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Extended Statistics 

HP-41 Module 

 

 

 Overview 
 
Most of the functions in this ROM were included in the former version of the “Curve Fitting & Statistics” 
Module.  The changes made to the Curve Fitting functionality in that module were also the perfect excuse to 

separate the statistics contents into its own ROM, dedicated to statistics and probability. 

 
Some functions are also in the SandMath, a real Math powerhouse – but a few ones have been written anew; 

and yet more new functions have been added as result of the collaboration with Greg McClure on his GJM 
Module. 

This module has three distinct sections. The first one includes the more fundamental functions covering sums, 
means, and other basic numeric calculations - such as linear regression, combinations/permutations, etc. Then 

it moves into the distributions section where you can find functions to calculate the density and probability 
functions for the most important distributions. Finally a third section includes the four Primality functions as 

well as other auxiliary functions and utilities related with the topic at hand. 

 
Without further ado, let’s see the functions included in the module. Refer to the individual function 

descriptions later on for details on the syntax and use instructions – always a tricky think when it comes to the 
statistics topics. 

XROM  Function  Description Input Author 

06,00 -X STAT 1E Section Header n/a -- 

06,01 %T Total percentage y,x in Y,X  Poul Kaarup 

06,02 0 Sum of mantissa digits value in X  Ángel Martin 

06,03 1 Sum of N integers N in X  Poul Kaarup 

06,04 1/N Harmonic Number n in X  Ángel Martin 

06,05 2 Sum of squares of N integers N in X  Poul Kaarup 

06,06 3 Sum of cubes of N Integers N in X  Poul Kaarup 

06,07 X^N Geometric Sums N in Y,  X in X  Ángel Martin 

06,08 RG? Stat Reg Location none  Ken Emery 

06,09 AGM Arithmetic-GeometricMean x,y in Stack  Ángel Martin 

06,10 AMEAN Arithmetic Mean  bbb.eee in X  Ángel Martin 

06,11 CNK Combinations arguments in X,Y  Ángel Martin 

06,12 CORR LR Correlation + Data Set  JM Baillard 

06,13 COV LR Covariance + Data Set  JM Baillard 

06,14 EVEN? Tests for even value value in X  Ángel Martin 

06,15 GCD Greater Common Divisor arguments in X,Y  Ángel Martin 

06,16 GHM Geometric-Harmonic Mean x,y in Stack  Greg McClure 

06,17 GMEAN Geometric Mean bbb.eee in X  Ángel Martin 

06,18 HMEAN Harmonic Mean bbb.eee in X  Ángel Martin 

06,19 LCM Least Common Multiple arguments in X,Y  Ángel Martin 

06,20 L1 Shows line equation in ALPHA a,b in Stack  Ángel Martin 

06,21 LR Linear Regression + Data Set  JM Baillard 
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06,22 LRX LR X-Value + Data Set, intercept  Ángel Martin 

06,23 LRY LR Y-Value + Data Set, abscissa  JM Baillard 

06,24 ODD? Tests for odd value value in X  Ángel Martin 

06,25 PMEAN Generalized Power Mean p in Y;  bbb.eee in X  Ángel Martin 

06,26 PNK Permutations arguments in X,Y  Ángel Martin 

06,27 RCL Stat Reg to Stack none  JM Baillard 

06,28 STLINE Straight Line equation (x1,y1) & (x2,y2) in stack  Ángel Martin 

06,29 ST<> Swap Stack & Stat Registers none  Nelson F. Crowle 

06,30 -DISTRIBTN Section Header n/a  -- 

06,31 BIN Binomial Distribution Prompted by program  Ángel Martin 

06,32 "BNP" Binomial P(n,p,x)=k n,x  in Y, X  JM Baillard 

06,33 "BNP+" Binomial P(n,p,x)<=k n,k,x in stack  JM Baillard 

06,34 C2CP Chi-Square Probability Fnc. n,x  in Y, X  JM Baillard 

06,35 C2DF Chi-square Density Function n,x  in Y, X  Ángel Martin 

06,36 CHI2 Chi^2 Distribution Driver prompts for u value  HP Co. (Stat Pac) 

06,37 "FDST" Snedecor's F-Distribution Driver menu: : "N1 N2 Q"  HP Co. (Stat Pac) 

