
Extended Statistics Module

© 2015 ‘Angel Martin Page 1

Extended Statistics

HP-41 Module

 Overview

Most of the functions in this ROM were included in the former version of the “Curve Fitting & Statistics”
Module. The changes made to the Curve Fitting functionality in that module were also the perfect excuse to

separate the statistics contents into its own ROM, dedicated to statistics and probability.

Some functions are also in the SandMath, a real Math powerhouse – but a few ones have been written anew;

and yet more new functions have been added as result of the collaboration with Greg McClure on his GJM
Module.

This module has three distinct sections. The first one includes the more fundamental functions covering sums,
means, and other basic numeric calculations - such as linear regression, combinations/permutations, etc. Then

it moves into the distributions section where you can find functions to calculate the density and probability
functions for the most important distributions. Finally a third section includes the four Primality functions as

well as other auxiliary functions and utilities related with the topic at hand.

Without further ado, let’s see the functions included in the module. Refer to the individual function

descriptions later on for details on the syntax and use instructions – always a tricky think when it comes to the
statistics topics.

XROM Function Description Input Author

06,00 -X STAT 1E Section Header n/a --

06,01 %T Total percentage y,x in Y,X Poul Kaarup

06,02 0 Sum of mantissa digits value in X Ángel Martin

06,03 1 Sum of N integers N in X Poul Kaarup

06,04 1/N Harmonic Number n in X Ángel Martin

06,05 2 Sum of squares of N integers N in X Poul Kaarup

06,06 3 Sum of cubes of N Integers N in X Poul Kaarup

06,07 X^N Geometric Sums N in Y, X in X Ángel Martin

06,08 RG? Stat Reg Location none Ken Emery

06,09 AGM Arithmetic-GeometricMean x,y in Stack Ángel Martin

06,10 AMEAN Arithmetic Mean bbb.eee in X Ángel Martin

06,11 CNK Combinations arguments in X,Y Ángel Martin

06,12 CORR LR Correlation + Data Set JM Baillard

06,13 COV LR Covariance + Data Set JM Baillard

06,14 EVEN? Tests for even value value in X Ángel Martin

06,15 GCD Greater Common Divisor arguments in X,Y Ángel Martin

06,16 GHM Geometric-Harmonic Mean x,y in Stack Greg McClure

06,17 GMEAN Geometric Mean bbb.eee in X Ángel Martin

06,18 HMEAN Harmonic Mean bbb.eee in X Ángel Martin

06,19 LCM Least Common Multiple arguments in X,Y Ángel Martin

06,20 L1 Shows line equation in ALPHA a,b in Stack Ángel Martin

06,21 LR Linear Regression + Data Set JM Baillard

file:///C:/HP-41/Curve%20Fitting/XMSTAT.XLS%23RANGE!D1994
file:///C:/HP-41/Curve%20Fitting/XMSTAT.XLS%23RANGE!D1994
file:///C:/HP-41/Curve%20Fitting/XMSTAT.XLS%23RANGE!D1994
file:///C:/HP-41/Curve%20Fitting/XMSTAT.XLS%23RANGE!D1994
file:///C:/HP-41/Curve%20Fitting/XMSTAT.XLS%23RANGE!D1670
file:///C:/HP-41/Curve%20Fitting/XMSTAT.XLS%23RANGE!D1670

Extended Statistics Module

© 2015 ‘Angel Martin Page 2

06,22 LRX LR X-Value + Data Set, intercept Ángel Martin

06,23 LRY LR Y-Value + Data Set, abscissa JM Baillard

06,24 ODD? Tests for odd value value in X Ángel Martin

06,25 PMEAN Generalized Power Mean p in Y; bbb.eee in X Ángel Martin

06,26 PNK Permutations arguments in X,Y Ángel Martin

06,27 RCL Stat Reg to Stack none JM Baillard

06,28 STLINE Straight Line equation (x1,y1) & (x2,y2) in stack Ángel Martin

06,29 ST<> Swap Stack & Stat Registers none Nelson F. Crowle

06,30 -DISTRIBTN Section Header n/a --

06,31 BIN Binomial Distribution Prompted by program Ángel Martin

06,32 "BNP" Binomial P(n,p,x)=k n,x in Y, X JM Baillard

06,33 "BNP+" Binomial P(n,p,x)<=k n,k,x in stack JM Baillard

06,34 C2CP Chi-Square Probability Fnc. n,x in Y, X JM Baillard

06,35 C2DF Chi-square Density Function n,x in Y, X Ángel Martin

06,36 CHI2 Chi^2 Distribution Driver prompts for u value HP Co. (Stat Pac)

