

Page 1





Forth-41 was programmed by Serge Vaudenay,
with collaboration of Stéphane Barizien and Jean-Jacques Dhénin

Document date: December 15, 2020

Page 2

This compilation revision 1.1.2

Copyright © 2020 Ángel Martin

Acknowledgments.-

First and foremost, thanks to Serge Vaudenay for creating the FORTH Module. An excellent example of creative
and clever programming all way through.

Thanks to Stéphane Barizien and Jean-Jacques Dhénin, who wrote the READEM/WRITEM functions, also availa-

ble in the PANAME ROM. I believe they may have also contributed to the FORTH code but there’s no official

record of it.

Thanks to Greg McClure for his valuable suggestions on the MCODE reverse-engineering process.

Emmanuel Compes created the V41 Bitmap shown in page #5 and wrote the original QRG this manual is based
on.

Published under the GNU software license agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this material. No

commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.

See www.hp41.org

http://www.hp41.org/

Page 3

Foreword

This document includes notes and observations made during the investigation of the FORTH41 module. It

builds on the rudimentary manual available for it, which was very sketchy and incomplete, only a painfully
short approximation to the usage and description of the functionality.

A few initial remarks :

• This is a special 8k module that uses page #4 for the FORTH routine library and other housekeep-

ing chores. The upper page can occupy any of the external addresses on the HP-41 bus (from 8
to F), but should not use pages #6 and #7 for printer and HP-IL compatibility. If the CX or the

Time module is used, then page #5 is also reserved and shouldn’t be used either.

• The module provides a separate environment for FORTH operation, replacing the standard HP-41
operating system – but allows calls to HP-41 programs and functions – both in the standard main-

frame and other application ROMS.

• Setting User Flag 18 activates the “Terminal Console” mode, capturing most of the command line

activity into the HP-IL output device (supposedly a monitor but also works on the printer on V41
via ILPER). Notably the output also includes the compilation commands, very useful for trouble-

shooting. Note that UF 15/16 have no impact on the FORTH environment!

• Programs and definitions survive power-cycling and switching the machine off – but the data in
the stack does not. The FORTH mode will be active when you switch it on, and you can resume

work. It’s also possible to leave the FORTH mode () to use the calculator in its native form,
and then resume using FORTH, but the stack data will be lost as well.

• FORTH41+ includes a set of 135 words in the ROM dictionary, most of them primitives but some

secondaries as well, based on the primitives. It’s possible to define more words in RAM using the
appropriate commands.

• FORTH41 can only operate on 16-bit integer words, from 0 to FFFF (unsigned) ; or from -7FFF to
7FFF (signed). Some primitives operate on 8-digit bytes as well as 16-bit integers.

• The command line input is limited by the length of the ALPHA registers, i.e. 24 chars max. How-
ever up to five “full” command lines can be manually loaded in the INPUT buffer RAM memory.

• Programs can be typed manually or loaded from ASCII files in Extended Memory. The module in-

cludes a Text File Editor program (EDA) with support for the special FORTH syntax characters.
This is an important detail that rules out the unmodified ASCII File Editor (ED) in the CX – but you

can use the enhanced version (ED+) available in the WARP module or on the SY-41CL and
DM41X machines.

• The module also includes two functions to write/read the complete contents of the X-Memory

configuration in an external HP-IL Mass Storage drive. Interestingly, these are a direct port from
the PANAME ROM – the French connection at work. These functions take up a large amount in

the ROM and could be removed to allow for extensions of the vocabulary if desired.

Despite the design limitations this module is a very complex MCODE work with a very ambitious reach and

scope. Unfortunately, the lack of complete information restricts the usage of the module to exploration

and research, as opposed to practical applications. There are multiple and very basic areas of functionality
still unexplored, as progress is slowed down by the lack of any specifications or manual. The buffer design

and structure in particular is almost completely unknown, which has direct impact on the vocabularies and
RAM arrangement. A work in progress, time will tell how far we get…

Page 4

Introduction

Another realization of Serge Vaudenay (T270) after the ROMSV01, the FORTH41 module is 8 kBytes and
occupies pages 4 and an external one (8 – F) of the HP-41. It includes 62 functions and its language is rich
with 135 primitives. CATALOG 2 thus presents 61 words or functions divided into three unequal parts :

•  These are FORTH words specific to the HP-41.

•  The following words are all preceded by }- . These words are in fact programs
.used by the compiler. They are called in the definitions of the secondaries.

•  FORTH-79 words (except AREDIT) accessible from the RPN environment.

CAT’2 Functions of FORTH41

-FORTH 41+ XROM 09,00 not applicable, name of the ROM

 CRFRAM XROM 09,01 creates a FORTH memory of X registers by destroying the buffers
"EDA XROM 09,02 edits an alpha file (creates it from X registers if needed)
FEX XROM 09,03 validates the alpha register in FORTH
FORTH XROM 09,04 switches to FORTH mode
FRAMCHK XROM 09,05 replaces the FORTH memory
FTOX XROM 09,06 stack transfer FORTH to register X
READEM XROM 09,07 reads FORTH memory from mass memory
WRTEM XROM 09,08 saves FORTH memory to a mass storage device
XTOF XROM 09,09 stack Transfer register X to FORTH

-COMPILER XROM 09,10 not applicable, physical separation in the catalog

}-CALL XROM 09,11 Calls a FOCAL program by its global Label name
}-COMP XROM 09,12 Compiles text between spaces
}-DATA XROM 09,13
}-EX XROM 09,14
}-EXB XROM 09,15 Executes MCODE on RAM buffer
}-EXO XROM 09,16 Executes FOCAL code at address in two bytes after call
}-EXP XROM 09,17 Executes MCODE at address in two bytes after call
}-MLP XROM 09,18 Executes MCODE just below the call
}-RNT XROM 09,19

-PRIMITIVES XROM 09,20 Selected Primitives on CAT-2

AREDIT XROM 09,21 equivalent to LINPUT on the HP-71B
@ XROM 09,22 Two-byte recall
! XROM 09,23 Two-byte store
C@ XROM 09,24 one byte recall
C! XROM 09,25 one byte store
+! XROM 09,26 adds at given address
? XROM 09,27 display a cell content
>R XROM 09,28 to return stack
R> XROM 09,29 from return stack

DUP XROM 09,30 duplication of the top stack level
DROP XROM 09,31 drops one level of the stack
SWAP XROM 09,32 swaps the first two stack levels
OVER XROM 09,33 puts second stack level on top
ROT XROM 09,34 rotates the first three stack levels