06,38 FSDF Snedecor's F Density Function Z: N1. Y: N2, X: Point  Eugenio Úbeda 

06,39 "FSCP" Snedecor's F Probability Fnc. n,x  in Y, X  Eugenio Úbeda 

06,40 NRDF Normal Density (m,s) Z: Mean, Y: Sdev, X: Point  Ángel Martin 

06,41 NRCP Normal Probability (m,s) Z: Mean, Y: Sdev, X: Point  Ángel Martin 

06,42 POIS Poisson Distribution prompts for values  Ángel Martin 

06,43 PSDF Poisson Density Function Y: Mean, X: #Events  Ángel Martin 

06,44 "PX" Standard Normal Probability Argument in X  Mike (Stgt) 

06,45 "PXX" Probability between -x and x Argument in X  Mike (Stgt) 

06,46 QNTL Quantile - inverse of NRCP Argument in X  Ángel Martin 

06,47 "TDIST" T-Distribution Driver program Menu driven  HP Co. ?? 

06,48 TSDF Student's T Density Function N in Y, Point in X  Eugenio Úbeda 

06,49 TSCP Student's T Probability Func. n,x  in Y, X  Eugenio Úbeda 

06,50 "XP" Inverse of PX  Argument in X  Mike (Stgt) 

06,51 "XXP" Inverse of PXX Argument in X  Mike (Stgt) 

06,52 -PRIMALITY Section Header n/a   -- 

06,53 1/GM Inverse Gamma Function Argument in X  JM Baillard 

06,54 BETA Beta Function Arguments in X,Y  JM Baillard 

06,55 D% Difference Percent x,y in Stack  Ángel Martin 

06,56 ERF Error Function x in X  Martin - Baillard 

06,57 GMF Gamma Function Argument in X  JM Baillard 

06,58 NXTPRM Next Prime value in X  PoulKaarup 

06,59 PFACT Prime Divisor (factor) Argument in X  Peter Platzer 

06,60 PTWIN Next Twin Primes Argument in X  Peter Platzer 

06,61 PRIME? Prime Test Argument in X  Poul Kaarup 

06,62 RAND Random Number (w/ Timer) none  JM Baillard 

06,63 "SLV" Solve Subroutine x1, x2 in X,Y, fname in Alpha  PPC Members 

 
Note that this module was designed to be self-contained, i.e. there are no dependencies on any other one, 

not even the Library#4 (therefore never mind if you never heard of that one before). All required auxiliary 
functions for the FOCAL programs are included in the third section. 
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1 – Basic Statistical Functions. 

Summation Functions.{ 0,  1,  2,  3,  1/N,  X^N } 

Use them to calculate the resulting sum of a finite series of integer numbers (Triangular Numbers), their 
squares (Squared Pyramidal Numbers), cubes (Squared Triangular Numbers), or generalized (Faulhaber’s) 

powers. Also included is the harmonic number H(n), which sums the reciprocal of the numbers – i.e. a 
particular case of the generalized case with exponent -1. 

The formulas for the first three cases are as follows: 

 

 

•  0  sums the mantissa digits of the number in X. For example: PI, 0 => 40 

 

•  1, 2, 3  calculate the first three cases using the explicit formulas – much faster than performing 

the actual summation even for short series. 

•  1/N  calculates the Harmonic number of the argument in X; that is the sum of the reciprocals of 

the natural numbers (which excludes zero) lower and equal to n. It is used in the calculation of 
numerous special functions, like the Kelvin and the Bessel functions of the second kind, K(n,x) and 

Y(n,x).  

 

 

 
 
 Example: calculate H(5) and H(25). 

 

 5,  [1/N]   =>  2.283333333 

 25, [1/N]  =>  3.815958178 

 
 

•  N^X  Calculates a generalized value of the Faulhaber’s formula for integer values of x. – The few 

first integer values of x have explicit formulas for the result, but that’s not the case for a general 

value, which can also be non-integer. Obviously for x=-1 this function returns identical results than 
the previous one, albeit slower due to the additional complexity of the term. 

 

Example: Check the triangular (x=1) and pyramidal (x=2) formulas for n=10 – which are particular 
cases of the Faulhaber’s Formula, involving Binomial coefficients and Bernoulli’s numbers. See the link 

below for details: http://en.wikipedia.org/wiki/Faulhaber%27s_formula 

 
10, ENTER^, 1, [N^X]  => 55.00000000 

10, ENTER^, 2, [N^X]  => 385.0000000 

 

http://en.wikipedia.org/wiki/Faulhaber%27s_formula
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Single and Duplex Means (to an end). 

In the means department there is a very complete selection of choices: arithmetic, geometric and harmonic 
means are calculated on a set if data registers controlled by the control word “bbb.eee” in X– i.e. beginning 

and end registers, and *not* the statistical registers as defined by REG ! . Also a generalized exponential 

mean is available using the same syntax. 

