
HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 1 of 3 April 2021






Extensions to the HEPAX Platform
User’s Manual and QRG.

Written and Compiled by Ángel M. Martin

April 2021

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 2 of 3 April 2021

This compilation revision 1.2.2

Copyright © 2019 -2021 Ángel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.

See www.hp41.org

Acknowledgments.-

Everlasting thanks to Steen Petersen, original developer of the HEPAX Module – real landmark
and seminal reference for the serious MCODER and the 41 system overall. With his product he

pushed the design limits beyond the conventionally accepted, making many other contributions
pale by comparison.

http://www.hp41.org/

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 3 of 3 April 2021

HEPAX-4H+ and HEPAX-APPS Modules QRG

Can a masterpiece be improved?

Surely this is a matter of opinion, but most people would respond that there’s no need to attempt
any improvements on a masterpiece, so why bother then? Perhaps a justification to explain this

mini project is that contrary to the art world, engineering lives on constant refinements on

existing products. So, it’s not so much about improving a certain product but about extending its
range of applicability, usefulness or even ease of use.

Whatever the motivation, here’s a slightly modified version of the HEPAX Module, put together

with the following main considerations in mind:

• Ensure 100% compatibility with the original product. This meant no alterations

whatsoever to the FAT, and for sure maintaining all aspects of its functions and

functionality.

• Only uses the ROM space left unused in the original product. This imposed the biggest

limitation on what could be included and discarded the addition of sub-function catalogs
due to their extensive space requirements.

• Just a few additional entries were available in the main FAT and in the sub-function FATs

so they have been enlarged within the limits imposed by that restriction.

• Finally, full support of the Library#4 has added the functionality consistent with other

modules to include two sub-function catalogs and several other improvements. This has
also made more space available, put to good use by the new functions added to the

module.

What’s the fuss about?

With these criteria in mind, the following additions have been implemented on the Modified

HEPAX_4H:

1. Patched keyboard scanning method for compatibility with the 41CL in function DISASM

2. Removal of the restrictions on the Disassembler and HEX Editor to be used on the HEPAX

ROM itself. Although with obvious limitations, such as restricted to the actual bank within

the module where the executing code resides.

3. Addition of eight new functions in the main FAT, as follows:

a. -HEXTRA - New Section Header

b. HFLADR – Hepax File Address. File Name in ALPHA

c. HFLTYP – Hepax File Type. File Name in ALPHA
d. HRTPFL – Hepax File Type Change. New type in X.

e. HWRKFL – Gets Hepax Work File Name to Alpha

f. RLSRAM – Releases RAM page from Hepax chain. Page# in X
g. LSTF - Last (sub)function called

h. CLHM - Clears ALL Hepax FileSys

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 4 of 3 April 2021

4. Addition of ten new sub-functions to the Auxiliary FATs, as follows:

Accessed via HEPAX# / HEPAX$:

a. CAT+ - Sub-function Catalog HEPAX/A group

b. CHKSYS - Checks ROM Configuration HEPAX/A group
c. PGROOM – Calculates available room within page HEPAX/A group

d. PGSUM – Calculates and writes page checksum HEPAX/A group
e. ROMLST - Shows plugged ROMs id’s

Accessed via XF# and XF$:

f. XFCAT - Sub-function Catalog XF/A group

g. CLXM - Clear Extended Memory XF/A group
h. RTN? – Tests for pending subroutine levels XF/A group

i. XQ>GO – Deletes one pending subroutine return XF/A group
j. XQXM – Executes a program file in X-Memory XF/A group

The sub-functions catalogs CAT+ and XFCAT feature the same functionality found in other

advanced modules. The sub-function enumeration can be stopped, single-stepped, resumed, and
access to the displayed sub-function is only a XEQ; away – either in manual or program modes.

Other subtle enhancements included are as follows:

• briefly displaying the sub-function names when using the numeric launchers HEPAX and

XF – this provides useful feedback to the user on which function is called. Note that the
name of the alphabetical launchers has been changed to HEPAX$ and XF$ (i.e.

replacing the final “A” in the original with the dollar sign “$”.

• Note as well that the alphabetical launchers XF$ and HEPAX$ will take the string in

Alpha as input if the user does not enter any alpha chars at the prompt, terminating the

sequence with another ALPHA keypress.