}- XROM 09,35 Print top level stack
U}- XROM 09,36 Print Unsigned
EMIT XROM 09,37 sends ASCII char to display
TYPE XROM 09,38 sends a string to the display from a given address
XROM 09,39 digit formatting string
+ XROM 09,40 addition
- XROM 09,41 subtraction
* XROM 09,42 multiplication
/ XROM 09,43 integer division
*/ XROM 09,44 multiplication followed by division

Page 5

MOD XROM 09,45 Modulo function
/MOD XROM 09,46 Quotient remainder
ABS XROM 09,47 Absolute value
NEGATE XROM 09,48 changes the sign

= XROM 09,49 equal test
< XROM 09,50 inferior test
> XROM 09,51 superior test
0= XROM 09,52 tests if zero
0< XROM 09,53 tests if less than zero
0> XROM 09,54 tests if more than zero

1+ XROM 09,55 adds one
1- XROM 09,56 subtracts one
2+ XROM 09,57 adds two
2- XROM 09,58 subtracts two

AND XROM 09,59 logical AND
OR XROM 09,60 logical OR
NOT XROM 09,61 logical NOT

BRANCH XROM 09,62 Relative jump
0BRANC XROM 09,63 Conditional relative jump

The figure below shows the FORTH keyboard with the location of the special characters needed for
FORTH syntax. Note also the shortcuts to the control commands from the File Editor program (EDA). You
can download the file for V41 here: http://www.hp41.org/LibView.cfm?Command=View&ItemID=637

http://www.hp41.org/LibView.cfm?Command=View&ItemID=637

Page 6

Details of the 135 primitives of FORTH-41

All commands can be input on the command line when the FORTH mode is active. A number of primitives
are also in CAT 2 so they can be used directly (no need to use ); provided of course that the
FORTH memory is in its place. Some of the primitives are used to read the user variables and are listed
below on grey background. Note also the four new additions in this revision on cyan highlight.

- subtraction 1

! Stores a number at adr 2

generate from double 3

#> end of formatting string 4

#S remaining of a number 5

(Starts comment 6

) End comment 7

* product n1 * n2 8

*/ Multiply and division 9

, Places n in dictionary. 10

. displays top of stack 11

.STATE Compile state flag 12

/ division n1/n2 13

/MOD (n1 n2 -- rem quot) 14

: starts variable define 15

; ends variable define 16

? combination of @ . 17

?DUP does DUP if n#0 18

@ Fetches n from adr 19

[Begins interpreting. 20

] Ends interpreting, 21

‘ search for word addr. 22

+ (n1, n2 -- sum) 23

+! Adds 1 to n at adr 24

+LOOP repeats Do/Loop +n 25

< (n1, n2 – bool) 26

<# display formatting start 27

= (n1, n2 – bool) 28

> (n1, n2 – bool) 29

>IN top of input block 30

>MM Converts to MM format 31

>R moves n to RTN stack 32

0 enters zero 33

0< tests if <0 34

0= tests if =0 35

0> tests if >0 36

0BRANCH conditional branch 37

1- subtracts one from top 38

1+ adds one to top level 39

2- subtract 2 from top 40

2+ add 2 to top level 41

2* doubles stack top level 42

2/ divides top level by 2 43

ABORT initializes FORTH file 44

ABS absolute value 45

ALLOT Places n bytes in dictr. 46

ALPHA ALPHA Status 47

AND Bitwise AND 48

AREDIT like LINPUT on the 71 49

BASE ADR of number base 50

BEGIN Begins a loop 51

BRANCH (addr, distance) 52

BUF0 ??? Unknown 53

BYE return to HP41 mode 54

C! Stores byte at addr 55

C, like , but on a byte 56

C@ Fetches byte from adr 57

CALL call to HP41 program 58

CD, like C, decrement adr 59

CFLAG Clears User Flag 60

CMOVE Move bytes btw. adr 61

COMPILE Compiles next word 62

CONSTANT Creates a constant 63

CONTEXT user variable 64

COUNT Unpacks a string 65

CR Carriage Return 66

CRBUF Creates Buffer 67

CREATE Creates new command 68

CRFILE (flsize) Data File 69

CTRL control sequence 70

CURRENT user variable 71

D, Like , decrement adr 72

DECIMAL sets DEC mode 73

DEFINITIONS ??? 74

DEPTH Shows stack depth 75

DESTROY destroys buffers 76

DO Begins a DO…LOOP 77

DOES> Provides instructions… 78

DROP Drops stack 79

DUP Duplicates top level 80

EDA Text editor (flname$) 81

ELSE (bool) false 82

EMIT (char#) 83

EXIT Returns from current w 84

FIND search in dictionary 85

FLAG Gets UFlag status 86

FORGET Removes (var$) 87

FTOX FORTH to X-reg 88

GROW ??? Unknown 89

HERE next dictionary adr 90

HEX sets HEX mode 91

HOLD ASCII char in string 92

I puts loop index in stx 93

IF (bool) true 94

IMMEDIATE Marks the last def. 95

ITYPE ??? Unknown 96

J outer loop index to stk 97

KEY Reads Input character 98

LEAVE exits from Do/Loop 99

LOADF Loads (flname$) 100

LOOP End of DO…LOOP 101

M1- subtracts 1 from adr 102

M1+ adds 1 to adr 103

M2- subtracts 2 from adr 104

M2+ adds 2 to adr 105

Page 7

MM> Converts to ADR frmat 106

MOD (n1 n2 -- rem) 107

NEGATE Two’s complement 108

NOT logical NOT 109

OCTAL Sets Octal mode 110

OR Bitwise OR 111

OVER Copies 2nd to top level 112

PAD address of PAD area 113

PARM Defines parameter 114

QUIT sets light-sleep mode 115

R> moves from RTN stack 116

R0 internal FORTH flag 117

REPEAT Ends a loop 118

ROT rotates stack 119

RP@ Shows RTN Pointer 120

S0 internal FORTH flag 121

SFLAG Sets User Flag 122

SIGN 123

SP@ Shows Stack Pointer 124

SPACE blank space 125

SWAP swapps levels 126

THEN (bool) either 127

TYPE (adr, #chars) 128

U. Display unsigned num 129

UNTIL continues Begin/Until 130

VARIABLE Creates named var 131

VOCABULARY Selects which one 132

WHILE Continues if flag true 133

WORD Collects & pack string 134

XTOF X-reg to pile FORTH 135

The following FORTH_79 words are not part of the HP-41's already important set. Some like
QUERY and INTERPRET that make FORTH a conversational language will be cruelly
missed. They can always be programmed, (in fact note that DEPTH and ?DUP were not
present in the original FORTH41 module and now they are included). So here is the list:

*/MOD
-TRAILING
. ’’
BLK
BLOCK
BUFFER
CONVERT
D+
D<
DNEGATE
EMPTY-BUFFER
EXECUTE
EXPECT
FILL
INTERPRET
LITERAL
LOAD

MAX
MIN
MOVE
PICK
QUERY
R@
ROLL
SCR
SAVE-BUFFERS
SPACES
STATE
U*
U/MOD
U<
UPDATE
XOR

Calling HP-41 Functions

In addition to these 135 primitives in ROM, you can add the functions of the HP-41 ROMs (internal
functions and modules) directly accessible from the command line – as well as your FOCAL pro-
grams in user language accessible with CALL 'program name'. Refer to the ‘Structure of a Definition’
section later in the manual.