The AMEAN, GMEAN, and HMEAN functions calculate the means of multiple values stored in data registers.  

Entering the control word describing the register set in X and executing AMEAN, GMEAN, or HMEAN will result 
in that mean being put into X (and the control word saved in LastX).  So, for example, to get one of these 
means for values in registers 10 thru 15, put 10.015 in X and execute the appropriate mean function. 

But there is more:  The PMEAN function is also available for a generalized mean function.  The power “p” is 

put into Y and the control word in X, and the Generalized Power Mean is calculated for the values pointed to 
by the control word.  The PMEAN formula is: 

 

For p=0 this would normally lead to a problem.  However the limit for this expression as p -> 0 yields the 
Geometric Mean, so when p=0, the GMEAN function code is used. 

From the above formula you can see that p=1 yields the Arithmetic mean, and p=-1 yields the Harmonic 

mean.  However fractional and other negative values can be used, and you will notice that as p becomes 
infinite (positive), the mean tends to be the MAX value of the numbers.  As p becomes infinite (negative), the 
mean tends to be the MIN value of the numbers. 

With the exception of the AMEAN program, all values used in the registers must be non-zero positive values.  
Otherwise a DATA ERROR will occur. 

 

Let’s move now to the duplex means on a pair of numbers placed in X and Y registers: the Arithmetic-

Geometric mean AGM and the Harmonic-Geometric mean HGM. An interesting definition of the mean of two 
values occurs when combining Arithmetic, Geometric, and Harmonic means.   

• The Arithmetic-Geometric mean is a special value, defined as the common limit of A=AMean(A,B) 

and B=GMean(A,B) repeated until A-B = 0.   

• The Geometric-Harmonic mean is defined as the limit of A=GMean(A,B) and B=HMean(A,B) repeated 
until A-B = 0. 

AGM calculates the Arithmetic-Geometric Mean, whilst GHM calculates the Geometric-Harmonic mean.   

As an interesting note, AM(A,B) >= AGM(A,B) >= GM(A,B) >= GHM(A,B) >= HM(A,B). 

What happened to the Arithmetic-Harmonic mean?  That is simply the Geometric mean in disguise, thus no 

need for such function. Finally, note that taking p=0.5 in the PMEAN function (on two registers) will NOT yield 
the AGM (and -0.5 will NOT yield the GHM) unless, of course, the register values are identical!  It is not that 

simple to get those values, and the power value required changes depending on the two values chosen for 
AGM or GHM. 
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Combinations and Permutations – two must-have classics. 
 

Nowadays it would be unconceivable to release a calculator without this pair in the function set – but back in 
1979 when the 41 was designed things were a little different. So here there are, finally and for the record. 

 

•  PNK  calculates Permutations, defined as the number of possible different arrangements of N 

different items taken in quantities of K items at a time. No item occurs more than once in an 

arrangement, and different orders of the same R items in an arrangement are counted separately.The 
formula is:  

 

 
 

•  CNK  calculates Combinations, defined as the number of possible sets or N different items taken in 

quantities or K items at a time. No item occurs more than once in a set, and different orders of the 

same R items is a set are not counted separately. The formula is: 
 

 

 
 

UUThe general operation include the following enhanced features: 
 

• Gets the integer part of the input values, forcing them to be positive. 

• Checks that neither one is Zero, and that n>k 

• Uses the minimum of {k, (n-k)} to expedite the calculation time 

• Checks the Out of Range condition at every multiplication, so if it occurs its determined as soon as 

possible 

• The chain of multiplication proceeds right-to-left, with the largest quotients first. 

• The algorithm works within the numeric range of the 41. Example: CNK(335,167) is calculated without 

problems. 

• It doesn't perform any rounding on the results. Partial divisions are done to calculate CNK, as 
opposed to calculating first PNK and dividing it by r! 

 
Provision is made for those cases where n=0 and k=0, returning zero and one as respective results. This 

avoids DATA ERROR situations in running programs, and is consistent with the functions definitions for those 
singularities. 

 

Note as well that there is no final rounding made to the result. This was the subject of heated debates in the 
HP Museum forum, with some good arguments for a final rounding to ensure that the result is an integer. The 

SandMath implementation however does not perform such final “conditioning”, as the algorithm used seems 
to always return an integer already. Pls. Report examples of non-conformance if you run into them. 

