
FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 1 OF 92

Written & Programmed by

Greg McClure and Ángel Martin

Revision VF++, May 2024

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 2 OF 92

This compilation revision 1.7.3

Copyright © 2017-2024 Ángel Martin & Greg McClure

Published under the GNU software license agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Thanks to Mark Fleming for his through revisions to the manuals and suggesting numerous

enhancements to the ROM.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

http://www.hp41.org/

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 3 OF 92

Table of Contents

1. Towards a Visual FOCAL Language: VF++
a. Teaching new tricks to an ol’ dog. 4

b. Scope, Intent and Dependencies . 4

c. Module function Summary . 6

2. Syntax and Rules of Engagement
a. Variables, constants and parameters 9

b. Formula Entry remarks . 9

c. Formula Evaluation rules. 10

d. Syntax Table and keyboard Overlay. 11

e. Chained evaluations & Error handling. 14

f. EVAL Launcher and Alpha to Memory 15

g. Other Utility functions. 17

3. Example Programs

a. Vector distances and Dot product. 19

b. Polynomial Evaluation using Honer’s method. 20

c. Orthogonal Polynomials: Legendre, Hermite, and Chebyshev’s . . 21

d. Real Roots of Quadratic Equation. 22

e. Solve and Integrate Reloaded. 23

f. Use of EVAL$ with FINTG and FROOT . 24

g. Lambert Function.. 25

4. EVAL$ Advanced Applications

a. Advanced test comparisons with EVAL?. 26

b. Evaluating Sums & Series with EVAL 28

c. Evaluating Products with EVALP . 29

d. Appendix 1. Sub-functions in the auxiliary FAT 48

e. Appendix 2. Eval$ Buffer Structure. 49

5. VF++ Conditional Structures . 33

a. WHILE we’re at it: Putting EVAL? to work 34

b. What IF ?; Getting EVAL? money’s worth 36

c. Even more difficult: FOR…NEXT loops 42

d. SELECT-CASE Structures . 44

6. Eval_APPS Companion ROM . 51

a. Scripting Language facility using X-Mem. 58

Appendix4. MCODE Underpinnings of VF++ Structures 71

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 4 OF 92

Formula EvaluationROM

Visual FOCAL++

HP-41 Module

Introduction. Teaching new tricks to an old dog.

Welcome to the Formula Evaluation ROM, a plug-in module for the HP-41 platform that allows you to

evaluate formulas typed in the ALPHA registers directly – without the need for RPN programs.

It is generally accepted that Symbolic Algebra and CAS are well beyond the scope of a venerable

machine like the HP-41, quickly approaching40-year-old architecture and design. Some pioneering

attempts were made in the old days, but their practical applicability (and very slow performance)

would render them into little more than exploratory incursions into the field.

Fast-forward to the present with PC emulators and SY’s 41-CL boards capable of TURBO speed – add

to that the stubborn dedication of MCODE programmers refusing to accept defeat, and the results are

interesting projects that push the limits of the original designs, like this one.

Scope, Intent and Dependencies

The core of the routines is based on Greg McClure’s idea for the design of the Symbolic Buffer – a

dedicated structure in the I/O memory area capable to store unformatted data, and therefore suitable

for abstract constructs like operations, function codes, and of course variable values. Wrapped around

that core is a set of functions that allow the user to input formulas in a convenient way, save them in

and recall them from data registers, and evaluate the results. Also remember that supporting all math

are the 13-digit OS routines doing the number crunching.

The initial design had very modest goals but was soon enough extended to include a comprehensive

set of functions and operations, only restricted by the inherent limitations of the LCD display, the

keyboard and other design aspects. EVAL and EVALP have added support for Direct evaluation of

formulas with sums and products, and EVAL? provided a general-purpose conditional testing based

on expressions combining multiple variables and math logic between them.

Note that the EVAL$ functions are programmable and can be used to replace calls to FOCAL

subroutines (typically made using “XEQ IND Rnn” with the ALPHA name stored in Rnn). In fact, this

module includes versions of SOLVE and INTEG programs using EVAL$ directly.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 5 OF 92

Subsequent revisions added to the mix an intriguing set of new functions for a higher-level

programming experience: both DO/WHILE loops and IF/ELSE/ENDIF groups are available as direct

applications of the underlying EVAL$ and EVAL? functions of the module. These were followed by

daring implementations of FOR…NEXT and SELECT/CASE/ENDSLCT structures to complete the set of

Conditional Structures.

As for dependencies, this module is a Library#4-aware ROM that requires the library#4 to be plugged

in. Also, the ROM is only compatible with the CX OS, as internal routines from it are used. See the

diagram below for a conceptual summary of the interdependencies between the VF++ plug-in

modules

This is not an AOS Module – even if you’re already making that connection in your mind. If anything,

it’ll be more akin to the CALC mode on the HP-71, albeit with the obvious huge differences in power

and flexibility. The Formula Evaluation concept is also somewhat similar to the AECROM’s Self-

Programming facility, which also uses the ALPHA register to enter the definition formula. However,

with the Evaluation functions there are no FOCAL programs involved to calculate the results.

From low-level routines to the keyboard overlay, a lot of work went into making the Formula

Evaluation ROM. Much of it is transparent to the user, but it all plays an important role when it comes

to the moment to put it to a good use. We hope you find the module useful and enjoy using it as

much as we have enjoyed writing it !

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 6 OF 92

Formula Evaluation ROM – Function Summary

The table below lists all functions available in the module. The Main FAT section comprises 39

functions, while the Auxiliary FAT section adds another set of 32 functions. All of them are

programmable and directly accessible by the user.

Name Description Input Author

00 -FORM EVAL+ Section header n/a n/a

01 ^FRMLA _ Enters Formula in ALPHA Uses Custom Keyboard Ángel Martin

02 EVAL$ Evaluates Formula -> X Expression in ALPHA Greg McClure

03 EVALY Evaluates Formula ->Y Expression in ALPHA Martin-McClure

04 EVALZ Evaluates Formula ->Z Expression in ALPHA Martin-McClure

05 EVALT Evaluates Formula ->T Expression in ALPHA Martin-McClure

06 EVALR _ _ _ Evaluates -> Data Register Expression in ALPHA Martin-McClure

07 GET= _ Recalls parameter value a,b,c,d,e in prompt Ángel Martin

08 LET= _ Sets Parameter Value a,b,c,d,e in prompt Ángel Martin

09 SHOW= _ Shows Parameter Value a,b,c,d,e in prompt Ángel Martin

10 SWAP= _ Swaps Parameter and X a,b,c,d,e in prompt Ángel Martin

11 SF# _ _ _ Sub-function by index sub-fnc. Index# Ángel Martin

12 SF$ _ Sub-function by Name sub-fnc. Name Ángel Martin

13 A-PM ALPHA to Program Memory String in ALPHA Ángel Martin

14 EVL _ Eval Launcher Prompts for destination Ángel Martin

15 -EVAL$ FNS Section header n/a n/a

16 RCL$ _ _ Recalls Formula to ALPHA Prompts for Rg# Ángel Martin

17 RG>ST _ _ Registers to Stack Prompts for Re# Ángel Martin

18 ST<>RG _ _ Swaps Stack and Regs Reg# in Prompt Ken Emery

19 ST>RG _ _ Stack to Regs Prompts for Rg# Ken Emery

20 STO$ _ _ Stores Formula in Memory Prompts for Rg# Ángel Martin

21 SWAP$ _ _ Swaps Alpha and Regs prompts for Rg# Ángel Martin

22 “EVAL?” Evaluates Boolean Tests Expressions in ALPHA Ángel Martin

23 EVAL Sums and Series Expression in ALPHA Ángel Martin

24 EVALP Products Expression in ALPHA Ángel Martin

25 LEFT$ Extracts Left text #Chars in X Ross Colling

26 RIGHT$ Extracts right text #Chars in X Ross Colling

27 SWAP$ _ _ Swap ALPHA and Regs Reg# in prompt Ángel Martin

28 DO Begins While Loop WHILE statement below Ángel Martin

29 WHILE Ends While Loop Expression in ALPHA Ángel Martin

30 IF Begins IF group Expression in ALPHA Ángel Martin

31 ELSE Branches IF ENDIF statement below Ángel Martin

32 ENDIF Ends IF group none Ángel Martin

33 FOR _ _ Begins For/Next loop Bbb.eee in X Ángel Martin

34 NEXT _ _ Ends For/Next loop none Ángel Martin

35 SELECT _ _ Opens SELECT Structure Prompts for Reg# Ángel Martin

36 CASE _ _ _ Individual CASE option Prompts for Value Ángel Martin

37 CASELSE Unconditional Clause none Ángel Martin

38 ENDSLCT Closes SELECT Structure none Ángel Martin

0 -AUX FNS Section header n/a n/a

1 FILL Fills Stack w/ X-value value in X J.D. Dodin

2 SKIP Skips Next PRGM Line Program code Erik Blake

3 EVALb _ Evaluates -> Buffer Register Expression in ALPHA Ángel Martin

4 EVALL Evaluates Formula -> L Expression in ALPHA Martin-McClure

5 EVAL# EVAL by index Index in R00 Greg McClure

6 LADEL Left ALPHA delete Text in ALPHA Ross Colling

7 RADEL Right ALPHA delete Text in ALPHA Ross Colling

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 7 OF 92

Name Description Input Author

8 TRIAGE Variable assignment ASCCI file record Martin-McClure

9 WORKFL Current File Name Appended to ALPHA Sebastian Toleg

10 CLRB6 Clear Buffer#6 Buffer#6 in Memory Greg McClure

11 CHK$ Checks Syntax Expression in ALPHA Ángel Martin

12 TST$ Test ALPHA operators { "!=", "=". "<", ">"} Ángel Martin

13 PSHB6 Push X to Buffer#6 Data in X Greg McClure

14 POPB6 Pop data from Buffer#6 Data in buffer reg Greg McClure

15 NXTCHR Get Next Char Text in ALPHA Greg McClure

16 PRVCHR Get Previous Char Text in ALPHA Greg McClure

17 B7>ST Copies buffer to Stack None Ángel Martin

18 ST>B7 Copies Stack to Buffer None Ángel Martin

19 BLIP Make a Sound None Ángel Martin

20 B6? Buffer #6 Check Data in I/O Greg McClure

21 B7? Buffer#7 Check Data in I/O Ángel Martin

22 DGT Sum of Mantissa Digits Number in X Ángel Martin

23 ZOUT Shows Complex value Re in X, Im in Y Ángel Martin

24 CAT+ _ Sub-function CATalog R/S, SST, BST. XEQ Ángel Martin

25 XQ>GO Pops the first RTN addr Skips the 1st. return HåkanThörngren

26 DRTN2 Duplicate 2nd RTN addr Overwrites 1st RTN Ángel Martin

27 KRTN2 Kills 2nd. RTN addr Skips the 2nd. Return Ángel Martin

28 ?RTN Tests for pending RTN Skips next line if False Doug Wilder

29 RTNS Number of pending RTN Data in RTN stack Ángel Martin

30 DTST Display Test none Chris Dennis

32 $KY?N _ Bulk Key Assignments Prompts Y/N, Cancel HP Co.

Additionally, the EVAL_APPS ROM has a library of pre-programmed applications, as follows:

00 -EVAL APPS Section header n/a n/a

01 AINT ALPHA integer part Value in X Fritz Ferwerda

02 “ARPXY” Alpha Replace Y by X Pos in Y, Chr$ in X Greg McClure

03 “IT$ Integrates [a,b] and N in stack Ángel Martin

04 “SV$” Solves f(x)=0 Guess in X PPC Members

05 “AGM” Arithm-Geom. Mean x, y in X, Y Ángel Martin

06 “d2$” 2D-Distance P1, P2 in Stack Martin-McClure

07 “d3$” 3D-Distance Prompts for Vectors Martin-McClure

08 “DOT$” Dot Product 3x3 Prompts for Vectors Martin-McClure

09 “CL$” Ceiling Function Argument in X Ángel Martin

10 “FL$” Floor Function Argument in X Ángel Martin

11 “HRON$” Triangle Area (Heron) A, b, c in Y,Z,T Angel Martin

12 “LINE$” Line equation thru 2 points Y2,X2,Y1,X1 in Stack Angel Martin

13 “NDF$” Normal Density Function in Z, in Y, x in X Ángel Martin

14 “P4$” Polynomial Evaluation Prompts for Coefficients Ángel Martin

15 “QRT$” Quadratic Equation Roots Coefficients in Z, Y, X Martin-McClure

16 “R$S” Rectangular to Spherical {x, y, z} in X, Y, Z Ángel Martin

17 “S$R” Spherical to Rectangular {R, phi, theta} in X, Y, Z Ángel Martin

18 -$AND MTH Section header n/a n/a

19 “KK$” Elliptic Integral 1st. Kind argument in X Ángel Martin

20 “NCK$” Combinations n in Y, k in X Ángel Martin

21 “NPK$” Permutations n in Y, k in X Ángel Martin

22 “LEG$” Legendre Polynomials order in Y, argument in X Ángel Martin

23 “HMT$” Hermite’s Polynomials order in Y, argument in X Ángel Martin

24 “TNX$ Chebyshev’s Pol. 1st. Kind order in Y, argument in X Ángel Martin

25 “UNX$” Chebyshev’s Pol. 2nd. Kind order in Y, argument in X Ángel Martin

26 “e^X” Exponential function Argument in X Ángel Martin

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 8 OF 92

Name Description Input Author

27 “ERDO$” Erdos-Borwein constant None Ángel Martin

28 “FHB$” Generalized Faulhaber’s N in Y, x in X Ángel Martin

29 “HRM$” Harmonic Number N in X Ángel Martin

30 “GAM$” Gamma function (Lanczos) Argument in X Ángel Martin

31 “JNX$” Bessel J integer order n in Y, x in X Ángel Martin

32 “LNG$” LogGamma Argument in X Ángel Martin

33 “PSI$” Digamma function Argument in X Ángel Martin

34 “WL$” Lambert W Function Argument in X Ángel Martin

35 “ERF$” Error Function Argument in X Ángel Martin

36 “CI$” Cosine integral Argument in X Ángel Martin

37 “SI$” Sine Integral Argument in X Ángel Martin

38 “JDN$” Julian Day Number MDY Date in {Z,Y,X} Ángel Martin

39 “CAL$” Calendar Date JND in X Ángel Martin

40 -SCRIPT EVL Section Header n/a n/a

41 “EVALXM” Evaluates an XM File ASCII File Script Greg McClure

42 “EVLXM+” Executes Script File File Name in ALPHA Greg McClure

43 1ST 1st. Position Program usage Greg McClure

44 2ND 2nd Position Program usage Greg McClure

45 3RD 3rd Position Program usage Greg McClure

46 4TH 4th Position Program usage Greg McClure

47 “EVL+” Enhanced EVAL Formula in ALPHA Martin-McClure

48 “EVLP+” Enhanced EVALP Formula in ALPHA Martin-McClure

49 “GMXM” Makes GAMMA Script none Martin-McClure

50 ^01 Puts chars in R00-R01 String in ALPHA Martin-McClure

51 +REC Advance File Record Selected XM File Martin-McClure

52 “FCT#” Factorial using Do/While Argument in X Ángel Martin

53 “FIB#” Fibonacci using Do/While Argument in X Ángel Martin

54 “ULAM$ Collatz’ Conjecture Argument in X Ángel Martin

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 9 OF 92

Syntax and Rules of Engagement.{ ^FRMLA, EVAL$ }

Syntax rules always come together with this kind of functionality by definition: the formulas must

abide with the expected forms and formats for the Evaluation engine to decode them properly.

Obviously, power users can use a free-form manual typing in ALPHA (which requires access to curved

parenthesis and other special characters, as provided by the AMC_OS/X Module)– but a much more

convenient approach is to use the ^FRMLA facility that chooses the right mnemonics for the

functions and assists with the editing.

Here the 41-LCD limited length and modest character set force some compromises for practical and

effective rules, still meaningful enough to be unambiguous and easily recognized by the user. A good

balance between those two is the ultimate goal of every design.

Conceptually speaking, formulas are expressions that contain references to three components: Data,

Operators, and Functions. The data is further sub-divided in variables, parameters, and constants.

These are expected to be in the following arrangement:

 Variables are the stack registers contents, and are referenced by the corresponding register

letter {XYZTL}. ALPHA DATA contents are not allowed.

 Constants are explicit integer values (up to 9 digits) typed directly in the LCD, and

 Six additional parameters referenced by the lower-case letters {a, b, c, d, e} and the upper

case “F”, with values stored previously from X into the parameter buffer using function

LET=. You can also Swap, Recall or View their values using SWAP=, GET= and SHOW=,

followed by the corresponding parameter letter.

Formula entry general remarks:

 The special characters are entered automatically by ^FRMLA; some examples are the left

and right parenthesis, the hash sign (#) for unary negative, the “alien” sign for the Greek

letter , and the ampersand (&) for the MOD function.

 Two- and Three-character mnemonics are completely deleted when using the back-arrow

key. Underscores replace the deleted characters, and are removed appropriately with the

next character entry

 The LCD will only show the last 12-characters typed in, without any scrolling to the left if you

delete back passed that point – at which point you’ll be flying blind…

 During the entry process some characters show punctuation signs (like dot, colon). This is for

editing purposes only (to inform the back arrow of the length to delete), and they won’t be

transferred to ALPHA in the final form.

 The formula entry is terminated pressing [ALPHA] or [R/S] indistinctly. This will show the

formula and return control to the Operating system. Note that if close parenthesis are missing

they will be automatically added to the formula.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 10 OF 92

 ALPHA contains the complete expression, which can be up to 24 characters long (an audible

tone will sound if you reach the limit). If your expression is longer, you’ll need to break it in

two and evaluate each part sequentially.

 As a bit of intelligence logic, the function will automatically add a left parenthesis right after

any function mnemonic has been entered.

 There is a partial built-in syntax checking performed on exit, which verifies matching counts

of left and right parenthesis. Too many rights will trigger a “SYNTAX ERR” message, whilst if

there are more lefts than rights the code will complete the expression appending as many

right parentheses as needed to make the counts match.