06,37 "FDST" Snedecor's F-Distribution Driver menu: : "N1 N2 Q" HP Co. (Stat Pac)

06,38 FSDF Snedecor's F Density Function Z: N1. Y: N2, X: Point Eugenio Úbeda

06,39 "FSCP" Snedecor's F Probability Fnc. n,x in Y, X Eugenio Úbeda

06,40 NRDF Normal Density (m,s) Z: Mean, Y: Sdev, X: Point Ángel Martin

06,41 NRCP Normal Probability (m,s) Z: Mean, Y: Sdev, X: Point Ángel Martin

06,42 POIS Poisson Distribution prompts for values Ángel Martin

06,43 PSDF Poisson Density Function Y: Mean, X: #Events Ángel Martin

06,44 "PX" Standard Normal Probability Argument in X Mike (Stgt)

06,45 "PXX" Probability between -x and x Argument in X Mike (Stgt)

06,46 QNTL Quantile - inverse of NRCP Argument in X Ángel Martin

06,47 "TDIST" T-Distribution Driver program Menu driven HP Co. ??

06,48 TSDF Student's T Density Function N in Y, Point in X Eugenio Úbeda

06,49 TSCP Student's T Probability Func. n,x in Y, X Eugenio Úbeda

06,50 "XP" Inverse of PX Argument in X Mike (Stgt)

06,51 "XXP" Inverse of PXX Argument in X Mike (Stgt)

06,52 -PRIMALITY Section Header n/a --

06,53 1/GM Inverse Gamma Function Argument in X JM Baillard

06,54 BETA Beta Function Arguments in X,Y JM Baillard

06,55 D% Difference Percent x,y in Stack Ángel Martin

06,56 ERF Error Function x in X Martin - Baillard

06,57 GMF Gamma Function Argument in X JM Baillard

06,58 NXTPRM Next Prime value in X PoulKaarup

06,59 PFACT Prime Divisor (factor) Argument in X Peter Platzer

06,60 PTWIN Next Twin Primes Argument in X Peter Platzer

06,61 PRIME? Prime Test Argument in X Poul Kaarup

06,62 RAND Random Number (w/ Timer) none JM Baillard

06,63 "SLV" Solve Subroutine x1, x2 in X,Y, fname in Alpha PPC Members

Note that this module was designed to be self-contained, i.e. there are no dependencies on any other one,

not even the Library#4 (therefore never mind if you never heard of that one before). All required auxiliary
functions for the FOCAL programs are included in the third section.

file:///C:/HP-41/Curve%20Fitting/XMSTAT.XLS%23RCLS
file:///C:/HP-41/Curve%20Fitting/XMSTAT.XLS%23RCLS
file:///C:/HP-41/Curve%20Fitting/XMSTAT.XLS%23RANGE!D650
file:///C:/HP-41/Curve%20Fitting/XMSTAT.XLS%23RANGE!D650

Extended Statistics Module

© 2015 ‘Angel Martin Page 3

1 – Basic Statistical Functions.

Summation Functions.{ 0, 1, 2, 3, 1/N, X^N }

Use them to calculate the resulting sum of a finite series of integer numbers (Triangular Numbers), their
squares (Squared Pyramidal Numbers), cubes (Squared Triangular Numbers), or generalized (Faulhaber’s)

powers. Also included is the harmonic number H(n), which sums the reciprocal of the numbers – i.e. a
particular case of the generalized case with exponent -1.

The formulas for the first three cases are as follows:

• 0 sums the mantissa digits of the number in X. For example: PI, 0 => 40

• 1, 2, 3 calculate the first three cases using the explicit formulas – much faster than performing

the actual summation even for short series.

• 1/N calculates the Harmonic number of the argument in X; that is the sum of the reciprocals of

the natural numbers (which excludes zero) lower and equal to n. It is used in the calculation of
numerous special functions, like the Kelvin and the Bessel functions of the second kind, K(n,x) and

Y(n,x).

 Example: calculate H(5) and H(25).

 5, [1/N] => 2.283333333

 25, [1/N] => 3.815958178

• N^X Calculates a generalized value of the Faulhaber’s formula for integer values of x. – The few

first integer values of x have explicit formulas for the result, but that’s not the case for a general

value, which can also be non-integer. Obviously for x=-1 this function returns identical results than
the previous one, albeit slower due to the additional complexity of the term.