 

UUExample UU:  Calculate the number of sets from a sample of 335 objects taken in quantities of 167: 
 

Type:    335, ENTER^, 167, XEQ “CNK“   ->     3,0443587 99 
 

UUExample: UU  How many different arrangements are possible of five pictures, which can be hung on the wall 
three at a time: 
 

Type:    5,  ENTER^,  3,  XEQ “PNK“  ->     60,00000000 

 
The execution time for these functions may last several seconds, depending on the magnitude of the inputs. 
The display will show “RUNNING…” during this time. 
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Linear Regression – Let’s not digress. 
 

The following four functions deal with the Linear Regression, the simplest type of the curve fitting 
approximations for a set of data points. They complement the native set, which basically consists of just 

MEAN and SDEV. 
 

 Function Description Author 

[] CORR Correlation Coefficient of an X,Y sample JM Baillard 

[] COV Covariance of an X,Y sample JM Baillard 

[] LR Linear Regression of an X,Y sample JM Baillard 

 LRX X-Value for a Y point Ángel Martin 

[] LRY Y- value for an X point JM Baillard 

 
Linear regression is a statistical method for finding a straight line that best fits a set of two or more data pairs, 

thus providing a relationship between two variables. Using the well-known method of least squares,  LR   will 

calculate the slope A and Y-intercept B of the linear equation:  Y = Ax + B.  
 

 
 
Results are placed in Y and X registers respectively. When executed in RUN mode the display will show the 

straight-line equation, similar to the STLINE function described before. 
 

UUExample UU: find the y-intercept and slope of the linear approximation for the data set given below: 
 

X 0 20 40 60 80 

Y 4.63 5.78 6.61 7.21 7.78 

 

Assuming all data pairs values have been entered using Y-value, ENTER^, X-value,  + ; we type: 

XEQ “LR”  ->  0,038650000   and  X<>Y  ->  4,856000000  producing the following output in FIX 2: 
 

 
 

As to the remaining functions,  COV  calculates the sample covariance.  CORR  returns the correlation 

coefficient, and  LRY  the linear estimate for the function at the given point. 

 

For the same sample still in the calculator’s memory, we obtain the values: 
 

Covariance = 38.65;     CORR=0.987954828;    LRY=4.894184454 (using Corr value as X) 
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Ratios and other Tools. 
 

 

•  %T  and  D%  are miniature functions to calculate the percent of a number relative to another one 

(its reference), and the delta percent between the numbers in Y(reference) and X(new value). The 

formulas are: 
 

  %T(y,x) = 100 x / y ;  D% = 100 (x-y) /x 
 

Example: the relative percent of 4 over 25 is 16%.-  You type: 25, ENTER^, 4, XEQ “%T”   
Example: the delta percent of a change from 85 to 75 is –11,765% 

 

 

•  GCD  and  LCM  are fundamental functions also inexplicably absent in the original function set. They 

are short and sweet, and certainly not complex to calculate. The algorithms for these functions are 

based on the PPC routines GC and LM – conveniently modified to get the most out of MCODE 
environment. 

 
If a and b arenot both zero, the greatest common divisor of a and b can be computed by using least 

common multiple (lcm) of a and b: 
 

 

 
 

Examples:  GCD(13,17) = 1 (primes), GCD(12,18) = 6; GCD(15,33) = 3 

Examples:  LCM (13,17) = 221;  LCM(12,18) = 36; LCM(15,33) = 165  
 
 

 

•  ST<>  exchanges the contents of five statistical registers and the stack (including L). Use it as a 

convenient method to review their values when knowing their actual location is not required.  

 

•  RCL  recalls the contents of five statistical registers to the stack (including L). It is therefore just 

one half of the previous function. 
 

•  RG?   returns to the X register the current pointer to the statistics registers block. It is identical to 

the function REG? in the 41CX. 

 

 

•  ODD?  and  EVEN?  are simple tests to check whether the number in X is odd or even. The answer 

is YES / NO, and in program mode the following line is skipped it the test is false.  The 

implementation is based on the MOD function, using MOD(x,2) = 0 as criteria for evenness. 

 
 

•  RAND   is a random number generator that uses the current time as seed. If the Time Module is not 

present the function uses the value in X as seed. The result value is within 0 and 1. 

 
•  STLINE   calculates the slope “m” and 0-intercept “p” of a straight line that passes through the 

points (x1, y1) and (x2, y2) stored in the stack registers. The equation is: Y = m X + p 

 

•  L1   puts the straight line equation in the Alpha register, using the values in X- and Y- as slope and 0-

intercept for the line. This function is used internally in the Linear Regression and STLINE functions. 
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Primes and other Relatives. 
 

 

•  PRIME?   Is a primality test function, which will return YES/NO in run mode and skip a line if false in 

a running program. 
 