 Any other improper expressions won’t be noticed until their evaluation time by EVAL$

Formula evaluation Rules:

 All operations must be declared explicitly, i.e. not implicit multiplication using “XY” – it needs

to be “X*Y”. Ditto for constants, like “2*”

 For equal-precedence operations, the interpretation is always done from left to right. Thus for

instance, “X^Y^Z” calculates (x^y)^z, and “X&Y&Z” calculates MOD(MOD(x, y), z)

 Following the standard conventions, powers have precedence over all other operators

(addition, subtraction, multiplication, division, modulus). Thus “Y*5^Z” calculates y(5^z), and

not 5y^z, which would be typed “(Y*5)^Z”

 Alsomultiplication, division, and modulus exponents have precedence over the addition and

subtraction. Thus “X+3*Y” calculates x+(3.y), and *not* (x+3).y - and “2^X+5” calculates

2^x+5, and *not* 2^(x+5) – which would be typed “2^(X+5)”

 Multiplication, division, and modules have the same precedence level with one another, thus

their interpretation follows the “from left to right” rule as stated before.

 And finally, addition and subtraction also have the same precedence level. i.e. the expression

“2-5+1” calculates (2 -5) +1 = -2, and *not* 2 – (5+1) = -4 ; which would be typed as:

“2-(5+1)” instead.

 As hinted at above, you need to use parenthesis to force an interpretation different from the

standard convention. Always remember that “with power comes responsibility” … so refrain

from typing nonsensical strings if you can avoid it ;-)

In summary:

^ is the highest precedence

*, /, and &(mod) are the next highest precedence and are considered equal (left to right)

+, - are the lowest operator precedence and are considered equal (left to right)

All together now: “X + Y – Z * T / L ^ 3”would be: (X + Y) – ((Z * T) / (L ^ 3))

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 11 OF 92

Formula Evaluation Syntax Table

Finally, the tables below show the symbols and abbreviations used by the functions. All in all, quite a

sizable set covering the basic functions plus the Hyperbolic added to the mix as a bonus. Note the

mnemonic selection avoids conflicts with variables, like “N” in TAN and the “T” register.

Remember the precedence rules as covered in the previous paragraphs; some will take you a little to

get used to but very soon you’ll feel comfortable and be putting them to its paces.

Note that the EVAL$ functions are programmable and can be used directly, replacing calls to FOCAL

subroutines (typically made using “XEQ IND Rnn” with the ALPHA name stored in Rnn). In fact, this

module includes versions of SOLVE and INTEGRATE programs using EVAL$ directly.

Key
LCD

Symbol Function

[+] + Sum

[-] - Subtraction

[*] * Product

[/] / Division

[ENTER^] ^ Power

[+] (Open Parenthesis

[1/X]) Close Parenthesis

[CHS] # Negative value

[][ISG] ABS Absolute value

[][SF] IP Integer part

[][CF] FP Fractional part

[SQRT] Q Square Root

[XEQ] & Modulus

[%] % Percentage

[][SCI] R Square Power

[][ENG] U Cube power

[EEX] E Exponential

[X<>Y] FT Factorial

[RDN] G Sign

[SIN] S Sine

[COS] C Cosine

[TAN] N Tangent

[][ASIN] AS Arc Sine

[][ACOS] AC Arc Cosine

[][ATAN] AT Arc Tangent

[STO] HS Hyperbolic SIN

[RCL] HC Hyperbolic COS

[SST] HT Hyperbolic TAH

[][LBL] AHS Hyperbolic ASIN

[][GTO] AHC Hyperbolic ACOS

[][BST] AHT Hyperbolic ATAN

[LN] LN Natural Log

[LOG] LG Decimal Log

Key
LCD

Symbol Name

[][SCI][<-] Rn Data Register {R0-R9}

[][a] a parameter

[][b] b parameter

[][c] c parameter

[][d] d parameter

[][e] e parameter

[][CL] F parameter

[][] pi

[0] 0 integer

[1] 1 integer

[2] 2 integer

[3] 3 integer

[4] 4 integer

[5] 5 integer

[6] 6 integer

[7] 7 integer

[8] 8 integer

[9] 9 integer

[][X] X Variable

[][Y] Y Variable

[][Z] Z Variable

[][T] T Variable

[][LastX] L Variable

Key

LCD
Symbol Name

[]P-R SUM Eval

[]RTN P Product Eval

[,] ; Semi-colon

[]VIEW I Infinite index

[][x=y?] < Comparison

[][x<=y?] > Comparison

[][x=0?] = Comparison

[][BEEP] != Comparison

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 12 OF 92

The Custom Keyboard Overlay.

Using ^FRMLA simplifies the text entry and speeds the editing process. The picture below shows the

custom keyboard overlay used by ^FRMLA. Most functions have the same location as the original

HP-41 functions, so it should be easy to get familiar with the complete layout.

1. There’s no need to turn ALPHA on to enter the formula.

2. Operators use the standard arithmetic keys plus [XEQ] for MOD and [%] for (%)

3. They are shown in blue font and their keys have a blue frame around them in the overlay.

4. Variables and parameters are always accessed as SHIFTed keys. They’re shown in red font.

5. Use the numeric digit keys to enter constants directly.

6. Functions are shown in black font. They’re in both SHIFted and Un-SHIFTed positions.

7. Usethe Back-arrow at will to correct or modify the expression.

8. Press [R/S] or [ALPHA] to terminate the entry.

9. If missing, the right-parentheses will be added automatically by the function.

Note: Characters in blue background are only used by EVAL?, EVAL and EVALP

Note that FRMLA^ is not programmable, thus when editing a program the expression entered in

ALPHA will be added as text lines steps performing an automated transfer to program memory (using

the function A-PM under the scenes; see description in a later section.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 13 OF 92

Show Me. (Missourians rejoice!)

The following examples should be helpful to familiarize yourself with the capabilities and operation of

the functions. Set the calculator in RAD mode and populate the stack with the following values:

X=1, Y=2, Z=3, T=4. Then EVAL$ returns the following results:

=

easy does it….

= 1.000000000

a more rugged test!

=
 a trivial example showing function of a function

=

Calculated as:LOG(y/2 + ^3)

Larger real root of a quadratic

equation with coefficients a,b,c

stored in the buffer registers

with a=1, b=4, c=1 it returns:

The Quintuple Twins. Chained Evaluations

You can store the final result in any of the five stack registers – simply using one of the five functions

available in the module. The most common destination will be the X register, and that’s the one used

by EVAL$. The remaining functions have the destination register as last character of the name, thus

we have EVALY, EVALZ, EVALT and EVALL to choose from, depending on the cases. Note that all

except EVALL (for obvious reasons) will save the previous contents of the destination register in

LastX– which then it effectively becomes “LastY”, “LastZ”, or “LastT”.

The result of one evaluation can be used as input parameter in a subsequent one, enabling a chained

calculation mode. Being able to choose the location where the result is placed is therefore very

convenient for this operation.

Let’s see an example to calculate thereal roots of the quadratic equation: x^2 + 4x + 1 =0, with the

coefficients stored in the buffer parameters as follows: a=1, b=4, c=1.

Using a more descriptive formula than the one above makes it a tad too large to fit in a single ALPHA

expression, thus we prepare the following two equations and store them in memory:

, and:

 Stored in R01-R04 Stored in R05-R08

RCL$01, EVALY, RCL$ 05, EVAL$ =>

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 14 OF 92

As the Y value is still available, we can obtain the other root typing its corresponding formula:

, then EVAL$ again =>

Note that if the equation has complex roots the discriminant will be negative, and that’ll trigger a

DATA ERROR condition. Should that happen, the expression in ALPHA can become scrambled – which

brings us to the next paragraph on error conditions.

For your convenience the EVAL_APPS module includes QRT$, an application program to calculate the

two real roots of a quadratic equation. Note that QRT$ will handle the negative discriminant so

ALPHA won’t be rendered unusable.

Entering Formulas in program memory with A-PM.

No doubt using ^FRMLA is a powerful and convenient way to enter formula expressions in the

ALPHA register, and now it is also capable of entering those expressions in program memory by itself.

To achieve that it triggers behind the scenes the function A-PM – which transfers the current content

in ALPHA as program lines in memory, breaking the text into two when the total length exceeds 15

characters.

To use it just position the program pointer at the location where you want them to be inserted,

switch to program mode and execute ^FRMLA. Since it isn’t programmable it’ll prompt for the text

string to be entered. The transfer will occur automatically when you press R/S or ALPHA to terminate

the formula string. Note that A-PM will check for available memory before inserting the new steps –

showing “NO ROOM” if such isn’t the case, and that if the program pointer is over a ROM location the

appropriate “ROM” error will be shown.

For example, the ALPHA string:“” is transferred to the program step:

It comes without saying that A-PM is an interesting function to say the least – but more than that,

the technique used to create program steps from the ALPHA information also lays the foundation for

self-programming routines, which will be fully exploited in the “Equation Solver” ROM, a follow-up

companion module to this one.

Note: Later on, we’ll see another way to manage formula expressions not in ALPHA but in ASCII files

in extended memory. This will be done either:

1. Using ALPHA and a combination of the X-Functions INSREC/APPREC, or

2. Using the enhanced ASCII File editor (ED+) in the WARP Core module – capable of direct

editing of special characters like the parentheses and all other control symbols.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 15 OF 92

Revision Note: Revision 3K includes two more EVAL functions similar to these but that leave the result

in the buffer registers {a – f} or in data registers instead of the stack. You can use them to directly

store the result there without altering other registers. Both are prompting functions:

for EVALR_ _ _ the prompt specifies the data register number, and

for EVALb_ the buffer register letter (a – f) – or number (1 – 6) in program use.

You only need to enter the value in manual mode, or as subsequent program step in a program. Note

that EVALb and EVALL are implemented as sub-functions to save main FAT entries.

Supporting Data Registers {R00 to R09} as data variables.

Revision VF+ adds support for the first ten data registers in memory, that is {R00 to R09}, as

variables for your formulas. The syntax for these is a capital “R” followed by the one-digit register

number, i.e. from “R0” to “R9”. The way to enter these using ^FRMLA is a work-around of the

Square Power shortcut: [SHFT] [2] puts “R(“ on the LCD, so all you need now is hit the back arrow

to remove the left parenthesis, and type the index number using the numeric pad.

Example: Calculate the sum of 5+5^2+5^3, storing 5^3 in R05 previously

EVAL$ quickly returns with the result:

125, STO 05, ^FRMLA “”, EVAL$ =>

The data registers can therefore be part of your formulas as well, and thus numeric values from them

are used as input just by typing their coded number. Furthermore, you can user the EVALR function

to store the result in any data register of choice, a very clean and convenient way to do register math

not altering the stack or requiring the infamous RCL/STO combination.

Example: Put the sum of R01, R02, and R03 in data register R10

“R1+R2+R3”, EVALR 10 => sum in R10, previous R10 value in LastX

Example: Calculate R06*(1+R05) and using EVALR save the result in R07:

 plus:

So there you have it, an even more seamless integration between the classic data storage locations

and the new formula-driven operations. Note however that EVAL , EVALP and EVAL? make internal

usage of data registers {R00-R10}, thus the data registers syntax will conflict in these cases.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 16 OF 92

Eval Launcher: the new face of the Eval Module {EVL }

Revision 3K ads an EVAL Function launcher, grouping all the possible storage destinations of the

evaluated result into a convenient command prompt, as shown below:

 - Main screen:

 Data register Rxx

 Buffer Register { a – f }

 Stack L register

 Stack T register

 Stack Z register

 Stack Y register

 Stack X register

Besides these functions, note that EVALP and EVAL are also covered by any of the EVAL# cases

when the formula expression starts with “P” or “” respectively.

EVL is purposely not programmable, so you can use it in a program to select the function of choice.

As an example of utilization in a program,the three program steps below will store the result of the

evaluation in buffer register “b”. The first two steps are to invoke the EVALb sub-function (using the

sub-function launcher SF# and its index), and the third line is the buffer register number (2 for the

second one):

01 SF#

02 17 ; 17th subfunction

03 2 ; second buffer reg, i.e. “b”

The main launcher also provides shortcut access for other five functions not listed at the prompt, as

follows:

 USER key invokes the ^FRMLA function

 ENTER^ invokes CAT+ for sub-function enumeration catalog

 RADIX invokes the LASTF facility

 ALPHA invokes the SF$ sub-function launcher by name

 PRGM invokes the SF# sub-function launcher by index

Remember thatthe formula syntax will automatically trigger the EVALP, EVAL , and EVAL?

functions if needed when selecting any of the available choices -overriding so the nominal destination

- Thus they don’t need additional choices in the launcher

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 17 OF 92

Caveat Emptor: Error Handling

The EVAL$ functions do a very reasonable job at error handling, but as any cost-effective software

implementation cannot be bullet-proof, nor does it cover all possible contingencies. There are two

main causes for errors: bad syntax (including multiple cases of incomplete or inconsistent

expressions), and wrong values (in the function definition domains, ranges of the result etc..).

Of these two the most difficult to handle are the error conditions incurred by the individual functions,

say trying to calculate the logarithm of a negative number. You should be aware that in some

instances this type will show the ‘DATA ERROR’message and abort the execution of EVAL$ at the

point where the error is encountered.

The code includes pre-checking of argument values for FACT, LOG, LN, SQRT, ASIN and ACOS

functions, properly skipping the execution for non-valid ones and showing a “DATA ERROR” message.

Division by zero is also accounted for. The “ALPHA DATA” and “OUT OF RANGE” conditions should

always be properly handled.

And finally the bad syntax condition is also properly handled, and reported using a dedicated

“SYNTAX ERR” message as well (which I can already tell you’ll be soon tired of seeing) :

Note however that the bad syntax conditions can be caused by many different reasons, and not all of

them may be captured by the EVAL$ logic. For instance: writing two variable names without an

operation between them, or a parameter name followed by an open parenthesis without a matching

closing one in mid-string. Adding error trapping for every possible contingency will not be practical

due to the additional code and the impact in performance. So, treat it gingerly, as it corresponds to a

very-venerable machine tip-toeing into new realms ;-)

Programmer’s Note: As of revision 1H the technique used to scan the formula characters in the

ALPHA register was changed to use the CX-OS routine [FAHED] (“Find Alpha HEaDer”). This allowed

for a substantial code size reduction (which was quickly re-used for other functionality added to the

module), and also made for a speedier execution of the code. As an additional benefit it was possible

to remove sub-functions for last-character marking and unmarking, as well as the text-rotation

undoing steps – since now the text is not being rotated to begin with. More robust, shorter, and

faster code: it doesn’t get any better!

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 18 OF 92

Other Utility Functions.

Functions ̂ FRMLA and EVAL$ are the two main pillars of the module – but there’s much more to

it.In addition to the parameter buffer management functions (LET=, GET=, SWAP=, and SHOW=

described before), the module includes a few other functions very useful to prepare your variables

and to manage the expressions entered in by ^FRMLA. They are described below.

 STO$ and RCL$ perform both ways of the data copying between Alpha and four contiguous

standard data registers. Note that these functions are programmable, and in a program the

initial reg# is taken from the program step following the function. Note that while IND

arguments are valid, this function does not support Stack or IND Stack arguments.

WARNING: Do not try to read directly (with RCL) registersused by STO$, RCL$ since this will

change the contents of the registers and RCL$ will not be able to restore the alpha string

correctly. This is because doing a RCL on these registers’ forces normalization, whereas the

values created by these functions are NOT normalized.

 ST>RG and RG>ST move the 5 Stack registers to/from 5 adjacent data registers, starting at

the number entered in the prompt. Like RCL$ above, in a program the initial reg# is taken

from the program step following ST>RG. Note as well that while IND arguments are valid,

this function does not support Stack or IND Stack addressing.

This method to copy the stack had the advantage to leave the buffer “shadow” registers

unaltered, so they can be used to hold parameters in formula evaluations.

 Similarly, ST<>RG and SWAP$exchange the5 Stack registers and the 4 ALPHA registers

respectively with 5 or 4 adjacent data registers, starting at the number entered in the

prompt.

 RIGHT$ and LEFT$ are string manipulation functions. Theyuse the number in X as number

of characters to extract from the right or from the left of the string respectively. Part of these

functions is the deletion of the rightmost or leftmost character, used in a loop to complete the

total number of characters. These partial subroutines are also included in the auxiliary FAT as

RADEL and LADEL.

 FILL is a sweet & short routine which basically fills the stack with the value in X. So it is

equivalent to SHFL “XXXXL” in the WARP_Core module. This short routine was first

published by J.D. Dodin, one of the advanced capabilities pioneers.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 19 OF 92

 LET=, GET=, SHOW=, and SWAP= work on the buffer register variables {a, b, c, d, e, F,

and G }. Use them to assign values to them, recall their current value to X, exchange it with

X value, or just to view their current value – I let you figure out which function is for each

action ;-)

These functions operate on the individual registers of the buffer, but you can also use the

pair below for a group action using the complete stack as data source.

 B7>ST and ST>B7 are small utilities in the auxiliary FAT to move the contents of the stack

and the “shadow” registers, back and forth respectively. Obviously, ST>B7 s a very good

approach to assign values to buffer variables. The reverse direction B7>ST populates the

stack with the values in those variables.

The table below shows the actual correspondence between the stack and buffer registers.

The table below shows the indexes needed for the non-merged instructions described above.

(!) Note that sub-functions need to be accessed using a sub-function launcher, either SF$ - typing

their name - or SF#- entering its corresponding index number. See section in page# 39 for details.

Argument Shown as: Argument Shown as: Argument Shown as:

100 00 112 T 124 b

101 01 113 Z 125 c

102 A 114 Y 126 d

103 B 115 X 127 e

104 C 116 L 128 IND 00

105 D 117 M 129 IND 01

106 E 118 N 130 IND 02

107 F 119 O 131 IND 03

108 G 120 P 132 IND 04

109 H 121 Q 133 IND 05

110 I 122 |- 134 IND 06

111 J 123 a 135 IND 07

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 20 OF 92

Example Programs.

1. Vector Distances, and Dot Product.

Three more easy examples follow (included in the EVAL_APPS ROM) to calculate the distance

between two points, (2D and 3D cases) and the dot product of two 3D-vectors.