You can also access functions assigned to any key from the FORTH environment when USER mode
is active. They will not be added to the command lien, rather will have an IMMEDIATE execution.

Notably (and probably a good way to get in trouble) you could also call functions from the FORTH
Module itself from within the FORTH environment, even those in the “-COMPILER” section using the
period instead of the non-keyable goose character.

Page 8

Getting Started

Let’s assume the following configuration:

HP-41CV 'Halfnut'

Module Clonix with FORTH41 in port 1 (pages 4 & 8)
Module X-Functions in port 2 (page A)

Module X-Memory in ports 3 and 4

Initialization and smoke testing:

Say there aren’t any user key assignments, then adjust the memory as follows:

SIZE 010
PRGM 

PRGM 

XEQ ALPHA FORTH ALPHA   well, hello there!
 

Ok, now we have a positive response, FORTH41 is there ready to go. Just for kicks let’s prepare a trivi-

al demo program for later, simple enough so it’ll only sound a BEEP. Notice the remaining room left for
programs after the creation of the FORTH buffer (255 registers long!): 309 – 255 = 54 regs.

PRGM 
<- 
LBL ‘BIP’ 
BEEP 
R/S 
GTO .. 
PRGM 

Let’s get back to FORTH and make some sounds calling up the TONE function and the example pro-

gram from there:

XEQ ALPHA FORTH ALPHA   well, hello there!

  Beep sounds using the FOCAL program

  single tone sounds, always same frequency
  Beep sounds again using the native function

For starters let’s show off the base conversion words:

  also sets HEX Mode !
  also sets DEC mode !

    our initial value is back

Let’s try our hand with basic arithmetic;

  result is in the top stack level, but not shown
  result dropped in the command line

Contrary to the native HP-41 model, where the LCD is always showing the contents of the X-Register,
the FORTH command line does not reflect the contents of the top stack level and you need to print it

(using ‘ . ’) to see it, which also permanently removes the value from the stack and sends it to LCD-
limbo! (from where there’s no easy way to recover it). This is an important difference between FORTH

and the HP-41 that you need to keep in mind if you’re new to FORTH.

Page 9

Note as well that the “” display helps you by adding a colon if the data stack contains any value,

regardless of its depth (i.e. non-empty condition). This is very handy considering that printing gets rid

of the top-level register for good, thus is shouldn’t be used just to see what’s in it.

You can transfer the values in the FORTH top stack level and the X-Register using  and
, but that’s of course before you print it to the command line. For example:

  
   back in HP-41 mode

When you input characters in the command line they are displayed on the calculator’s LCD, which can
only hold 12 character, but the characters are also being stored in the ALPHA register of the calculator.
What happens when you type a long input string that exceed the 12-char length is that the LCD auto-
matically scrolls to the left the early characters and they come out of view – but they are still in ALPHA,
until it is full (24 characters) , signaled by a high-pitch tone. Adding characters after the warning tone
will lose the characters at the beginning of the input string and therefore should never be done.

A nice feature of this implementation is the support of the back-arrow key (“<-“) to delete the last en-
tered (rightmost) character from the command line. This action will also scroll the LCD to the right if
more than 12 characters are in the CL, bringing them back to view. You can repeat this action all the
way until the LCD (and therefore ALPHA) is empty, or you can use [SHIFT][<-] directly for that.

Bug report: If you reach the 24-char limit in the command line you should not use the back-arrow key to
empty in (that is 24 consecutive pressings of it) because that will hang up the calculator. You should
use the [SHIFT][<-] instead in this case.

To finish this initial training let’s whet our appetite with the ASCII file editor – just a peek, it will be cov-
ered later on with more detail.

XEQ ALPHA EMDIR ALPHA 

<- 

ALPHA WORDS41 ALPHA
XEQ ALPHA EDA ALPHA 

PRGM 

XEQ ALPHA EMDIR ALPHA 

We see that  has used the current value in the X-register to size the ASCII file. More about this

later.

Keyboard in FORTH mode :

PRGM 

Followed by 1, 2 or 3

<Note: to date and after some attempts to reverse-engineer it I have no idea what this CTRL functionali-
ty is about. Confusingly enough there’s a primitive with similar name but accesses a totally different
code… go figure.>

Page 10

And how about some taste of FORTH?

Here are a few short code snippets to get you warmed-up. This assumes some understanding of

the language but not a deep command of it (pun intended). Also bear in mind that each FORTH
dialect has its quirks and differences from the standard, and certainly FORTH-41 is not the ex-

ception to that rule.

A good reference that got me going is this: https://www.forth.com/starting-forth/

A few trivial examples taken from : https://wiki.c2.com/?ExampleForthCode

: STAR (- --) 42 EMIT ;

: STARS (n --) 0 DO STAR LOOP CR ;

: SQUARE (n --) DUP 0 DO DUP STARS LOOP DROP ;

: TRIANGLE (n --) 1 DO I STARS LOOP ;

: TOWER (n --) DUP TRIANGLE SQUARE ;

Example: Input a string of (n) characters in the LCD:

This brings up another interesting comparison between FORTH and the HP-41 modes: There’s unfortu-

nately no QUERY command in the FORTH41 set of primitives, therefore inputting under program con-

trol is not as straight-forward as it could have been. The  code shown below is a good work-
around towards this goal, although it needs to know how many characters are to be entered before-

hand.



 then press six keys to see the characters in the LCD.

Examples: All about Data Stack Depth.

This definition uses the  primitive to convert MM format to absolute, needed for the subtraction.
It also shows how to read the current stack pointer with  which must be called before  be-

cause such pointer will be updated by calling it (stores the value in the stack):

 

Note that after we learn more about the Forth buffer we could also use  (‘fetch’) to read the contents

of the strategic locations instead of the user variables  and - for sure more cumbersome
but it shows the way for several advanced uses when there are no user variables available to do the

legwork for us.




