
EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 1 OF 43






Written & Programmed by Ángel Martin, Mark Fleming & Greg McClure

Revision 3-AB, March2020

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 2 OF 43

This compilation revision 1.3.1

Copyright © 2018-2020 Ángel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this

material. No commercial usage of any kind is allowed.

Front cover image taken from: https://www.dreamstime.com/royalty-free-stock-photography-

mathematics-background-image20849947

Thanks to Greg McClure and Mark Fleming for their contributions, suggestions for improvement and

revisions to the manuals.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

https://www.dreamstime.com/royalty-free-stock-photography-mathematics-background-image20849947
https://www.dreamstime.com/royalty-free-stock-photography-mathematics-background-image20849947
http://www.hp41.org/

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 3 OF 43





Table of Contents

1. Introduction
a. Module function Summary . 4
b. From SOLVE to Solver. 6
c. Scope, Intent and Dependencies . 6

2. Theory of Operation
a. Variable Declaration. 8
b. Program Editing vs. Running Modes . 9
c. Building the Solver Program. 10
d. Solving and Resolving. 11
e. Tricks & Treats . 13
f. A Look under the Hood. 16
g. Mini Equation Library & Examples . 18

3. Equation Libraries

a. New Record Pointer Functions. 23
b. A new twist to an old Solver . 26

c. Show me the Money . 27

d. Mark Fleming’s Equation Library . 28

Appendix. AOS Simulator . 40

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 4 OF 43

Equation Solver ROM – Function Summary

The table below lists all functions available in the module. All of them are programmable and directly

accessible by the user, as it’ll be explained in the sections that follow. The EVAL_EQNS section is an

update to the work previously done by Mark Fleming and Greg McClure, with a few new functions

added for convenience sake.

Name Description Input Author

00 -SOLVER 1AB Section header n/a n/a

01 A-PM7 ALPHA to Program (7 Chars) Test in ALPHA Ángel Martin

02 CLB7 Clear Buffer #7 none Ángel Martin

03 CLVARS Clear Variables Data in buffer Ángel Martin

04 DEDUP De-duplicate String String in ALPHA Ángel Martin

05 DOSELF _ Self-Programming Number of blocks Ángel Martin

06 DOSLF+ _ Self-Programming+ Number of blocks Ángel Martin

07 LCDV LCD Variables Data in Buffer Ángel Martin

08 LCDV+_ LCD Variables+ Data in Buffer Ángel Martin

09 LKAOFF Suspend Local Keys Key Assignments Ángel Martin

10 LKAON Resume Local Keys Kay Assignments Ángel Martin

11 MPREP Menu Preparation none Ángel Martin

12 MUTE _ _ Mute Variable ASCII char in prompt Ángel Martin

13 MVARS _ _ _ _ _ Declare Variables Prompts for letters Ángel Martin

14 MVRS+ _ _ _ _ _ _ Declare Variables+ Prompts for letters Ángel Martin

15 SHOW Show text in LCD Text in program line Doug Wilder

16 SOLVER Solve for Unknown Data in program Ángel Martin

17 SOLVR+ Solve for Unknown+ Data in program Ángel Martin

18 UNMUTE Undoes muted string ASCII char in prompts0 Ángel Martin

19 VMENU View Menu Vars in Buffer Ángel Martin

20 VMNU+ View Menu+ Vars in Buffer Ángel Martin

21 Z=T? Test for equal values Values in Z,T Ángel Martin

22 -EVAL$ EQNS Section header n/a n/a

23 ADVREC Advance Record N Pos. FileName in ALPHA, N in X Ángel Martin

24 ARCLCHR ARCL Character FileName in ALPHA Håkan Thörngren

25 READREC Read Record to ALPHA Data in Record Ángel Martin

26 REC- Move record one down Pointer position Ángel Martin

27 REC+ Move record one up Pointer position Ángel Martin

28 SEEK* Seek record by X FName in ALPHA, n in X Ángel Martin

29 “APP$” Append Equation To file “EQNS” Mark Fleming

30 “APPEQN” Append Equation To file in ALPHA Mark Fleming

31 “DELEQN” Delete Equation Removes four records Mark Fleming

32 “EQNLIB” Equation Library Main Driver Program Fleming - Martin

33 “INITEQN” Initialize Library Creates EQNS File Mark Fleming

34 “SAR” Search & Replace Prompts for values Mark Fleming

35 “#” Auxiliary function Data in program Ángel Martin

36 “SV$+” Solves for X Equation in ALPHA Martin-McClure

37 “a^b?” Prompts for guesses n/a Ángel Martin

38 LASTb Recall Last buffer reg# As saved by GET/LET Ángel Martin

39 “APP$” Custom Eq. Library Filename in ALPHA Mark Fleming

The following section in next page includes individual examples of equations:

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 5 OF 43

40 -EQ$LIB Section Header n/a n/a

41 3PMT _ _ _ Triple prompt Hex Values in prompt Ángel Martin

42 /+/ Sums of Inverses Values in prompt Ángel Martin

43 SIGMD Sigmoid Function Argument in X Ángel Martin

44 “3DM” 3D Vector Module “:X: :Y: :Z: :M: “ Ángel Martin

45 “CTRY” Catenary Curve “:A: :H: :L: :D:” Ángel Martin

46 “HTX” Heat Exchanger “ :1: :2: :I: :O: :Q: “ Ángel Martin

47 “KPL” Kepler Equation “:M: :E: :C:” Ángel Martin

48 “LMOV” Linear Movement “ :X: :V: :A: :T: “ Ángel Martin

49 “RdK” Redlich-Kwong EOS “:P: :V: :T: :A: :B:” Ángel Martin

50 “RGA$” Real Gas EOS “:P: :V: :Z: :N: :T: “ Ángel Martin

51 “TVM$” TVM equation Prompts for inputs Martin-McClure

52 “VdW” Van-der-Waals EOS “:P: :V: :T: :A: :B:” Ángel Martin

53 “Y=P1” Straight Line Eq. “:A: :B: :X: :Y:” Ángel Martin

54 “Y=P2” Quadratic Equation “:A: :B: :C: :X: :Y::” Ángel Martin

55 “Y=P3” Cubic Equation “:A: :B: :C: :X: :Y:” Ángel Martin

56 “Y=P4” Quartic Equation “:A: :B: :C: :D: :E:” Ángel Martin

This module also contains Mark Fleming’s Equation Library, with the following equations included:

00 LINEAR 24 OHMS LAW

01 Y=AX+B 25 E=IR

02 c*a+d-b 26 b*c-a

03 X Y A B 27 E I R

04 QUADRATIC 28 PARALLEL R

05 Y=AX^2+BX+C 29 1/R1=1/R2+1/R3

06 c*a^2+d*a+e-b 30 1/b+1/c-1/a

07 X Y A B C 31 R1 R2 R3

08 CUBIC 32 RLC FREQ.

09 Y=X^3+AX^2+BX+C 33 F0=1/SQRT(LC)

10 a^3+c*a^2+d*a+e-b 34 1/Q(b*c)-a

11 X Y A B C 35 F0 L C

12 4TH ORDER 36 GAS EQUATION

13 D+X(C+X(B+X(A+X))) 37 PV=NRT

14 e+a*(d+a*(c+a*(b+a))) 38 c*(16629/2000)*d-a*b

15 X? A B C D 39 P V N T

16 POSROOT 40 LIN. MOTION

17 X1=(-B+SQRT(B^2-4AC))/2A 41 X=VT+1/2*AT^2

18 (#b+Q(b^2-4*a*c))/2/a-d 42 c*b+1/2*d*b^2-a

19 A B C X1 43 X T V A

20 NEGROOT 44 NEWTONS LAW3

21 X2=(-B-SQRT(B^2-4AC))/2A 45 F=G*M1*M2/R^2

22 (#b-Q(b^2-4*a*c))/2/a-d 46 e*b*c/d^2-a

23 A B C X2 47 F M1 M2 R G

(*) Note that due to space constraints the “Interest” and “TVM” equations are not included in this

version. You can add those manually to the EQNS ASCII file using the information in section 3.d, page

#31.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 6 OF 43

Equation Solver ROM

Revision 3-AB - HP-41 Module

Introduction. From SOLVE to $OLVER.

Welcome to the Equation Solver ROM, the logical next step that extends the Formula Evaluation

Module and expands on its capabilities by providing a full-fledged Equation Solver.

Perhaps the last remaining open subject to address on the HP-41 platform, Equation Solvers have

become a standard fixture since the HP-42S days, which had the first soft-keys, SOLVE-based

implementation on HP calculators. Much has happened since, and successive generations have

refined the initial concept in different aspects as new functionality was being added to their operating

systems.(see: https://support.hp.com/us-en/document/c01822098)

As you can guess, the implementation on this ROM follows the same approach present on the HP-42,

relying on the local labels and the data entry flag. Chances are you’re already familiar with it so it

should be relatively simple to grasp -but this module adds an interesting twist by utilizing formula

expressions directly, using the functionality from the Formula Evaluation Module.

Even if it’s not strictly required to be proficient on the Formula Evaluation functionality, knowing your

way around that module will facilitate using the Equation Solvers. You’re therefore encouraged to

read the Formula Evaluation ROM manual for a deeper understanding on the underpinnings of this

module. You’ll need to write the main equation to solve following the conventions from the Formula

Evaluation manual, and for that you’ll need to follow the syntax and other operation rules explained

there in detail.