For the 2D-distance the two points are expected to be in the stack: P1(T, Z) and P2(Y, X).

UUExample.UU Calculate the distance between the points P1(-3,5) and P2(6,-2) from the figure below:

Type:

5, ENTER^, -3, ENTER^, -2, ENTER^, 6,

XEQ “d2$“ => d2=11.40175425

And the formula used is:

For the 3D-distance and the Dot product the routines will prompt for the point/vector coordinates.

Here the first vector is stored in the parameter buffer registers using ST>B7, which leaves the stack

unchanged but also makes the following transformation:

X -> “e”

Y -> “d”

Z -> “c”

T -> “b”

L -> “a”

Consequently, the formulas used are:

Examples. Let V1(1, 2, 3) and V2(4, 5, 6). Calculate the dot product and vector distance.

XEQ “d3$”

3, ENTER^, 2, ENTER^, 1, R/S

6, ENTER^, 5, ENTER^, 4, R/S

XEQ “DOT$” …… =>

The routine listings are below, really a minimalistic coding just driving EVAL$ and data input/output:

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 21 OF 54

2. Polynomial Evaluation using Honer’s method.

All it takes is re-writing the expression using in the Honer/Ruffini form, as follows:

Let P(x) = [a.x^4 + b.x^3 + c.x^2 + d.x + e]; from here:

Examples: with a= 1, b =2, c= 3, d = 4, and e = 5, evaluate the polynomial at x= 2 and x=-2.

Assuming the coefficients are stored in the homonymous buffer parameter registers (which is done

using LET= statements repeatedly), we type the formula (23 characters exactly) and proceed to

evaluate it:

^FRMLA =>

2,EVAL$ =>

-2, EVAL$ =>

The module includes the program “P4$” that prompts for the coefficients and calculates the value.

Since the coefficients are stored in the parameter buffer, no standard data registers are used.

The same formula can be used for polynomials of smaller orders, just use zero for the coefficients of

the terms not required (obviously at least one term should exist to be a meaningful case).

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 22 OF 54

3. Orthogonal Polynomials: Legendre, Hermite, and Chebyshev’s

These examples use the EVAL$ function within a DSE loop, taking advantage of the recurrent

definition of these polynomials and the LastX functionality of EVAL$. The results are left in X, and

the value of the previous order polynomial is available in LastX. From the definitions:

Type Expression n=0 value n=1 value

Legendre n.P(n,x) = (2n-1).x.Pn-1(x) - (n-1).Pn-2(x) P0(x) = 1 P1(x) = x

Hermite Hn(x) = 2x.Hn-1(x) - 2(n-1).Hn-2(x) H0(x) = 1 H1(x) = 2x

Chebyshev 1st. Kind Tn(x) = 2x.Tn-1(x) - Tn-2(x) T0(x) = 1 T1(x) = x

Chebyshev 2nd. Kind Un(x) = 2x.Un-1(x) - Un-2(x) U0(x) = 1 U1(x) = 2x

Examples. Calculate the values for: P(7, 4.9); H(7, 3.14); T(7, 0.314); and U(7, 0.314)

7, ENTER^, 4.9, XEQ”LEG$” => 1 P7

LastX => P6

7, ENTER, 3.14, XEQ”HMT$“ => H7

LastX => H6

7, ENTER^, .314, XEQ“TNX$“ => T7

LastX => T6

7, ENTER^, .314, XEQ“UNX$“ => U7

LastX => U6

The programs don’t make use of any data registers, all operations are performed in the stack.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 23 OF 54

4. Real Roots of Quadratic Equation.

The short FOCAL program below calculates the real roots of a quadratic equation, checking for

negative discriminantbeforehand – so DATA ERROR will be shown for complex roots (see program in

the appendix for an enhanced versions). Just enter the coefficients in the stack and execute QRT$,

and the two roots are shown and left in Y and X on exit.

Example: Calculates the roots of Q(x) = x^2 + 2.x - 3

1, ENTER^, 2, ENTER^, -3, XEQ”QRT$” =>

5. Bessel functions of 1st. Kind for Integer orders.

This short FOCAL program calculates the Bessel functions J and I for positive integer orders,

applying a direct sum evaluation of the general terms defined by the formulas below. Note that

despite a relative fast convergence the execution takes its time to reach up to the ninth decimal digit,

so rounding is done to the display settings. Note also that because of its length exceeding the ALPHA

capacity the general term expression is split in two, with an intermediate evaluation into the T

register needed.The final result is left in X and R00

To use them just enter N and X, then call the corresponding routine. For example:

1, ENTER^, 1, XEQ “$JNX” =>J(1,1) = 0.4400505860

01*LBL JNX$"

02 CF 00
03 GTO 00

04*LBL "INX$"

05 SF 00
06*LBL 00
07 -1
08 ENTER^
09 CLX
10 STO 00

11*LBL 01
12RDN
 13 1 ;next index
14+ ; placed in X
15"(Y/2)^(2*X+Z)"
16FC? 00 ; is it J?
17>"*#1^X" ;alternate
18EVALT ;first part
19"T/FT(X)/FT(X+Z)"
20EVALT ;second part

21R^
22ST+ 00 ‘add to sum
23FS? 10
24VIEW 00 ‘show partial
25RND ;rounding
26X#0?
27GTO 01
28RCL 00
29 .END.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 24 OF 54

6. Solve and Integrate Reloaded.

The next two programs are a straightforward application of EVAL$ to the well-known Solve &

Integrate cases. These routines are brand-new versions, based on the Secant method for Solve and

the Simpson rule for Integrate. They assume that the function is entered in the ALPHA register as a

formula before calling the program, which you can do using ^FRMLA of course.

The main advantage is the direct replacement of the “XEQ IND Rnn” calls to the integrand or solved-

for functions,replaced by EVAL$ instructions. Apart from that everything else is very similar to other

well-known routines, like SV and IT from the PPC ROM. Just enter the two root guesses (must be

different) in Y and X for SV$; or the integration data (number of slices in Z, interval in Y,X) for IT$

and call the corresponding routine. It really doesn’t get any easier!

For example, to find a root of f(x) = exp(x) -3 between x=1 and x=2:

^FRMLA“E(X)-3”, 1, ENTER^, 2, XEQ “SV$” =>

And to find the integral of the same function between 0 and 2 - with max# =10(max number of

subintervals needs to be entered in Z, right before the interval [a, b])

10, ENTER^, 0, ENTER^, 2, XEQ “IT$” =>

There you have it, no need to write auxiliary routines (which take RAM memory), or to deconstruct

the formula into an RPN-compatible format. The FOCAL listings for these routines are included below.

Note how they take full advantage of the formula evaluation functionality and are shorter than the

original ones (notably so SV$)

1 LBL ÏT$" N, a, b, in stack 27 LBL 09

2 STO$ 07 28 RDN

3 ENTER^ b 29 ST+ Y(2)

4 EVAL$ 30 RCL Y(2)

5 STO 11 F(b) 31 EVAL$

6 RDN 32 ST+ X(3) 2x

7 "(X-Y)/Z/2" (a-b)/2N 33 RTN

8 EVAL$ 34 LBL 01

9 RCL$ 07 35 RCL 11

10 RCL Y(2) a 36 "X*T/3"

11 EVAL$ F(a) 37 EVAL$

12 ST+ 11 F(a) +F(b) 38 RCL$ 07

13 LBL 00 39 END

14 CLX 1 LBL "SV$"

15 E 2 STO$ 07

16 ST- T(0) decrement N 3 LBL 00

17 XEQ 09 4 EVALZ

18 ST+ X(3) 4x 5 X<>Y

19 ST+ 11 add to sum 6 EVALT

20 R^ 7 "Y-Z*(Y-X)/(Z-T)"

21 X=0? 8 EVAL$

22 GTO 01 9 FS? 10

23 RDN 10 VIEW X(3)

24 XEQ 09 11 RCL$ 07

25 ST+ 11 add to sum 12 X#Y?

26 GTO 00 13 GTO 00

14 END

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 25 OF 54

7. Use of EVAL$ with FINTG and FROOT.

For those who use the SandMath module, machine code versions for solving and integrating exist as

FINTG and FROOT, which run faster than the counterpart FOCAL programs IT$ and SV$.

The disadvantage to this is that a user program must be created that puts the formula in the Alpha

register and executesEVAL$. But that program is minimalistic in nature as we’re about to see.

Here is an example of using FROOT to solve “SIN(X) + COS(X)” between 120 and 150 degrees.

First, use ̂ FRMLA to create“” in the Alpha register. This does not require the

AMC_OS/X or other module capable to use ALPHA special characters.

You can save this string to registers {R00-R03} using STO$ 00 and then create a small program (this

example uses “SC” for the program name):

 01 LBL “SC”

 02 RCL$ (00) - no need to enter the register index after RCL$ if it is zero

 03 EVAL$

 04 END

Now put 120 in Y, and 150 in X (to find the root between 120 and 150) and XEQ “FROOT” which will

prompt for the program name, enter “SC” and hit Alpha to execute.

Et voila, returns as the answer.

To integrate SIN(X)+COS(X) between 0 and 1 radian, XEQ “RAD”, put 0 in Y, 1 in X and XEQ “FINTG”

which will prompt for the program name, enter “SC” and hit Alpha to execute. Result is 1.301168679

(to 9decimal places).

Note that with the function A-PM you can enter the formula directly in a program step, just as if you

were using the AMC_OS/X module, instead of using the data registers and RCL$ instruction. This will

eliminate the need for the data registers and the operation will not take longer to perform.

In that case the program will look like this:

 01 LBL “SC”

 02 “S(X)+C(X)”

 03 EVAL$

 04 END

For sure this does not address the more complex cases involving special functions, but it pretty much

covers 80% of the field.

Note: If you’re re-constructing formulas from RPN programs, make sure that the right conventions

are used when you transcribe the programs, for instance Y^X, and Y&X for MOD, etc. But this should

be much more intuitive this way around than putting the formula in RPN to begin with.

Warning: SV$ uses registers R07-R10, while IT$ uses registers R07-R11.

No data registers are used by FROOT and FINTG – which use another memory buffer instead.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 26 OF 54

8. Lambert Function (WL$$).

The Lambert W function is the inverse function of f(w) = w.exp(w) where exp(w) is the natural
exponential function and w is any complex number. The function is denoted here by W.

As it’s well known, the most common way to calculate the Lambert function involves an iteration

process using the Newton method. Starting with a good guess the number of iterationsis small,

leading to a relatively fast convergence.

The formula used for the successive iterative values is:

Which with a bit of ingenuity can be written in exactly 24 characters, and therefore only one call to

EVAL$ is required per each iteration. Assuming the current value w is in X, and the argument z is in

Z the expression for the next value (w”) is as follows:

This is a very good example of how to put those pesky precedence rules to work to our advantage.

The small FOCAL routine below shows the complete code – just 18 steps in total, which include

visualization of the iterations when UF 10 is set, as well as dealing with pesky oscillations in the last

decimal digit caused by the Newton method in some instances.

The initial guess is Ln(1+x) – which works rather well to obtain the “main” branch result of the

function. For arguments between (-1/e) and zero you can modify the routine to use“-2” instead to

calculate the second branch results.Here too this routine does not compete for speed with the all-

MCODE Lambert function in the SandMath – nor was it intended to.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 27 OF 54

Advanced EVAL$ Applications.

The module includes a set of functions and FOCAL routines designed to make general-purpose test

comparisons, and to evaluate finite and infinite Products, Sums and Series. The FOCAL routines are

designed pretty much as if they were MCODE functions, in that they preserve the contents of the

stack registers and fully support chained evaluations. Let’s see them individually.

1. Advanced Test Comparisons with EVAL??

Extending beyond the standard set of test functions of the calculator like X>Y? - EVAL? allows you

to compare two general-purpose expressions with one another – not altering the numeric value of the

stack or buffer registers.

Each expression can include any combination of variables, operators and functions as described in the

EVAL$ sections. The routine uses the test operators “=”, “<”, “>”, and “≠” as delimiters to separate

the ALPHA expression in two parts; it then evaluates both and makes the comparison on the resulting

values for each of them. Also note that the combination “<=” and “>=” is supported as well.

Note that “≠” denotes the character #29 of the native set, as used in OS functions like X≠Y? and

X≠0?. It’s not the “hash” character (#) used to denote unary minus as seen before.

EVAL? uses a very fast MCODE function to scan the ALPHA text looking for valid combinations of the

test operators. This function is located in the second FAT, andnamed TST$. If no test operator is

present or an invalid combination of them are found, the function will abort the FOCAL program

execution and will show the “SYNTAX ERR” message.

Although you could use them if you want, there’s no need to enclose the expressions between open

and close parenthesis to delimit them.As always, you need to mind the maximum length of the ALPHA

text, limited to 24 characters. Also do *not* put a question mark at the end of the text.

The Boolean result of EVAL? is used to skip the following program line if FALSE, and do nothing if

TRUE. You can use that as a control in your own routines. In manual mode (not running a program)

it’ll also show the message “YES” or “NO” for visual feedback to the user.

Let’s see an example: for a more capable way to calculate the roots of the quadratic equation, add a

test on the discriminant to determine if it has complex roots. If we write Q(X) = aX^2 + bX + c ,

then the evaluation syntax will be as follows:

Note: You can use EVAL$ directly on an expression that uses one conditional operator.

The execution will be transferred to EVAL? for proper evaluation of the Boolean result.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 28 OF 54

See below the equivalent FOCAL routine listing below for details. This routine was further optimized in

revision 1G for speed and simplified program flow – but as a FOCAL program it isn’t comparable to

the final MCODE function.

 EVAL? the FOCAL routine used data registers {R00-R10}, and user flags F0-F4.

 EVAL? the MCODE function uses data registers { R00 – R10 }, but no user flags are used.

Examples. Enter the values 4, 3, 2, 1 in the stack registers T, Z, Y, X, respectively.

Then test whether the following comparisons are true or false:

The MCODE function will show a Boolean YES/NO result message in the LCD if the function is used

interactively from the keyboard, but not so during a program execution. It’ll also reflect the Boolean

status in the general rule “skip if false”..

Note: Since revision 3H, EVAL? became a full-MCODE function. The main benefits are faster

execution speed, the use of the standard “YES/NO” LCD messages in manual mode, and “Skip-if-

False” rule in program execution - not using user flag 04 anymore.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 29 OF 54

2. Evaluating Sums & Series with EVAL

This routine provides the capability to calculate sums or even (convergent) infinite series, just by

direct repeat execution of the general term – either the number of terms specified for sums, or until

the contribution to the partial sum is negligible for convergent series.

The syntax requires the initial and final values for the indexes (they must be constants), separated by

semi-colons “;” plus the function to sum – which uses the X register as index parameter. The first

character must be a Sigma and the complete expression must be enclosed by open and close

parenthesis.

The complete syntax can be put together using ^FRMLA, which has been upgraded to also handle

the Sigma character and the semi-colons. For example, to calculate the harmonic number for n=25

we just call ̂ FRMLA to type:

Note that the general term does not need to be enclosed by parenthesis – the routine knows it starts

right after the second semi-colon and ends right before the final parenthesis.

As an example of infinite series, let’s calculate the Erdos-Borwein constant 1.606695153 using the

following syntax (note the letter “I” used in the final index for infinite, but any non-numeric character

will work as well):

This routine uses the current decimal settings to determine the accuracy of the result. FIX 9 is the

most accurate but will require the most number of terms (and longest time) to converge.

Setting user flag 10 provides a visual feedback of the result after each new term as been added to

the sum. This is very useful if the convergence is slow (like in this case).

Evaluation Functions as Power Series

You can also use EVAL to calculate functions expressed as power series. In that case the function

variable is assumed in the X register on entry, but it gets moved to Y at the beginning of the routine

execution. Therefore, it’s represented by “Y” in the evaluating syntax, and not by “X” - which is

reserved for the index value (usually “n” or “k” in these formulas).

For example, to calculate the exponential function we’ll use the syntax below:

Don’t forget to set the number of decimal places to the desired accuracy.

EVAL is a direct application of EVAL$ used in a loop. It leaves the result in X, and the initial

argument in L – preserving the initial contents of the stack Y-Z-T registers. It uses data registers

{R00-R10} and user flags F0, F1.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 30 OF 54

3. Evaluating Products withEVALPP

The product counterpart is just a small modification of the same routine, and therefore shares the

same general characteristics and data registers requirements. In this case the initial character must

be a “P” instead of sigma, but the rest of the syntax is identical.

For example, let’s calculate the Permutations of n elements taken k at a time:

Which can be calculated as the product of the last (n-k+1) terms of the numerator - from (n-k+1) to

n - rather than using the FACT function – avoiding so “OUT OF RANGE” errors if n>69 and k>=1

Thus, the required syntax should be of the form: “P(n-k+1;n;(n-k))”

All we need is a way to place the correct values in the ALPHA string, and the perfect function to do

that is ARCLI in the AMS_OS/X module (or any of its equivalents like AINT or AIP). Say we start

the routine with n in Y and k in X, then we use the small program below:

01 LBL “NPK$”

02 STO Z(1)

03 CHS

04 E

05 + n-k

06 X<>Y leaves k in L

07 + n-k+1

08“P(“

09 AINT

10 |-“;”

11 LASTX n

12 AINT

13 |-“;X)”

14 XROM “EVALP”

15 END

The complementary routine to calculate the Combinations CNK is easy done using NPK as basis:

01 LBL “NCK$”

02 XEQ “NPK$”

03 “X/F(Z)”

04 EVAL$

05 END

Examples:

52, ENTER^, 5, NPK$ ->

52, ENTER^, 5, NCK$ ->

The routine code for both EVAL and EVALPis shown below. As you can see only functions from this

module are used – this makes the program a little longer but it’s more convenient for compatibility

reasons.

In the final versions of the module these functions are hybrid: FOCAL with MCODE header. The first

part is MCODE, doing all the syntax verification and preparing the variables. The second part is

FOCAL, doing the loop calculations as per the code in next page.

Note: As of revision 2H you can use EVAL$ directly on an expression that uses the sigma (“”) or

product (“P”) characters. The execution will be transferred to EVAL or EVALP automatically.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 31 OF 54

Program listing.