And here’s another way to test if the data stack is empty, this time using a Boolean result:



There you have it, although it’ll be nicer as an MCODE primitive, right? To be continued…

https://www.forth.com/starting-forth/
https://wiki.c2.com/?ExampleForthCode

Page 11

FORTH Buffer conventions

The FORTH memory is always in the form of a buffer, but a very special one: the address of its first
register is somewhere between 0C0 and 0D0, right above the key assignments, but the actionable
FORTH memory starts at 0D0 (the first registers if they exist are therefore unused). The first FORTH
setting destroys all buffers (but keeps the assignments) and builds the FORTH memory if there is
enough space. The following passages in FORTH mode or the execution of the  func-
tion re-adjust the size of this buffer by shifting, so that the FORTH constant of the beginning of the
memory (‘BE’) is in register 0D0.

An important feature is to be underscored: all addresses must be handled in MM format (to assist
with that there are two decimal conversion primitives for all operations, HEX and OCT). The 'total'
MM format (as opposed to the 'partial' MM format which has been abandoned, you will understand
why - uh??) is the one you are used to handling in firmware or synthetic programming. It’s represent-
ed by ‘B-RRR’ where B is the byte number (from 0 to 6, each byte uses two digits) and RRR the ab-
solute register number in HEX. For example, the fourth byte in the Alpha register “M” has 4005 for
address under this convention;. The cold-start constant “169” is in bytes 3 & 4 of register 13(c), etc.

Below there’s a rudimentary sketch of the Forth buffer structure, refer to the appendices for a more
detailed description/view.

 MM Adresses ’’strategic’’

0-0D0 BE 0-0D0 CTRL1 address to execute
 STATUS 4-0D0 CTRL2 address to execute
4-0DB 8-0D0 CTRL3 address to execute

6-0DB RETURN STACK 0-0D1 RP pointer to pile RTN (in Nybble.RRR format)

↓ 4-0D1 SP pointer to pile STACK (in Byte.RRR format)
 Ϯ 8-0D1 NPC return address FEX

8-0ED DATA STACK C-0D1 FIRST 0C0 (constant)

A-0ED PARM BUFFER 2-0D2 R0 start of pile R

 ↓
 Ϯ
C-0FF INPUT BUFFER

0-100
 PAD
0-109
--
2-109 DICTIONARY

 ↓
 Ϯ

A deep understanding of the FORTH buffer is not a mandatory requirement but it will increase
your confidence and open the door to more advanced programming. FORTH is a rare language
in that it shares some commonalities with lower level languages, but you can only take ad-
vantage of those if the buffer structure is well understood.

Page 12

The Text File Editor

The editor is close to the HP-71B. It is thus easy to create source TEXT files in X-Memory from
which new FORTH words will be loaded. When you call if from the FORTH command line, the
ASCII file may exist already but if it doesn’t it’ll be created using the maximum X-mem room
available. If you call it from the standard calculator mode, the ASCII file must already exist.

The control characters need to be used first at the ‘CMD ?’ prompt. The 9 choices are as follows:
T:I:L:D:S:G:B:F:P and are described below. Note that the Text and Insert choices are followed
by the text-entering steps, separated by R/S. A Blank R/S returns to the command prompt.

X :File Size, ; ALPHA File Name

ALPHA , XEQ ALPHA EDA ALPHA

List of Editor commands (each should be followed by R/S) :

 T for TEXT write to file. Type your text then R/S for next line. Repeat as needed.

 I for INSERT insertion in front of the current record

 L for LIST listing the file from the current record

 D for DELETE deletion of current recording

 S<txt> <txt> is placed on the record that contains the searched line and this from the

current record (syntax: S'TEXT')

 G<nn> to GOTO to record <nn> (G3 is positioned on the third record)

 B for BACKWARD is a step backwards

 F for FORWARD to be a step forward

 P for PRINT either print from the current record

 R/S return to mode CMD ?

 R/S,  R/S return to mode RPN

From the FORTH command line you need to spell the File Name after the  primitive. If it
doesn’t already exist, the editor will create it using all available X-Mem size. If this does not suit
your fancy you can create the file first from the FORTH environment before calling the editor,
using FTOX, AREDIT (text) , CRFLAS – or let the editor do it for you; here’s how:

• Type the File size value, then  to place the value in the X-Register

• Type , followed by “FNAME” – the file name you want it to have

• Type  and you’re in business.

You can verify that it has been created calling EMDIR (also form the FORTH command line) if
you want. Be quick using R/S to stop the listing or it’ll all dash thru very quickly.

Finally, loading the ASCII File into the Forth Memory is just a matter of using the  primitive
from the command line, followed by the file name. The definitions included in it will be added to the
dictionary block of the FORTH buffer memory after the existing ones.

Note that you could also use the CX Editor ED, but it does not have the capability to input the special
characters used in FORTH… unless of course you’re using the extended version ED+ or ED$, available
in advanced modules like the WARP_Core.

Page 13

ASCII File Editor Program Listing

is really a FOCAL program, although it uses special functions like and 
that behave differently from what you’re used to in that they use input parameters taken from the follow-
ing program lines, which generally are go-to addresses for MCODE execution. These will be misinter-
preted by program listing functions like PRP and need to be manually corrected in the printouts.