Example: Check the triangular (x=1) and pyramidal (x=2) formulas for n=10 – which are particular
cases of the Faulhaber’s Formula, involving Binomial coefficients and Bernoulli’s numbers. See the link

below for details: http://en.wikipedia.org/wiki/Faulhaber%27s_formula

10, ENTER^, 1, [N^X] => 55.00000000

10, ENTER^, 2, [N^X] => 385.0000000

http://en.wikipedia.org/wiki/Faulhaber%27s_formula

Extended Statistics Module

© 2015 ‘Angel Martin Page 4

Single and Duplex Means (to an end).

In the means department there is a very complete selection of choices: arithmetic, geometric and harmonic
means are calculated on a set if data registers controlled by the control word “bbb.eee” in X– i.e. beginning

and end registers, and *not* the statistical registers as defined by REG ! . Also a generalized exponential

mean is available using the same syntax.

The AMEAN, GMEAN, and HMEAN functions calculate the means of multiple values stored in data registers.

Entering the control word describing the register set in X and executing AMEAN, GMEAN, or HMEAN will result
in that mean being put into X (and the control word saved in LastX). So, for example, to get one of these
means for values in registers 10 thru 15, put 10.015 in X and execute the appropriate mean function.

But there is more: The PMEAN function is also available for a generalized mean function. The power “p” is

put into Y and the control word in X, and the Generalized Power Mean is calculated for the values pointed to
by the control word. The PMEAN formula is:

For p=0 this would normally lead to a problem. However the limit for this expression as p -> 0 yields the
Geometric Mean, so when p=0, the GMEAN function code is used.

From the above formula you can see that p=1 yields the Arithmetic mean, and p=-1 yields the Harmonic

mean. However fractional and other negative values can be used, and you will notice that as p becomes
infinite (positive), the mean tends to be the MAX value of the numbers. As p becomes infinite (negative), the
mean tends to be the MIN value of the numbers.

With the exception of the AMEAN program, all values used in the registers must be non-zero positive values.
Otherwise a DATA ERROR will occur.

Let’s move now to the duplex means on a pair of numbers placed in X and Y registers: the Arithmetic-

Geometric mean AGM and the Harmonic-Geometric mean HGM. An interesting definition of the mean of two
values occurs when combining Arithmetic, Geometric, and Harmonic means.

• The Arithmetic-Geometric mean is a special value, defined as the common limit of A=AMean(A,B)

and B=GMean(A,B) repeated until A-B = 0.

• The Geometric-Harmonic mean is defined as the limit of A=GMean(A,B) and B=HMean(A,B) repeated
until A-B = 0.

AGM calculates the Arithmetic-Geometric Mean, whilst GHM calculates the Geometric-Harmonic mean.

As an interesting note, AM(A,B) >= AGM(A,B) >= GM(A,B) >= GHM(A,B) >= HM(A,B).

What happened to the Arithmetic-Harmonic mean? That is simply the Geometric mean in disguise, thus no

need for such function. Finally, note that taking p=0.5 in the PMEAN function (on two registers) will NOT yield
the AGM (and -0.5 will NOT yield the GHM) unless, of course, the register values are identical! It is not that

simple to get those values, and the power value required changes depending on the two values chosen for
AGM or GHM.

Extended Statistics Module

© 2015 ‘Angel Martin Page 5

Combinations and Permutations – two must-have classics.

Nowadays it would be unconceivable to release a calculator without this pair in the function set – but back in
1979 when the 41 was designed things were a little different. So here there are, finally and for the record.

• PNK calculates Permutations, defined as the number of possible different arrangements of N

different items taken in quantities of K items at a time. No item occurs more than once in an

arrangement, and different orders of the same R items in an arrangement are counted separately.The
formula is:

• CNK calculates Combinations, defined as the number of possible sets or N different items taken in

quantities or K items at a time. No item occurs more than once in a set, and different orders of the

same R items is a set are not counted separately. The formula is:

UUThe general operation include the following enhanced features:

• Gets the integer part of the input values, forcing them to be positive.

• Checks that neither one is Zero, and that n>k

• Uses the minimum of {k, (n-k)} to expedite the calculation time

• Checks the Out of Range condition at every multiplication, so if it occurs its determined as soon as

possible

• The chain of multiplication proceeds right-to-left, with the largest quotients first.

• The algorithm works within the numeric range of the 41. Example: CNK(335,167) is calculated without

problems.