Note also that as of Revision 2H of the module, these programs have a MCODE header instead of a

FOCAL one. This facilitates the execution transfers from EVAL$ in case that special characters are

found in the string.

Always remember that the index values used in these two functions need to be constant values, i.e.

you cannot use a variable for them. The examples included in the manual show how to circumvent

this restriction using AINT – which adds the current value of the “X” variable to ALPHA.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 32 OF 54

Examples: Gamma and Digamma functions.

Armed with the routines described before, it is relatively simple to write short FOCAL programs to

calculate the Gamma and Digamma functions. To that effect we’ll use the Lanczos approximation for

Gamma, with the well-known formula:

Note the product in the denominator, which will be calculated using EVALP.

Examples: 1, XEQ “GAM$” ->1

 PI, XEQ “GAM$” ->

 -5.5, XEQ “GAM$” ->

As you can see the program also works for values x<0 (not integers), including support for these

arguments using the reflection formula:

On the other hand the formula for the Digamma function (Psi) is a combination of a logarithm and a

pseudo-polynomial expression in u = 1/x

programmed as: u^2{[(u^2/20-1/21)u^2 + 1/10]u^2 –1}/12 – [Ln u + u/2],

The implementation also makes use of the analytic continuation to take it to arguments greater than
9, using the following recurrence relation to relate it to smaller values - which logically can be applied
for negative arguments as well, as required.

Note the Summation in this expression (with as many terms as delta between the argument and 9),

which will be calculated using EVAL

Examples:

PI, XEQ "PSI$" ->

 1, XEQ “PSI$” ->(opposite of Euler's constant)

q 0 = 75122.6331530 q 1 =
80916.6278952

 q 2 = 36308.2951477
q 3 =

8687.24529705
 q 4 = 1168.92649479

q 5 =
83.8676043424

q 6 = 2.5066282

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 33 OF 54

-7.28, XEQ “PSI$” ->

And here’s the program listing for these functions. Note we’re using several tricks and executing

repeated times the EVAL$ functions, taking care of partial expressions of the formula each time.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 34 OF 54

VF++ Conditional Structures

The remaining of this chapter describes the VB-like functions included in the Formula Evaluation

module. This function set brings the classic FOCAL programming up one notch, so things begin to

resemble a higher-level programming language – even if the same intrinsic platform limitations are

still there of course.

These functions are associated in groups or structures, with each of them being either statements or

defining independent clauses within the structure. As such, they often include integrity checks built-in

to verify the presence of other functions needed to complete the structure. These checks scan the

body of the FOCAL program looking for the expected pairing functions, saving their location in

memory for later use depending on the result of conditional expressions, etc. Indeed, a new kind of

functions and a first on the HP-41 platform.

Function table:

Structure Function Description Technique

DO/WHILE
DO Starts structure EVAL? tests

WHILE Repeat while True Uses RTN Stack

IF.ELSE.ENDIF

IF Does if expression is True EVAL? tests

ELSE Does if expression is False Uses RTN Stack

ENDIF End of structure

FOR..NEXT
FOR _ _ Starts loop bbb.eee:ss parameters

NEXT _ _ Repeats if not matched in SELCT’ed register

 LOOPT Recalls current pointer to X

SELECT-CASE

SELECT _ _ Activates it and Selects Register SELCT’ed register in Header

CASE _ _ _ Does clause if True Case value in Header

CASELSE Does Clause regardless Deactivates search flag

ENDSLCT Deactivates and Ends structure Deactivates flag and clears

As mentioned before, the defining functions { DO, IF, FOR, and SELECT }scan the body of the

program to check the integrity of the structure, looking for the pairing function that defines the end

of the structure - WHILE, ENDIF, NEXT, and ENDSLCT respectively. When that’s not found the error

message “NO BOUND” is displayed and the program execution halts:

The VF++ structures are designed to be used in a running program. The individual functions can also

be executed manually but the structure integrity check will likely throw the “NO BOUND” error

message – unless the program pointer is coincidentally positioned in a memory segment (defined by

a global label and END instructions) that includes the pairing function closing the structure – not very

likely indeed.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 35 OF 54

WHILE we’re at it:Putting EVAL? to work

EVAL? can be used in a FOCAL program to augment the basic testing capabilities provided by the

standard stack register comparison functions, such as X=Y?, X<=0?, etc. More sophisticated

conditions provide greater power in the program flow automation.

The idea is to repeat a calculation (or subroutine) while the expression in ALPHA is true, moving off

once the status has changed (obviously influenced by said subroutine); i.e. this is the standard

DO/WHILE methodology in high-level languages.

The example below uses EVAL? to count until 5; note how a local label is used and the execution is

transferred back to it while the count hasn’t reached the target value.

01 LBL “COUNT”

02 CLX ;count starts at zero

03 LBL 00 ;marker point

04 VIEW X ;for information

05 1 ;actual code:

06 + ;increase counter

07 “X#5” ;testing condition

08 EVAL? ;check the test

09 FS? 04 ;fulfilled?

10 GTO 00 ;nope, do again

11 etc… ;yes, keep going

A proper DO/WHILE implementation will use DO instead of the LBL instruction, and WHILE replacing

lines 8-10 – with an automated decision made on the actual status of the test. So there is a combined

action in two steps: the first one needs to record the address to return to (done by DO) and the

second one needs to trigger the execution of EVAL?, and decide whether to return to the DO address

or to continue depending on the test result.

Here’s the same program using the brand-new functions:

01 LBL “COUNT”

02 CLX ;count starts at zero

03 DO ;marker point

04 VIEW X ;for information

05 1 ;actual code:

06 + ;increase counter

07 “X#5” ; testing condition

08 WHILE ;repeat while true

09 etc… ;keep going

Note that in this case the test condition in ALPHA could have been placed outside of the loop, just

before the DO instruction since the code within the loop does not alter ALPHA contents. This would

be faster, but I’ve left it next to the WHILE statement for clarity - as in the general case the code

within the loop may very well modify ALPHA.

Of course, you could move the central code (increasing the counter in this example) to a subroutine,

which in this case makes no sense but in more complex calculations could be very convenient.

Note also that DO checks the presence of a matching WHILE, searching the program steps following

itself until a WHILE statement is found – or until a global END is encountered, in which case it’ll put

up a “NO BOUND” error message

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 36 OF 54

Nested “WHILE” levels are always possible

Each DO/WHILE loop requires two subroutine levels, therefore this implementation allows up to three

DO/WHILE calls in a nested structure. The only glitch is that the pairing check within the functions

won’t cover nested configurations - so the user must make sure that the DO’s and WHILE’s are

matched!

For example, the routine below will count up to five (in the X-Reg)three times, using the Y-register

for the outer counter:

01 LBL “DODO””

02 CLST ;counts starts at zero

03 DO ;1stmarker point

04 CLX ;reset inner count

05DO ;2nd marker point

06 1 ;actual code:

07 + ;increase counter

08 VIEW X ;for info

09 “X#5” ;testing condition

10 WHILE ;repeat while true

11 1 ;resumes 1st DO

12 ST+ Z

13 RDN

14 VIEW Y ; for information

15 “Y#3” ;second condition

16 WHILE ;repeat while true

17 etc… ;keep going

In summary, this implementation provides a simpler and more advanced program flow control, but it

doesn’t come gratis: Obviously both instructions need to be paired – mind you,this is also the case

using the standard LBL, so it doesn’t add overhead. More importantly, one additional return address is

used by DOfor the automated return from the WHILE step. Therefore, the user will only have FOUR

return addresses available when the DO/WHILE method is used.

As you have noticed, WHILE provides a focal encapsulation of the EVAL?FUNCTION, plus the

branching decisions based on the test result. This is transparent to the user, with he only caveat that

the FOCAL program including WHILE cannot be single stepped.

Remember that EVAL? uses the following resources internally – therefore they are not available for

the FOCAL code within the DO/WHILE loop:

Data Registers: {R00-R08} - to preserve the initial Stack and ALPHA contents

 R09,R10 - for Scratch

User Flags: F00-F03 - to signal the Boolean operator involved

Using the RTN address to store the WHILE address has pros and cons. The disadvantage is of course

that besides the default RTN level used by the FOCAL call to EVAL? , oneadditional RTN level is used

(or two or three if nested loops are configured). But the advantage is that no additional storage

locations are needed for those WHILE addresses, so the complete {XYZTL} stack and {abcdeF} buffer

variables are available for the test condition to use.

I trust you’d agree this is very neat stuff, bringing the programming resources up to a more abstract

position, usually requiring high-level languages.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 37 OF 54

WhatIF ?- Getting EVAL? money’s worth!

The same methodology can be used for an IF.(ELSE).ENDIF structure, with only a little more effort to

arrange the RTN addresses and inverting the sequence of things.

Here too we’ll resort to the EVAL? function to determine the Boolean result of the test condition in

ALPHA, acting accordingly depending of its TRUE/FALSE status.But contrary to the WHILE case, now

the heavy-lifting is performed by IF up-front, foreseeing either Boolean result beforehand and

arranging the RTN addresses accordingly to serve the desired program flow scheme.

Here’s a succinct summary of the operation:

 IF will verify that there is a paired ENDIF statement following in memory, within the same

Global Chain segment (i.e. before the next global END).

 It then will evaluate the test condition and continue normally if the status is TRUE orit will

jump over to the instruction following ENDIF (or ELSE is present), in case the test condition

was FALSE.

 Using ELSE is optional, and when it’s included it will only be relevant if the test condition was

FALSE.

 ENDIF really doesn’t do a thing, apart from demarcating the end of the structure.

Note that unrestricted nested calling of IF.(ELSE).ENDIF is currently *not* supported. This limitation

stems from the fact that the technique employed (using the RTN addresses) cannot really pair

multiple ELSE/ENDIF statements to their matching IF’s. Besides, the check for a closing ENDIF will

need additional logic to foresee the contingency that multiple IF statements precede a single ENDIF

step – getting too complex, the law of diminishing returns really kicks in!

However, it is possible to use DO/WHILE within any of its branches, and vice-versa i.e. it can be

placed inside of a DO/WHILE loop.

The example below should illustrate the operation: Use it to calculate the roots of the second-degree

equation, a.x^2 + b.x + c=0; with IF.ELSE branches for real or complex roots based on the

discriminant. On entry the coefficients (a, b, c) are expected in {Z,T,X}. On exit the real roots (F04

Set); or conjugated complex roots (F04 Clear) are placed in Y,X (Im, Re for complex)

01 LBL “QRT#”

02 “00XYZ”

03 SHFL

04 “b^2-4*a*c>=0”

05 IF

06 “#(Q(b^2-4*a*c)+b”

07 “|-))/2/a”

08 EVALY

09 “(Q(b^2-4*a*c*)-b)/2/a”

10 ELSE

11 “Q(ABS(b^2-4*a*c)”

12 “|-)/2/a”

13 EVALY

14 “#b/2/a”

15 ENDIF

16 EVAL$

17 END

Try it with X^2 =1 to obtain: x1 =1, x2 = -1 in {Y,X}

Note that the program is intentionally not optimized, for the purpose of the example showing the

expressions repeated several times.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 38 OF 54

Nesting “IF” levels is not always possible.

There is a conceptual difference between the WHILE and IF implementations related to how (or

rather when) the test comparison is made:

 With DO/WHILE the comparison is made at the bottom of the loop, at the WHILE statement.

When true, the execution is sent back to the previous DO, and when False it simply continues

along its merry way. This poses no issue with nested levels, as each one is self-contained as

far as the reference address go (i.e. they don’t “overlap” the individual brackets).

 With IF/ENDIF however the comparison is made atop the loop, at the IF statement.

o When True, the execution follows suit until either a) the next ENDIF statement is

found, or b) to the next ELSE statement, in which case it jumps to the next ENDIF

below it to skip the code within ELSE and ENDIF.

o When False, the execution jumps over to said ELSE/ENDIF skipping the top IF

branch.

You can see that therein lies the problem: depending on the combination of ELSE/ENDIF

statements and their Boolean results, the jumps will go to the first ENDIF grabbed, which

won’t necessarily be the one paired with the proper IF. This is inherent to the way the RTN

addresses are being saved, sequentially at each encountering of the IF statement.

There are however a few supported configurations:you can nest IF/ENDIF groups provided that the

subordinate groupends at the bottom of thelower branch of the main group, i.e.when the two ENDIF

statements are consecutive, and only if there are no program steps between them. This fortunately

includes the mostcommon cases without ELSE branches.

Therefore, the subordinate group cannot be in the “True” branch if this has end ELSE step, as this will

situate its ENDIF directly before the ELSE statement of the main group. Likewise, you can’t place two

subordinate groups within the same branch – it’ll also break the “contiguous ENDIF’s” rule.

Two examples with one subordinate group in blue are shown below, showing the explicit restriction to

have contiguous ENDIF statements:

IF(1) IF(1)

True branch-1 True branch-1

ELSE(1) IF(2)

False branch-1 True branch-2

IF(2) ENDIF(2)

True branch-2 True branch-1 con’t

ELSE(2) ENDIF(1)

False branch-2

ENDIF(2)

False branch-1 con’t

ENDIF(1)

If you’re interested to see the underpinnings of these functions refer to the Appendix#4 in page #59,

with a detailed analysis of the code and discussion of the operation.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 39 OF 54

Let’s see a few examples of utilization to illustrate the advantage of the new functions.

Example 1: Fibonacci numbers and yet another Factorial

Starting with the Fibonacci numbers, we’ll apply the recursive definitionwith F(0)=0, F(1) = F(2) = 1:

Entering the initial values in the X,Y registers puts the input number in Z, so the condition will refer to

that stack register this time – repeating the loop while its value is greater than 2. Note as well the use

of a trivial IF/ENDIF condition to deal with the cases n=1 and n=2.

Moving to the next example, perhaps the tritest application of the Do/While construction - let’s

prepare our version using these new functions. Obviously not rocket science, as it’s very straight -

forward application of the definition. With n in X, we use it as a counter multiplying all the values by

the partial result.

1. LBL “FBO#”

2. INT

3. ABS

4. X=0? ; is x=0?

5. RTN ; yes, abort

6. “X<3”

7. IF ; is X<3?

8. 1 ; yes, X=1

9. RTN ; done.

10. ENDIF ; no, go on

11. 1

12. 1

13. “Z>2”

14. DO ; loop starts

15. +

16. LASTX

17. X<>Y

18. DSE Z

19. WHILE ; repeat if >2

20. RTN

21. LBL “FCT#”

22. INT

23. ABS

24. X=0? ; is X=0?

25. RTN ; yes, abort

26. 1

27. X<>Y ; f=1

28. “X>1”

29. DO ; loop starts

30. ST* Y ; f=f*n

31. 1

32. – ; n=n-1

33. WHILE ; repeat if n>1

34. X<>Y

35. END

Note that these short programs are included in the companion module, “EVAL_APPS”.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 40 OF 54

Example 2: Arithmetic-Geometric Mean

No calculator should lack a good MCODE implementation of the AGM, a fundamental relationship very

useful in elliptic functions theory. The SandMath has its own, but here we’re using EVAL$ functions in

the DO-WHILE loop for a good illustration of what this module is capable of:

01 LBL “AGM#”

02 “ABS(IP(Y))

03 EVALY

04 “ABS(IP(X))” ; INT, ABS

05 EVAL$

06 DO

07 “(X+Y)/2”

08 EVAL$; an

09 “Q{L*Y)” ; L, not X !

10 EVALY ; gn

11 VIEW X ; show value

12 X<>Y

13 RND

14 X<>Y

15 RND

16 “X#Y”

17 WHILE ; in FIX 10

18 END

Which isn’t only a very sort and compact routine, but also very easy to read and troubleshoot – a far

cry compared to the FOCAL program listings!

Note that the convergence may at times run into issues if all 10 decimal places are used due to

oscillations. This can be avoided using rounding values to the desired accuracy, see steps 13-15.

Example: AGM(8, 23) =

As a corollary it is very simple to obtain the Geometric-Harmonic mean (GHM), derived from the

AGM as per the below relationship and code:

01 LBL “GHM#”

02 X<>y

03 1/X

04 X<>Y

05 1/X

06 XROM “AGM#”

07 1/X

08 END

Definition of the sequence:

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 41 OF 54

Example 3: Ulam’s Conjecture

Also known as the Collatz’Conjecture, a well-known subject that has been addressed before using

different approaches (MCODE included), now in a completely new fashion on the 41 platform.

This final example uses an IF/ELSE/ENDIF structure inside of a DO-WHILE loop. It really brings the

point home: simplicity and legibility, albeit there’s an obvious speed penalty using this approach.

01 LBL “ULAM#”

02 “ABS(IP(X))”

03 EVAL$; naturalize input

04 “X=0”

05 IF ; x=0?

06 RTN ; abort if x=0

07 ENDIF

08 “0”

09 EVALY ; reset count

10 DO ; loop begins

11 “(X&2)=0” ; MOD (x,2)

12 IF ; is x even?

13 “X/2” ; yes, halve it

14 ELSE

15 “3*X+1” ; no, increase it

16 ENDIF

17 EVAL$; evaluate new

18 VIEW X ; show value

19 “Y+1”

20 EVALY ; increase count

21 “X#1”

22 WHILE ; repeat while

23 VIEW Y ; show length

24 END

Multiple visual representations of the Collatz conjecture can be

found, some of them more elaborate than others – and many

looking very intriguing and of a beautiful nature. Watch

Numberphile to see an in-depth discussion of how these visuals

were created.

(https://www.youtube.com/watch?v=LqKpkdRRLZw)

Here, each step where you divide by 2 is represented by a

vertical black line and each step where you multiply by 3 and 1

is represented by a red horizontal line.

PS. I couldn’t resist the temptation to prepare a MCODE version of this program, see the code in next

page. FWIW, the speed isn’t really the point here due to the visualization of the intermediate results,

but nevertheless this showcases the trade-offs between the lowest-level language and the more

convenient yet slower versions.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 42 OF 54

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 43 OF 54

The next logical case for FOR/NEXT (STEP)

The next logical structure is no doubt the FOR…NEXT loop, perhaps the most popular program flow

control known by every programmer, no matter the level of expertise.