*LBL "EDA" Editor 1

 CF 21 no stop 2

 SF 25 trap error 3

 }-EXP 4

<param-1> create buf 5

<param-2> w/ id#14 6

 FC? 25 error’d? 7

 GTO 21 yes, off 8

 ALENG tst. name 9

 FS? 25 all ok? 10

GTO 00 yes go on 11

 "NO X-FNS" nope 12

 GTO 01 show it 13

*LBL 00 14

 X#0? Empty? 15

 GTO 00 no, go on 16

 "NAM" yes abort 17

*LBL A show err 18

 >"E ERROR" 19

*LBL 01 20

 AVIEW 21

 GTO 03 exit 22

*LBL 00 23

 RDN 24

 FLSIZE test file 25

 FS? 25 exists? 26

 GTO 00 yes go on 27

 SF 25 trap error 28

 CRFLAS create it 29

 FC? 25 all ok? 30

 GTO 21 no room, 31

*LBL 00 32

 POSFL test type 33

 FS? 25 ASCII ? 34

 GTO 00 yes go on 35

 "TYP" no, abort 36

 GTO A 37

*LBL 00 38

 , 39

 SEEKPTA get atop 40

 FIX 0 41

 CF 29 no decs 42

 AON input chrs 43

*LBL 01 44

 CF 01 45

 XEQ 22 46

 CLA 47

 ARCL X 48

 >", CMD ? " input cntl 49

 AVIEW show it 50

 CLA clear it 51

 CF 19 no insert! 52

 AREDIT input txt 53

 ALENG txt length 54

 X=0? Empty? 55

 GTO 03 yes, 56

 XEQ 06 57

 GTO 01 58

*LBL 06 59

 64 low end 60

 ATOX 61

 X<=Y? chr<=64? 62

 TONE 0 63

 X<=Y? 64

 RTN 65

 90 top end 66

 X<=Y? chr>=90? 67

 TONE 0 68

 X<=Y? 69

 RTN 70

 SF 25 71

 GTO IND Y dispatch 72

 TONE 0 73

 RTN 74

*LBL 68 Delete 75

 XEQ 11 76

 DELREC 77

 RTN 78

*LBL 83 Search 79

 POSFL 80

 INT record pt 81

 SEEKPT get there 82

 "NOT FOUND" 83

 X<0? Found? 84

 AVIEW no, show 85

 RTN 86

*LBL 66 Backwrds. 87

 XEQ 22 88

 2 89

 - 90

 X<0? 91

 RTN 92

 SEEKPT 93

 RTN 94

*LBL 70 Forward 95

 SF 25 96

 GETREC 97

 RTN 98

*LBL 80 Print 99

 XEQ 11 100

 SF 25 101

 CLA 102

 PRA 103

 FS? 25 104

 G TO 00 105

 "NO PRINTER" 106

 AVIEW 107

 RTN 108

*LBL 87 Write 109

 XEQ 12 110

 SF 25 111

 SAVEAS 112

 FS? 25 did it? 113

 RTN yes, ok 114

*LBL 20 nope 115

 "CANNOT" 116

 AVIEW 117

 RTN 118

*LBL 00 119

 SF 21 120

 ADV 121

 XEQ 12 122

 >" :FILE "" 123

 -6 124

 AROT 125

*LBL 17 126

 PRA 127

 SF 25 128

 GETREC 129

 FS? 25 130

 GTO 17 131

 ADV 132

 CF 21 133

 RTN 134

*LBL 76 List 135

 XEQ 11 136

 SF 25 137

Page 14

*LBL 08 138

 GETREC 139

 FC? 25 140

 RTN 141

 AVIEW 142

 GTO 08 143

 RTN 144

*LBL 73 Insert 145

 SF 01 146

*LBL 84 Type 147

 XEQ 11 148

*LBL 09 149

 SF 25 150

 CLA 151

 GETREC 152

 RCLPT 153

 INT 154

 SEEKPT 155

 CF 05 156

 FC? 25 157

 SF 05 158

 FC? 01 159

 CF 19 160

 AVIEW 161

 FS? 01 162

 CLA 163

 AREDIT 164

 ALENG 165

 X=0? 166

 RTN 167

 92 168

 ATOX “\” 169

 X=Y? 170

 GTO 00 171

 XTOA 172

 -1 173

 AROT 174

 FS? 05 175

 APPREC 176

 FS? 05 177

 GTO 09 178

 SF 25 179

 FC? 01 180

 DELREC 181

 INSREC 182

 GTO 09 183

*LBL 00 184

 XEQ 06 185

 GTO 09 186

*LBL 21 187

 "NO ROOM" 188

 AVIEW 189

 RTN 190

*LBL 03 191

 }-EXP 192

<Parm-1> 193

<Param-2> 194

 FC? 35 195

 AOFF 196

 CLST 197

 RTN 198

*LBL 71 199

*LBL 11 200

 XEQ 22 201

 ALENG 202

 X=0? 203

 ARCL Y 204

 ANUM 205

*LBL 02 206

 SF 25 207

 E 208

 - 209

 X<0? 210

 CLX 211

 SEEKPT 212

 FC? 25 213

 GTO 02 214

 RTN 215

*LBL 22 216

 RCLPT 217

 INT 218

 ST- L 219

 LASTX 220

 X#0? 221

 SIGN 222

 + 223

 E 224

 + 225

 RTN 226

*LBL 12 227

 }-EXP 228

<Parm-1> 229

<Param-2> 230

 END 231

Note that this version is slightly different form the original one, I have removed several superfluous LBL

and GTO statements as well as consolidated error messages. The changes freed-up enough room to
squeeze in another primitive in the ROM-based dictionary.

Another remarkable aspect of EDA is the use of a separate buffer (with id#14) to store the ASCII file

name during the processing of the Forth command line, which also utilizes ALPHA for its own purpose.
This is done dynamically by the editor, via a clever calling of MCODE snippets directly from the Forth

function }-EXP. You can refer to the blueprint documents if you’re interested.

Page 15

EXAMPLE Programs

The code below NXTP was written by Egan Ford (see http://sense.net/~egan/forth41/np.forth41). It

calculates the Next Prime from an input number n. Note the subroutine ISQRT, used to calculate the

Integer Square Root of a number.

The keyboard overlay is added as a reference to guide you in the typing of the characters, since you’ll
probably use EDA to enter the code…

DECIMAL

VARIABLE R

VARIABLE M

VARIABLE S

: ISQRT

 M ! 0 R ! 16384 DUP S !

 BEGIN 0> WHILE

 M @ S @ R @ OR < IF

 R @ 2 / R !

 ELSE

 S @ R @ OR NEGATE M +!

 R @ 2 / S @ OR R !

 THEN

 S @ 4 / DUP S !

 REPEAT

 R @

;

: NXTP

 1 + DUP

 2 MOD 0 = IF 1 + THEN

 BEGIN

 DUP ISQRT 1 + 3 DO

 DUP I MOD 0 = IF

 1 LEAVE THEN

 2 +LOOP

 DUP 1 = IF

 DROP 2 + 0

 ELSE DUP THEN

 UNTIL

;

Get five primes following 1000:



http://sense.net/~egan/forth41/np.forth41

Page 16

X-Mem support

The primitive creates a DATA file named “@FILE” of type “4” with all the available room
in X-Mem. Not sure what exactly this is used for yet, so further investigation is needed. Note that the

file type is incompatible with the Matrix files created by the CCD or Advantage/SandMatrix modules/

The primitive is very useful to load FORTH code. Below is an example of utilization.