• It doesn't perform any rounding on the results. Partial divisions are done to calculate CNK, as
opposed to calculating first PNK and dividing it by r!

Provision is made for those cases where n=0 and k=0, returning zero and one as respective results. This

avoids DATA ERROR situations in running programs, and is consistent with the functions definitions for those
singularities.

Note as well that there is no final rounding made to the result. This was the subject of heated debates in the
HP Museum forum, with some good arguments for a final rounding to ensure that the result is an integer. The

SandMath implementation however does not perform such final “conditioning”, as the algorithm used seems
to always return an integer already. Pls. Report examples of non-conformance if you run into them.

UUExample UU: Calculate the number of sets from a sample of 335 objects taken in quantities of 167:

Type: 335, ENTER^, 167, XEQ “CNK“ -> 3,0443587 99

UUExample: UU How many different arrangements are possible of five pictures, which can be hung on the wall
three at a time:

Type: 5, ENTER^, 3, XEQ “PNK“ -> 60,00000000

The execution time for these functions may last several seconds, depending on the magnitude of the inputs.
The display will show “RUNNING…” during this time.

Extended Statistics Module

© 2015 ‘Angel Martin Page 6

Linear Regression – Let’s not digress.

The following four functions deal with the Linear Regression, the simplest type of the curve fitting
approximations for a set of data points. They complement the native set, which basically consists of just

MEAN and SDEV.

 Function Description Author

[] CORR Correlation Coefficient of an X,Y sample JM Baillard

[] COV Covariance of an X,Y sample JM Baillard

[] LR Linear Regression of an X,Y sample JM Baillard

 LRX X-Value for a Y point Ángel Martin

[] LRY Y- value for an X point JM Baillard

Linear regression is a statistical method for finding a straight line that best fits a set of two or more data pairs,

thus providing a relationship between two variables. Using the well-known method of least squares, LR will

calculate the slope A and Y-intercept B of the linear equation: Y = Ax + B.

Results are placed in Y and X registers respectively. When executed in RUN mode the display will show the

straight-line equation, similar to the STLINE function described before.

UUExample UU: find the y-intercept and slope of the linear approximation for the data set given below:

X 0 20 40 60 80

Y 4.63 5.78 6.61 7.21 7.78

Assuming all data pairs values have been entered using Y-value, ENTER^, X-value, + ; we type:

XEQ “LR” -> 0,038650000 and X<>Y -> 4,856000000 producing the following output in FIX 2:

As to the remaining functions, COV calculates the sample covariance. CORR returns the correlation

coefficient, and LRY the linear estimate for the function at the given point.

For the same sample still in the calculator’s memory, we obtain the values:

Covariance = 38.65; CORR=0.987954828; LRY=4.894184454 (using Corr value as X)

Extended Statistics Module

© 2015 ‘Angel Martin Page 7

Ratios and other Tools.

• %T and D% are miniature functions to calculate the percent of a number relative to another one

(its reference), and the delta percent between the numbers in Y(reference) and X(new value). The

formulas are:

 %T(y,x) = 100 x / y ; D% = 100 (x-y) /x

Example: the relative percent of 4 over 25 is 16%.- You type: 25, ENTER^, 4, XEQ “%T”
Example: the delta percent of a change from 85 to 75 is –11,765%

• GCD and LCM are fundamental functions also inexplicably absent in the original function set. They

are short and sweet, and certainly not complex to calculate. The algorithms for these functions are

based on the PPC routines GC and LM – conveniently modified to get the most out of MCODE
environment.

If a and b arenot both zero, the greatest common divisor of a and b can be computed by using least

common multiple (lcm) of a and b:

Examples: GCD(13,17) = 1 (primes), GCD(12,18) = 6; GCD(15,33) = 3

Examples: LCM (13,17) = 221; LCM(12,18) = 36; LCM(15,33) = 165

• ST<> exchanges the contents of five statistical registers and the stack (including L). Use it as a

convenient method to review their values when knowing their actual location is not required.

• RCL recalls the contents of five statistical registers to the stack (including L). It is therefore just

one half of the previous function.

• RG? returns to the X register the current pointer to the statistics registers block. It is identical to

the function REG? in the 41CX.

• ODD? and EVEN? are simple tests to check whether the number in X is odd or even. The answer

is YES / NO, and in program mode the following line is skipped it the test is false. The

implementation is based on the MOD function, using MOD(x,2) = 0 as criteria for evenness.