Obviously, the HP-41 platform comes with ISG and DSE, which combined with LBL and GTO

perform a similar function to the FOR...NEXT loops. Indeed, their fundamental operation is very

comparable, although the FOR…NEXT syntax offers more convenience – at the cost of more variables

and memory requirements used of course.

The implementation presented here is a compromise between the native ISG/DSE and the most

capable FOR…NEXT concept:

 FOR _ _ prompts for the register number to be used as index variable, which becomes the

Selected Variable (selvar#). It also expects the bbb.eee:ss control word in X, defining the

initial and final index values, as well as the step size. If the control word is positive (with

bbb<eee) thenthe STEP increments the index, whereas if negative (with bbb>eee) then

itdecrements the index. By default, if ss=0 the step is one (standard hp-41 convention for

loop functions).

 NEXT _ _ does the index increment or decrement and loops back to the FOR location of a

new iteration kkkuntil all of them are done (when kkk>eee); in which case the execution

continues with the program steps below it. Note that the function prompts for the register

index variable as well, and thus allowing nested levels.

 The index variable isdeclaredin the prompt, but due to the prompting technique (using OS

routines) the value is not automatically entered in program mode, thus you need to add it

manually. The indexes follow the same convention used all throughout the system. Adding

112 for stack registers and 128 for INDirect addressing.See the table in page #18.

Note that NEXT increments (or decrements if the control word is negative) the value in the SELCT’ed

register, not X – unless of course X is the selected register. It comes without saying that the

instructions executed within the loop should not modify the contents of the SELECTed register –

unless you’re a power user and want to modify the index variable intentionally.

For example, the routine below uses R01 and R02 as SELCT’ed index to play three TONE 0 with

another two TONE 1 instructions for each of them, with a BEEP to end- i.e. nine tones in total as

follows: T0-T1-T1; T0-T1-T1; T0-T1-T1

36. LBL “TONES”

37. -2 ;= 1.003

38. FOR01 ; S1=01

39. TONE 0

40. -1 ;=1.002

41. FOR 02 ; S=02

42. TONE 1

43. NEXT02 ; Next S2

44. NEXT 01 ; Next S1

45. BEEP

46. END

Unlike the previous two structures, FOR…NEXT doesn’t make utilization of EVAL? – or any evaluation

function for that matter. They can of course be used inside the loop, but if you do so remember that

data registers {R00-R01} are used byEVAL?itself, therefore, they shouldn’t be used as SELCT’ed

registers for the loop index.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 44 OF 54

Each FOR..NEXT loop takes one subroutine level, thus you can build up to six nested loops – provided

that there aren’t any additional subroutines called inside any of them of course. Remember to always

match the number of FOR and NETX instructions – this is not checked by the code.

The next example is slightly more useful that playing tones: Bubble Sorting (once again!) - although

it’s a non-practical solution due to the slow speed it is very indicated to document the operation of

the functions.

Two versions are included, one with data movement and another that makes the data comparison in-

place. The input should be the FROM.TO control word (bbb,eee) delimiting the memory area to be

sorted. The programs very much read like BASIC routines to do this job. Both versions show a nice

implementation of a two nested FOR…NEXT loops, even if the second one requires functions from the

WARP_Core module.

Version #1. Data moved to the stack for the comparison. We’ll use R00 and R01 as loop index

variables. It is slightly longer and obviously {R00-R01} are reserved (can’t contain data to sort).

01 LBL “BSORT1”; bbb.eee in X

02 E-3

03 -

04 FOR 00 ; bbb.(eee-1)

05 RCL 00 ; kkk.(eee-1)

06 1.001

07 +

08 FOR 01 ; (kkk+1).eee

09 RCL IND 01 ; R(kkk+1) value

10 RCL IND 00 ; R(kkk) value

11 X<Y? ; already sorted?

12 GTO 00 ; yes, skip

13 RCL 00 ; kkk.(eee-1)

14 RCL 01 ; (kkk+1).eee

15 X<I>Y ; (*)

16 LBL 00

17 NEXT 01 ; do next reg

18 NEXT 00 ; do next Reg

19 END

(*) Function X<I>Y does IND X <> IND Y. It is also in the WARP Core

Version#2. Data in-place.We’ll use stack registers Y and X as loop index variables. Note that it’s ok to

select other registers inside the loops because NEXT changes the selection back to the index variable,

so perfectly compatible.

01 LBL “BSORT2”; bbb.eee in X

02 E-3 ; 0.001

03 - ; bbb.(eee-1)

04 ENTER^ ; bbb.(eee-1)

05 FOR Y(114) ; kkk.(eee-1)

06 CLX

07 RCL Y

08 1.001

09 + ; (kkk+1).eee

10 FOR X(115) ; (kkk+1).eee

11 SELCT IND X

12 ?S>= IND Y ; (242)

13 GTO 00

14 S<> IND Y ; (241)

15 LBL 00

16 NEXTX ; do next X

17 NEXTY ; do nextY

18 END

Once again, these routines are very slow. For real-life applications (say more than 10 registers to

sort) you really should be using a MCODE function like SORTRG in the SandMath, or a more

intelligent routine such as S2 and S3 in the PPC ROM (and derivatives).

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 45 OF 54

A complete SELECT-CASE Structure

We’ve just seen how to use the SELCT function in the WARP_Core module as an ancillary element in

the FOR…NEXT loops. This is very efficient in that it allows selecting data registers, Stack registers

and even buffer registers for the selected variable – as well as their INDirect variants.

SELCT is paired with ?CASE, a yes/no function that skips next line if the content of the selected

register doesn’t match the value entered as its argument. See the EVALXM program later in the

manual for a superb example of utilization of this pair of functions.

That’s very good al well but it ain’t quite the same as a full-fledge SELECT structure with multiple

CASE clauses within it, which is now included in the Formula_Eval module and described below.

The new structure has four elements:

 SELECT_ _ prompts for the selected register number and activates the structure flag. It

must always exist to delimit the beginning of the structure.

 CASE_ _ _ clauses prompt for a target value of the selected register. If there’s a match the

following program lines are run, right up to the next SELECT statement or the end of the

structure. It also deactivates the structure flag so that other CASE clauses below it won’t get

executed. CASE checks for the existence of ENDSLCT downstream in the program code,

showing the “NO BOUND” error message if it’s not found.

 CASELSE is a special kind of CASE that doesn’t impose any value-matching condition. It is an

optional clause but if it exists it should be placed after the last CASE statement in the

structure. Like CASE, this function also checks for an active selected variable and the

presence of the ENDSLCT clause below it.

 ENDSLCT delimits the end of the structure, thus it too must always exist. It deactivates the

flag and clears the selected register variable.

The trivial example below should illustrate usage. The routine plays a different tone depending on the

input value in X, from 0 to 3 – or a BEEP if the value isn’t one of those four. For convenience it takes

the value in X into the register pointed at by R00 and selects that very register for the structure

usage. Just make sure that R00 points at an existing register in memory, of course.

01 LBL “SCE”

02 STO IND 00

03 SELECT IND 00 (128)

04 CASE 0

05 TONE 0

06 CASE 1

07 TONE 1

08 CASE 2

09 TONE 2

10 CASE 3

11 TONE 3

12 CASELSE

13 BEEP

14 ENDSLCT

15 END

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 46 OF 54

Like any good thing in life, some restrictions: apply - let’s review them next:

1. As a consequence of the prompting mechanism used (based on OS routines), there’s no

automated support for stack registers {X,Y,Z,T,L} or buffer registers (A,B,C,D,E,F,G} in the

variable selection. Therefore, when editing a program the selected register number needs to

be input manually (i.e. it’s not stored by the prompt). Here we can also include Stack

registers and Indirect registers, simply by adding to the index the decimal value 112 (0x70

hex) for stack addressing, or 128 (0x80 Hex) for indirect addressing, i..e: 115 = Stack X; 128

= IND 00; 129 = IND 01; 243 = IND ST X. and so on. See the table in next page..

2. Even if these functions can be called in manual mode they’re meant to be used in a program.

In manual (interactive) mode there’s no checks for a matching function, so calling SELECT

outside of program mode will not trigger the “NO BOUND” message.

3. Nested SELECT-CASE structures are onlyfully supported in CASELSE clauses (which is always

last in the structure). This is because the selected register number is stored in the header of

buffer#7 (there’s only one of them), and as a consequence of the cursory search of the CASE

instructions when the conditional is not matched. This restriction is however immaterial if the

execution engages the last,non-conditional clause so it’ll always get done. Any other situation

can run into conflict or false matches resulting in computational errors.

4. It’s perfectly ok to include any of the other program-flow controlling groups as part of any

SELECT clause – as long as their own nesting rules are respected.For example, the snippets

below show three different flow control groups, one on each CASE clause, The value in R00

will determine which of the three branches to execute.

SELECT 00

CASE 0 ; FORT..NEXT

1,004 ; play 4 times

FOR

TONE 0

NEXT

CASE 1 ; IF/ELSE

“4*x<3*y^2”

IF

BEEP

ELSE

TONE 9

ENDIF

CASELSE ;Not 0, not 1

SELECT 1 ; nested level

CASE 01

 TONE 7

CASE 1

 TONE 2

 ENDSLCT

ENDSLCT

Note that like the FOR..NEXT group, the SELECT/CASE structure doesn’t need to do any formula

evaluation (i.e. embedded call to EVAL?), thus they’re much faster than the DO/WHILE and

IF.ELSE.ENDIF counterparts.

Warning: do not mistake the SELCT and SELECT functions. SELECT is part of the new structure,
while SELCT is a function in the WARP_Code module. SELCT is more general-purpose because it
features automated entry of the non-merged program step, supporting data registers, stack and
buffer addressing. On the other hand, SELECT requires manual editing of the non-merged program

step – and besides that, it doesn’t support buffer registers.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 47 OF92

Compatibility with FOR..NEXT structures.

As described already, the SELECT/CASE structure uses buffer#7 header to store the selected register

number (selvar#). This is used by the CASE instructions to check matching values with their

targets;thus,it follows that the selected register number should be the same at every CASE instance.

Say now that a FOR..NEXT loop is included within a CASE clause, with a modification of the selected

register number. This is going to alter the selvar# in the buffer header but such an alteration is

inconsequential to the SELECT/CASE structure because the go-to address of the ENDSLCT instruction

is maintained (i.e. not changed by FOR..NEXT), and thus the following SELECT instruction knows

where to transfer the program execution to.

For example:

SELECT 01 ; structure begins

CASE XX ; clause begins

bbb.eee:ss ; control word

 FOR 02 ; changes selvar# (!)

<code here>

 NEXT 02

CASE YY ; next clause begins

<code here>

ENDSLCT ; end of structure.

Note that the other way around (a SELECT/CASE structure inside a FOR..NEXT loop) doesn’t require

any special consideration either because the NEXT instruction also resets the selvar# in the buffer

header, thus no conflict can occur.

The table below shows the indexes needed for the non-merged instructions described above.

 Argument Shown as: Argument Shown as: Argument Shown as:

100 00 112 T 124 b

101 01 113 Z 125 c

102 A 114 Y 126 d

103 B 115 X 127 e

104 C 116 L 128 IND 00

105 D 117 M 129 IND 01
106 E 118 N 130 IND 02

107 F 119 O 131 IND 03

108 G 120 P 132 IND 04

109 H 121 Q 133 IND 05

110 I 122 |- 134 IND 06

111 J 123 a 135 IND 07

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 48 OF92

Appendix 1. Sub-functions in the auxiliary FAT

This module includes a set of low-level routines in the auxiliary FAT that can become very useful for

troubleshooting and diagnostics. Some are subsets of the EVAL$ and ^FRMLA functions (the two

pillars of the ROM), made available as independent functions as well. Let’s describe them briefly.

To execute sub-functions, you need to use either one of the launcher functions, SF# (using the

function index) or SF$ (spelling the function name). LASTF will repeat the last executed function.

Use CAT+ to enumerate the sub-functions. [R/S] halts the listing, [SST]/[BST] navigates the list, and

[XEQ] executes it straight from the catalog.

 The underpinnings of EVAL$ make usage of a memory buffer, with id#6. This buffer stores

all information from the formula: operators, functions, and data. During the execution of

EVAL$ there are calls to buffer routines to push and pop values, as well as to initialize (clear)

it. The available functions are: CLRB6, PSHB6, and POPB6

The buffer#6 header also holds the information on the currently selected buffer register

(pointer in digit 9) and the destination register for the result (marker in digits 4,5,6). POPB6

and PSHB6 automatically decrement and increment the buffer register pointer. The buffer is

16 registers long, which should allow for any combination of data, operators, and variables in

the formula string. See the following chapter for more details.

 Another group of routines have to do with advancing the character selection within the text.

This allows the main code to scan all characters in the ALPHA string using a loop which is

executed multiple times until the complete formula has been processed. These sub-functions

are: NXTCHR, and PRVCHR.

 The next one is very helpful for error prevention and correction. CHK$ checks for non-

matching number of open and close parenthesis, correcting the unbalance in case that close

parenthesis were missing.

 The next pair B6? and B7?interrogates for existence of buffers #6 and #7 – creating them

on the fly if they don’t yet exist. This action is always performed by all functions accessing

these buffers, but these functions provide a manual access to the functionality.

 ST>B7 and B7>ST copy the stack registers {X, Y, Z, T, L} to the stack buffer registers (a,

b, c, d, e, F} and back respectively. Very useful for variable assignment en masse.

 LOOPT is an auxiliary function to recall the loop pointer in a FOR..NEXT structure, a.k.a. the

content of the selected register. It does the same as SRCL in the WARP_Core module.

 In case you miss the HP-48SX, also included in this group is a trivial BLIP sound to reinforce

the error messages with an acoustic warning – don’t we all love those obnoxious beeps ;-)

 The last group does clever manipulation of the RTN stack addresses, popping or killing

specific ones. They are used by the high-level DO/WHILE and IF.ELSE.ENDIF structures to

keep track of the return-to addresses – which are temporarily stored in the RTN stack as well.

These sub-functions are XQ>GO, KRTN2, DRTN2, RTNS, and ?RTN

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 49 OF92

Appendix 2. EVAL$ Buffer Structure.

Buffer #6 is LIFO, sort of like a buffer stack. EVAL$ handles the buffer interactions, as it works its

way down the expression in ALPHA, character after character. EVAL$ also does checks for empty

buffer (nothing to pop from the buffer stack) or full buffer (can’t push anything more onto the buffer

stack). The lowest value register in the buffer set (i.e. the buffer header) has a pointer that tells

which one was the last value pushed (or 0 if a clear buffer)

Buffer 6 when used for EVAL$ purposes has three possible formats:

1. If the sign digit is1, it is theinternal function code (found in the table below) for the

operation to be saved on left parenthesis operation. It would be either a dyadic or unary

operation code with format ”1|xxxxxxxxxx|CCC”, where CCC is the three-digit code in the

internal table.

2. If the sign digit is2, it is the saved status of the precedence flags for last left parenthesis

operation (used by right parentheses routine). It restores the flags back to the ST internal

register. This is formatted on the register as “2|xxxxxxxxxx|xSS”, where SS is the saved ST

register contents.

3. If the sign digit is0or 9, it is the saved value (decimal) of the last saved operand. This is

the usual numeric representation of a 10-digit operand (BCD). Dyadic functions save two

values, unary functions save one (and most unary functions save the function number using

format 1 after that because they are followed by a left parenthesis).

If the sign digit is anything else, EVAL$ will bail out and yield an error.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 50 OF92

In summary, buffer #6 is used during the execution of the EVAL$ functions in a dynamic manner,

populating first its registers with both the arguments and the operations (coding the ALPHA

characters as described above), and decoding the registers later to calculate the value of the

expression written in ALPHA.

Because of this, looking into Buffer #6 at any other moment (not during the execution of EVAL$) will

typically not show any relevant information. However, during the actual execution it will have a

configuration like the one represented below with a variable number of registers used depending on

the actual formula being worked on.

(*) In the picture abovethe buffer is shown with 7 “active” registers but we know it can hold up to 16

registers with the information on the pending operations and parameters. This size allows for as

many intermediate operations as needed to support a 24-char length formula, regardless of how

intricate the formula is.

Example: Buffer contents for the formula adding the integer and fractional parts of pi.

b3 @0DC: “” 0|3141592653|000

b2@0DB: F7 2|0000000000|080 => IP() result to b1

b1 @0DA:“IP” 1|0000000000|150

b4 @0DD: “” 0|3141592653|000

b3 @0DC: F7,F0 2|0000000000|081 => FP() result to b2

b2 #0DB: “FP” 1|0000000000|250

b1 @0DA: IP() 0|3000000000|000

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 51 OF92

Appendix 3.- Internal EVAL$ Execution flow.

The top-level execution flow to interpret and evaluate a formula string is described below.

1. The first phase is to read the string in ALPHA from left to right, checking for possible syntax

errors, and pushing all valid elementsinto buffer #6. These can be either actual BCD values or

the function codes. This phase is flagged with CPU flag F7 clear. The formula reading routine

loops thru all characters and the last character is flagged by CPU flag F5 set. There are

disambiguation routines for those multi-character function codes as well (like AS, AC, AT,

ABS, AHS, AHC, AHT, etc.)

2. The second phase is the interpretation of the contents of buffer #6, in a LIFO fashion – thus

corresponding to an evaluation of the formula in ALHA, this timefrom right to left. This phase

is flagged with CPU flag F7 set.

In the interpretation/evaluation phase we distinguish three major categories:

 Arithmetic operations, such as addition, subtraction, multiplication, division, Module, and

percentage. Note that these are dual-number operations.

 Single number Functions, all defined in [FNCTBL] and

 Stack & Buffer variables– all defined in [CASTBL]- and Numeric constants, build from ALPHA

by [NUMRIC]

The dual-number cases are controlled by CPU flags F0 – F6, according to the tables below.

Routine Function F0 F1 F2 F3 F4 F6

[ADDSUB] Addition 1 0 - - - -

Subtraction 0 1 - - - -

Percent 1 1 - - - -

[MLTDIV] Multiplication - - 1 0 - -

Division - - 0 1 - -

Modulus - - 1 1 - -

[DOYTOX] Power - - - - 1 -

[INVERS] Sign Change - - - - - 1

What we tried to do with the EVALx series of functions was to insure that only the intended stack

register (and LastX) was modified with the results of the formula in Alpha. Hence, EVAL$ touches X

and L only, EVALY touches Y and L only, EVALZ touches Z and L only, EVALT touches T and L only, and

EVALL touches only L (with EVALL having no LastX capability, of course).