Scope, Intent and Dependencies

There are two sets of SOLVER functions in this module, the standard set that handles up to five

variables; and the extended set – allowing up to six variables in the equations. Regarding the SOLVE

capabilities, each of them may use a direct SV$+ algorithm based on the secant-method, or a more

sophisticated one based on FROOT, featuring a combination of Newton and Secant methods. The

former is sufficient in most cases for Science & Engineering equations, but both methods are at your

disposal to use them as you see fit. The latter requires that the “Solve & Integrate” ROM (“SIHP”

for the CL, with –SOLINTG 2D CAT’2 header) be plugged in the calculator as well. This ROM offers

the same solving functionality also found in the SandMath’s FROOT, which in turn is the same one

originally from the HP41 Advantage’s SOLVE.

Note that in both cases the equation is not programmed using the standard FOCAL language, but as

an ALPHA string that is later interpreted by the EVAL$ functions from the Formula Evaluation ROM.

This ALPHA string is the basis of the SOLVER operation, as it facilitates the selection of the

appropriate variable to solve for in a dynamic and automated way.

This module requires the Formula_Evaluation module, revision 2H.

As for other dependencies, this module is a Library#4-aware ROM that requires the library#4

(revision R47 or higher) to be plugged in. Also, the ROM is only compatible with the CX OS, as

internal routines from it are used.

https://support.hp.com/us-en/document/c01822098

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 7 OF 43

Theory of Operation.

As hinted at in the introduction section, the Equation Solver operation is based on a dynamic and

automated selection of the variable to solve for, as defined in a user program (FOCAL) that includes

the general equation inter-relating multiple variables. Regardless of how many variables make out the

general equation, five or six of them (depending on SOLVER set used) can be included in the SOLVER

operation.

The elements of the FOCAL program are as follows:

• The user first writes said general main equation as an alphabetical expression, using the

conventions defined by the Formula Evaluation functions. This expression may have a

combination of variables, parameters and constants linked by operations and syntax rules.

You can use the ^FRMLA function in the Formula Evaluation ROM to enter the expression,

or you may also do it directly typing the equation in ALPHA if you’re comfortable using special

characters (not part of the standard ALPHA keyboard but accessible using the AMC_OS/X

module)

• Next, the Solver Variables need to be declared – i.e. a subset of the variables and parameters

included in the alphabetical expression are defined as potential knowns/unknowns. This

definition becomes pivotal in the structure of the user program used to enter the known

values and to trigger the calculation of the unknown ones. It is made with the MVARS.

function, which must be located right after the general equation step – with no other

program lines in between.

• This is to be picked-up by the second part of the Solver, which is always executed in every

action – either to assign a value to a known variable, or to trigger the solving of the

unknown. As this requirement implies, each menu option needs to call the SOLVER.

function and act accordingly depending on the local label it is located under, and whether the

data entry user flag (UF 22) is set.

• The FOCAL program must have a local label associated to each variable declared. This local

label will be accessed by pressing the Top Keys in the calculator ({A-E} and also [F] in the

extended solver case). The action performed will depend on whether a value is entered

before pressing the soft-key (meaning the value is assigned to that variable) or if it’s directly

pressed (meaning the value will be calculated (solved for) using the main equation.

The functions provided in the module are used for the definition of variables, creation of the FOCAL

program and user operation of the solvers. They offer automation and convenient data input features

that make most of the underlying details, all transparent to the user.

Note.- To differentiate the two Solver sets, the names of the functions use the following convention:

Extended set function names end with the plus sign “+”, whereas Standard set functions don’t.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 8 OF 43

Declaration of Variables. { MVARS , MVRS+ }

The first step to define the SOLVER consists of telling the calculator which of the variables written in

the general equation will be used. This is accomplished by entering the variable names at the prompt

offered by the MVARS/MVRS+ functions, using only one letter per variable.

The available choices depend on the solver set, as follows:

- Any letter { A to Z } can be used in the declaration for the standard set – including numbers

0-9 using the SHIFTed keys.

- Only letters { A to F, and X, Y, Z, T, L} can be used in the declaration for the extended set –

but even if allowed, you should not use X, Y, T, L because these are used as scratch by the

solving routines. Refer to the block diagram in next page for an overview of the hierarchical

relationships amongst the sections involved in the complete process.

So right now, you see that the extended set restricts the variable names, even if it offers the

possibility to use one extra variable in the Solver. This is a compromise needed to maintain the code

size and buffer resources within reasonable specs, the overarching design criteria that always applies

in MCODE programming.

Here’s how the functions work:

• The user can enter fewer variables than the length of the prompt field – pressing R/S or the

radix key at any time will terminate the variable declaration step – and only theletters already

filled in will be used in the menu choices. Terminating them without any letter entered will

show the “NO MVARS” error message.

• The functions will automatically de-duplicate possible repeat entries, making only one menu

item per given letter.

• For the standard set the variables will be presented in the menu in the same order as they

are entered in the prompts. The user needs to bear this important fact in mind, as the

variable names in the general equation need to be mapped to the menu letters by position,

i.e. using the input order: variable ”a” for the first entered letter, variable “b” for the second,

etc.

• For the extended set they will be sorted alphabetically. This facilitates the mapping of their

letters to the variables by name irrespective of the local label they’re input from. Only

whenall six of them are to be used there’s a direct name-to-label correspondence: Letter [A]

maps to variable “a”, letter [B] maps to variable “b”, etc. In principle all 10 letter are

accepted but note the additional restriction on which variables are available to the solver later

on.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 9 OF 43

Program Editing vs. Running modes

Both MVARS and MVRS+ have very different behavior depending on when they’re used, either

during program editing or while running the program. During program editing they’ll display the

prompt fields as described above, for the user to declare the solver variables.

When the declaration completes (either filling all prompts or capping the entry using R/S or Radix),

the function will store the menu letters in the header of buffer #7, from where they will be picked up

by the other functions, and it will insert two lines in the current program: one for itself (to be

executed when the program runs), followed by a text line with the selected variable letters.

For example, MVARS plus “YZFC” will create the two program steps at the current location:

nn MVARS

nn+1 “YZFC”

A word on writing the General Equation.

As you should know by now the variables available to the ^FRMLA writing are the five stack

registers and the six buffer registers, i.e. {X, Y, Z, T, L} plus {a, b, c, d, e, F}. Not all of these can be

freely used in your general equation because the Solvers need the stack registers X, Y, T and L for

scratch during the evaluation of the functions. This leaves us with the six buffer registers plus register

Z available for the equation. This is further restricted to just the buffer registers in the 5-Vars case,

mapped by the position in the MVARS string.

You can use just as many as known/unknown variables in your equation, but you can also use the

others to hold parameters or other constants - this saves characters in the formula. Use the function

LET= to assign the parameter values as needed.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 10 OF 43

Building the Solver Program.

Both components of the Solver need to play their roles, therefore MVARS will now offer the user the

possibility to auto-create the rest of the FOCAL program needed for the Solver to work – by adding

automatically the needed local labels (as many as filled out fields in the prompt), the matching

SOLVER statements and auxiliary steps required to accommodate the menu letters declared.

Answering “N” will terminate this stage without adding the lines (the user will need to do it later

manually!), whilst answering “Y” will proceed inserting the additional lines required for the correct use

of the Solver.

The rule here is that each menu letter will need one local label, followed by the SOLVER function,

plus a STOP instruction to halt the execution and continue entering values. For instance, using the

same example with four menu letters declared it’ll insert the following 12 program steps:

nn+2 LBL A

nn+3 SOLVER

nn+4 STOP

nn+5 LBL B

nn+6 SOLVER

nn+7 STOP

nn+8 LBL C

nn+9 SOLVER

nn+10 STOP

nn+11 LBL D

nn+12 SOLVER

nn+13 STOP

Obviously MVRS+ will insert SOLVR+ instructions instead, as these two always need to be paired

up. The baton is passed to the appropriate counterpart!

Note that the local label letters are completely unrelated to the menu letter – except in the sequence

order entered at the prompts. Which also determines the mapping to the EVAL$ variables as follows:

Menu Letter “Y” -> EVAL$ var “a” ; LBL A

Menu Letter “Z” -> EVAL$ var “b” ; LBL B

Menu Letter “F” -> EVAL$ var “c” ; LBL C

Menu Letter “C” -> EVAL$ var “d” ; LBL D

This will be presented in the display as follows when the MVARS function is executed during the

running program:

This FOCAL “skeleton” may well be all you need to proceed, in which case all you need to do is add

an END statement (or GTO ..) to complete the FOCAL program – just make sure it has a global label,

and don’t forget to define the general equation before the MVARS step

You’re of course free to edit the FOCAL program further, adding any other instruction needed that

you see fit (say angular modes for trigonometry, etc.) – but you mustn’t alter the “skeleton” written

by MVARS. The function SOLVER in particular must always be right after the local label, as this

condition is expected and used to determine its actual location.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 11 OF 43

Solving and Resolving. { SOLVER , SOLVR+ }

Once we’ve come to this point it’s time to hand it out to the actual SOLVE engine. The first thing to

say is that the expression of the equation follows the f(x) = 0 form, where just f(x) is programmed as

the general equation.

The Solver allows for two approaches, the SV$+ way (using the secant method) and the FROOT

way (using a combination of Newton and secant methods depending on the cases. The former uses

the built-in routineSV$+ dedicated to this purpose. For the latter you need to plug in the “Solve &

Integrate” ROM that provides the FROOT function.

A few considerations on the secant method: - It is defined by the recurrence relation for the

successive iterations of the root:

As can be seen from the recurrence relation, the secant method requires two initial values, x0 and x1,

which should ideally be chosen to lie close to the root. The iterates xn, of the secant method

converge to a root of f(x), if the initial values x0 and x1 are sufficiently close to the root. Obviously,

this requires that x0 and x1 cannot be equal, and furthermore even if they are different it also

imposes an additional condition to avoid dividing by zero: f(x0) must be different from f(x1).

These limitations can tip the scale and render the method inadequate for some more finicky

equations – making the FROOT option better suited to the task. It employs a combination of the

Newton and secant methods, depending on the function’s behavior in the vicinity of the guesses

supplied by the user.