 

•  NXTPRM  Is a fast and accurate method to obtain the next prime following the value in X (thus not 

itself in case it already is a prime number). 
 

 

•  PTWIN  is similar to NXTPRM, only that it’ll find the next Twin primes following the value in X. Those 

are two consecutive prime numbers p1 and p2, such that p2 = (p1 + 2). 

 
 

•  PFACT   Is a fast and accurate method to obtain prime divisors of the value in X. This function can 

be used repeatedly to obtain the complete prime factor decomposition, see the short FOCAL program 
example provided below. 

 
 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
As an exercise, improve this program so that the repeated factors are grouped in an exponent, as 

opposed to in the single fashion listing in ALPHA. You can refer to the SandMath and SandMatrix 
modules for more sophisticated Prime Factorization programs. 

 
 

  

Line Instruction Line Instruction 

01 LBL “PFCTR” 13 X=Y? 

02 CLA 14 GTO 05 

03 AINT 15 “|-*” 

04 “|- =” 16 / 

05 LBL 00 17 GTO 00 

06 ENTER^ 18 LBL 05 

07 PFACT 19 AVIEW 

08 AINT 20 END 
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2 – Statistical Distributions. 

Moving on to the next section, the following pages describe the different statistical distribution included in the 

module.  Some will have individual functions to perform the calculations independently, whilst other programs 
are of the “driver” type – providing a micro environment to do calculations related to a given distribution. 

 
It is important to note the naming conventions for these functions. In general there are three types: 

 

- Distribution density function – use “DF” as last two letters of function name 
- Distribution Cumulative Probability – use “CP” as last two letters of function name 

- Distribution “driver” program  - some include the word “DIST” or “DST”  in their names 
 

The following table shows a summary of the available functions by type: 

 

Distribution  Density Function Cumulative Probability Driver 

Normal NRDF NRCP -- 

T-Student TSDF TSCP TDIST 

F-Snedecor FSDF FSCP FDIST 

Chi-Squared C2DF C2CP CHI2 

Poisson PSDF -- POIS 

Binomial BNP BNP+ BIN 

 
 

While some of these functions are implemented as MCODE routines, others are a combination of some module 
functions in short FOCAL “wrappers” – which appear as MCODE functions in the module’s FAT and in your 

own FOCAL code as program steps. Note however that they likely utilize data registers and don’t always follow 

the “argument to LastX” rule due to their hybrid nature. 
 

 
A number of auxiliary functions are provided to facilitate the calculation of the distributions listed above. The 

more important ones are the error function erf(x) – implemented in MCODE as a particular case of the 
hypergeometric function -, as well as Euler’s Gamma and Beta functions (and inverse Gamma as well for 

convenience). These last two use a continuous fractions method for the calculation – slightly faster than the 

Lanczos formula and for the most part with comparable accuracy. 
 

Unfortunately there wasn’t enough room left in the module to also include the Incomplete Gamma and 
Incomplete Beta functions, therefore some approximation formulas are used for the cumulative probability of 

the T- and F- distributions. Note however that these two functions are included in the SandMath Module in 

case you need them.  
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Poisson Standard Distribution.{  PSD  ,  POIS  } 

 
 

 PSD  is the Statistical function that calculates the UPoisson Standard Distribution U. In probability theory and 

statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given 
number of events occurring in a fixed interval of time and/or space if these events occur with a known 

average rate and independently of the time since the last event 
 

A discrete stochastic variable X is said to have a Poisson distribution with parameter λ>0, if for k = 0, 1, 2, ... 

the probability mass function of X is given by: 
 

 

 
 

Its inputs are k and  in stack registers X 

and Y. PSDF’s result is the probability 

corresponding to the inputs. 
 

 

 
 

 
 

 

 
 

 
 

 
 

Example 1.- 
 
Calculate the probability mass function for a Poisson 

distribution with parameters: l=4, k=5 
 

4,  ENTER^,  5,  XEQ “PSD” 

Returns:   0.156293452 
 

 
Example 2: do the same for l=10 and k=10 

 

10,  ENTER^,  XEQ “PSD” 
Returns:   0.125110036 

---  
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Normal Distribution Functions.{  NRDF  ,  NRCP  } 

 
In probability theory, the normal (or Gaussian) distribution is a continuous probability distribution that has a 

bell-shaped probability density function, known as the Gaussian function or informally as the bell curve: 
 

 

 
 
The parameter μ is the mean or expectation (location of the peak) and σ^2 is the variance. σ is known as the 

standard deviation. The distribution with μ = 0 and σ^2 = 1 is called the standard normal distribution or the 
unit normal distribution 

 

 NRDF  expects the mean and standard deviation in the Z and Y stack registers, as well as the argument x in 

the X register. Upon completion x will be saved in LASTx, and f(,,x) will be placed in X.  It has an all-

MCODE implementation, using 13-digit routines for increased accuracy. 
 