We get away with that because all the partial calculations are pushed/popped from a special buffer

(#6) as well as other important formula info. So this yields a lot of power to the user, allowing them

to use the stack the way they want to. This action only occurs at the very end of the formula

evaluation phase, and that means you have 5 "variables" to use in the stack (X, Y, Z, T, and L) and 6

"parameters" to use in buffer 7 (a, b, c, d, e, and F) before the stack is modified by the final phase of

the desired EVALx function.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 52 OF92

EVAL Applications ROM

The companion to the EVAL_3K ROM, this is a collection of examples and applications of the different

EVAL functions. Some were used as examples in the manual, but others are added in for completion.

It also includes the EVAL$-aware versions of SOLVE and INTEG that were mentioned in previous

sections of this manual.

Here’s a list of the included routines. Mostly they’re short drivers for the core EVAL functions, which

do all the heavy lifting. You’re encouraged to look at the formulas used in the listings for those

examples you find interesting to your needs.

Name Description Inputs Author

-EVAL_APPS Section Header n/a n/a

AINT ALPHA integer part Value in X Fritz Ferwerda

“ARPXY” ALPHA Replace Y by X Old in Y, new in X Greg McClure

“IT$” Integration Routine Interval in {Y,X], #iter in Z UPLE#

“SV$” Solves f(x)=0 Guess in X PPC Members

“AGM” Arithmetic-Geometric Mean x, y in X, Y Ángel Martin

“d2$” 2D-Distance P1, P2 in Stack Martin-McClure

“d3$” 3D-Distance Prompts for Vectors Martin-McClure

“DOT$” Dot Product 3x3 Prompts for Vectors Martin-McClure

“CL$” Ceiling Function Argument in X Ángel Martin

“FL$” Floor Function Argument in X Ángel Martin

“HRON$” Triangle Area (Heron) a, b, c in Y,Z,T Angel Martin

“LINE$” Line equation thru points Y2,X2,Y1,X1 in Stack Angel Martin

“NDF$” Normal Density Function in Z, in Y, x in X Ángel Martin

“P4$” Polynomial Evaluation Prompts for Coefficients Ángel Martin

“QRT$” Quadratic Equation Roots Coefficients in Z, Y, X Martin-McClure

“R$S” Rectangular to Spherical {x, y, z} in X, Y, Z Ángel Martin

“S$R” Spherical to Rectangular {R, phi, theta} in X, Y, Z Ángel Martin

-$AND MTH Section header n/a n/a

“NCK$” Combinations n in Y, k in X Ángel Martin

“NPK$” Permutations n in Y, k in X Ángel Martin

“KK$” Elliptic Integral 1st. Kind argument in X Ángel Martin

“LEG$” Legendre Polynomials order in Y, argument in X Ángel Martin

“HMT$” Hermite’s Polynomials order in Y, argument in X Ángel Martin

“TNX$ Chebyshev’s Pol. 1st. Kind order in Y, argument in X Ángel Martin

“UNX$” Chebyshev’s Pol. 2nd. Kind order in Y, argument in X Ángel Martin

“e^X” Exponential function Argument in X Ángel Martin

“ERDOS” Erdos-Borwein constant None Ángel Martin

“FHB$” Generalized Faulhaber’s N in Y, x in X Ángel Martin

“HRM$” Harmonic Number N in X Ángel Martin

“GAM$” Gamma function (Lanczos) Argument in X Ángel Martin

“JNX” Bessel J integer order n in Y, x in X Ángel Martin

“LNG$” Log Gamma Argument in X Ángel Martin

“PSI$” Digamma function Argument in X Ángel Martin

“WL$” Lambert W Function Argument in X Ángel Martin

“CI$” Cosine integral Argument in X Ángel Martin

“SI$” Sine Integral Argument in X Ángel Martin

“ERF$” Error Function Argument in X Ángel Martin

“JDN” Julian Day Number MDY Date in {Z,Y,X} Ángel Martin

“CAL$” Calendar Date JND in X Ángel Martin

-SCRIPT EVL Section header n/a n/a

EVALXM Script Evaluation File Name in ALPHA Greg McClure

EVLXM+ Enhanced Script Eval File Name in ALPHA Martin-McClure

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 53 OF92

EVL+ Enhanced Sum Eval String in ALPHA Martin-McClure

EVLP+ Enhanced Product Eval String in ALPHA Martin-McClure

“GMXM” Makes GAMMA Script none Martin-McClure

^01 Puts Chars in R00-R01 Strings in ALPHA Martin-McClure

+REC Advances one Record FileName in ALPHA Martin-McClure

“FCT#” Factorial w/ DO.WHILE Argument in X Ángel Martin

“FIB#” Fibonacci Number Argument in X Ángel Martin

“ULAM#” Collatz’Conjecture Argument in X Ángel Martin

A few numerical examples:-

2, ENTER^, 3, ENTER^, 4, XEQ “HRON$” =>

25, ENTER^, 2, XEQ “FHB$” =>

25, XEQ “HRM$” =>

PI, XEQ “FL$” =>

PI, XEQ “CL$” =>

3, ENTER^, 2, ENTER^, 1, XEQ “R$S” =>,

RDN =>, (in RAD mode)

RDN => (in RAD mode)

XEQ “S$R” => in { Z, Y, X }

77, ENTER^, 27, XEQ “NCK$” =>

77, ENTER^, 27, XEQ “NPK$” =>

5, XEQ “WL$” =>

3, XEQ “PSI$” =>

75, XEQ “LNG$” =>

0.5, XEQ “ERF$” =>

1, ENTER^, 1, XEQ “JNX$” =>

07, ENTER^, 21, ENTER^, 1959, XEQ “JDN$” =>

 XEQ “CAL$” => 1

 RDN =>

 RDN =>

1.4, XEQ “CI$” =>

1.4, XEQ “SI$” =>

24, ENTER^, 6 XEQ “AGM$” =>

0.5, XEQ “KK$” =>

Routine listings for NDF, LINE$, NCK/NPK, HRMX, HRON$, and JNX

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 54 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 55 OF92

Routine listings for QRT$ (updated to support complex roots) and P4$.

Examples.

Roots of x^2 + x + 1 =0

Roots of x^2 – 3x + 2 = 0

 ;

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 56 OF92

Routine listings for AGM$, KK$, CL$, FL$,FHB$ and SR / RS.

Note that AGM$ relies on the decimal settings of the calculator for the accuracy of the results

(steps 9 and 11 perform a rounding of the X,Y values).

Formulas: N = IDN - 1,721,119

if Gregorian:

 C = int {(N-0.2(/36,524.25]

 N ' = N + C - int(C/4)

if Julian:

N' = N + 2

Y' = int[(N' -0.2) / 365.25] ->N" = N' - int(365.25 * Y']

M' = int[(N" - 0.5)/ 30.6] ->D = int [N" - 30.6 * M' + 0.5]

JDN = int{ int [[D + int(367 x) - int(x)] - 0.75 * int(x)] - 0.75 * int[int(x)/100) } + 1,721,115

where: X = Y’ + (M-2.85) / 12

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 57 OF92

Routine listings for ARPLXY and JDN$ / CAL$.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 58 OF92

Routine listings for SV$ and IT$.

An alternative form of the well-known routines is presented here!

it can’t get any better than this!

Note that both routines use {R07-R10} to save the formula of integrand function. These routines are

prepared to be used by EVALXM and EVLXM+ (data registers usage is compatible). This, however,

makes them unsuitable for nested execution, i.e. either using SV$ in the integrand function, or IT$ in

the function to solve the roots for.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 59 OF92

A new scripting language using Extended Memory

One of the goals for the final version of this module was to allow a series of steps to be stored to

automatically run as a scripted language. The perfect place for such a script would be an ASCII file in

Extended Memory. After entering the steps into the ASCII file, all the module user would need to do

is initialize the stack and buffer variables (X, Y, Z, T, L, a, b, c, d, e) if required, enter the name of the

file into the Alpha register, and execute the script reading program.

This goal has been realized in this version of the Function Evaluation module! All the EVAL functions

(including EVAL?,EVALΣ, and EVALP) have been brought together to create a scripted language

including a primitive “GOTO” function, labels for the “GOTO”, and decision making statements.

Note that two versions of the program exist, the standard EVALXM and a more capable EVLXM+.

Either one requires that the WARP_CORE module be plugged in, as they make extensive use of its

?SELCT/CASE functions in control branches..

Before describing each type of script line, a few definitions are needed:

 ‘Variable’ can represent any of the stack variables used by EVAL$ (or its siblings), i.e. X, Y,
Z, T, or L; or it can also be one of the buffer variables a, b, c, d, e, or F.

 “_” represents a blank space character

 ‘StackVar’ is restricted to one of the stack variables X, Y, Z, T, or L.

 ‘Formula’ represents any of the strings used by EVAL$ or its siblings as a line to evaluate.

 ‘Value’ represents any valid real value that can be read from the Alpha register via ANUM.

 {Condition} represents any conditional operator understood by EVAL?, i.e. <, <=, =, >=,

>, or ≠, as described in the EVAL? section.

 ‘Label’ represents any single character – even special chars.

 ‘RegNumber’ represents any valid memory register number, it does NOT require a leading
zero 0.

 ‘Params’ represents the parameters supplied inside “(” and“)” used by EVALΣ and EVALP.

With those definitions in mind, here is the syntax used by the scripting language. Each record in the

ASCII file in extended memory should be one of the following:

1. ‘Variable’_’Value’ [the space in between “Variable” and “Value” is required]

2. ‘StackVar’=’Formula’ [the equal sign is required]

3. ‘Label’: [the colon after the “Label” is required].

4. G_’Label’ [the space between the G and ‘Label’ is required, “GOTO” statement]

5. ‘Variable’S’RegNumber’ [stores value at “Variable” into memory register “RegNumber”]

6. ‘Variable’R’RegNumber’ [stores value from register “RegNumber” into location “Variable”]

7. ??’Formula’{Condition}’Formula’[conditional statement, skips next statement if FALSE]

8. ΣΣ(‘Params’) [for using summation function EVALΣ, value of sum replaces X, prev X to L]

9. PP(‘Params’) [for using product function EVALP, value of product replaces X, prev X to L]

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 60 OF92

And EVLXM+ adds the following additional capabilities:

10. F_‘Variable’=’Params’ [Space between the F and ‘Variable’ is required, “FOR” statement]

11. NX [Next statement that goes back to FOR statement above]

12. DO [Beginning of while statement loop]

13. W_’Formula’{Condition}’Formula’ [While condition is true, repeat DO loop]

14. IT(‘Params’) [“Params” represents “Divisions;From;To;Equation” for IT$]

15. SV(‘Params’) [“Params” represents “Guess1;Guess2;Equation” for SV$]

16. GF’Label’ [Forward only GOTO search for “Label”]

17. GB’Label’ [Backward only GOTO search for “Label”]

Note1: The assignment statement (form at #1 above) accepts any real value (i.e. -1.2345E-67), but

the evaluation statements (Format #2 above) formulas can only contain integers, not real values.

Note2: The last eight statements are only available in the new EVLXM+ program. In addition to

these new statements, “Params” in ΣΣ, PP, IT and SV can ALL be formulas: the integer indexes are

no longer restricted to being integers (as EVLXM+ uses enhanced versions of EVAL and EVALP,

aptly named EVL+ and EVLP+). “I” for “infinite” looping in ΣΣ, PP is still supported, and since this

parameter can also be a formula, must be “I” by itself to represent infinity.

Solve and integrate.

For the IT statement, the parameters are the Z, Y, and X values needed for IT$, and the formula put

into the alpha register. However, for the IT statement these values can be formulas that will be

evaluated, and the results put on the stack for IT$ to use. The first parameter is evaluated and

placed in Z, then the second parameter is evaluated and placed in Y, finally the third parameter is

evaluated and placed in X. During execution phase, X, Y, and Z are pushed into Y, Z, and T.

For the SV statement, the parameters are the Y and X values needed for SV$, and the formula put

into the alpha register. Again, for the SV statement these values can be formulas that will be

evaluated, and the results put on the stack for SV$ to use. The first parameter is evaluated and

place in Y, then the second parameter is evaluated and placed in X. During execution phase, X, Y,

and Z are pushed into Y, Z, and T.

Loop Control

For/Next statements should be used as follows:

F variable=begin;end

… statements in the loop

NX

On finding the F statement, the variable selected is initialized to the begin value. So, for example the

statement F_X=5.5;7.5 will initialize X to 5.5, then continue on.

On finding the NX statement, the F statement will be search for, and then the variable will be

incremented by 1. It will then be checked to see if it is greater than the end value. If so, the next

statement executed will be that after the NX statement, otherwise it will be the next statement

following the F statement (it will repeat all statements in the loop).

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 61 OF92

Do/While statements should be used as follows:

DO

… statements in the loop…

W formula{condition}formula

On finding the W statement, the condition is evaluated. If true, then the DO statement will be

searched for, and the next statement following the DO will be executed. Otherwise, it will continue

with the next statement after the W.

All this may seem confusing, so an example might be in order.

Create an ASCII file in extended memory named “TEST”, size it to 20 registers (oversized so you can

play with the example afterward). Put the following records into the file using your favorite editor:

00 Y 1.0 ; initial Y value

01 X 1.0 ; initial X value

02 A: ; label A

03 X=X+Y ; add it to sum in X

04 Y=L ; recall LastX to Y

05 ??X<100 ; les that 100?

06 G A ; yes, goto A:

Put TEST into the Alpha register and XEQ “EVALXM”. What you have done is find the first Fibonacci

number above 100. Note the steps show up as they are executed, and the GOTO statement will

show the goose as it searches for the label.

An explanation of the steps follows:

Y_1.0 puts 1.0 into the Y register [you could have also just used Y 1]

X_1.0 puts 1.0 into the X register [you could have also just used X 1]

A: this is a label, it will be used by the GOTO statement at the end

X=X+Y replaces X register with the sum of X and Y, L becomes the previous value of X

Y=L replaces Y register with contents of L

??X<100 this tests to see if X is less than 100, if NOT, the GOTO statement is skipped

G_A go to label A

Notice: Direction of search.

The GOTO statement will search from the beginning of the ASCII script file for the label. This means

some searches could take a long time if the label is far down into a program. The EVLXM+ program

includes two additional statements to make this search faster (GF and GB).

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 62 OF92

Let’s see how to rewrite the Fibonacci example with DO/WHILE statements instead:

00 Y1.0

01 X 1.0

02 DO ; start of DO/WHILE

03 X=X+Y

04 Y=L

05 W X<100 ; end of WHILE loop, keeps looping until X>=100

The DO statement replaces the label, and we take one less statement in the program.

Binet’s Formula for Fibonacci numbers.

Here’s a way to obtain the n-th. Fibonacci number directly using Binet’s formula, without iterations

based on the previous values. Here phi is the golden ratio

A few more scripting examples:

To store [Z] in R11 use: ZS11
To recall [R15] to [a] use: aR15
To goto label A searching backwards only use: GBA
To find the sum of X for X=1 to 5 use: ΣΣ(1;5;X)

To find the product of X for X=1 to 5 use: PP(1;5;X)

Variables vs. Integer indexes.

If you are using the new EVLXM+ program, then in place of the last two examples…

If Y = 2 and Z = 6 you could use instead:

ΣΣ(Y-1 ; Z-1;X) or PP(Y-1;Z-1;X)

Notice that Y and Z are not moved until the execution phase (where the formula “X” is used).

Warning: Record Length.

Even if the ASCII records can hold up to 256 characters, the complete strings cannot exceed 24

characters, as they’ll be put in ALPHA and handled byEVALXM. This restriction does include the

leading control characters at the beginning of the record, like “X=”, “??”, etc. So in this respect the

scripts are a bit more restrictive than if you use the individual functions in FOCAL programs.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 63 OF92

EVALXM Program Listing.(Updated)

The first version of EVALXM used the SELCT/?CASE functions from WARP_Core functions to sieve

through the different possible cases of the control characters in the X-Mem ASCII files. With the

subsequent addition of the SELECT/CASE/ENDSLCT structure it was possible to replace them and so

simplify and enhance the program, saving about 50 bytes in the process. The new version still

requires the WARP_Core for functions ?X= and ?X#, but it’s smaller and leaner thus well worth the

change.

Bending the rules just a little bit.

As it was mentioned in the description of the SELECT/CASE/ENDSLCT structure, nested structures are

only supported if the second level is placed within the CASELSE clause. This is the only way to always

ensure that no conflicts arise in cases where the last level-1 SELECT clause is false – which will

trigger a search for other SELECT instructions below it, finding those belonging to the level-2

structure.But it’s possible to have a second-level structure if its code isn’t placed within the first one.

This is accomplished using a GOTO approach to move the code off the body of the Level-1. This is

exactly what we’ve done in this case - see the listing in next page. When/If the execution reaches the

ENDSLCT instruction in the level-2 structure it clears the pointers in the buffer header and deactivates

the structure, thus we need to provide a little extra aid to tell it where to go next, which is back to

the mail loop of course. To pick up the next record form the ASCII file and repeat the process.

Program remarks.

The program does a sequential interpretation of the ASCII file records until all are done. The first two

characters of each record control the action, and the third one provides additional information if

needed.

The program uses {R00 – R04} which therefore cannot be used in any of the script formulas. R02,

R03, and R04 are scratch. R00 and R01 hold the first two characters of each ASCII record, which are

used as control characters for the scripted action – see the list below as a refresher:

1. ‘V’_ space after “Variable” is required

2. ‘S’= equal sign after “StackVar” is required, does EVAL#

3. ‘L’: colon after the “Label” is required.

4. G_ space after the G is required, “GOTO” statement

5. ‘V’S stores value at “Variable” into memory register “RegNumber”]

6. ‘V’R stores value from register into location “Variable”

7. ?? conditional statement using EVAL?

8. ΣΣ for using summation function EVALΣ

9. PP for using product function EVALP

The two ancillary routines “+REC” and “^01” perform: (1) a record pointer increase and record to

ALPHA, and (2) storage of the first two characters into data registers R00 and R01.