The method starts with a function f(x) defined over the real numbers x, the function's derivative f ′,

and an initial guess x0 for a root of the function f. If the function satisfies the assumptions made in

the derivation of the formula and the initial guess is close, then a better approximation x1 is:

 ;

The process is repeated until a sufficiently accurate value is reached.

The Solver program always prompts for two guesses (a and b). If no values are entered the program

will use the defaults as 0 and 1 – which surprisingly works just fine for many equations – even if the

execution time may be longer than if more targeted initial values are used.

Just press R/S to accept the default values [0, 1] – or enter them as you see needed.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 12 OF 43

Examples. Prepare a Solver FOCAL program to handle the general equation: “a + b + c + d = e”

Since there are only five variables involved, we’re free to use either one of the two Solver set

available. Let’s do it for both for the sake of complete documentation.

First using the standard set. We’ll label the menu items “J, K, L, M, and N”

In PRGM mode we insert a global label and the equation, followed by MVARS “JKLMN”– and we take

advantage of the Self-programming option answering “Y” to the choice. We’ll complete the task by

removing the last STOP step (we won’t use it this time) and typing GTO .. to add the END and pack

the program memory area.

Next using the extended set. Naturally labeling the menu items “A, B, C, D, and E”.

In PRGM mode we insert another global label, followed by MVRS+ “ABCDE” – and again we take

advantage of the Self-programming option. As before, we finish by typing GTO ….

See below the two programs created so far:

01 LBL “STD”

02 “a+b+c+d-e”

03 MVARS

04 “JKLMN”

05 LBL A

06 SOLVER

07 STOP

08 LBL B

09 SOLVER

10 STOP

11 LBL C

12 SOLVER

13 STOP

14 LBL D

15 SOLVER

16 STOP

17 LBL E

18 SOLVER

19 END

20 LBL “XTD”

21 “a+b+c+d-e”Same equation!

22 MVRS+

23 “ABCDE”

24 LBL A

25 SOLVR+

26 STOP

27 LBL B

28 SOLVR+

29 STOP

30 LBL C

31 SOLVR+

32 STOP

33 LBL D

34 SOLVR+

35 STOP

36 LBL E

37 SOLVR+

38 END

It’s all ready to go now: calling each of the programs will generate the following menu screens,

standard solver on the left and extended solver on the right respectively:

Using J=1, K=2, L=3, M=4 => N= 10 ; Using A=1, B=1, C=1, D=1 => E= 5

The sequences being: 1, XEQ[A], 2, XEQ [B], 3, XEQ [C], 4, XEQ [D], XEQ [E]

And: 1, XEQ [A], 1, XEQ [B], 1, XEQ [C], 1, XEQ [D], XEQ [E]

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 13 OF 43

Tricks and Treats.

As mentioned previously, you can choose the solving method employed by the programs, either the

secant method in SV$+ or the Newton/Secant combination in FROOT. This is controlled by the

status of User flag 00 when you pre ss the “Solve for the Unknown” soft key:

• If UF 00 is Clear => Secant Method by SV$+

• If UF 00 is Set => Newton/Secant combo by FROOT

Don’t forget to plug the “Solve & Integrate” ROM for the second case.

Apart from that important consideration, the following observations should be borne in mind:

1. Using the Data Entry flag is a convenient way to distinguish between the value assignment

and the call for solving the unknown, but it’s not perfect. The most important limitation is

that you need to enter actual numeric values for F22 to be set, not being enough with

recalling them from a data register using RCL nn. Another scenario that frequently trips folks

up is using PI, which doesn’t activate the flag either. Therefore make sure you set it

manually (SF 22) or force the condition with dummy operations like { 0, + }; or: { 1, * }

2. You can use the function GET= (in the Formula Evaluation) to recover the values currently

stored in the variables. Be aware that – consistent with the RCL situation - here too such

action won’t set the Data Entry Flag (!)

3. Note that as of revision 2-AB of the module, after the solution for the unknown has been

calculated it is automatically stored by the program in the variable mapped to the menu

letter. This is handy to verify the obtained results, plugging it as a known and back-

calculating some of the previously known variables.

4. The SOLVER functions will ignore pressing of local Labels if the corresponding letter hasn’t

been previously declared – even if you manually manage to add the local label yourself – or if

it’s a left-over placed there from previous executions or MVARS that used more variables.

5. The extended Solver (+) can use up to six variables, but their letters are limited to those of

the buffer registers. Furthermore, the variable mapping is done by their name within the

declaration string, irrespective of the location of the local labels. For instance, the string

“BCF” is using the buffer registers b, c and F behind the scenes. As a corollary, when all six

variables are used the sixth one will always be “F”, and even if not shown in the display it’ll

be mapped to the local label [F] (i.e. the X<>Y key).

6. Perhaps the strongest limitation of this design – the general equation must fit in the ALPHA

registers, i.e. it cannot exceed 24 characters. However, if your formula wants to go beyond

that boundary you can use a “chained” strings approach as an established workaround. This

consists of expressing the general equation as a combination of two, using functions f() and

g(), so that the evaluation can be done in two stages. The syntax rule is that the secondary

function g() must start with a dollar sign “$” – this tells SV$+ that a primary function f() is

also to be used, and therefore how to conform f(g()).

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 14 OF 43

Summary recap.

The table below shows the main attributes for both solvers in a comparative way:

Solver # Vars Named Eq. Mapping DEDUP? Self-Prog?

SOLVER 5 Any letter {a - f} By Position Yes Yes

SOLVR+ 6 {A – F} {a - f} By Name Yes Yes

The Solve technique choices and dependencies are shown below:

Solve Type Trigger Limits Chained Eqs Dependencies

SLV+ CF 00 a^b ; [0,1] default Yes LIB#4, Form_Eval

FROOT SF 00 a^b ; [0,1] default No Lib#4, Form_Eval, SIROM

The conceptual diagram below shows the dependencies for each case:

Library#4 (Housekeeping and Aux routines)

Formula Evaluation ROM (Equation definition & evaluation)

SOLVER SOLVR+
Solve & Integrate

ROM (FROOT)
SLV+
(CF 00)

SLV+
(CF 00)

(SF 00) (SF 00)

DEDUP

SELFP

DEDUP

SELFP

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 15 OF 43

Example. Write a FOCAL SOLVER routine for the Time Value of Money.

Equation: PV + (1 + ip) PMT/i [1- (1+i)^(-n)] + FV (1+i)^(-n) = 0
Modified: PV + FV. (1+i)^(-n) + PMT. (p+ 1/i) .[1- (1+i)^(-n)]]. = 0
Options: CF 02: End mode SF 02: Begin mode

We know that a full TVM equation is going to require more than 24 characters, therefore a chained

strings technique is necessary. We have split in two as follows:

Secondary Equation, g($) – it is executed first, leaving the result in the T register

Primary equation, f() – it’s executed last, leaving the result in the Z register. It uses “T” as one of the

variables, picking up the calculated result by g().

In fact, the formula needed a bit of changes to make it fit within the 48-char restriction – but the end

result is fully compliant and compatible with the solver design!

Here’s the program listing; note the chain sign (“$”) in the secondary equation in step 09. Also note

that the TVM variables “PIMNF” are listed in step11, and therefore mapped in that sequence to the

buffer registers {a,b,c,d,e}. Finally, user flag 02 controls the BEGIN/END modes and needs to be set

up manually by the user *before* executing TVM$.

01 LBL “TVM$”

02 E

03 FS? 02 ; begin mode?

04 CLX

05 LET= 06 ; buffer “F”

06 “a+e*T+c*(1-T) ” ; primary

07 “|-*(F+100/b)” ;con’t

08 STO$ 12 ; string stored

09 “$(1+b/100)^#d” ; secondary

10 MVARS

11 “PIMNF”

12 LBL A

13 SOLVER

14 STOP

15 LBL B

16 SOLVER

17 STOP

18 LBL C

19 SOLVER

20 STOP

21 LBL D

22 SOLVER

23 STOP

24 LBL E

25 SOLVER

26 END

Data Registers Usage.

In the standard (one-liner) form, the Solvers use data registers {R00 – R04} and {R04 – R07} to

store the general equation and the muted equation respectively. In this configuration the general

equation is expected to be in the ALPHA registers for SV$+.

In the Chained (two-liner) form, the Solvers also need data registers {R12 – R15} and {R08 – R11} to

store the secondary equation and its muted form respectively. Note that in a two-liner configuration

it is up to the FOCAL routine to store the secondary equation in registers {R12 – R15}, where it is

expected by SV$+. You can refer to the “RdK” and “HTX” examples for details.

It comes without saying that you should refrain from using these registers (depending on the case) in

the FOCAL routines prepared for the Solvers.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 16 OF 43

A look under the hood.

A few other functions are provided that may become handy to you, either to play around during the

learning phase or to take a peek on specific sub-sections of the Solver operation. When needed,

these functions are also named according to the naming convention for standard and extended sets -

like VMENU, vs. VMNU+, or LCDV vs. LCDV+

Here’s a short description of their capabilities.

• MPREP is a convenient shortcut to prepare for the use of the Solver – taking care of the

following housekeeping tasks: (1:) Clears UF 22, (2:) Clears UF 01, (3:) sets USER mode on,

and (4:) Disables the local key assignments (in the 2 top-rows) so they don’t interfere with

the local labels. You can insert it as a program step in your FOCAL Solver programs if you

want.

• LKAOFF and LKAON are used to disable or enable the key assignments on the local keys (2

top rows). Use them individually if you prefer this to the MPREP “bundled” way.

• VMENU and VMNU+ read the variable declarations from the buffer header and build the

menu choices in the display and ALPHA registers. This is automatically done during the

execution of functions MVARS and SOLVER - and their extended counterparts.