 
 

 
 

The figures above show both the density functions as well as the cumulative probability function for several 
cases. The Error function ERF can be used to calculate the NRCP – no need to apply brute force and use 

NRDF in an INTEG-like scenario, much longer to obtain or course. The relation to use is: 
 
 

 

 

 
 
UU 
 
 
 

Example program: UU  The routine below calculates CPF. Enter μ, σ, and x values in the stack. 
 

01  LBL “NRCP” 08  / 
02  RCL Z  09  ERF 

03  -   11  INCX 

04  X<>Y  12  2 
05  /   13  / 

06  2   14  END 
07  SQRT 
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Cumulative Probability Function and its Inverse.{  PX  ,  PXX  ,  XP ,  XXP  ,  QNTL } 

 
The following routines perform the calculation of the cumulative probability and its inverse, i.e. to obtain the 

value x that yields a given value for the probability. The inverse functions are based on the Secant or Halley’s 
methods to iterate for the solution. 

 

As a convenience shortcut, functions PXX and XXP are provided to obtain the CENTRAL probability within a 
certain zone of the arguments [-x, x] – and the inverse value of X to yield said probability. The expression to 

obtain this is given by the formula:  PXX = 2 P(x) - 1 
 

Note that all these functions assume a Standard Normal distribution, with zero mean and standard deviation 

equal to 1, that is:  =1 and =0 

 
 

The Secant method is implemented as per the PPC ROM routine SLV – also contained in this module. Refer to 
the PPC ROM manual for details on its operation if used independently from these functions. 

 

 
Halley’s method uses the following expression to calculate the successive approximations to the root: 

 

 

 
 
where our function in this case is f(x) = [NRCP(x) – Value], thus we take advantage of the fact: 

 

f ‘(x) = NRDF and  
f “(x) = -k f ‘(x);  

 
and therefore the general expression above gets simplified considerably since f ‘(x) is in both numerator and 

denominator and thus cancelled out. 

 
 

UUExamples. UU      Which argument yields a probability of 75% for a Standard Normal distribution? 
 

a) Using XP:   0.75,  XEQ “XP”  -> 0,674489750 
b) Using QNTL:  0.75,  XEQ “QNTL”  -> 0,674489750 

 

What is the cumulative probability for the argument obtained in the previous example? 
 

Type:    0, ENTER^, 1, RCL Z, XEQ “NRCP”,  -> 0,750000000 

 
The accuracy is quite good, also holding up well across the entire range of values for both functions – thanks 

to the iterative methods employed. Execution speed is slightly faster for XP than for QNTL, but this one is 

more accurate for arguments in the vicinity of 1. 
 

 
Note: By comparison with these functions, the SandMath module uses the inverse Error Function IERF to 

calculate the inverse probabilities. That method is much faster and slightly more accurate – but there wasn’t 

enough room left in this module to implement it. 
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Chi-Squared Distribution  {  C2DF  ,  C2CP  ,   CHI2  } 

 
In probability theory and statistics, the chi-squared distribution (also chi-square or χ²-distribution) with k 

degrees of freedom is the distribution of a sum of the squares of k independent standard normal random 
variables. It is a special case of the gamma distribution and is one of the most widely used probability 

distributions in inferential statistics, e.g., in hypothesis testing or in construction of confidence intervals. When 

it is being distinguished from the more general non-central chi-squared distribution, this distribution is 
sometimes called the central chi-squared distribution. 

 

 
 

There are three functions available in the XMSTAT module dealing with this distribution.  
 

• This first two C2DF and C2CP are independent implementations for the density and probability 

functions respectively, using the values in Y (degrees of freedom) and X (argument). The result is 
placed in X but no LastX is done. 

 

• The third and last CHI2 is a driver routine to calculate both the density function and the cumulative 

probability. After prompting for the parameter  it presents the simple menu of choices shown below: 

 

      
 

Simply enter the argument and press [A] for the Probability distribution function (same as CHDF), or [B] for 

the cumulative distribution function P(x). See the formulas below: 
 

 
 
Examples: CHDF(2, 0) = 0.5  and CHCP (2,1) => P=0.393469341 

 
Note that for the value combination m=2 and X=0 the built-in power function Y^X will return DATA ERROR. 