• RAND is a random number generator that uses the current time as seed. If the Time Module is not

present the function uses the value in X as seed. The result value is within 0 and 1.

• STLINE calculates the slope “m” and 0-intercept “p” of a straight line that passes through the

points (x1, y1) and (x2, y2) stored in the stack registers. The equation is: Y = m X + p

• L1 puts the straight line equation in the Alpha register, using the values in X- and Y- as slope and 0-

intercept for the line. This function is used internally in the Linear Regression and STLINE functions.

Extended Statistics Module

© 2015 ‘Angel Martin Page 8

Primes and other Relatives.

• PRIME? Is a primality test function, which will return YES/NO in run mode and skip a line if false in

a running program.

• NXTPRM Is a fast and accurate method to obtain the next prime following the value in X (thus not

itself in case it already is a prime number).

• PTWIN is similar to NXTPRM, only that it’ll find the next Twin primes following the value in X. Those

are two consecutive prime numbers p1 and p2, such that p2 = (p1 + 2).

• PFACT Is a fast and accurate method to obtain prime divisors of the value in X. This function can

be used repeatedly to obtain the complete prime factor decomposition, see the short FOCAL program
example provided below.

As an exercise, improve this program so that the repeated factors are grouped in an exponent, as

opposed to in the single fashion listing in ALPHA. You can refer to the SandMath and SandMatrix
modules for more sophisticated Prime Factorization programs.

Line Instruction Line Instruction

01 LBL “PFCTR” 13 X=Y?

02 CLA 14 GTO 05

03 AINT 15 “|-*”

04 “|- =” 16 /

05 LBL 00 17 GTO 00

06 ENTER^ 18 LBL 05

07 PFACT 19 AVIEW

08 AINT 20 END

Extended Statistics Module

© 2015 ‘Angel Martin Page 9

2 – Statistical Distributions.

Moving on to the next section, the following pages describe the different statistical distribution included in the

module. Some will have individual functions to perform the calculations independently, whilst other programs
are of the “driver” type – providing a micro environment to do calculations related to a given distribution.

It is important to note the naming conventions for these functions. In general there are three types:

- Distribution density function – use “DF” as last two letters of function name
- Distribution Cumulative Probability – use “CP” as last two letters of function name

- Distribution “driver” program - some include the word “DIST” or “DST” in their names

The following table shows a summary of the available functions by type:

Distribution Density Function Cumulative Probability Driver

Normal NRDF NRCP --

T-Student TSDF TSCP TDIST

F-Snedecor FSDF FSCP FDIST

Chi-Squared C2DF C2CP CHI2

Poisson PSDF -- POIS

Binomial BNP BNP+ BIN

While some of these functions are implemented as MCODE routines, others are a combination of some module
functions in short FOCAL “wrappers” – which appear as MCODE functions in the module’s FAT and in your

own FOCAL code as program steps. Note however that they likely utilize data registers and don’t always follow

the “argument to LastX” rule due to their hybrid nature.

A number of auxiliary functions are provided to facilitate the calculation of the distributions listed above. The

more important ones are the error function erf(x) – implemented in MCODE as a particular case of the
hypergeometric function -, as well as Euler’s Gamma and Beta functions (and inverse Gamma as well for

convenience). These last two use a continuous fractions method for the calculation – slightly faster than the

Lanczos formula and for the most part with comparable accuracy.

Unfortunately there wasn’t enough room left in the module to also include the Incomplete Gamma and
Incomplete Beta functions, therefore some approximation formulas are used for the cumulative probability of

the T- and F- distributions. Note however that these two functions are included in the SandMath Module in

case you need them.

Extended Statistics Module

© 2015 ‘Angel Martin Page 10

Poisson Standard Distribution.{ PSD , POIS }

 PSD is the Statistical function that calculates the UPoisson Standard Distribution U. In probability theory and

statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given
number of events occurring in a fixed interval of time and/or space if these events occur with a known

average rate and independently of the time since the last event

A discrete stochastic variable X is said to have a Poisson distribution with parameter λ>0, if for k = 0, 1, 2, ...

the probability mass function of X is given by:

Its inputs are k and  in stack registers X

and Y. PSDF’s result is the probability

corresponding to the inputs.