The other function playing a key role here is TRIAGE. Its mission is to store the value in R02 into the

variableindicated in R00, identified by the ASCII value of its initial letter { X,Y,Z,T,L ;a,b,c,d,e,F }.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 64 OF92

Without further ado, here’s the program listing.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 65 OF92

Example: Gamma ASCII script.

Now gilding the lily, here you have an ASCII script to calculate Gamma(x) for x>0 using EVALXM.

Note that to include the special characters like parenthesis you’ll need to first place them in ALPHA

(either using XTOA or the direct entry feature from the AMC_OS/X Module); and then append them

to the ASCII record using APPCHR (or APPREC if you write in ALPHA the complete record). See the

GMXM routine in the companion EVAL_APPS ROM to see how this can be done programmatically.

Warning: this script assumes your radix is set to decimal point, not comma. Use SF 28 if needed.

This script is also based in the Lanczos formula. The listing is similar to the FOCAL program in the

previous section, although modified due to the 24-chars limitation in ALPHA for the evaluating

expressions. Only arguments x>0 are supported, you can go ahead and include the reflection formula

as an exercise ;-)

00 PP(0;6;Y+X) ; product term

01 XS9 ; result to R09

02 X=L ; argument back to X

03 a 5.5

04 X=(X+a)^(X+1/2)/E(X+a) ; exponential term

05 XS10 ; stored in R10

06 a 75122.63315 ; load coefficients

07 b 80916.62789 ; in buffer regs

08 c 36308.29514

09 d 8687.245297

10 e 1168.926495

11 Z 83.86760434

12 Y 2.5066282

13 X=L ; argument back to X

14 X=X*(d+X*(e+X*(Z+X*Y))) ; had to leave off c due to length

15 Z=L ; use Z for L

16 X=X+c ; add it in here

17 X=a+b*Z+X*Z^2 ; changed this formula accordingly

18 YR10 ; recall exponential result

19 X=X*Y

20 YR9 ; recall product result

21 X=X/Y

Example: Create the GAMMA ASCII file in X-Mem using GMXM, then calculate (1) via EVALXM.

XEQ “GMXM”, 1, EVALXM =>

Below you can see the code for the EVALXM routine. Note the repeated use of functions

?SELCTandCASE from the WARP_Code Module. Note as well the use of two auxiliary functions from

FAT-2, EVAL# and TRIAGE. The first one is a “wild-card” to help select which of the EVAL$

functions to use, while TRIAGE expedites the value assignment to variables. They use R02 as

repository for the index to designate the variable.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 66 OF92

Script Reading program comparison summary

The table below summarizes the most important differences between the two scrip reading programs

included in the EVAL_APPS Module.

Program Condition Routine Summing Routine Multiplying Routine

Other Routines

EVALXM EVAL? EVAL EVALP

n/a

EVLXM+

EVAL? XROM “EVL+” XROM “EVLP+”

XROM “IT$”
XROM “SV$”

Note that besides being capable of using integral and solve commands directly in the scripts, the

enhanced EVLXM+ includes the following additional Statements not supported by EVALXM:

 GoTo Forward

 GoTo Backward

 For / Next Loop

 Do / While Loop

 Solve & Integrate calls

Besides,EVAL and EVALP require actual integer values in their syntax, whereas the enhanced

versions EVL+ and EVLP+ also allow using expression formulas for the indexes, i.e. the actual

index value is calculated during program execution.

Appendix 0. Equation Solver.

As you know by now, the Formula Evaluation EVAL_3K is a 4k-Module and can be extended with an

upper page with the examples (EVAL_APPS). The contents of the two pages are largely self-

contained, so it’s possible to only load the lower page in the calculator.

An optional ROM is available that employs the formula evaluation techniques to solving for unknown

variables in equations, a.k.a. an equation SOLVER add-on. The EVAL_EQNS add-on can be plugged

along the Formula Evaluation module, instead of the EVAL_APPS upper page (this saves room in the

I/O bus if you don’t need the provided examples anymore),

The diagram below shows these options; the top configuration with both modules alongside, and the

bottom one where the EVAL_EQNS has replaced the AVAL_APPS:

Module Formula Eval Equation Solver

Lower Page EVAL_VF EVAl_VF

Upper Page EVAL_APPS EVAL_EQNS

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 67 OF92

Appendix. Enhanced EVLXM+ Program Listing

Extended version supports DO-WHILE, FOR-NEXT, GOTO, IT$ AND SV$
Non-merged instructions are listed in condensed form to save real state and for improved legibility.

01 LBL "EVLXM+"

02 CF 21 ; no-stop
03 STO 00 ; x to R00

04 CLX
05 SEEKPTA ; top of file
06 X<> 00 ; x is back

07 LBL H ;new record

08 SF 25

09 GETREC
10 FC?C 25 ; last one?
11 GTO E ; yes, exit

12 AVIEW ; no, show
13 XROM “^01”

14 SELCT 1

16 ?CASE 126 ;eval
18 GTO 10

19 ?CASE 80 ; evalP
21 GTO 12
22 ?CASE 61 ; = assign

24 GTO 20
25 ?CASE32 ; space

27 GTO 21
28 ?CASE 70 ; Forwd
30 GTO 21

31 ?CASE 66 ; Backd
33 GTO 21
34 ?CASE 79 ; Do

36 GTO H
37 ?CASE 58 ; : label

39 GTO H
40 ?CASE 63 ; eval?
42 GTO 23

43 ?CASE 82 ; Recall
45 GTO 24
46 ?CASE 83 ; Store

48 GTO 25
49 ?CASE 88 ; neXt

51 GTO 27
52 ?CASE 84 ; inTeg
54 GTO 28

55 ?CASE 86 ; solVe
57 GTO 29

58 ?CASE 0
59 GTO E ; Exit
60 SYNERR

61 LBL 10 ; UM

62 "├Σ"
63 STO 02

64 CLX
65 -1
66 AROT

67 X<> 02
68 XROM "EVLΣ+"

69 GTO H

70 LBL 12 ; PROD

71 "├P"

72 STO 02
73 CLX

74 -1
75 AROT
76 X<> 02

77 XROM "EVLP+"
78 GTO H

79 LBL 20 ; : assign

80 SF#05 (EVAL#)
82 GTO H

83 LBL 21 ; Frwd. GTO

84 SELCT 0
85 ?CASE 71 ; Goto

87 GTO 10
88 ?CASE 87 ; While
90 GTO 17

91 ?CASE 70 ; For
93 GTO 26

94 STO 02
95 CLX
96 ANUM

97 X<> 02
98 SF# 8 (TRIAGE)
100 GTO H

101 LBL 10 ; Goto

102 CLD

103 ST>RG 03
105 ATOX
106 STO 02

107 SELCT 0 ; again?
108 E

109 ?CASE 70 ; For
111 GTO 11

112 ?CASE 66 ; Bck.
GTO
114 GTO 15

115 CLX
116 SEEKPT
117 GTO 11

118 LBL 15 ; Bck. GTO

119 RCLPT

120 INT
121 X=0?
122 SYNERR

123 DSE X
124 NOP

125 SEEKPT
126 XROM “+REC”
127 XROM “^01”

128 SELCT 1
130 ?CASE 58 ; :
132 GTO 00

133 GTO 15

134 LBL 00 ; : assign

135 RCL 00
136 ?X# 02
139 GTO 15

141 RG>ST 03
143 GTO H

144 LBL 11

145 XROM “+REC”
146 XROM “^01”

147 SELCT 1
149 ?CASE 58 ; :
151 GTO 00

152 GTO 11

153 LBL 00

154 RCL 00

155 ?X#0 2
158 GTO 11

160 RG>ST 03
162 GTO H

163 LBL 17 ;

164 EVAL?
165 GTO 04

166 GTO H

166 LBL 04

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 68 OF92

167 CLD
168 ST>RG 02

170 LBL 22

171 RCLPT

172 INT
173 X=0?
174 SYNERR

175 DSE X
176 NOP
177 SEEKPT

178 XROM “+REC”
179 XROM “^01”

180 SELCT ; again?
181 ?CASE 68 ; D
183 GTO 00

184 GTO 22

185 LBL 00

186 RG>ST02

188 GTO H

189 LBL 23 ;

190 EVAL?
191 GTO H
193 XROM “+REC”

194 GTO H

195 LBL 24 ;

196 ST>RG 04

198 ANUM
199 STO 03

200 RCL IND 03
201 STO 02
202 RG>ST04

204 SF# 08 (TRIAGE)
206 GTO H

207 LBL 25 ;

208 ST>RG 04
210 ANUM

211 STO 03
212 CLA
213 RCL 00

214 XTOA
215 RCL 07

216 EVAL$
217 STO IND 03
218 RG>ST 04

220 GTO H

221 LBL 26

222 ST>RG 03

224 ATOX
225 STO 00

226 ATOX

227 RG>ST03
229 1ST

230 RG>ST03
232 EVAL$

233 STO 02
234 X<> 06
235 SF# 8 (TRIAGE)

237 GTO H

238 LBL 27

239 CLD

240 ST>RG 02
242 RCLPT

243 STO 11
244 CLX

245 LBL 30

246 RCLPT
248 INT
249 X=0?

250 SYNERR
251 DSE X

252 NOP
253 SEEKPT
254 XROM “+REC”

255 XROM “^01”
256 SELCT
257 ?CASE 70 ; For

259 GTO 00
260 GTO 30

261 LBL 00

262 STO$ 07
264 ATOX

265 STO 00
266 CLA

267 XTOA
268 "├="
269 XTOA

270 "├+1"
271 RG>ST 02
273 SF#05 (EVAL#)

275 ST>RG 02
277 RCL$ 07

279 CF 00
280 2ND
281 RCL 00

282 XTOA
283 "├<="
284 -3

285 AROT
286 RG>ST 2

288 EVAL?

289 GTO H
291 X<> 11

292 INT
293 SEEKPT

294 XROM “+REC”
295 X<> 11
296 GTO H

297 LBL 29 ; solve

298 SF 01
299 GTO 01

300 LBL 28 ; integrate

301 CF 01

302 LBL 01

303 ST>RG 02
305 SF# 07 (RADEL)

307 STO$ 07
309 1ST
310 RG>ST 02

312 EVAL$
313 FC? 01

314 STO 03
315 FS? 01
316 STO 04

317 RCL$ 07
319 SF 00
320 2ND

321 RG>ST 02
323 EVAL$

324 FC? 01
325 STO 04
326 FS? 01

327 STO 05
328 RCL$ 07

330 FS? 01
331 CF 00
332 3RD

333 FS? 01
334 GTO 00
335 EVAL$

336 STO 05
337 RCL$ 07

339 4TH

340 LBL 00

341 RG>ST 02

343 STO 06
344 FC? 01
345 XROM "IT$"

346 FS? 01
347 XROM "SV$"

348 STO 05

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 69 OF92

349 RG>ST02
351 GTO H

368 LBL E ; EXIT

369 SF# 9 (WRKFILE)

371 CLD
372 END

1 LBL "1ST"

2 LBL 01

3 59
4 POSA
5 LEFT$
6 RTN

7 LBL "2ND"

8 XEQ O7
9 FS? 00
10 GTO 01

11 RTN

12 LBL "3RD"

13 XEQ 07
14 XEQ 07
15 FS? 00
16 GTO 01
17 RTN

18 LBL "4TH"

19 XEQ 07
20 XEQ 07

21 LBL 07

22 ALENG
23 59
24 POSA
25 -
26 E
27 -
28 RIGHT$
29 END

And finally, see the two subroutines shared by EVALXM and EVLXM+

 “+REC” simply gets the next record content to ALPHA, and shows an error if somehow the

end of file is reached (not meant to at this point).

 “^01” gets the char$ value for the two first characters into data registers R00 and R01

respectively. The characters are removed from the ALPA string.

EVALXM uses {R00-R10} for scratch, thus they cannot be used in the script.

Like it was the case with EVALXM, one of the major hurdles for the scripting programs is the fact

that there’s no available registers for scratch calculations: indeed, the stack, buffer registers and data

registers can all and any of them be part of the expressions used in the formulas, thus they’re not

freely available for the program’s internal usage.

This is overcome by using functions such as ?CASE, ?X=, etc. that feature in-place argument

capability, i.e. there’s no need to bring the arguments to the stack to operate on them. The only

drawback is the requirement of the WARP_Core module – where those functions reside.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 70 OF92

Modified EVLXM+ using SELECT-CASE Structures

Like what we did for the standard EVALXM, applying the new conditional structures to the task has

saved about 100 bytes and made the program easier to follow and maintain.

In this conversion we have taken a few liberties (a.k.a. bent the rules a bit more), as follows.

 Taking several clauses outside of the body of the main structure to avoid interferences with

sub-level clauses.

 Using GTO statements between structure clauses, which would make structure programming

purists frown but works like a charm.

 Finally, we also use the SELCT/ ?CASE functions from the WARP_Core within some

clauses: they are compatible if we keep in mind their mutual impact on the selected variable

declaration, and that they don’t alter the skip-to ENDSLCT address saved in the buffer header

by SELECT, nor they deactivate the structure flag either.

All these tricks and techniques may appear a bit confusing perhaps, specially at first, but all combined

it adds the ultimate flexibility for more efficient and smaller code.Below you can see the result.

 01 *LBL "EVLXM+"

 02 CF 21
 03 STO 00
 04 CLX
 05 SEEKPTA
 06 X<> 00

07 *LBL H

 08 SF 25
09 GETREC
 10 FC?C 25
 11 GTO E
 12 AVIEW
13 ^01
 14 SELECT 1

16 CASE 0

 17 GTO E
18 CASE 126

 20 >""
 21 STO 02
 22 CLX
 23 -1
 24 AROT
 25 X<> 02
 26 XROM "EVL+"
27 CASE 80

 29 >"P"
 30 STO 02
 31 CLX
 32 -1
 33 AROT
 34 X<> 02
 35 XROM "EVLP+"
36 CASE 61

 38 EVAL# (SF# 5)
40 CASE 32

 42 GTO 21 ; -> moved
43 CASE 70

 45 GTO 21
46 CASE 66

 48 GTO 21
49 CASE 58

51 CASE 79
53 CASE 63

 55 EVAL?
 56 GTO H
 57 XROM “+REC”
58 CASE 82

 60 ST>RG 04
 62 ANUM
 63 STO 03
 64 RCL IND 03
 65 STO 02
 66 RG>ST 04
 68 TRIAGE (SF# 8)
70 CASE 83

 72 ST>RG 04
74 ANUM
 75 STO 03
 76 CLA
 77 RCL 00
 78 XTOA
 79 RCL 07
 80 EVAL$
81 STO IND 03
 82 RG>ST 04
84 CASE 88

 86 GTO 27 ; -> moved
87 CASE 86

 89 SF 01
 90 GTO 01
 91 CASE 84

 93 CF 01
94 *LBL 01
 95 ST>RG 02
 97 RADEL (SF#7)
 99 STO$ 07
101 XROM “1ST”
102 RG>ST 02
104 EVAL$
105 FC? 01
106 STO 03
107 FS? 01
108 STO 04
109 RCL$ 07
111 SF 00
112 XROM “2ND”
113 RG>ST 02
115 EVAL$
116 FC? 01
117 STO 04
118 FS? 01
119 STO 05
120 RCL$ 07
122 FS? 01
123 CF 00
124 XROM “3RD”
125 FS? 01
126 GTO 00
127 EVAL$
128 STO 05

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 71 OF92

129 RCL$ 07
131 XROM “4TH”
132 *LBL 00
133 RG>ST 02
135 STO 06
136 FC? 01
137 XROM "IT$"
138 FS? 01
139 XROM "SV$"
140 STO 05
141 RG>ST 02
143 CASELSE

144 SYNERR
145 ENDSLCT

146 GTO H

147 *LBL 21 ; moved out

148 SELECT 0
149 CASE70

151 ST>RG 03
153 ATOX
154 STO 00
155 ATOX
156 RG>ST 03
158 XROM “1ST"
159 RG>ST 03
161 EVAL$
162 STO 02
163 X<> 06
164 TRIAGE (SF# 8)
166 CASE 71

168 GTO 10
169 CASE 87

171 GTO 17 ; -> moved
172 CASELSE

173 STO 02
174 CLX
175 ANUM
176 X<> 02
177 TRIAGE (SF#8)
179 ENDSLCT

180 GTO H

181 *LBL 17

182 EVAL?
183 GTO 04
184 GTO H
185 *LBL 04
186 CLD
187 ST>RG 02
189 *LBL 22
190 XEQ 99

191 SELECT 0

192 CASE 68

194 RG>ST02
196 CASELSE

197 GTO 22
198 ENDSLCT

199 GTO H
200 *LBL 10
201 CLD
202 ST>RG 03
204 ATOX
205 STO 02
206 SELECT 1

208 CASE 70

210 *LBL 11
211 XROM “+REC”
212 XROM “^01”
213 SLCT 1
215 ?CASE 58
217 GTO 00
218 GTO 11
219 *LBL 00
220 RCL 00
221 ?X# 02
223 GTO 11
224 RG>ST 03
226 CASE 66

228 *LBL 15
229 XEQ 99
230 SLCT 1
232 ?CASE 58
234 GTO 00
235 GTO 15
236 *LBL 00
237 RCL 00
238 ?X# 02
240 GTO 15
241 RG>ST 03
243 CASELSE

244 CLX
245 SEEKPT
246 GTO 11
247 ENDSLCT

248 GTO H

249 *LBL 27 ; moved

250 CLD
251 ST>RG 02
253 RCLPT
254 STO 11
255 CLX

256 *LBL 30
257 XEQ 99
258 SELECT 0

259 CASE 70

261 STO$ 07
263 ATOX
264 STO 00
265 CLA
266 XTOA
267 >"="
268 XTOA
269 >"+1"
270 RG>ST 02
272 EVAL# (SF#5)
274 ST>RG 02
276 RCL$ 07
278 CF 00
279 XROM “2ND”
280 RCL 00
281 XTOA
282 >"="
283 -3
284 AROT
285 RG>ST 02
287 EVAL?
288 GTO H
289 X<> 11
290 INT
291 SEEKPT
292 XROM “+REC”
293 X<> 11
294 CASELSE

295 GTO 30
296 ENDSLCT

297 GTO H

298 *LBL 99

299 RCLPT
300 INT
301 X=0?
302 SYNERR
303 DSE X
304 ADV
305 SEEKPT
306 XROM “+REC”
307 XROM “^01”
308 RTN

309 *LBL E

310 WORKFL (SF# 09)
312 CLD
313 END

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 72 OF92

Appendix4. The underpinnings of DO-WHILE and IF,ELSE.ENDIF

These functions are a great example of what can be done with a good idea and a robust knowledge

of the operation of the calculator. The recipe for success is a skillful manipulation of the FOCAL RTN

addresses to coerce the routine flow to obey the results of the conditional evaluations, and not the

sequential scheme provided by the standard FOCAL rules.