The FOCAL routine below creates an ASCII file names NXTP with FORTH Code used in previous exam-

ple. Once created you only need to use “” to have the two new definitions added to
the RAM dictionary, it doesn’t get any easier.-

*LBL "NXTP" 1

 "NXTP" 2

 SF 25 3

 PURFL 4

 CF 25 5

 50 6

 CRFLAS 7

 , 8

 SEEKPTA 9

 "DECIMAL" 10

 APPREC 11

 "VARIABLE R" 12

 APPREC 13

 "VARIABLE M" 14

 APPREC 15

 "VARIABLE S" 16

 APPREC 17

 ": ISQRT" 18

 APPREC 19

 "M ! 0 R ! 16384" 20

 >" DUP S !" 21

 APPREC 22

 "BEGIN 0> WHILE" 23

 APPREC 24

 "M @ S @ R @ OR " 25

 >"< IF" 26

 APPREC 27

 "R @ 2 / R !" 28

 APPREC 29

 "ELSE" 30

 APPREC 31

 "S @ R @ OR NEGA" 32

 >"TE M +!" 33

 APPREC 34

 "R @ 2 / S @ OR " 35

 >"R !" 36

 APPREC 37

 "THEN" 38

 APPREC 39

 "S @ 4 / DUP S !" 40

 APPREC 41

 "REPEAT" 42

 APPREC 43

 "R @ ;" 44

 APPREC 45

 ": NXTP 1 + DUP" 46

 APPREC 47

 "2 MOD 0 = IF 1 " 48

 >"+ THEN" 49

 APPREC 50

 "BEGIN DUP ISQRT" 51

 APPREC 52

 " 1 + 3 DO DUP I" 53

 APPREC 54

 " MOD 0 = IF 1 " 55

 APPREC 56

 "LEAVE THEN 2 +L" 57

 >"OOP" 58

 APPREC 59

 "DUP 1 = IF DROP" 60

 >" 2 + 0" 61

 APPREC 62

 "ELSE DUP THEN U" 63

 >"NTIL ;" 64

 APPREC 65

 END 66

Page 17

Structure of a definition.

FORTH words are coded in a similar way to user programs and therefore read backwards (decreasing

addresses). The definitions are stored upside down so that the memory size can be changed (with
), therefore the end address of the program has to be stored in the definition.

The structure is therefore as follows:

- LFA (Link): address of the NFA of the previous definition,
- NFA (Name): A0+word length+40 if the word is immediate,

- name in ASCII, with the most significant bit of the last character at 1,
- CFA (Code): 4 bytes to be executed (upside down) to launch the definition,

- PFA (Param): zero if the definition does not ask for an alpha parameter,

- program coded backwards.

As the interpreter does not know the length of the definition when it starts writing, it starts at the end of

the FORTH buffer and continues upwards, then it takes care of the block transfer and finishes the defini-
tion. This is why the  and  primitives have been defined. They are analogous to  and  although

here they decrement instead (so the “d” does not make a reference to double words at all!).

In order to speed up the editor, the compilation of the words is done at the pressing of SPACE.
These words are compiled in the input buffer and when a word requires an alpha parameter, this string is

carefully set aside in the parameter buffer. Apart from that, the entered characters are added to the al-

pha register (which is therefore theoretically limited to 24 characters). The correction key obviously de-
compiles the entered words.

Sources :

 Micro-Revue n°5 from March/April 1985
 Letter from Jean-Pierre Baudoin (T131) from 12/11/85 addressed to Micro-Revue readers.
 FORTH Handy Reference from FORTH Interest Group
 Programmer le FORTH by Robert Van Loo aux Editions Marabout

Page 18

Appendix.

Table of primitives arranged by search sequence and length-threads:

5 4 3 2 1 7 6 8

       

       

       

       

       

       

       

       

    
     9 10 11

       

    
    

     NULL

     #
thread-1

     <#
thread-2

     BYE thread-3

     EMIT tHread-4

     SPACE thread-5

     NEGATE thread-6

     0BRANCH thread-7

    VARIABLE thread-8

    IMMEDIATE thread-9

   VOCABULARY thread-10








DEFINITIONS

thread-11

User Variables.

There are several user variables predefined in FORTH41. The table below shows their names, buffer loca-

tion and nominal values for the examples used. Note that some of them can be accessed with Forth prim-
itives as well.

Name Primitive Location Value Comment

PNT: S SP@ 4.0D1 8.0DB Current Stack Pointer
PNT: R RP@ 0.0D1 8.0ED Current RTN pointer
PNCX n/a 6.0D1 RPN PC PNC RTN adr FEX
CURRENT CURRENT 8.0D5 8.10B Vocabulary used to store word

CONTEX CONTEX 4.0D5 810B Vocabulary to search first

HERE HERE 5.0D6 xxxx Next available Dictionary location

BASE BASE 0.0D5 10 / 0F Selected Base
PAD PAD 100 Start of PAD area
TOP:S S0 8.0ED ADR of Parameter Stack start
TOP:R R0 8.0DB SADR of RTN stack start
TOP:D n/a 2.109 Start of Dictionary
IN> >IN 2.0D3 ???? Current INPUT pointer

file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!D2025
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!D2035
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!D2016
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!D2047
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!D2005
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!D1992
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!D1978
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!D1943
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!D1960
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!D1927
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!D1909

Page 19

Appendix. – FORTH Buffer Revealed

The buffer id# is 0xD (13 dec). The buffer Size must be at least 70 registers and can be up to 256 regis-

ters large 0 in Hex that is [46, FF]. Its actual size will be determined by the available space in the I/O

area at the time of creation by executing  the first time. You can also create the buffer manual-
ly with , which requires the buffer size in the X register as input (must be between [70, 256]

as mentioned above).

The buffer header is located just above the key assignments, therefore somewhere between 0x0C0 with
no KA and 0x0CF with the USER keyboard fully loaded. So in theory the existing key assignments are

respected, but once the buffer is created no additional ones can be made. Notably, even when not occu-

pied by KA, buffer registers up to 0CF included are not used at all; thus 0D0 is the first one of the Control
Registers block – ranging from 0D0 to 0DB . The first control register is marked with the byte «BE» in

D0<13 :12>

Buffer Control block

By far the most strategic, this block holds pointers to key addresses reflecting the current status of the
forth buffer. In general Stack Pointers use B.RRR format, 7 bytes per register, whereas RTN Pointers use
N.RRR format, 14 nybbles per register

Here’s the Control Block detail – which spans from 0.0D0 tp 8.0DB: Note the locations of the user varia-
bles, as well as the default values for other fields still unidentified.

Register 6 5 4 3 2 1 0
DEC HEX D C B A 9 8 7 6 5 4 3 2 1 0
208 0D0 "B" "E" 0000 - CTL:3 0000 - CTL:2 0000 - CTL:1 T

209 0D1 C 2 0200 - NPC:X 80ED - PNT:S C0DB - PNT:R Z
210 0D2 2109 - TOP:D 80ED - TOP:S 80DB - TOP:R 0 0 Y
211 0D3 D 0 A0ED - INPT START A0FF - INPT END A0FF - INPUT X
212 0D4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 L
213 0D5 0 0 810B - CURRENT 810B - CONTEXT 0010 - BASE M Control Regs

214 0D6 01BF - 01BF - 610C - HERE 0100 -- N
215 0D7 - PAD 0 0 0 0 0 0 0 0 0 0 0 0 O
216 0D8 40ED - 614E - 41B4 - 0 0 P
217 0D9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q

218 0DA 0/F RTN:3 0/F RTN:4 |- RTN Stack

219 0DB 0 0 0 0 0/F RTN:1 0/F RTN:2 a

In all likelihood all these fields will hold dynamic pointers to buffer locations, so the FORTH routines know
where to take commands and parameters from, as well as where to put the results in after the actions

are performed. Some general knowledge of the workings of FORTH interpreter and compiler theory are
going needed to guide our investigations, but even with that under our belt determining the role and

purpose of each one of them is going to require some sleuth work and plenty of trial and error.

file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!W71
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!Q43
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!P25
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!O43
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!O61
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!Y62
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!Y62

Page 20

Buffer Parameter Block.