Example 1.-

Calculate the probability mass function for a Poisson

distribution with parameters: l=4, k=5

4, ENTER^, 5, XEQ “PSD”

Returns: 0.156293452

Example 2: do the same for l=10 and k=10

10, ENTER^, XEQ “PSD”
Returns: 0.125110036

Extended Statistics Module

© 2015 ‘Angel Martin Page 11

Normal Distribution Functions.{ NRDF , NRCP }

In probability theory, the normal (or Gaussian) distribution is a continuous probability distribution that has a

bell-shaped probability density function, known as the Gaussian function or informally as the bell curve:

The parameter μ is the mean or expectation (location of the peak) and σ^2 is the variance. σ is known as the

standard deviation. The distribution with μ = 0 and σ^2 = 1 is called the standard normal distribution or the
unit normal distribution

 NRDF expects the mean and standard deviation in the Z and Y stack registers, as well as the argument x in

the X register. Upon completion x will be saved in LASTx, and f(,,x) will be placed in X. It has an all-

MCODE implementation, using 13-digit routines for increased accuracy.

The figures above show both the density functions as well as the cumulative probability function for several
cases. The Error function ERF can be used to calculate the NRCP – no need to apply brute force and use

NRDF in an INTEG-like scenario, much longer to obtain or course. The relation to use is:

UU

Example program: UU The routine below calculates CPF. Enter μ, σ, and x values in the stack.

01 LBL “NRCP” 08 /
02 RCL Z 09 ERF

03 - 11 INCX

04 X<>Y 12 2
05 / 13 /

06 2 14 END
07 SQRT

Extended Statistics Module

© 2015 ‘Angel Martin Page 12

Cumulative Probability Function and its Inverse.{ PX , PXX , XP , XXP , QNTL }

The following routines perform the calculation of the cumulative probability and its inverse, i.e. to obtain the

value x that yields a given value for the probability. The inverse functions are based on the Secant or Halley’s
methods to iterate for the solution.

As a convenience shortcut, functions PXX and XXP are provided to obtain the CENTRAL probability within a
certain zone of the arguments [-x, x] – and the inverse value of X to yield said probability. The expression to

obtain this is given by the formula: PXX = 2 P(x) - 1

Note that all these functions assume a Standard Normal distribution, with zero mean and standard deviation

equal to 1, that is: =1 and =0

The Secant method is implemented as per the PPC ROM routine SLV – also contained in this module. Refer to
the PPC ROM manual for details on its operation if used independently from these functions.

Halley’s method uses the following expression to calculate the successive approximations to the root:

where our function in this case is f(x) = [NRCP(x) – Value], thus we take advantage of the fact:

f ‘(x) = NRDF and
f “(x) = -k f ‘(x);

and therefore the general expression above gets simplified considerably since f ‘(x) is in both numerator and

denominator and thus cancelled out.

UUExamples. UU Which argument yields a probability of 75% for a Standard Normal distribution?

a) Using XP: 0.75, XEQ “XP” -> 0,674489750
b) Using QNTL: 0.75, XEQ “QNTL” -> 0,674489750

What is the cumulative probability for the argument obtained in the previous example?

Type: 0, ENTER^, 1, RCL Z, XEQ “NRCP”, -> 0,750000000

The accuracy is quite good, also holding up well across the entire range of values for both functions – thanks

to the iterative methods employed. Execution speed is slightly faster for XP than for QNTL, but this one is

more accurate for arguments in the vicinity of 1.

Note: By comparison with these functions, the SandMath module uses the inverse Error Function IERF to

calculate the inverse probabilities. That method is much faster and slightly more accurate – but there wasn’t

enough room left in this module to implement it.

Extended Statistics Module

© 2015 ‘Angel Martin Page 13

Chi-Squared Distribution { C2DF , C2CP , CHI2 }

In probability theory and statistics, the chi-squared distribution (also chi-square or χ²-distribution) with k

degrees of freedom is the distribution of a sum of the squares of k independent standard normal random
variables. It is a special case of the gamma distribution and is one of the most widely used probability

distributions in inferential statistics, e.g., in hypothesis testing or in construction of confidence intervals. When

it is being distinguished from the more general non-central chi-squared distribution, this distribution is
sometimes called the central chi-squared distribution.

There are three functions available in the XMSTAT module dealing with this distribution.

• This first two C2DF and C2CP are independent implementations for the density and probability

functions respectively, using the values in Y (degrees of freedom) and X (argument). The result is
placed in X but no LastX is done.