• LCDV and LCDV+ also read the variable declarations, then build a text string in the LCD

(but not ALPHA). This string is used internally by MVARS and MVRS+ to do the de-duplication

and alphabetical sorting of their names. Note that the standard solver LCD string is shown

with a dot behind each letter, to distinguished from an equal string from the extended set:

 vs.

• CLVARS is a short routine that lets you clear the variable declarations, resetting the buffer

header to the default zero values. Using any of the menu information functions above when

they have been cleared will show the “NO VARS” message.

• SHOW is a handy function written by Doug Wilder, initially available in the BLDROM and

repurposed here (and previously in the ALPHA ROM as well). It allows “reading” a text string

into the LCD without disturbing the ALPHA registers – which is very convenient if ALPHA has

information that cannot be overwritten. This is how the menu names string is read by

MVARS, whilst the general equation is still in the ALPHA registers.

• DEDUP is a global entry to the de-duplication routine. It’ll handle strings in ALPHA of up to

five characters in length, but not more. Larger strings will be truncated on entry.

• DOSELF and DOSLF+ are also global ROM entries, this time to the self-programming code

that is used by MVARS/MVRS+. In this form it is a prompting function, asking for the number

of “blocks” to insert in program memory – each block comprised by the local LABEL, SOLVER

(or SOLVR+) and STOP. Be careful not to enter a value larger than 10 or you’ll run out of

local labels to use!

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 17 OF 43

• MUTE and UNMUTE are global ROM access points to the muting and unmuting processes

performed by SOLVER. This consists of swapping the letter used for the unknown with an “X”

– so it is prepared for the EVAL$ instruction. In this generic form they are prompting

functions, expecting the ASCII decimal value of the character to mute (or restore) in the

prompt. For example, using 65 as input will turn the string on the left to the one on the right:

 =>

• A-PM7 is the secret weapon used to insert any text string from ALPHA into program

memory directly. A-PM7 breaks the text in ALPHA in “chunks” up to 7-chars long, thus

potentially will insert four text lines for 24 characters long text. This function is used internally

by MVARS and MVRS+ to enter the prompt values into the text line that follows itself in the

program.

Not to be confused with the A-PM function in the Formula_Evaluation module, which uses

the maximum length permitted in the text line, i.e. 15 characters – and therefore only two

lines at most will ever be required. You can use A-PM to enter any general equation as a

program text line once it has been created in ALPHA by ^FRMLA.

• T=Z? is an auxiliary function that checks whether the values in the Z and T stack registers

are equal. The result determines if the next line is skipped or not, pretty much like all

standard test functions such as X=Y?

• Finally, “#” is a scratch FOCAL routine used by FROOT in case that the Newton/Secant option

is selected (setting UF 01) during the Solver operation. You can ignore this one altogether,

it’s only there for housekeeping reasons – but if you’re curious below is the program listing

for your information:

01 LBL “#”

02 RCL$ 04 ; brings the muted equation to ALPHA

03 EVAL$; evaluates the equation into X

04 END

Note that neither SOLVER or SOLVR+ use the stand-alone routine SV$+included in the module,

but a dedicated version (embedded into the MCODE) reserved solely for this purpose.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 18 OF 43

Mini-Equation Library Examples.

The module comes equipped with a few examples of utilization of the Variable Solvers; use them to

become familiar with the approach before attempting to write your own equations.

Routine Equation LCD Display

3DM

3D Vector Module

M = SQRT(x^2 + y^2 + z^2)
4 variables, MVARS

CTRY

Catenary Curve

d =H [1 - (1/cosh(L/2a))]
4 Variables, MVARS

HTX

Heat Exchangers (Counterflow)
See equations in next pages

5 ½ Variables, MVARS, Chained.

KPL

Kepler Equation

E – ec. sin E = m

3 Variables, MVARS

LMOV

Linear Movement

x = v.t + a. t^2 /2
4 variables, MVARS

RGA$

Real Gas Equation
P.V = Z.N.R.T

5 Variables + 1 constant, MVARS

RdK

Redlich-Kwong EOS
P + a /[sqrt(T).Vm.(Vm+b)] =

RT/(Vm-b); 5 Vars + 1 const, MVARS

TVM$

Time Value of Money (uses UF 02)
See chained equations in page 13

5 ½ Variables, MVARS, Chained

VdW

Van-der-Waals EOS

P + (a/Vm^2) = R.T /(Vm-b)
5 Variables + 1 constant, MVARS

Y=P1

Straight Line Equation
y = A.x + B

4 Variables, MVARS

Y=P2

Quadratic Equation
y = A.x^2 + B. x + C

5 Variables, MVARS

Y=P3

Cubic Equation

Y = x^2 + B.x + C
5 Variables, MVARS

Y=P4

Quartic Equation
Y = x^4 + A.X^3 + B.x^2 + C.x +D

6 Variables, MVRS+

The Quartic Equation sits by itself, as it uses the Extended Solver (MVRS+ and SLVR+) to handle the

six variables involved. This means that, contrary to the others, the variables must be named using the

same letter as the buffer registers they’re mapped to. In this case the classic equation

y= x^4 + A.x^3 + B.x^2 + C.x + D becomes: F = E^4 + A.E^3 + B.E^2 + C.E + D

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 19 OF 43

Of all these only the Van-der-Waals EOS, the Redlich-Kwong EOS and the Polynomial Equations

require using initial intervals different from the default one [0, 1]. This is obviously due to the

different roots that may exist, which also applies to the VdW and RdK cases- as it’s nothing more

than Cubic Equations “in disguise”.

For the most part the internal Solver is capable of finding the solutions – but you may want to plug

the “Solve & Integrate ROM” to use FROOT, a much more capable implementation. Remember to

use flag 00 to select your choice of solvers: Clear for the internal case, Set for FROOT.

Numerical Examples.

1. Quadratic & Cubic Equations.- y = A.x^2 + B. x + C
Given a = 1, b = -4, c = -1, y =0, and default [a,b] = (0, 1)

Solves: x =  for quadratic, x=  for cubic.

2. 3D Vector Module. - M = SQRT(x^2 + y^2 + z^2)

Given |v| = 5, x = 2, y = 4and default [a,b] = (0, 1)

Solves: z = 

3. Catenary Equation - d =H [1 - (1/Cosh(L/2a))]

Given H = 42 m, L = 100 m, a = 43.5 m and default [a,b] = (0, 1)

Solves: d =  m

4. Kepler Equation. - E – ec. sin E = m

Given ec = 0.2, and m = 0.8 and default [a,b] = (0, 1)

Solves: E = 

5. Linear Movement - x = v.t + a.t^2/ 2

Given x= 1 m, V= 3 m/s, a = 2 m/s^2 and default [a,b] = (0, 1)

Solves: t  s

6. Real Gas Equation. - P.V = Z.N.R.T

Given P= 5 kPa, V= 10 l, T = 25 oC, Z =0.161074 and default [a,b] = (0, 1)

Solves: n =  mol (Warning: always use SI units)

7. Redlich-Kwong EOS:- P + a /[Sqrt(T).Vm.(Vm+b)] = RT/(Vm-b)

Given a = 14.66 ; b = 0.1226 ; P= 5 kPa, T = 25oC, and [a,b] = (0.1, 1.0)

Solves: Vm =  m^3/mol

8. Van-der-Waals Equation- P + (a/Vm^2) = R.T /(Vm-b)

Given a = 14.66 ; b = 0.1226 ; P= 5 kPa, T = 25oC, and [a,b] = (0.1, 1.0)

Solves: Vm =  m^3/mol

Note: it is easier with FROOT in the S&I ROM – can use wider intervals for guesses.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 20 OF 43

9. Time-Value of Money.- [PV + FV. (1+i)^-n + PMT.[1- (1+i)^-n]]. (p+ 1/i) = 0

Given “End mode” (CF 02), FV = 0, PMT = $650, n = 360 months, and I = 14.25%

(yearly) Solves: PV = 

10. Heat Exchangers (Counter flow).(Note: Use k2 = -k2 for Parallel flow)

This one includes a prompt for the product A.U, taken here as a constant of the exchanger. If

this also needs to be a design variable then the 6-Variables SLVR+ should be used instead,

Equation used: Q = k1.{[T1(i)-T2(o)] / (1– k12)}.{exp [–U.A.(1–k12) / k1] – 1 }

with k12 = k1/k2, k1 = m1’.Cp1, and k2 = m2’.Cp2

Given UA = 115.8185 kcal/oC.h ; k1 = 5 kcal/ oC.min ; k2 = 7.7368 kcal/oC.min ;

T1(i) = 20 oC; and T2(i)= 90 oC. Solves: Q =  kcal/min

11. Quartic Equation. - F = E^4 + A.E^3 + B.E^2 + C.E + D
Given a=2; b=-7; c= -8; d= 12; F=0 and default [a,b] = (0, 1)

Solves: E =  Can you find the other roots? Try changing the a^b initial

guesses…

Program Remarks.

Looking at the code you can see that all the examples above using MVARS are placed together in

the same FOCAL program, with the individual global labels and equations sharing the same local

labels’ section. This is a very convenient arrangement that saves a lot of room, and it’s possible

because of the design of the MVARS and SOLVER functions.