The Parameter block occupies an area of 18 registers, from 0x0DB to 0x0ED both partially included. As
each parameter takes 2 bytes, that means we can fit 7 parameters every two-registers, with a theoretical

maximum of 7 x (18/2) = 63 parameters.

As parameter values are being typed in the command line (separated by spaces) two things occur: (1)
they are entered in the data block area of the buffer, starting at 8.0ED, with 16-bits per value (2 bytes),

and (2) The current stack pointer value in PNT:S (at 4.0D1) is decreased by two bytes, marking the next

available location.

This means that :

• the top of the Forth stack has the first value entered, always located at 8.0ED, (adr stored in S0)

• the bottom of the Forth stack has the most recent (last) value entered, which is located at the

address pointed by PNT:S and can be accessed by the word SP@

• An ‘STACK_EMPTY’ condition exists when PNT:S equals S0, and in fact this is how FORTH41 de-

termines it.

• When stack values are printed into the LCD the current stack pointer PNT:S is decreased, but for

a faster implementation its value is not cleared from the buffer - It’ll simply be overwritten when
the depth of the stack reaches that level again.

The picture below shows the complete Parameter Block after entering 16 hex values in the command
line, from FFFF to 0 – decreasing one at a time:

Register 6 5 4 3 2 1 0
DEC HEX D C B A 9 8 7 6 5 4 3 2 1 0

219 0DB ….. ….. ….. ….. a
220 0DC ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. b
221 0DD ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. c
222 0DE ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. d
223 0DF ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. e
224 0E0 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. |-
225 0E1 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
226 0E2 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
227 0E3 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. Parameter Stack

228 0E4 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
229 0E5 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
230 0E6 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
231 0E7 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
232 0E8 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
233 0E9 2 2 2 2 1 1 1 1 0 0 0 0 ….. …..
234 0EA 6 6 5 5 5 5 4 4 4 4 3 3 3 3
235 0EB 9 9 9 9 8 8 8 8 7 7 7 7 6 6
236 0EC D D C C C C B B B B A A A A

237 0ED F F F F E E E E D D

For this example we have :

 =>

 =>

Page 21

Buffer Input Block.

The Input block holds the information entered in the command line, and it’s being stored there with each
pressing of the SPACE key to separate two commands or parameters. It also uses 18 registers, which

allows for up to 18 x 7 = 126 characters ; or in other words 5-times a full ALPHA register worth.

Control register 0D3 holds three pointers that define the block boundaries, as follows:

- INPUT_START at 0xA0ED saved in D3<B :8>

- INPUT_END at 0xA0FF saved in D3<7 :4>), as well as
- Pointer to the current data entry address, saved in D3<3 :0>.

This last value can always be recalled using the primitive  as well.

What goes into the Input block ? Basically, a direct copy of the command line, including primitive names,
parameter values, variable names, etc. It’s hard to spy on this block’s contents because it gets deleted

upon the CALC_ON event, so the only way to pry on it is on the fly, by interrupting the MCODE routines
that read/write from/to it as they’re being run.

237 0ED 4 9 0 0

238 0EE ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
239 0EF ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
240 0F0 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
241 0F1 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
242 0F2 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
243 0F3 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
244 0F4 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
245 0F5 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. Input Buffer

246 0F6 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. For command Line

247 0F7 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
248 0F8 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
249 0F9 ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
250 0FA ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. …..
251 0FB - U. 0 0 0 0 A2:4F - }-EXB 0 0 0 0
252 0FC A2:65 - EMIT 0 0 0 0 A2:4C - }-COMP A2:64 -
253 0FD - }-EXB A2:51 - }-EXP 05C9 - "key" adr A2:4C - }-COMP
254 0FE A2:4F - }-EXB 0 0 0 0 0 0 0 0 A2:4F -

255 0FF 0 0 A2:4C - }-COMP A2:51 - }-EXP 019B - "BYE" adr

Note: you may wonder about resorting to some hacking tools like the VRG function in the AMC_OS/X

module (not the library#4-based version for obvious reasons) to see the contents of the registers, since
this can be called from the Forth environment using the USER direct access… and it’s a good idea that

will be exploited later on.

Page 22

Buffer Dictionary Block.

This section of the Forth buffer is where the definitions, variables and constants are stored. It starts right

below the PAD area, in register 0x109 (in nybble 2109 to be precise). In fact, the first three registers are
populated by the Forth buffer creation routines, entering 26 bytes as shown below:

Register 6 5 4 3 2 1 0

DEC HEX D C B A 9 8 7 6 5 4 3 2 1 0

265 109 52 -"R" 4F = "O" 46 = "F" E5 - <5-Chrs.> 0 0 0 0 PAD PAD

266 10A 00 - NUM A2:4E - }-EX 810B - Next ADDR C8 = "H" 54 = "T"

267 10B - ???? A114 - LAST NAME A2:51 - }-EXP 0139 - LAST REG

268 10C ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. ….. A081 -

This constitutes the header of this block, so there’s a FORTH word in there as well (so that you can actu-

ally type  in the command line, although I’m not sure why would that be needed?). Besides the
name, the block header has pointers to the end of the block (0x0139 in here), and to the end of the oc-

cupied area (0xA114 in this example) – which is the next available address for the next definition. It ends

with two bytes with unclear purpose (0xA081), not a viable address, nor a function code…

We can write this sequence in the form of a proper definition, as follows: (remember the definition is
written backwards, so the addresses are ascending from the bottom of it):

B.NNN Code

010C 0A0 ???? Unknown purpose
610B 081 ???? Not an addr or fnc. code

510B 0A1 Last Name addr End of occupied block
410B 014 Available for next Address: 0xA114

310B 0A2 XROM 09,17
210B 051 A2:51 }-EXP
110B 001 Last used Reg# Where the block ends:
010B 039 Within the block Address: 0x139
610A 000 NUMERIC