This has been overcome in CHDF (but not in the driver program) by using an alternative version of Y^X that 

returns 0^0=1.  
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Student’s T-Distribution  {  TSDF  ,  TSCP  ,  TDST  }  

 
In probability and statistics, Student's t-distribution (or simply the t-distribution) is any member of a family of 

continuous probability distributions that arises when estimating the mean of a normally distributed population 
in situations where the sample size is small and population standard deviation is unknown. It was developed 

by William Sealy Gosset under the pseudonym Student. Whereas a normal distribution describes a full 

population, t-distributions describe samples drawn from a full population; accordingly, the t-distribution for 
each sample size is different, and the larger the sample, the more the distribution resembles a normal 

distribution. 
 

  
There are three functions available in the XMSTAT module dealing with this distribution.  

 

• This first two are independent functions to calculate the density function (TSDF) and the CENTRAL 

probability (TSCP)  – between [-x, x] - independently, taking the input parameters from Y (degrees of 
freedom) and X (argument). The result is placed in X but no LastX is done. 

 

• The third one (TDIST) is also a driver program in the same guise as those seen previously.  The 
menu presents the three usual choices:  

 

Degrees of freedom in [A],  

Density function in [B], and  

Cumulative Probability in [C]. 
 

 
TSDF and TSCP are hybrid MCODE/Focal functions that don’t make any use data registers, but they use the 

ALPHA registers and the stack.  TDIST on the other hand is data-register hungry, you need to have SIZE 12 
or higher for this routine to work correctly. 

 

Examples:   TSDF(4, 1) = 0.214662526;  and   TSCP(4, 1) =  0.626099034 
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Snedecor’s F-Distribution  {  FSDF  ,  FSCP  ,  FDST  }  

 
The F-distribution, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald 

Fisher and George W. Snedecor) is, in probability theory and statistics, a continuous probability distribution. 
If a random variable X has an F-distribution with parameters n1 and n2, we write X ~ F(n1, n2). The 

parameters n1 and n2 are positive integers, but the distribution is well-defined for positive real values of these 

parameters. 
 

  

 

There are three functions available in the XMSTAT module dealing with this distribution.  
 

• This first two are independent functions to calculate the density function (FSDF) and the TAILING 

probability (FSCP)  – between [x, infinite[ - independently, taking the input parameters from Z, Y 
(degrees of freedom) and X (argument). The result is placed in X but no LastX is done. 

 

• The third one (FDST) is also a driver program in the same guise as those seen previously.  The menu 
presents the three usual choices:  

 

Parameter n1 in [A],  
Parameter n2 in [B], and  

Cumulative Probability in [C].  
 

 
FSDF and FSCP are hybrid MCODE/Focal functions that don’t make any use data registers, but they use the 

ALPHA registers and the stack.  For FDST however, you need to have SIZE 08 or higher for this routine to 

work correctly. 
 

Examples:  FSDF(7, 6, 4.3) = 0.022012383, and FSCP(7, 6, 4.3) = 0.047640800 
 

 

Note:  The implementation for the Cumulative Probability does not use the incomplete beta function but 
trigonometric approximations. It is therefore faster but not so accurate for small values of the argument x. 
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Binomial Distribution  {  BNP  ,  BNP+  ,  BIN  }  

 
In probability theory and statistics, the binomial distribution with parameters n and p is the discrete probability 

distribution of the number of successes in a sequence of n independent yes/no experiments, each of which 
yields success with probability p.  A success/failure experiment is also called a Bernoulli experiment or 

Bernoulli trial; when n = 1, the binomial distribution is a Bernoulli distribution. The binomial distribution is the 

basis for the popular binomial test of statistical significance. 
 

Probability Singe-Event function 
 

In general, if the random variable X follows the binomial distribution with parameters n ∈ ℕ and p ∈ [0,1], we 
write X ~ B(n, p). The probability of getting exactly k successes in n trials is given by the probability mass 

function:    

 
 
Cumulative Probability function.   
 
The cumulative Probability function can be expressed as: 
 

  
where [k] is the "floor" under k, i.e. the greatest integer less than or equal to k. 

 
 

There are three functions available in the XMSTAT module dealing with this distribution.  
 

• This first two are independent functions to calculate the density function (BNP) for a single event and 

the cumulative probability (BNP+)  for all previous events – in both cases taking the input 

parameters from Z, Y (n and p) and X (single or multiple event). The result is placed in X but no LastX 
is done. Theses routines use data registers R00 to R03. 

 

• The third one (BIN) is also a driver program but contrary to the previous ones, this will prompt 
sequentially for the parameters and the number of events – to calculate the same value as BNP (i.e. 

non-cumulative case). 
 