• The third and last CHI2 is a driver routine to calculate both the density function and the cumulative

probability. After prompting for the parameter  it presents the simple menu of choices shown below:

Simply enter the argument and press [A] for the Probability distribution function (same as CHDF), or [B] for

the cumulative distribution function P(x). See the formulas below:

Examples: CHDF(2, 0) = 0.5 and CHCP (2,1) => P=0.393469341

Note that for the value combination m=2 and X=0 the built-in power function Y^X will return DATA ERROR.

This has been overcome in CHDF (but not in the driver program) by using an alternative version of Y^X that

returns 0^0=1.

Extended Statistics Module

© 2015 ‘Angel Martin Page 14

Student’s T-Distribution { TSDF , TSCP , TDST }

In probability and statistics, Student's t-distribution (or simply the t-distribution) is any member of a family of

continuous probability distributions that arises when estimating the mean of a normally distributed population
in situations where the sample size is small and population standard deviation is unknown. It was developed

by William Sealy Gosset under the pseudonym Student. Whereas a normal distribution describes a full

population, t-distributions describe samples drawn from a full population; accordingly, the t-distribution for
each sample size is different, and the larger the sample, the more the distribution resembles a normal

distribution.

There are three functions available in the XMSTAT module dealing with this distribution.

• This first two are independent functions to calculate the density function (TSDF) and the CENTRAL

probability (TSCP) – between [-x, x] - independently, taking the input parameters from Y (degrees of
freedom) and X (argument). The result is placed in X but no LastX is done.

• The third one (TDIST) is also a driver program in the same guise as those seen previously. The
menu presents the three usual choices:

Degrees of freedom in [A],

Density function in [B], and

Cumulative Probability in [C].

TSDF and TSCP are hybrid MCODE/Focal functions that don’t make any use data registers, but they use the

ALPHA registers and the stack. TDIST on the other hand is data-register hungry, you need to have SIZE 12
or higher for this routine to work correctly.

Examples: TSDF(4, 1) = 0.214662526; and TSCP(4, 1) = 0.626099034

Extended Statistics Module

© 2015 ‘Angel Martin Page 15

Snedecor’s F-Distribution { FSDF , FSCP , FDST }

The F-distribution, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald

Fisher and George W. Snedecor) is, in probability theory and statistics, a continuous probability distribution.
If a random variable X has an F-distribution with parameters n1 and n2, we write X ~ F(n1, n2). The

parameters n1 and n2 are positive integers, but the distribution is well-defined for positive real values of these

parameters.

There are three functions available in the XMSTAT module dealing with this distribution.

• This first two are independent functions to calculate the density function (FSDF) and the TAILING

probability (FSCP) – between [x, infinite[- independently, taking the input parameters from Z, Y
(degrees of freedom) and X (argument). The result is placed in X but no LastX is done.

• The third one (FDST) is also a driver program in the same guise as those seen previously. The menu
presents the three usual choices:

Parameter n1 in [A],
Parameter n2 in [B], and

Cumulative Probability in [C].

FSDF and FSCP are hybrid MCODE/Focal functions that don’t make any use data registers, but they use the

ALPHA registers and the stack. For FDST however, you need to have SIZE 08 or higher for this routine to

work correctly.

Examples: FSDF(7, 6, 4.3) = 0.022012383, and FSCP(7, 6, 4.3) = 0.047640800

Note: The implementation for the Cumulative Probability does not use the incomplete beta function but
trigonometric approximations. It is therefore faster but not so accurate for small values of the argument x.

Extended Statistics Module

© 2015 ‘Angel Martin Page 16

Binomial Distribution { BNP , BNP+ , BIN }

In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability

distribution of the number of successes in a sequence of n independent yes/no experiments, each of which
yields success with probability p. A success/failure experiment is also called a Bernoulli experiment or

Bernoulli trial; when n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the

basis for the popular binomial test of statistical significance.

Probability Singe-Event function

In general, if the random variable X follows the binomial distribution with parameters n ∈ ℕ and p ∈ [0,1], we
write X ~ B(n, p). The probability of getting exactly k successes in n trials is given by the probability mass

function:

Cumulative Probability function.

The cumulative Probability function can be expressed as:

where [k] is the "floor" under k, i.e. the greatest integer less than or equal to k.

There are three functions available in the XMSTAT module dealing with this distribution.

• This first two are independent functions to calculate the density function (BNP) for a single event and

the cumulative probability (BNP+) for all previous events – in both cases taking the input

parameters from Z, Y (n and p) and X (single or multiple event). The result is placed in X but no LastX
is done. Theses routines use data registers R00 to R03.