Starting with the easier one, the DO-WHILE source code is shown below.

DO’s mission is to search for a WHILE statement downstream; done in the subroutine [?END0], and

to pushits own location address in the [ADR1] position of the RTN stack – so the WHILE code will

know where to send the execution back to..

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 73 OF92

At this point let’s refresh our understanding of the RTN stack registers. Remember that because of

the RAM/ROM issue PCNT’s format is not the same as the other six RTN addresses !

Once DO has performed its task, the program continues executing all following instructions until

WHILE is reached, and [UCRUN] is called to run EVAL? as a FOCAL instruction to perform the

conditional evaluation defined in ALPHA and act accordingly:

 If true, the execution needs to be sent back to the DO program step. This we accomplish by

removing the first RTN address (placed there by [UCRUN])so that the second one takes its

position, hence the execution will go to DO after the RTN. The popping is done by [XQ>GO]

 If false, the execution should continue below the WHILE step, in which case we don’t need

the DO address anymore, thus ADR2 is purged offthe RTN stack, shifting the higher RTN

addresses (ADR5 to ADR3) down one position. Note that ADR1 is not messed with at all, as it

holds the location of the WHILE program step - pushed there by [UCRUN]. The purging is

done by [KADR2]

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 74 OF92

To complete this review, see the listing for the subroutines mentioned so far:

and:

And we’ve left the initial subroutine for last, which is also a good seg way for the IF.ELSE.ENDIF

description following next.-

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 75 OF92

The routine expects the second byte of the sought-for instruction in the G register. A successful hit

consists of a match of the first byte (“171”) and the second byte (in G). They are of course

determined by the XROM id# and their position in the FAT.

Two entry points exist: the first one at 0xA888 clears F0 and it’s used by both DO and IF in the

search for and ENDIF statement (that must always exist). The second entry point is only used by IF

in the search for an ELSE statement (which may exist or not), a condition that sets F0 so the routine

knows to do an address check – ensuring that the current address checked does not go beyond that

of the ENDIF statement found in the first pass. This shortens the searched segment and avoids

finding an ELSE outside of the IF.ENDIF we’re working within.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 76 OF92

When the execution encounters an IF statement the code searches for the matching ENDIF, as well

as for a possible ELSE statement within the same structure. Its address is immediately pushed in the

ADR2 location of the return stack. Next it performs the evaluation of the conditional in ALPHA, and

depending on its result it will: (a) continue with the program step after when TRUE, or (b) branch to

the ENDIF (or ELSE if it exists) when FALSE.

Note that, like it was the case for WHILE, the conditional evaluation is done in a FOCAL code stub

triggered by [UCRUN]. The TRUE/FALSE results direct the execution to the same [XQ>GO] and

[KRTN2] routines but in reverse:

 TRUE now removes the ENDIF address from ADR2

 FALSE pops the first RTN addr so that the ENDIF address in ADR2 becomes ADR1

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 77 OF92

So far so good, the last piece of this puzzle is to equip ELSE with the capability to jump to the ENDIF

statement, so then the TRUE branch is completed the program will skip all the instructions between

ELSE and ENDIF. This requires a new search for ENDIF, i.e. a third call to [?END0] as can be seen

below:

And finally, the ENDIF instruction – which by itself does nothing but must exist to demarcate the

IF/ENDIF structure. I’ve added a short beep just for kicks, so the user knows the execution has

completed the IF.ELSE.ENDIF structure successfully.

PS. It’ll be good to expedite the execution by saving the ENDIF address in a permanent location, but

such isn’t a trivial proposition since there’s no way to know what is going to happen within the

ELSE.ENDIF branch and thus there’s no way to tell what resources are going to be needed. The

solution may involve using the buffer header register… to be continued?

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 78 OF92

Even more difficult now: FOR…NEXT loops

This is of course the next logical step, that despite its assumed simplicity it has required a more

involved wizardry to wedge it in the module.

The FOR…NEXT loop requires a variable and three loop pointers (step size, beginning and end). The

variable is the SELCT’edregister, and the pointers are combined in bbb.eee:ss form as contents of

such register.

In terms of the internal operation the FOR instruction performs a dual role: (1) storing the

bbb.eee:ss control word in X into the SELCT’ed registerand (2) pushing its own location address in

the RTN stack (for the NEXT statement consumption later on), done in the [GTO2ADR] routine. This

second task is identical to [DO]’s mission, thus the execution is transferred to the same point for that.

i

Note that the address saved in the FOCAL RTN stack is for the instruction following FOR, in other

words FOR is only executed once. This is a vital design point, that frees up the X-register within the

loop.

Also done by FOR is the search for a NEXT instruction downstream to ensure the loop integrity.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 79 OF92

The subroutine [SELSLC] shown below is also used by NEXT to read the current control word

kkk.eee:ss, and check the existence of the variable register. It leaves it selected on exit.

Let’s now look into the NEXT instruction code next (sorry I couldn’t resist). The first part after calling

[SELSLC] is the routinary stuff to read the values, increment them and compare them: see code

segment 0xA95F to 0xA97B in next page.

Depending on the comparison the execution is transfer back to the line below the FOR statement (if

kkk<eee), or to the instruction following NEXT if the limit has been reached (kkk>=eee). Note that

we cover both contingencies (equal or larger than) to trap error condition cases when the user inputs

bbb.eee such that bbb>eee.

The transfer back to the line belowFORis made by copying the first return address from RTN1 into

the program pointer PC. Easy does it, no frills, no added complexity. See code segment from 0xA97F

to 0xA984 in next page. Interestingly this code stream ends with a call to [NFRPU], needed to tell the

OS where to go when the MCODE RTN stack is empty – which occurs when the selected register is an

INDirect type or a buffer register.

Finally, the termination when the loop needs exiting is no other than a call to our known [XQ>GO]

routine to pop FOR address off the RTN stack, since it won’t be needed anymore.

Note that because FOR...NEXT doesn’t involve ?EVAL, it is an all-MCODE routine, and thus the

strategy did not require using [UCRUN] to transfer the execution to FOCAL as it was the case for

DO/WHILE and IF/ELSE/ENDIF – which was needed to run ?EVAL as a FOCAL program step!

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 80 OF92

So, there you have it - the underpinnings of the BASIC-like instructions explained in all gory-detail. If

nothing else, it’ll be very helpful for me the next time I need to revise the code, but I also Hope it

was of interest to you as well.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 81 OF92

SELECT-CASE Structures

Not to be underdone, let’s tackle the last program flow control to end this section. The WARP Core

includes a precursor of this structure, namely functions SELCTand ?CASE. They do a wonderful job

by themselves as it can be seen in the EVALXM programs, but frankly they’re not the real McCoy.

For the complete SELECT-CASE implementation we need to include four new functions that, working

collaboratively, can handle all instances arising in this type of structure. They are the four clauses of

the structure:

1. SELECT _ _ demarcates the beginning and initializes variables, pointers and flags. It also

searches for ENDSLECT to check for structural integrity – done by our trusty [?END0]

subroutine again. The selected data register is in the program line below as a non-merged

line, and it is retrieved by the [GETRG#] subroutine.

2. CASE _ _ _ runs the code segment if the value of the selected variable matches the input

parameter, otherwise it passes the baton to the following CASE instruction, if there’s any

below in the structure. On paired matches it also clears the “active” flag so the subsequent

CASEs will be ignored.

3. CASELSE is a special case without numeric value to match – so anything goes. It’s the “last

chance” clause after all other options have been checked without a match.

4. ENDSLCT terminates the structure by clearing variables and flags.

The header buffer holds the following data:

 where:

 ADDR is the address of the ENDSLCT instruction

 REG the number of the selected data register (can be INDirect)

 When C[XS] =“F”it denotes an active structure, otherwise C[XS]=0

Note: Importantly enough, the FOCAL RTN stack (status registers a(11) and b(12)) is not used to

store any address – so it’s available for all other flow control groups to use without interferences.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 82 OF92

Here’s the MCODE for SELECT, showing how the previous considerations are done:

Next comes CASE, a bit trickier in that it needs to have the logic to make a go/no-go call based on

the parameter values. It also needs to deactivate the structure in cases of matched conditions, and

search forother CASE or CASELSE statements when said flag is inactive.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 83 OF92

Here’s the first part, note how CASELSE piggybacks on the CASE code, as most of the work is done

by both anyway. Here flag 9 is used to tell the cases apart.

CASE continues with the comparison between the register content and the CASE value, now saved in

register M as a three-digit decimal number (therefore up to 999 max)… BCDBIN alert!!

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 84 OF92

If the values match the routine defuses all activity markers and updates the header register.

If they don’t then it’s time to call [END0?] to search for more CASE/CASELSE instructions

The PC gets moved either to the next CASE/CASELSE (if either one is found), or to ENDSLCT if we’re

at the end of the road. Note the two calls to [DECAD] prior to putting the PC value – this is due to

the way [END0?] works, returning the address of the instruction *following* the sought-for

instruction.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 85 OF92

Finally, the ENDSLCT code is just a nominal deactivation of the active flag and clearing of the selected

reg off the buffer header:

That’s all folks, hope you enjoyed this excursion throughout the “FOCAL+ extensions” – if nothing

else surely particularly unusual applications on the HP-41 platform.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 86 OF92

Appendix5. AOS Simulator

Written by Greg McClure, this FOCAL program was first released in the GJM ROM and is added here

for completion.

The AOS (Algebraic Operating System) program is designed to allow entry of data and operations

using operations and parenthesis as written. The partial answers are saved in Extended Memory in a

small file created by the user when AOS initializes. It follows operation hierarchy. So“(“and “*”are

performed before “+”, etc).

B.1 AOS Overview

The Algebraic Operating System emulator is designed to act like non-RPN calculators that use

parenthesis and pending operations to solve numeric math operations. This program requires an

Extended memory file (name AOS) to store data for pending operations for parenthesis operation.

The program does not require any other memory except for the stack (which is fully used).

B.2 AOS Flag Usage

Flag Use when set

0 + pending (flag 1 MUST be clear)

1 - pending (flag 0 MUST be clear)

2 * pending (flag 3 MUST be clear)

3 / pending (flag 2 MUST be clear)

4 ^ pending

5 Open (‘s pending

B.3 AOS User Keyboard

[A]: AOS + [B]: AOS - [C]: AOS * [D]: AOS / [E]: AOS ^

[F]: AOS ([G]: AOS) [J]: AOS = (R/S)

B.4 AOS User Instructions

After XEQ “AOS” the AOS flags and AOS buffer will initialize. It will ask for the size of the Extended

Memory file to use. If the AOS Data file already exists, it will ask for the new size. If no new size is

given the data file is not resized. User mode will be enabled.

B.5 AOS Example

Usage of the AOS program is best served by a simple example.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 87 OF92

Calculate (1+2)*(3/4)+(5^(1/2))

Enter Keypress Comments (and Annun.s) Annunciators (red = on) Output

 XEQ “AOS” Reset AOS 01234 “SIZE?” (if no file)
“NEW SIZE?” (if file)

20 R/S Small array 0.0000

 F (0.0000

1 A 1 + 01234 1.0000

2 G 2), + performed 01234 3.0000

 C * 01234 3.0000

 F (, * with value saved 01234 3.0000

3 D 3 / 01234 3.0000

4 G 4),/ performed,
* with value recalled

01234 0.7500

 A +, * performed 01234 2.2500

 F (01234 2.2500

5 E 5 ^ 01234 5.0000

 F (, ^ with value saved 01234 5.0000

1 D 1 / 01234 1.0000

2 G 2), / performed,
^ with value recalled

01234 0.5000

 G), ^ performed,

+ with value recalled

01234 2.2361

 J or R/S = final + performed 01234 4.4861

In this example, after entering the final 2, instead of using G the final answer could have been

calculated by entering J or R/S (J or R/S will perform all pending parenthesis and functions).

For those interested, the data file saves required values from the stack and the status of the flags

every time the AOS “(“ function is performed. It restores the flags and data values required back to

the stack when AOS “)” is performed. The annunciators show which operations and how many stack

registers will be stored (only one register is required for the operations saved).

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 88 OF92

AOS Program Listing.

01 LBL "AOS"

02 SF 27

03 LBL a

04 CF 01

05 CF 02
06 CF 22
07 12

08 STO 23
09 -E
10 STO 24

11 CLX
12 RTN

13 LBL "+"

14 LBL A

15 61
16 GTO 00

17 LBL "-"

18 LBL B

19 51
20 GTO 00

21 LBL "*"

22 LBL C

23 42
24 GTO 00

25 LBL "/"

26 LBL D

27 32
28 GTO 00

29 LBL "YX"

30 LBL b

31 14
32 GTO 00

33 LBL "NEG"

34 LBL c

35 23
36 GTO 00

37 LBL "<"

38 LBL d

39 5

40 LBL 00

41 E1
42 /

43 STO 22
44 INT
45 X#0?

46 GTO 00

47 FS? 01
48 XEQ 03

49 LBL 00

50 RDN

51 FS?C 22
52 XEQ 02
53 RCL 22

54 INT
55 X=0?
56 GTO 00

57 LBL 07

58 RCL 24

59 X<0?
60 GTO 00
61 RCL IND 24

62 FRC
63 RCL 22

64 FRC
65 X>Y?
66 GTO 00

67 RCL IND 24
68 INT
69 X=0?

70 GTO 00
71 XEQ 01

72 GTO 07

73 LBL 00

74 ISG 24

75 ENTER^
76 RCL 24
77 13

78 X<=Y?
79 ASIN

80 RCL 22
81 STO IND 24
82 RCL IND 23

83 CF 01
84 GTO 99

85 LBL ">"

86 LBL e

87 E
88 STO 22

89 X<>Y
90 FS?C 22
91 XEQ 02

92 RCL 24
93 X<0?
94 SQRT

95 RCL IND 24
96 INT

97 X=0?
98 GTO 08

99 XEQ 01
100 GTO e

101 LBL 08

102 DSE 24
103 ENTER^
104 RCL IND 23

105 SF 01
106 GTO 99

107 LBL E

108 LBL "="

109 E
110 STO 22

111 X<>Y
112 FS?C 22
113 XEQ 02

114 RCL 24
115 X<0?

116 GTO 00
117 RCL IND 24
118 XEQ 01

119 GTO E

120 LBL 00

121 RCL IND 23

122 XEQ a
123 RDN

124 RDN
125 SF 22
126 GTO 99

127 LBL 02

128 ISG 23
129 ENTER^

130 21
131 RCL 23

132 -
133 X<0?
134 SQRT

135 RDN
136 STO IND 23

137 RCL 22
138 INT
139 X#0?

140 RTN

141 LBL 03

142 ISG 24

143 ENTER^
144 4.2

145 STO IND 24
146 RDN

147 RTN

148 LBL 01

149 RCL IND 23

150 DSE 23
151 RCL IND 23
152 X<>Y

153 XEQ IND Z
154 FS?C 02

155 ISG 23
156 ENTER^
157 RCL 23

158 13
159 -

160 X<0?
161 SQRT
162 X<>Y

163 STO IND 23
164 DSE 24
166 RTN

167 LBL 01

168 Y^X

169 RTN

170 LBL 02

171 CHS

172 LBL 00

173 SF 02
174 RTN

175 LBL 03

176 /

177 RTN

178 LBL 04

179 *

180 RTN

181 LBL 05

182 CHS

183 LBL 06

184 +

185 LBL 99

186 RTN

187 SF 22

188 END

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 89 OF92

Appendix.-Stack Shuffling

This function has been moved to the WARP_Core module, where it has been enhanced and improved

with a companion R0R4 shuffling counterpart. Refer to the WARP_Core manual for details.

SHFL is a powerful Stack Shuffle & Digit Entry function that makes modifications to multiple stack

registers simultaneously in a selective manner, including deletion, digit value entry (0-9) and register

exchanges. The function prompts five fields, representing the new arrangement of the stack variables

- referenced by the current one.

Thus “XYZTL” would leave things unchanged, and “00000” will be equivalent to CLST plus STO L. For

example, to clear registers X, Z and L you’ll use “0Y0T0”. To swap registers Y and Z, clearing LastX

on the fly: “XZYT0”. To enter 1,2,3,4 in the stack you’ll type “1234L”.

In addition to the five stack registers and “zero” for deletions, the four components of the

ALPHA register (M, N, O, P) are also allowed in the prompts. This adds flexibility and certain

complexity to the scope. It should be noted that the M register is used internally by the function so

for all practical purposes it’s not really useful here.

SHFL is also programmable. In a program the parameter information is taken from the

ALPHA register (really the M component as mentioned) as a string containing the five letters for the

destinations.Non-valid letters will leave the corresponding register unaltered.

Note: You should be aware that SHFL uses the parameter buffer (id#=7) to hold a copy of

the current stack registers after the shuffling. This could be useful to recall the previous values

(basically an UNDO facility) but will conflict with your parameter assignments using LET= if you have

made them.

The function has a shortcut for the “no changes” case XYZTL. Pressing the radix key at the

prompt will make that as the input sequence automatically; creating a “shadow” copy of the stack in

the buffer registers as follows:

Note: for the sake of completion the original SHUFL MCODE is attached in the next few pages. As

mentioned before, this function is now superseded with the more capable version included in the

WARP Core module.

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 90 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 91 OF92

FORMULA EVALUATION ROM - HP-41 MODULE

© MARTIN-MCCLURE – MAY 2024 PAGE 92 OF92