Note that to obtain a cumulative probability we could simply add all the single-event probabilities for those 

arguments less than or equal to argument. The implementation of BNP+ however uses a different approach, 
which is faster that the simple addition of individual factors.  

 
 

Examples: calculate BNP(100, 1/6, 15) as single-event and also cumulative: 

 
BNP(100, 1/6, 15) =  0.100236634;   and  BNP+(100, 1/6, 15) = 0.387657550 
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Appendix. Some FOCAL Program Listings 

 

1. Binary Distribution, by JM Baillard. 
 

01  LBL "BNP+"  

02  STO 00  

03  SIGN  

04  X<>Y  

05  STO 01  

06  -  

07  ST/ 01  

08  X<>Y 

09  STO 02  

10  Y^X  

11  SIGN  

12  RCL 

00          

13  X=0?  

14  GTO 02   

15  CLX  

16  STO 03 

17  LASTX  

18  LBL 01  

19  LASTX   

20  RCL 

01          

21  *  

22  RCL 02  

23  RCL 03   

24  - 

25  *  

26  RCL 03   

27  1  

28  +  

29  STO 

03          

30  /  

31  +  

32  DSE 00 

33  GTO 

01          

34  SIGN  

35  LBL 02   

36  LASTX  

37  END 

 

 
2. Chi-Squared Distribution, by JM Baillard 

 

01  LBL "CH2"  

02  STO N  

03  X<>Y  

04  STO O  

05  2  

06  ST+ Y  

07  /  

08  GAMMA  

09  RCL N  

10  2 

11  /  

12  E^X  

13  ST* Y  

14  X<> L  

15  RCL 

O             

16  2  

17  /  

18  Y^X  

19  X<>Y  

20  / 

21  STO M  

22  1  

23  RCL 

O             

24  1  

25  ENTER^   

26  LBL 01  

27  X<> T  

28  RCL N  

29  *  

30  R^ 

31  2  

32  +  

33  STO T  

34  /  

35  STO T   

36  X<>Y  

37  ST+ Y  

38  X#Y?  

39  GTO 

01           

40  RCL M 

41  *  

42  RCL N  

43  SIGN  

44  X<> 

O             

45  X<>Y  

46  CLA  

47  END 

 

 

3. Normal Distribution;  by “Mike (Stgt)” 
 
 01*LBL "XXP"    25 ENTER^       49 FS?C 18      73*LBL 09      97 X#0? 

 02 X<0?         26 ENTER^       50 CHS          74 RCLFLAG     98 GTO 01 

 03 LOG          27 STO O        51 "GI"         75 STO 10      99 RCL 10 

 04 1            28 1308 E-6     52 ASTO 06      76 FIX 7       100 STOFLAG 

 05 +            29 *            53  E-3         77 LASTX       101 RCL N 

 06 2            30 ,189269      54 X<>Y         78 ENTER^      102 2 

 07 /            31 +            55 SF 10        79 X^2         103 / 

 08*LBL "XP"     32 *            56 XROM "SV"    80 STO N       104 CHS 

 09 X<=0?        33 1,432788     57 CF 10        81 SIGN        105 E^X 

 10 LOG          34 +            58 RTN          82 STO O       106 PI 

 11 STO 11       35 *            59*LBL "PXX"    83 X<>Y        107 ST+ X 

 12 ,5           36 1            60 ABS          84 STO M       108 SQRT 

 13 X>Y?         37 +            61 SF 18        85 ABS         109 / 

 14 SF 18        38 X<> O        62*LBL "PX"     86*LBL 01      110 RCL M 

 15 SIGN         39 ,010328      63 ABS          87 LASTX       111 * 

 16 X<>Y         40 *            64 6            88 RCL N       112 ENTER^ 

 17 X>Y?         41 ,802853      65 X>Y?         89 RCL O       113 FC?C 18 

 18 SIGN         42 +            66 GTO 09       90 2           114 ,5 

 19 FC? 18       43 *            67 LASTX        91 +           115 + 

 20 -            44 2,515517     68 SIGN         92 STO O       116 FC? 10 

 21 1/X          45 +            69 X<0?         93 /           117 RTN 

 22 X^2          46 RCL O        70 CLX          94 *           118 RCL 11 

 23 LN           47 /            71 CF 18        95 ST+ M       119 - 

 24 SQRT         48 -            72 RTN          96 RND         120 END 

 

This is published under the auspices of the Q-License,  see here for details. See next page for the copy. 

 

https://opensource.org/licenses/QPL-1.0
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