510A 1A2 XROM 09,14
410A 04E A2:4E }-EX
310A 081 NAME addr In N.RRR format
210A 00B Next definition 0x810B

110A 0C8 "H"
010A 054 "T" “FORTH”
6109 052 "R"
5109 04F "O"
4109 046 "F"
3109 0E5 #Chars Immediate, <5-Chrs>

2109 000 Previous Name
1109 000 address Beginning of the block
0109 000 PAD
6108 000 PAD

file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23EXP

Page 23

For the next steps, let’s go easy just declaring four variables which will be named “ANGEL”, LUJAN”,

“TEST”, and “XX” entered in that order. The sequence will be loaded following the section header, see
below the snippets created for each variable:

Register 6 5 4 3 2 1 0
DEC HEX D C B A 9 8 7 6 5 4 3 2 1 0

268 10C 41 = "A" A5 - <5.Chrs.> 6109 - Prev. NAME 0 0 0 0 VARIABLE "ANGEL"

269 10D }-EX C10E - Next ADDR CC = "L" 45 = "E" 47 = "G" 4E = "N"

270 10E ….. ….. A2:53 - }-RNT 20DA = RTN1 00 - NUM A2:4E

270 10E 0 0 ….. ….. ….. ….. ….. ….. …. ….. ….. ….. VARIABLE "LUJAN"

271 10F 4A - "J" 55 - "U" 4C = "L" A5 - <5.Chrs.> A10C - Prev. NAME 0 0

272 110 00 - NUM A2:4E - }-EX 8111 - Next ADDR CE = "N" 41 = "A"
273 111 ….. ….. ….. ….. ….. ….. A2:53 - }-RNT 20DA = RTN2

273 111 - Prev. NAME 0 0 0 0 ….. ….. …. ….. ….. ….. VARIABLE "TEST"
274 112 - Next ADDR D4 = "T" 53 = "S" 45 = "E" 54 = "T" A4 - <4-Chrs.> 610F -
275 113 - }-RNT 20DA = RTN3 00 - NUM A2:4E - }-EX 2114 -

276 114 ….. ….. ….. ….. ….. ….. ….. ….. …. ….. ….. ….. A2:53 -

276 114 58 = "X" A2 - <2-Chrs.> 2112 - Prev. NAME 0 0 0 0 VARIABLE "XX"
277 115 - RTN4 00 - NUM A2:4E - }-EX 6116 - Next ADDR D8 = "X"

278 116 ….. ….. ….. ….. ….. ….. ….. ….. A2:53 - }-RNT 20DA -

In a similar move as done before we can write the definition for the first variable in “vertical” way, which
works better to identify the fields within it. The structure is the same for all variables, practically identical

to the ROM-based primitives included in the module. The primitives involved are }-EX and }-RNT at the
end, which appears to signal the RTN address for this variable. Bottom line is each definition takes 12

bytes plus the name length, so 17 bytes in this case:

510E 1A2 XROM 09,19

410E 053 A2:53 }-RNT

310E 120 RTN addr
210E 0DA This definition

110E 000 NUM / ALPHA

010E 1A2 XROM 09,14
610D 04E A2:4E }-EX

510D 1C1 NAME adr
410D 00E Next definition

310D 0CC "L"
210D 045 "E"
110D 047 "G"
010D 04E "N"
610C 041 "A"
510C A05 #Chars <5-Chrs.>

410C 1A1 Previous Name
310C 00C address
210C 000 blank
110C 000 blank

file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!M82
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!Q87
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!W92
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!W92
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23RANGE!S94
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23EXP
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23_HOLD
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23EXP
file:///C:/HP-41/INFORMATICS/FORTH/FORTH%20Module.xls%23_HOLD

Page 24

Remarks:

Using the variable name returns the definition start (end address) in the buffer, thus:

 => 

 => 

 => 

 => 

The field at 0x0DA points at the (beginning of the name of the) last definition in the dictionary, as it can

be seen by checking the contents after declaring each one of the variables:

ANGEL: now pointing at A.10C

0DA 0 00:00 0 00:00 00:00

0DB 0 0 0 0 0 00:00 0 A10C – beginning of DEF-1 name

LUJAN: now pointing at 6.10F

0DA 0 00:00 0 00:00 A2:4F - }-EXB

0DB 0 0 F F 0 00:00 0 610F – beginning of DEF-2 name

TEST: now pointing at 2.112

0DA 0 00:00 0 0:00 A2:4F - }-EXB

0DB 0 0 F F 0 0:00 0 2112 – beginning of DEF-3 name

XX: now pointing at A.114

0DA 0 00:00 0 0:00 A2:4F - }-EXB

0DB 0 0 F F 0 0:00 0 A114 – beginning of DEF-4 name

For the next step let’s be brave and use a simple definition to see how it gets saved in the buffer. Say we
create the word  to put in the LCD the character entered in a action:



Here’s the buffer contents after this action, located right after the last variable (“XX”):

278 116 A114 - Prev. NAME 0 0 0 0 ….. ….. ….. ….. : INP KEY EMIT ;

279 117 - }-EX 8119 - Next ADDR D0 = "P" 4E = "N" 49 = "I" A3 - <3-Chrs.>

280 118 A2:65 - EMIT A2:4F - }-EXB 0 0 0 0 A2:4E -

281 119 ….. ….. ….. ….. ….. ….. A2:51 - }-EXP 05C9 - "KEY" ADDR

And the corresponding update made to the 0x0DA pointer, now pointing at 0.117

0DA 0 00:00 0 0:00 A2:4F - }-EXB

0DB 0 0 F F 0 0:00 0 0117 – beginning of DEF-5 name

Page 25

Execution of a word saved in the dictionary
https://www.forth.com/starting-forth/1-forth-stacks-dictionary/

When you define a new word, Forth translates your definition into dictionary form and writes the entry in

the dictionary. This process is called “compiling.”

For example, when you enter the line

  => 

the compiler compiles the new definition into the dictionary. The compiler does not print the asterisk.

Once a word is in the dictionary, how is it executed? Let’s say you enter the following line directly at your

terminal (not inside a definition):

STAR 30 SPACES↵

This will activate a word called , also known as the “text interpreter.” The text inter-
preter scans the input stream, looking for strings of characters separated by spaces. When a string is
found, it is looked up in the dictionary.

If the word is in the dictionary, it is pointed out to a word called , which executes the defi-
nition (in this case an asterisk is printed). Finally, the interpreter says everything’s “OK”

If the interpreter cannot find the string in the dictionary, it calls the number-runner (called NUMBER).

NUMBER knows a number when he sees one. If NUMBER finds a number, he runs it off to a temporary

storage location for numbers.



https://www.forth.com/starting-forth/1-forth-stacks-dictionary/