• The third one (BIN) is also a driver program but contrary to the previous ones, this will prompt
sequentially for the parameters and the number of events – to calculate the same value as BNP (i.e.

non-cumulative case).

Note that to obtain a cumulative probability we could simply add all the single-event probabilities for those

arguments less than or equal to argument. The implementation of BNP+ however uses a different approach,
which is faster that the simple addition of individual factors.

Examples: calculate BNP(100, 1/6, 15) as single-event and also cumulative:

BNP(100, 1/6, 15) = 0.100236634; and BNP+(100, 1/6, 15) = 0.387657550

Extended Statistics Module

© 2015 ‘Angel Martin Page 17

Appendix. Some FOCAL Program Listings

1. Binary Distribution, by JM Baillard.

01 LBL "BNP+"

02 STO 00

03 SIGN

04 X<>Y

05 STO 01

06 -

07 ST/ 01

08 X<>Y

09 STO 02

10 Y^X

11 SIGN

12 RCL

00

13 X=0?

14 GTO 02

15 CLX

16 STO 03

17 LASTX

18 LBL 01

19 LASTX

20 RCL

01

21 *

22 RCL 02

23 RCL 03

24 -

25 *

26 RCL 03

27 1

28 +

29 STO

03

30 /

31 +

32 DSE 00

33 GTO

01

34 SIGN

35 LBL 02

36 LASTX

37 END

2. Chi-Squared Distribution, by JM Baillard

01 LBL "CH2"

02 STO N

03 X<>Y

04 STO O

05 2

06 ST+ Y

07 /

08 GAMMA

09 RCL N

10 2

11 /

12 E^X

13 ST* Y

14 X<> L

15 RCL

O

16 2

17 /

18 Y^X

19 X<>Y

20 /

21 STO M

22 1

23 RCL

O

24 1

25 ENTER^

26 LBL 01

27 X<> T

28 RCL N

29 *

30 R^

31 2

32 +

33 STO T

34 /

35 STO T

36 X<>Y

37 ST+ Y

38 X#Y?

39 GTO

01

40 RCL M

41 *

42 RCL N

43 SIGN

44 X<>

O

45 X<>Y

46 CLA

47 END

3. Normal Distribution; by “Mike (Stgt)”

 01*LBL "XXP" 25 ENTER^ 49 FS?C 18 73*LBL 09 97 X#0?

 02 X<0? 26 ENTER^ 50 CHS 74 RCLFLAG 98 GTO 01

 03 LOG 27 STO O 51 "GI" 75 STO 10 99 RCL 10

 04 1 28 1308 E-6 52 ASTO 06 76 FIX 7 100 STOFLAG

 05 + 29 * 53 E-3 77 LASTX 101 RCL N

 06 2 30 ,189269 54 X<>Y 78 ENTER^ 102 2

 07 / 31 + 55 SF 10 79 X^2 103 /

 08*LBL "XP" 32 * 56 XROM "SV" 80 STO N 104 CHS

 09 X<=0? 33 1,432788 57 CF 10 81 SIGN 105 E^X

 10 LOG 34 + 58 RTN 82 STO O 106 PI

 11 STO 11 35 * 59*LBL "PXX" 83 X<>Y 107 ST+ X

 12 ,5 36 1 60 ABS 84 STO M 108 SQRT

 13 X>Y? 37 + 61 SF 18 85 ABS 109 /

 14 SF 18 38 X<> O 62*LBL "PX" 86*LBL 01 110 RCL M

 15 SIGN 39 ,010328 63 ABS 87 LASTX 111 *

 16 X<>Y 40 * 64 6 88 RCL N 112 ENTER^

 17 X>Y? 41 ,802853 65 X>Y? 89 RCL O 113 FC?C 18

 18 SIGN 42 + 66 GTO 09 90 2 114 ,5

 19 FC? 18 43 * 67 LASTX 91 + 115 +

 20 - 44 2,515517 68 SIGN 92 STO O 116 FC? 10

 21 1/X 45 + 69 X<0? 93 / 117 RTN

 22 X^2 46 RCL O 70 CLX 94 * 118 RCL 11

 23 LN 47 / 71 CF 18 95 ST+ M 119 -

 24 SQRT 48 - 72 RTN 96 RND 120 END

This is published under the auspices of the Q-License, see here for details. See next page for the copy.

https://opensource.org/licenses/QPL-1.0

Extended Statistics Module

© 2015 ‘Angel Martin Page 18

Appendix.- Q Public Licence.