For the main program below, note the chain sign in the “HTX”, “TVM$” and “RdK” routines,

signaling to the SV$+ solver routine that it is a two-liner implementation. Also note the common use

of the soft-key labels for all routines, possible because MVARS halts the program execution at the

program pointer. Note as well that the FROOT method only supports the one-liner case, and

therefore cannot be used with chained equations (TVM$ and RdK). This is also handled by the

SOLVER functions, which automatically clears UF 00 when the chain sign is found in the secondary

equation.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 21 OF 43

Program Listing

01 *LBL "LMOV"
 02"c*b+(d*b^2)/2-a"
 03MVARS
 04 "XTVA"
05 *LBL "HTX"
 06 "AU=?"
07 PROMPT
 08 LET=
 09 6
 10 "e-T*(E(F*(a-b)/"
11 "|- a/b)-1)"
 12 STO$
 13 12
 14 "$a*b*(c-d)/(b-a"
 15 "|-)"
 16MVARS
 17 "12IOQ"
18 *LBL "TVM$"
19E
20 FS? 02 ; begin mode?
21 CLX
22 LET= ; load constant
23 6 ; in buffer “F”
24"a+e*T+c*(1-T)"
25"|-*(F+100/b)"
26 STO$; load primary
27 12 ; in {R12-R15}
28"$(1+b/100)^#d" ;secondary eq
29MVARS
30"PIMNF"
31*LBL "KPL"
32 RAD ; angular mod
33 "b-c*S(b)-a"
34MVARS ; show menu
35"MEC" ; menu choices
36*LBL "Y=P1"
37"a*c+b-d"
38MVARS ; show menu
39"ABXY" ; menuchoices
40 *LBL "Y=P2"
41"a*d^2+b*d+c-e"
42 GTO 01
43 *LBL "Y=P3"
44"d^3+a*d^2+b*d+c"
45"|- -e"
46 *LBL 01
47MVARS ; show menu
48"ABCXY" ; menu choices

49 *LBL "3DM"
50"Q(a^2+b^2+c^2)-"
51"|- d"
52MVARS ; show menu
53"XYZM" ; menu choices
54 *LBL "CTRY"
55"b*(1-(1/HC(c/2/"
56"|- a)))-d"
57MVARS ; show menu
58"AHLD" ; menu choices
59 *LBL "RGA$"
60 XEQ 00 ; load constant
61"a*b-c*d*e*F"
62MVARS
63 "PVTZN"
64 *LBL "RdK"
65"a+T-F*c/(b-e)"
66 STO$; load primary
67 12 ; in {R12-R15}
68"$d/Q(c)/b/(b-e)" ;secondary eq
69 GTO 01
70 *LBL "VdW"
71 "a+d/b^2-F*c/(b-"
72 "|- e)"
73 *LBL 01
74 XEQ 00 ; load constant
75 MVARS
76 "PVTAB"
77 *LBL A
78 SOLVER ; solvevar A
79 STOP
80 *LBL B
81 SOLVER ; solve var B
82 STOP
83 *LBL C
84 SOLVER ; solve var C
85 STOP
86*LBL D
87 SOLVER ; solvevar D
88 STOP
89 *LBL E
90 SOLVER ; solvevar E
91STOP
92 *LBL 00
93 8.314459848
94LET=
95 6
96 END

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 22 OF 43

Ending with the Quartic equation, there’s nothing special to remark in this case except that we’re
using MVRS+ and SLVR+ to handle 6 variables in the solver – and therefore there are six local
labels instead of five.

01 *LBL "Y=P4"
02 "e*(c+e*(b+e*(a+"
03 "`e)))+d-F"
 04 MVRS+ ; show menu
 05 "ABCDEF" ; menu choices
06 *LBL A
07 SOLVR+ ; solve var A
08 STOP
09 *LBL B
 10 SOLVR+ ; solve var B
 11 STOP
12 *LBL C

 13 SOLVR+ ; solve var C
 14 STOP
15 *LBL D
 16 SOLVR+ ; solve var D
17 STOP
18 *LBL E
 19 SOLVR+ ; solvevar E
20 STOP
21 *LBL F
 22 SOLVR+ ; solve var F

 23 END

Other examples not included in the ROM.

Parallel Resistors: 1/R = 1/R1 + 1/R2 + 1/R3

01 *LBL “RPAR”
02 “1/(1/b+1/c+1/d)”
03 >”-a”
04 MVARS
05 “S123”
06 *LBL A
07 SOLVER
08 STOP
09 *LBL B

10 SOLVER
11 STOP
12 *LBL C
13 SOLVER
14 STOP
15 *LBL D
16 SOLVER
17 STOP
18 END

Note that all resistances must be non-zero, and that the equation variables declaration must be explicit!

Example: R1 = R2 = R3 = 1 => R = 

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 23 OF 43

Equation Libraries Revisited.

In this chapter you’ll find an update to the works done by Greg McClure and Mark Fleming on related

subjects, like the AOS Simulator and the Equation Library respectively. See the excellent manual

available at: http://www.hpmuseum.org/forum/thread-8795.html)

New Record and Pointer Functions.

A few new record pointer functions are included to complement the original set from the Extended

Functions module. The intent was to facilitate the operation of the Equation Library FOCAL programs,

saving some steps here and there and providing more flexibility in their use.

The functions are shown on the table below:-

Function Description Input Output

ADVREC Advance Pointer in Record Number of positions in X Pointer is moved

ARCLCHR ARCL Characters Number of Chars in X Chars added to ALPHA

READREC Read Nth. Record N in X String in ALPHA

REC- Move pointer one position down none Pointer moved

REC+ Move pointer one position up None Pointer moved

SEEK* Seek pointer (Customized) Pointer position in X Pointer Set to new pos.

The pointer functions mostly deal with updating the file header location where the pointer position is

saved. They verify that the chosen position is within the boundaries of the ASCII file and adjust it

accordingly. See the File Header diagram below for details:

T A D R - C H R R E C S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

An interesting challenge arises because the records are of variable length, so there isn’t a constant

number of characters per record. This is handled by reading the record-length nybble, located at the

beginning of each record.

For comparison purposes the standard approach used by the original X-Functions always requires

recalling the pointer first using RCLPT(A), adding or subtracting the number of positions using the

stack, and resetting the pointer using SEEKPT(A). This alters the stack registers and requires

multiple steps per action – as opposed to using new pointer functions, with a more straightforward

method. for example, REC+ is functionally equivalent to (but has none of the shortcomings of):

RCLPT(A), INT, 1, +, SEEKPT(A)

See page #35 for the program listing of Mark’s EQNLIB program using the new pointer functions

and taking advantage of the modified LET= behavior that saves a substantial number of FOCAL

program steps. -

http://www.hpmuseum.org/forum/thread-8795.html

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 24 OF 43

MCODE Listings.

See below the MCODE for those of you curious and with an inclination to look under the hood. As you

can see the REC+/REC- routines are fairly short, mostly leveraging the OS routine [CURFLT] to do the

heavy lifting.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 25 OF 43

And here’s the listing for the more general ADVREC:

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 26 OF 43

 A new twist to an Old Solver. {SVEQ$ }

Once upon a time there was a FOCAL program used as a driver to select equations, their known

variables and to solve for the unknowns. Said driver program was based on the SOLVE function

within the HP-41 Advantage and used the standard FOCAL approach to program each of the equation

subroutines.

The new twist consists of replacing the FOCAL programming with formula strings evaluated by

EVAL$ instead – straight forward once you get comfortable with the Formula Evaluation

functionality!

The program listing is shown below, note the use of user flag F6 (as a proxy for the data entry flag

status in the Driver program) to signal whether calculation or menu displaying should be performed

by the equation subroutines. Note as well that the selection of the unknown variable is made by

storing the register index in R00 – so the equation variable will be retrieved with a RCL IND 00

statement, where the valid range is 1 to 5 (for R00 to R05).

Finally, the program assumes that at the menu has least three variables (no point in using a solver for

trivial cases, or is it?) and checks that the menu string length is long enough when the fourth and

fifth variable are called upon (pressing LBL D or LBL E respectively).

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 27 OF 43

Show me the Money. { TVM$ }

The Time Value of Money equation poses some challenges to the Equation Library Solver in a couple

of accounts: the number of variables involved exceeds the standard capability, and the length of the

formulas goes beyond the 24-characters boundary of the ALPHA registers.

Greg wrote the TVM$ subroutine below to overcome these limitations, a mini-Solver dedicated to this

particular subject that relies on a chained EVAL$ calculation. This routine is accessed by the main

driver program SLVEQ$– which prompts for the equation name and handles the value entering for

the known variables as well as the trigger to solve for the unknown.

By the way SLVEQ$ also uses the FROOT function from the “Solve & Integrate” Module to obtain

the root – so make sure it is plugged in the calculator when you work on this subject.

The program listing for the TVM$ routine is shown below.

Numerical Example:

Calculate the future payment of an initial capital of $5,000 with a 3% annual interest with yearly

deposits of $500during 5 years. Use Begin and End modes to compare results.

Solutions: BEGIN: $-8,450.938

 END: $-8,530.575

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 28 OF 43

An Equation Library Using the Formula Evaluation ROM (M. Fleming)

The Formula Evaluation ROM gives the HP-41CX/CL owner the ability to evaluate algebraic

expressions stored as text strings in the Alpha register or in extended memory text files. The ROM

functionality is quite extensive, as shown by the examples in the manual. The examples included the

use of a solver program to find the root(s) of a given expression.

The first application of the ROM that came to my mind was the Equation Library from the HP48

series calculators. Wouldn’t it be nice to have a set of equations to choose from, equations that you

could then establish values and solve for unknowns. Even better would be the ability to add your

own equations to the library. The EQNLIB program and its associated Extended Memory1 text file

EQNS provides that capability.

Limitations

Any formula you use in the Formula Evaluation ROM must fit within the 24 character size limit of the

Alpha register. Additionally, the Equation Library uses the five formula variables ‘a’ through ‘e’ for

the top row of user keys. This limits any equation you use to only five independent variables. As we

will see in a later section, more variables and longer equations can be accommodated through

equation chaining.

New in revision B, the Equation Library program allows you to use two formulas for more

complicated expressions. The result of a first formula can be used in a second formula to complete

the calculation. This does require a larger expression to be broken into two partial expressions, the

details for which are explained in a later section.