Unfortunately, there was no more room to include a few other functions also related to the
HEPAX file system, written by Sebastian Toelg and included in the NEXT ROM. Those are

available in the PowerCL, and also included in a derivative project described later on.

HEPAX_4H HEPAX+

APPS

Library #4

HEPAX-1D

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 5 of 3 April 2021

HEPAX Applications ROM

An extension of this project is presented below, in the form of a companion ROM that builds on

the HEPAX functions. This extension module includes:

• A few left-over functions written by Steen Petersen, taken from several HEPAX pre-

production prototypes (see MoHP Forum thread). These also include MCODE print and

scan routines, published in the French chapter of PPC.

• Hepax Chain functions from the NEXT ROM (written by Sebastian Toelg) and the

PowerCL. They allow selective configuration of the HEPRAM Chain, release of individual
blocks, and manual initialization of FileSys pointers.

• Utility functions needed by the User Code routines – to support buffer files and to

complement the existing standard set. Notable addition, the function PCOPY allows
copying of programs in ROM to the main RAM from a running program.

• A comprehensive set of FOCAL routines to manage H:RAM Files, including poor-man Data
and ASCII file editors; support for Status, Buffer and Matrix new file types; and

exchanges between H:RAM and X-Memory like-to-like files. This group also includes the
classic HRESZFL, DISSST and ?JUMP routines from the HEPAX Manuals.

HEPAX File Types vs. Other Systems

The table below shows the different file types available in H:RAM (including those created by the
Extended-IL ROM) and X-Mem (including those created by advanced modules). Note that they’re

not always consistent, bear that in mind when using the exchange routines. Note as well that
there are no functions available for file exchanges between X-Mem and H:RAM – which is the

main theme of this module.

File Type RAM <-> HEPAX H:Type RAM <-> X-Mem X:Type RAM <-> HP-IL

Program HSAVEP - PCOPY 1 SAVEP - GETP 1 WRTP/V – READP

Data HSAVER/X - HGETR/X 2 SAVEREG/X - GETRG/X 2 WRTR/X – READR/X

ASCII HAPPREC - HGETREC 3 APPREC - GETREC 3 SAVEAS - GETAS

Matrix “HSAVEM”- ”HGETM” 10 MATDIM, et al. 4 n/a

Key Assignments HSAVEK - HGETK 5 SAVEKA - GETKA 5 WRTK - READK

Buffer “HSAVEB” - “HGETB” 7 SAVEBF - GETBF 6 WRTBUB - READBUF

Status Regs “HSAVEST”- “HGETST” 6 SAVEST - GETST 7 WRTS – READS

Complex Stack 8, “HSAVEB”- “HGETB” 7 SAVEZS - GETZS 8 n/a

LIFO n/a - POP - PUSH 9 n/a

16C Buffer 11, “HSAVEB”- ‘HGETB” 7 SAVE16 - GET16 11 n/a

ALL HSAVEA - HGETA 4 n/a - WRTA - READA

X-Mem n/a 9 n/a - WRTXM - READXM

CALC(ALL+XM) n/a 8 n/a - WRTCAL - READCAL

ROM COPYROM 2 n/a - WRTROM / READROM

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 6 of 3 April 2021

See below the function table, structured in two main sections

-XROM--- ADDR- FUNCTION ---- Description------ Type ------ Author --------------r