Notation

Throughout this manual I will use equation to mean an entry in the Equation Library, formula to

mean the alpha string accepted and processed by the Formula Evaluation ROM, and expression to

mean the common or formal mathematical representation, often with implied multiplication, as in E

= IR.

1 Although written for the HP-41CX/CL extended memory, EQNLIB can be adapted for use with HEPAX memory
by changing the file operation commands.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 29 OF 43

Program Setup

The ROM &MOD files contain mostly FOCAL programs.The Equation Library is dependent on the

Formula Evaluation ROM version 1F, which itself is dependent on Library#4 and the HP-41CX ROM.

Two emulators have been tested with the above configuration as well as a calculator with the 41CL

CPU board.

On the V41 emulator add the Equation Library MOD file to your 41cx setup file along with the

dependent modules. For go41cx/cxt, copy the MOD file to the files/modules directory and perform

an import. You can obtain a MOD file created by Greg McClure for go41 that contains the Formula

Evaluation ROM, the Formula Apps ROM and OS/X3 at the end of this post2.Plug Greg’s

OSX_BS4X7H_EVAL_S4module into port 4 (turn off OSX& Library4 in the settings) and the Equation

Library module into port 3. If you have a 41CL calculator, then transfer the ROM file image to a

suitable RAM page (830 for instance) and plug the RAM page into an empty port page. Do the same

for the Formula Evaluation ROM (FORM_1F.ROM)file.

Once configured, the program INIEQN will create an initial Equation Library text file in extended

memory called EQNS. Other library files can be created containing your own equations. The format

of a library file will be described in detail in a later section. For now, run INIEQN to get started with

Equation Library.

Program Usage

Program operation is straightforward. Execute EQNLIB and it will display the name of the first

equation in the default Equation Library (EQNS). If you have created your own library file thenenter

the name of the file in Alpha and execute EQN$.

Use the F key (NEXT) to scroll forward through the list of equations and the G key (PREV) to scroll

backwards. The H key (VIEW) lets you switch between the name of anequation and its formal

algebraic expression as shown below.

2http://hpmuseum.org/forum/thread-8581-post-76569.html

http://hpmuseum.org/forum/thread-8581-post-76569.html

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 30 OF 43

You can pick an equation and start solving by pressing the J key (MENU) to display the solver menu.

To set a value for a variable, key in the value then press the user key beneath the variable. The menu

is redisplayed each time you set the value of a variable, and you can press the J key to redisplay the

menu after solving for a variable. For the Quadratic equation, we would first need to establish the

values of A, B and C.

Using the example from the Formula Evaluation ROM manual, let’s use the values A=1, B=4 and C=1.

If we set X to 5 then press Y, we get the value 46. Specify 41 as the value of Y and press X to compute

a value of 4.6332 for X. Naturally, if we’d like to compute the root of this quadratic, we would set Y

to 0. We end up with a result of -0.2679, but this is only one of two real roots. How do we find the

other?

Establishing Initial Guesses

By default the initial guesses for the solver are 0 and 1, which will work fine for many equations. For

equations with multiple rootswe need a way to supply our own initial guesses. EQNLIB provides this

ability. Just enter your lower and upper guess at the prompt “a^b=?”. Since the initial guesses 0 and

1 returned a negative root for out example quadratic equation, the second root must be less than -

0.27, so type

-1ENTER -5 SHIFT R/S

The result of the calculation is -3.7321 for the second root.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 31 OF 43

Equation Chaining

The Equation Library uses the Formula Evaluation ROM variables ‘a’ through ‘e’, and these variables

retain their values between expression evaluations. This allows one equation to establish values and

another equation to use them, much the same way as using the same variable name in multiple

equations with the HP Solver. Let’s continue with the quadratic equation to illustrate the idea of

equation chaining.

Consider the expression for calculating the two real roots of a quadratic equation:

𝑥1, 𝑥2 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎

Let us now have two equations adjacent to one another in the Equation Library and call them

POSROOT and NEGROOT. Each would have a menu with the constants A, B and C as the first three

user keys and with X1 or X2 following. Each equation would show a different expression and use a

different formula string. A hint of the structure of an equation in the Equation Library can be gleaned

from the table below.

Equation Name POSROOT NEGROOT

Equation Expression X1=-B+SQRT(B^2-4AC)/2A X2=-B-SQRT(B^2-4AC)/2A

Equation Formula (#b+Q(b^2-4*a*c))/2/a-d (#b-Q(b^2-4*a*c))/2/a-d

Equation Menu A B C X1 A B C X2

Select the POSROOT equation and hit the MENU key (“J”) to display its user key menu. Enter the

values for A, B and C and then press the X1 user menu key (“D”) to solve for the first root. Press the

NEXT button (“F”) then press the “D” key again to solve for the second root. No need to press the

MENU key before solving for the second root!

Obviously this is a simple example of what can be a powerful technique to extend the capabilities of

the Equation Library and is described inthe Formula Evaluation ROM manual itself.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 32 OF 43

Summing It Up

A summary of the keys and flags used by the EQNLIB

program is shown below.

Key Label Function Description

F NEXT Next equation

G PREV Previous equation

H VIEW Toggle display Switch between Name & Expression

J MENU Initiate Solver

A-E Variables a - e Set or Solve Variable Enter data to set variable or none to solve

SHIFT A-E Initial Guesses Solve Variable Enter Y=lower guess, X=higher guess

Flag Clear Set Usage

Flag 10 No trace Trace Show intermediate solver results

Execute EQNLIB and it will display the name of the first equation in the library. From there you can

scroll through the set of equations using the NEXT and PREV key. If you use VIEW to switch to the

equation expression, then scrolling will show all of the available expressions in the library.

The internal solver uses flag 10 to indicate whether to display intermediate results. If the solver

doesn’t seem to be converging on an answer, try pressing R/S and then set flag 10 with SF 10. When

you resume the program with R/S you should see the intermediate values flash by.

Finally, many equations need a good set of guesses to even return a valid result. The equation for

the equivalent resistance of two resistors in parallel is a good example. Unless your guesses bracket

the correct answer, the result displayed by the solver will be incorrect or will not converge.

Equations with multiple closely-spaced roots can also be a challenge. Try the cubic equation with

constants A=6, B=11 and C=6. The roots are -1, -2 and -3. The default initial guesses will find the first,

but the others require a bit of hunting around with your guesses.

Now that you know how to use the Equation Library, let’s see how to add your own equations.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 33 OF 43

Roll Your Own Equation

Since we used a general form of the quadratic equation, let’s try to create our own root finder for a

fourth-order equation. We can write out a normalized fourth order power expression as

𝑦 = 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑

This expression has six unknowns which exceeds our limit of five. But by applying Horner’s Method,

with y set to zero, we get

𝑑 + 𝑥(𝑐 + 𝑥(𝑏 + 𝑥(𝑎 + 𝑥)))

Now we can construct an entry in the EQNS file to find roots of this expression. First, we need a

name for the Equation Library entry. Names should be twelve characters or less to avoid display

scroll. Let’s choose “4TH ORDER” for a name. Next, we need an expression in the HP-41 character

set for the above. The only change needed to use the above expression would be to change all

characters to uppercase.

The next step is to design the equation menu and write the formula. If we place the power equation

constants ‘a’ to ‘d’ first in the menu, then we can use the expression exactly as it is but with the ‘e’

variable substituting for x in the expression above. But rather than take the easy approach (and to

illustrate the more general way to map an expression to a formula) I’ll place the x variable in the

menu first. Let’s create a menu like X? A B CD where the question mark following the variable

name X reminds us that this is what we want to solve for3. Here’s an illustration that will help with

the mapping task.

Menu X? A B C D

Key/Variable A/a B/b C/c D/d E/e

Expression d+x(c+x(b+x(a+c)))

Formula e+a*(d+a*(c+a*(b+d)))

The formula is slightly confusing, but only because we’re using an expression with our ‘a’ through ‘e’

variables names in it. Try doing the above mapping process with the expression for Ohm’s Law.

Easier to visualize now?

Adding a new equation means adding four more records to the end of the EQNS XM text file. A

program called APPEQN (Append Equation) is listed in the Appendix that will do exactly that for you.

Just modify the four text lines and run the program. Another approach is to use ED to enter the four

lines. ED cannot produce the special characters that OS/X or CCD provides, so you can use temporary

substitutes and then run the SAR (Search and Replace) program also listed in the appendix. I would

3 Mind you, we can always set the X value and three of the constants and then solve for the fourth, can’t we?
Why not!

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 34 OF 43

suggest using ‘<’, and ‘>’ for parentheses and ‘#’ (SHIFT-H) for not-equal when entering the equation,

then run the search and replace program where you can enter the proper character at the replace

prompt.

So here then are the four records we need to add to the Equation Library file:

4TH ORDER
D+X(C+X(B+X(A+X)))
e+a*(d+a*(c+a*(b+a)))
X?A B CD

Once you enter these lines into EQNS, run EQNLIB and give the equation a try. Taking the example

from the Formula Evaluation ROM manual, try using 2 for A, 3 for B and 4 for C, 5 for D and then

solve for X. With the default initial guesses you get -0.8569 for the answer. Can you find the other

three roots?

To support more complex expressions, you can break the expression into two parts, with the result

of the first expression serving as input to the second. To do this you create one formula that

computes the partial expression. The result is placed in stack register T by the EVALT function. The

second formula uses register T in the formula to incorporate the partial result from the first

expression. Let’s use the following formula for converting between Nominal and Effective interest

rate as an illustration.

𝐸𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 = [(1 +
𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝑅𝑎𝑡𝑒

100 × 𝑃
)

𝑃

− 1] × 100

Rates are expressed as percentages such as 4.5% and P is the number of payments per year. Let the

formulas be based on the following menu

EFF NOM P

We can use the power expression in parentheses as the first partial expression. The formula would

then be

(1+b/100/c)^c

The formula that incorporates this result would then be

(T-1)*100-a

The result through substitution would be the complete formula

((1+b/100/c)^c-1)*100-a

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 35 OF 43

Equation Library Format

An Equation Library is an extended memory text file. Each equation in the library occupies four

records, none of which should exceed the 24 character length of the Alpha register. For each

equation, the first record is the name of the equation, the second record is the expression or hint

text displayed to the programmer when switching between views, the third record is the formula

itself and the fourth record is the menu displayed when solving the equation.

00 LINEAR 32 RLC FREQ.

01 Y=AX+B 33 F0=1/SQRT(LC)

02 c*a+d-b 34 1/Q(b*c)-a

03 X Y A B 35 F0 L C

04 QUADRATIC 36 GAS EQUATION

05 Y=AX^2+BX+C 37 PV=NRT

06 c*a^2+d*a+e-b 38 c*(16629/2000)*d-a*b

07 X Y A B C 39 P V N T

08 CUBIC 40 LIN. MOTION

09 Y=X^3+AX^2+BX+C 41 X=VT+1/2*AT^2

10 a^3+c*a^2+d*a+e-b 42 c*b+1/2*d*b^2-a

11 X Y A B C 43 X T V A

12 4TH ORDER 44 NEWTONS LAW4

13 D+X(C+X(B+X(A+X))) 45 F=G*M1*M2/R^2

14 e+a*(d+a*(c+a*(b+a))) 46 e*b*c/d^2-a

15 X? A BC D 47 F M1 M2 R G

16 POSROOT 48 INTEREST

17 X1=(-B+SQRT(B^2-4AC))/2A 49 P=PERIODS

18 (#b+Q(b^2-4*a*c))/2/a-d 50 ((1+b/100/c)^c-1)*100-a

19 A B C X1 51 EFF NOM P

20 NEGROOT 52 +INTEREST

21 X2=(-B-SQRT(B^2-4AC))/2A 53 (T-1)*100-a

22 (#b-Q(b^2-4*a*c))/2/a-d 54 (1+b/100/c)^c

23 A B C X2 55 EFF NOM P

24 OHMS LAW 56 +TVM END MODE

25 E=IR 57 a+T+e*(1+b)^#d

26 b*c-a 58 (1+b)*c*((1-(1+b)^#d)/b)

27 E I R 59 PV I PM N FV

28 PARALLEL R 60 +TVM BEG MODE

29 1/R1=1/R2+1/R3 61 a+T+e*(1+b)^#d

30 1/b+1/c-1/a 62 c*((1-(1+b)^#d)/b)

31 R1 R2 R3 63 PV I PM N FV

The table above shows the set of equations for the EQNS extended memory text file. When a

complex expression needs a formula that exceeds the 24 character limit for formula size, the

formula can be broken into two partial formulas as outlined in the preceding section. Place the first

partial formula in the third record and the second formula in the second record. To flag the equation

as a two-formula problem put a ‘+’ sign at the beginning of the equation name.

4 G is 6.67408×10-11 in SI units.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 36 OF 43

Notice the two versions of the interest rate calculation example. The formula was short enough to fit

the 24-character limit as shown in the INTEREST equation entry. The +INTEREST equation entry

is our example of how to handle more complex formulas and the way they are represented in the

library.

Greg provided the last pair of TVM equations as a fair illustration of what can be accomplished with

the Formula Evaluation ROM. Both examples require a formula that is too long to fit within the 24-

character Alpha limit and hence must be split into two formulas. The Interest rate (I) should be

expressed as a percentage divided by the number of periods per year, e.g. 6% would be 0.06/12 for

something like a car loan. P is the number of payments, as in 360 for a 30 year mortgage. If Present

Value (PV) and Future Value (FV) are positive then Payment (PM) will be a negative value.

Creating Your Own Library

Now that you know the format of an equation entry, how would you add new equations to the

default EQNS library or create your own custom library? A new custom library is just a text file

created by putting the filename in Alpha and a starting file size of say 4 registers in X and then

executing the CRFLAS command.

Use the COPY command to copy the APPEQN program to user memory. The program has two entry

points; the default APPEQN label that will append a new equation entry to the default EQNS library

and the APP$ label that will append a new equation entry to the text file named in the Alpha

register.

Edit the four text line records for name, expression, formula and menu. Don’t forget for a long text

record you may need to add a second line starting with the append symbol (SHIFT-K) to complete

the full text of an expression or formula record. The program, through either entry point, will go to

the last record in the file, extend the file length by ten registers, and then append the text records

you’ve entered. Repeat until you’ve added all of your equations. You can delete APPEQN when you

are finished.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 37 OF 43

Appendix

Listings for the EQNLIB program and various support programs in the EQNLIB module are provided.

SAR: Search and Replace program

1 LBL “SAR” 15 POSFL

2 “FNAME: ” 16 X<0?

3 PMTA 17 GTO 01

4 LBL “SAR$” 18 ALENG

5 0 19 DELCHR

6 SEEKPTA 20 CLA

7 “SERCH: ” 21 ARCL 01

8 PMTA 22 INSCHR

9 ASTO 00 23 GTO 00

10 “RPLCE: ” 24 LBL 01

11 PMTA 25 CLA

12 ASTO 01 26 WORKFL

13 LBL 00 27 END

14 ARCL 00

This program will search for and replace strings in an extended memory text file. The search and

replace strings are limited to a maximum of six characters. The program will save the name of the

XM text file and restore it to the Alpha register so that you can invoke the ED editor to examine

results. The last three text pointers are also left on the stack so that you can roll the stack to one of

these pointers and do a SEEKPT before invoking the editor.

The internal entry SAR$ can be used to bypass the prompt for the XM text file name if it is already in

the Alpha register. Note that because the filename is saved to a single register, the name is also

limited to six characters.

If you need to insert the special CCD/OSX characters like ‘(‘ into a text file with ED then just use the

unshifted (USER mode on) character like ‘<’ instead. You can use the search and replace to correct

the characters in your file. (*)

(*)This won’t be necessary if you use the ED+ function form the Warp_Core Module, which includes

support for all lower-case and special characters.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 38 OF 43

APPEQN: Append Equation programs

1 LBL “APPEQN” 17 “EQN. NAME”

2 “EQNS” 18 PMTA

3 LBL“APP$” 19 APPREC

4 0 20 “EXPRESSN.”

5 SEEKPTA 21 PMTA

6 LBL 00 22 APPREC

7 1 23 “FORMULA”

8 + 24 AVIEW

9 SF 25 25 PSE

10 SEEKPT 26 ^FRMLA

11 FC?C 25 27 APPREC

12 GTO 00 28 “EQN. MENU”

13 FLSIZE 29 PMTA

14 4 30 APPREC

15 + 31 CLA

16 RESZFL 32 WORKFL

 33 END

The APPEQN program will seek to the end of the EQNS Equation Library file and append a new

equation of your own design. Simply edit the four text lines (in bold) for your equation then run the

program. If you want to append to an equation file other than the default EQNS, then put the name

of the file in the Alpha register and execute APP$.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 39 OF 43

EQNLIB& INIEQN: Main Equation Library programs

11:11AM 03/04
01*LBL "EQNLIB"
 02 LKAOFF
 03 "EQNS"
04 CLX
 05 SEEKPTA
 06 GETREC
 07 AVIEW
 08 SF 27
 09 RTN
10*LBL F
 11 CLX
 12 4
 13 GTO 00
14*LBL G
 15 CLX
 16 4
 17 CHS
18 *LBL 00
 19 ADVREC
 20 SF 25
 21 GETREC
 22 CF 25
 23 AVIEW
 24 PSE
 25 X<0?
 26 GTO G
 27 GTO F
28*LBL H
 29 RCLPT
30 INT
 31 STO Y
 32 4
 33 MOD
 34 X=0?
35 ISG Y
 36 ""
 37 X#0?
 38 DSE Y
 39 ""
 40 X<>Y
41 SEEKPT
42 GETREC
 43 AVIEW
 44 RTN
45*LBL I
 46 "IN"
 47 FC? 00
 48 "EX"
 49 "`TERNAL SLV"

 50 AVIEW
 51 0
 52 TF
 53 RTN
54*LBL J
 55 RCLPT
56 INT
 57 RCL X
 58 4
 59 MOD
 60 -
 61 3
 62 X<>Y
63 +
 64 SEEKPT
 65 GETREC
 66 AVIEW
 67 X<> L
 68 SEEKPT
 69 RTN
70*LBL A
 71 LET=
 72 1
 73 FS?C 22
 74 GTO J
 75 GTO 09
76*LBL B
 77 LET=
 78 2
 79 FS?C 22
 80 GTO J
 81 GTO 09
82*LBL C
 83 LET=
 84 3
 85 FS?C 22
 86 GTO J
 87 GTO 09
88*LBL D
 89 LET=
 90 4
 91 FS?C 22
 92 GTO J
 93 GTO 09
94*LBL E
 95 LET=
 96 5
 97 FS?C 22
98 GTO J
99 *LBL 09

100 CF 01
101 GETREC
102 43
103 ATOX
104 X#Y?
105 GTO 09
106 SF 01
107 REC+
108 GETREC
109 LASTb
110 MUTE
111 STO$
112 4
113 REC-
114 *LBL 09
115LASTb
116 XROM"a^b"
117 2
118 ADVREC
119 GETREC
120 CHS
121 ADVREC
122 R^
123 MUTE
124 RDN
125 RDN
126 FC? 00
127 XROM "SV$+"
128 FS? 00
129 XEQ IND 08
130 LET=
131 0
132 RTN
133*LBL "a^b"
134 "a^b?"
135 PROMPT
136 FC? 22
137 E-99
138 FC?C 22
139 E
140 END