006.00 AFF3 -HEPX_PLUS Section Header MCode n/a

006.01 A1BE HEPCHN Make HPX Chain MCode Sebastian Toelg

006.02 A137 HEPCHN? Show HPX Chain MCode Sebastian Toelg

006.03 A463 HEPINI Initialize FileSys MCode H. Owen / Á. Martin

006.04 A656 MCPR Mcode Print MCode Steen Petersen

006.05 A7C8 MCSCAN Mcode Scan MCode Steen Petersen

006.06 A546 PCOPY Programmable COPY MCode HP / Á Martin

006.07 A363 RAMTEST Tests HEPRAM MCode Steen Petersen

006.08 A2DC ROMCHKX Checks ROM# MCode HP Co.

006.09 AB8D ROMTEST Tests ROM MCode Steen Petersen

006.10 ACF3 READF Reads Data File to Drive MCode R. del Tondo

006.11 A966 WRTDF Writes Data File from Dr. MCode R. del Tondo

006.12 AB7E FSIZE IL Drive File Size MCode Unlnown

006.13 AFE8 -HEPX_APPS Section Header MCode n/a

006.14 AB82 BFLNG Buffer Length MCode Ángel Martin

006.15 AB8E BUFHD Buffer Header MCode Ángel Martin

006.16 AB33 CRBUF Creates Buffer MCode Ángel Martin

006.17 ABA9 FLTYPE File Type MCode Ángel Martin

006.18 AB9B "DISSST SST Disassembly UCode Steen Petersen

006.19 AE07 "HASED H: Text File Editor UCode Ángel Martin

006.20 A9BD "HASVFL View H:ASCII File UCode Ángel Martin

006.21 AFC4 "HCPYAS Copy H:ASCII File UCode Ángel Martin

006.22 AAE1 "HDFED H: Data File Editor UCode Ángel Martin

006.23 A29E "HGETAS Gests H:Text to X-Mem UCode Ángel Martin

006.24 A609 "HGETB Gets H:Buffer to X-Mem UCode Ángel Martin

006.25 A270 "HGETDF Gets H:Data to X-Mem UCode Ángel Martin

006.26 A259 "HGETFL Gets HLFile to X-Mem UCode Ángel Martin

006.27 AD62 "HGETM Gets H:Matrix to X-Mem UCode Ángel Martin

006.28 ADC5 "HGETST Gets H:Status UCode Ángel Martin

006.29 AECF "HRESZFL Resizes H:Text File UCode Steen Petersen

006.30 A103 "HSAVEAS Saves X-ASCII to H:RAM UCode Ángel Martin

006.31 A5CC "HSAVEB Saves X-Buffer to H:RAM UCode Ángel Martin

006.32 A0D4 "HSAVEDF Saves X-Data to H:RAM UCode Ángel Martin

006.33 A0BC "HSAVEFL Saves X-Mem File to H:RAM UCode Ángel Martin

006.34 AD3B "HSAVEM Saves X-Matrix to H:RAM UCode Ángel Martin

006.35 AD8E "HSAVEST Saves Status to H:RAM UCode Ángel Martin

006.36 A054 "HUPDP Updates Program File UCode Werner Huysegoms.

006.37 A637 "?HFT Auxiliary check UCode Ángel Martin

006.38 AE3E "?JUMP Jump Distances Coder UCode Steen Petersen

Dependencies.

It comes without saying that all FOCAL routines (and most of the MCODE functions as well) need

the HEPAX_4H module plugged in. Make sure you have it and the Library#4 properly installed
in your machine.

Some routines will also make use of functions in the AMC_OS/X Module, it’s recommended that
you have it always plugged as well. Finally, the Matrix File Exchange functions require the

SandMatrix Module as well.

file:///C:/HP-41/MLDL%20Boxes/HEPAX/HEPAX_0C%20Prototype/HEPX%20PLUS.xlsm%23RANGE!D3292
file:///C:/HP-41/MLDL%20Boxes/HEPAX/HEPAX_0C%20Prototype/HEPX%20PLUS.xlsm%23RANGE!D2421

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 7 of 3 April 2021

Preamble – General description of the module functions.

Functions from HEPAX Prototypes.

A few MCODE functions are taken for early HEPAX prototypes that were not included in the final

release. Thanks to Steen Petersen for making them available via the MoHP Forum. These are:
ROMTEST, RAMTEST, MCPR, and MCSCAN.

HEPAX-Related Functions from other Modules.

Even if a few routines are also available in other modules, having them in this compilation is the

most convenient way to use them. These include HEPCHN, HEPCHN? And RLSRAM from the
NEXT_ROM, written by Sebastian Toelg; as well as HEPINI from the PowerCL, originally written

by Howard Owen.

Other Auxiliary Functions

For conveniency sake, a handful for MCODE functions have also been included to remove the
dependencies on other ROMS (specifically the RAMPAGE Module). This is most evident with the

Buffer utilities BUFHD, BFHDR and CRBUF but it’s also the case with FLTYPE and FLHDR. All

of them are used in several FOCAL routines for file exchanges and management.

Routines from the HEPAX Manuals.

The module includes three routines from the HEPAX manuals that however weren’t included in

the HEPAX ROM. These are: HRESZFL, DISSST, and ?JUMP. You should refer to the HEPAX

manuals for description and utilization instructions.

So, what’s new then, you may ask?