11:10AM 03/04
01*LBL "SV$+"
 02 STO$
 03 4
04 *LBL 01
 05 FC? 01
 06 GTO 00
07 EVALT

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 40 OF 43

 08 RCL$
 09 8
 10 EVALZ
 11 X<>Y
 12 RCL$
 13 4
 14 EVALT
 15 RCL$
 16 8

 17 GTO 01
18 *LBL 00
 19 EVALZ
 20 X<>Y
21 *LBL 01
 22 EVALT
23 T=Z?
 24 RTN
 25 "Y-Z*(Y-X)/(Z-T)"

 26 EVAL$
27 FS? 10
 28 VIEW X
 29 RCL$
 30 4
 31 X#Y?
 32 GTO 01
 33 END

01*LBL "INIEQN"
02"EQNS"
03 90
04 CRFLAS
05"LINEAR"
06 APPREC
07"Y=AX+B"
08 APPREC
09"c*a+d-b"
10 APPREC
11 "X Y A B"
12 APPREC
13"QUADRATIC"
14 APPREC
15 "Y=AX^2+BX+C"
16 APPREC
17"c*a^2+d*a+e-b"
18 APPREC
19"X Y A B C"
20 APPREC
21"CUBIC"
22 APPREC
23"Y=X^3+AX^2+BX+C"
24 APPREC
25"a^3+c*a^2+d*a+e"
 26 APPREC
 27 "X Y A B C"
28 APPREC
29"4TH ORDER"
30 APPREC
31"X]4+AX]3+BX]2+C"
32|-”X+D"
33 APPREC
34"e+a*(d+a*(c+a*("
35|-”-b+a)))"
36 APPREC
37"X? A B C D"
38 APPREC

39"POSROOT"
40 APPREC
41"X1=(-B+SQRT(B^2"
42|-"-4AC))/2A"
43 APPREC
44"(#b+Q(b^2-4*a*c"
45|-"))/2/a-d"
46 APPREC
47"A B C X1"
48 APPREC
49 "NEGROOT"
50 APPREC
51"X2=(-B-SQRT(B^2"
52 |-"-4AC))/2A"
53 APPREC
54"(#b-Q(b^2-4*a*c"
55|-"))/2/a-d"
56 APPREC
57"A B C X2"
58 APPREC
59"OHMS LAW"
60 APPREC
61"E=IR"
62 APPREC
63"b*c-a"
64 APPREC
65"E I R"
66 APPREC
67"PARALLEL R"
68 APPREC
69"1/R1=1/R2+1/R3"
70 APPREC
71"1/b+1/c-1/a"
72 APPREC
73"R1 R2 R3"
74 APPREC
75"RLC FREQ."
76 APPREC

77"F0=1/SQRT(LC)"
78 APPREC
79 "1/Q(b*c)-a"
80 APPREC
81 "F0 L C"
82 APPREC
83"GAS EQUATION"
84 APPREC
85"PV=NRT"
86 APPREC
87 "c*(16629/2000)*"
88 "`b-a*b"
89 APPREC
90"P V N T"
91 APPREC
92 "LIN. MOTION"
93 APPREC
94"X=VT+1/2*AT^2"
95 APPREC
96"c*b+(1/2)*d*b^2"
97|-“ -a"
98 APPREC
99 "X T V A"
100 APPREC
101 "NEWTONS LAW"
102 APPREC
103 "F=G*M1*M2/R^2"
104 APPREC
105"e*b*c/d^2-a"
106 APPREC
107"F M1 M2 R G"
108 APPREC
109 CLA
110 SF#
111 9
112 END

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 41 OF 43

Appendix. AOS Simulator

Written by Greg McClure, this FOCAL program was first released in the GJM ROM and is added here

for completion.

The AOS (Algebraic Operating System) program is designed to allow entry of data and operations

using operations and parenthesis as written. The partial answers are saved in Extended Memory in a

small file created by the user when AOS initializes. It follows operation hierarchy. So “(“and “*”are

performed before “+”, etc).

B.1 AOS Overview

The Algebraic Operating System emulator is designed to act like non-RPN calculators that use

parenthesis and pending operations to solve numeric math operations. This program requires an

Extended memory file (name AOS) to store data for pending operations for parenthesis operation.

The program does not require any other memory except for the stack (which is fully used).

B.2 AOS Flag Usage

Flag Use when set

0 + pending (flag 1 MUST be clear)

1 - pending (flag 0 MUST be clear)

2 * pending (flag 3 MUST be clear)

3 / pending (flag 2 MUST be clear)

4 ^ pending

5 Open (‘s pending

B.3 AOS User Keyboard

[A]: AOS + [B]: AOS - [C]: AOS * [D]: AOS / [E]: AOS ^

[F]: AOS ([G]: AOS) [J]: AOS = (R/S)

B.4 AOS User Instructions

After XEQ “AOS” the AOS flags and AOS buffer will initialize. It will ask for the size of the Extended

Memory file to use. If the AOS Data file already exists, it will ask for the new size. If no new size is

given the data file is not resized. User mode will be enabled.

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 42 OF 43

B.5 AOS Example

Usage of the AOS program is best served by a simple example.

Calculate (1+2)*(3/4)+(5^(1/2))

Enter Keypress Comments (and Annun.s) Annunciators (red = on) Output

 XEQ “AOS” Reset AOS 01234 “SIZE?” (if no file)
“NEW SIZE?” (if file)

20 R/S Small array 0.0000

 F (0.0000

1 A 1 + 01234 1.0000

2 G 2), + performed 01234 3.0000

 C * 01234 3.0000

 F (, * with value saved 01234 3.0000

3 D 3 / 01234 3.0000

4 G 4),/ performed,
* with value recalled

01234 0.7500

 A +, * performed 01234 2.2500

 F (01234 2.2500

5 E 5 ^ 01234 5.0000

 F (, ^ with value saved 01234 5.0000

1 D 1 / 01234 1.0000

2 G 2), / performed,
^ with value recalled

01234 0.5000

 G), ^ performed,
+ with value recalled

01234 2.2361

 J or R/S = final + performed 01234 4.4861

In this example, after entering the final 2, instead of using G the final answer could have been

calculated by entering J or R/S (J or R/S will perform all pending parenthesis and functions).

For those interested, the data file saves required values from the stack and the status of the flags

every time the AOS “(“ function is performed. It restores the flags and data values required back to

the stack when AOS “)” is performed. The annunciators show which operations and how many stack

registers will be stored (only one register is required for the operations saved).

B.6 Program Listing

Starts in next page…

EQUATION SOLVER ROM – REVISION 1AB

© Á. MARTIN – MARCH 2019 PAGE 43 OF 43

 01 LBL “AOS”
 02 RAD
 03 SF 27
04 "AOS"
 05 SF 25
 06 FLSIZE
 07 FS?C 25
 08 GTO 00
 09 "SIZE?"
 10 PROMPT
 11 "AOS"
 12 CRFLD
 13 GTO 01
14*LBL 00
 15 RCLFLAG
 16 FIX 0
 17 X<>Y
18 "NEW SZ <"
19 ARCL X
 20 "`>?"
 21 X<>Y
 22 STOFLAG
 23 RDN
24 CF 22
 25 PROMPT
 26 FC? 22
 27 GTO 01
 28 CHS
 29 RESZFL
30*LBL 01
 31 CLST
 32 CLA
 33 SEEKPT
 34 X<>F
 35 X<> L
 36 +
 37 XEQ F
 38 XEQ G
 39 GTO 12
40*LBL 14
 41 FS?C 04
 42 Y^X
 43 RTN
44*LBL 13
 45 XEQ 14
 46 FS?C 03
 47 /
 48 FS?C 02
 49 *
 50 RTN
51*LBL 12
52 XEQ 13

53 FS?C 01
 54 -
 55 FS?C 00
 56 +
 57 RTN
 58 GTO 09
59*LBL A
 60 XEQ 12
 61 SF 00
 62 RTN
 63 GTO 09
64*LBL B
 65 XEQ 12
 66 SF 01
 67 RTN
 68 GTO 09
69*LBL C
 70 XEQ 13
 71 SF 02
 72 RTN
 73 GTO 09
74*LBL D
 75 XEQ 13
 76 SF 03
 77 RTN
 78 GTO 09
79*LBL E
 80 XEQ 14
 81 SF 04
 82 RTN
83*LBL J
84*LBL 09
 85 XEQ G
 86 FC? 05
 87 RTN
 88 GTO 09
89*LBL 11
 90 SAVEX
 91 CLX
 92 +
93 RTN
 94 *LBL F
95 SF 05
 96 ENTER^
 97 RDN
 98 FS? 04
 99 XEQ 11
100 FS? 03
101 XEQ 11
102 FS? 02
103 XEQ 11
104 FS? 01

105 XEQ 11
106 FS? 00
107 XEQ 11
108 CLX
109 X<>F
110 XEQ 11
111 R^
112 RTN
113 GTO 09
114*LBL 10
115 STO [
116 CLX
117 RCLPT
118 DSE X
119 ""
120 SEEKPT
121 X<> [
122 GETX
123 X<> [
124 SEEKPT
125 CLX
126 X<> [
127 RTN
128*LBL G
129 XEQ 12
130 RCLPT
131 X=0?
132 GTO 00
133 RDN
134 XEQ 10
135*LBL 00
136 X<>F
137 RDN
138 ENTER^
139 ENTER^
140 ENTER^
141 FS? 00
142 XEQ 10
143 FS? 01
144 XEQ 10
145 FS? 02
146 XEQ 10
147 FS? 03
148 XEQ 10
149 FS? 04
150 XEQ 10
151 R^
152 RTN
153 GTO J
154 END