At the core of the module sits a set of FOCAL routines designed to improve the original HEPAX
FileSystem management, including

• support of new file types (Buffer, Status, Matrix)

• allow exchanges with like-to-like files in X-Memory (Program, Data, ASCII, Keys).

• Other routines allow you to clear the complete H:RAM (HCLFS) and updating programs
in H:RAM keeping the existing FAT order (HUPDP, written by Werner Huysegoms).

All in all, I hope you ‘d agree the module offers a handsome set of utilities and routines to make

your HEPAX experience even more enjoying, so go ahead and take it for a spin at the closest
H:RAM near you.

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 8 of 3 April 2021

HEPAX Chain Alteration.

HEPCHN? Recalls current CHAIN Placed in ALPHA and Display Sebastian Toelg

HEPCHN Sets CHAIN String in ALPHA Sebastian Toelg

RLSRAM Releases RAM page Pg# in X (decimal) Sebastian Toelg

These functions provide yet additional options to configure the HEPAX chain after the first

initialization, allowing for non-contiguous allocation of pages, as well as individual page removal
without disrupting the complete HEPAX FileSystem. They are taken from the NEXT ROM,

published by Sebastian Toelg (so great to see the trade is not lost!).

• HEPCHN? Returns a string to ALPHA showing the pages used by the HEPAX chain, with

zeros as prefix and postfix to indicate the chain ends. The information is also shown in
the display if executed in run mode. For instance, the screen below denotes pages C and

D are in the HPRAM chain.

,

• HEPCHN re-configures the HEPAX chain as per the information provided in the string in

ALPHA. This must always start and end with zero characters, even if there’s only one

page configured. Obviously, all pages must be mapped as sRAM in the CL.

• RLSRAM releases a given RAM page (which value is in the X-register), removing it from
the HEPAX chain – and closing the chain accordingly to avoid any ruptures. In RUN

mode the new chain (after page removal) will be displayed for feedback information.

Comments:-

You can use HEPCHN to restore pages removed previously with RLSRAM. Executing HEPCHN
right after HEPCHN? makes no modification to the HEPRAM chain.

Notice that HEPCHN will not take a three-zeros string as valid HRAM chain – attempting to do so
will return the error message “NULL”. Note however that you could come to that situation by

releasing the last page in a one-page chain using RLSRAM.

Dedicated error conditions will report the absence of a configured chain (“NO START”), a broken

chain condition (“CHAIN BROKEN”), or the incorrect choices for released pages. Be careful not to
remove pages or reconfigure the chain if they already contain data and are part of the

FileSystem.

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 9 of 3 April 2021

Re-Initializing the Pages control fields.

HEPINI Initializes File System Prompts for values Author: Howard Owen

HEPINI is used to initialize the HEPAX File System on the CL. This is needed on the CL because

this feature is disabled in the HEPAX ROM image included in the CL Library, thus the addition

here. It also allows for dynamic configuration changes, modifying the number and location of
HRAM pages set up.

In manual mode, the function takes two parameters: the number of HEPAX RAM pages to

configure and the address of the first one. Note that even if the first prompt is a DECIMAL
entry, the double quotes will remind you that the second one is in HEX, with valid inputs being

8,9, and A-F.

HEPINI is also programmable. In PRGM mode it takes the number of HRAM pages from Y, and
the first page address from X – both in DECIMAL format.

The procedure consists of writing a few control words into strategic locations within each HRAM
page, so that the HEPAX will recognize them as being part of its File System. Those locations and

byte values are shown in the table below:

Address Byte value Comment

x000 ROM id# => equal to the page# Always done

xFE7 Previous HRAM page id# (zero if first) Always done

xFE8 Next HRAM page id# (zero if last) Always done

xFE9 Fixed value = 091 Won’t be overwritten if not zero

xFED Fixed value = 090 Done always

xFEF Fixed value = 091 Won’t be overwritten if not zero

xFF1 Fixed value = 0E5 Done always

xFF2 Fixed value = 00F Done always

XFF3 Fixed value = 200 (or 100) Done always

Two of the byte values shown in the table above located at addresses 0xpFE9 and 0xpFEFhave a

different treatment: they will be branded only if their current content is zero. They denote the
initial address in the page where the next file or program will be written using HSAVEP,

HCRFLAS and HCRFLD. Their values will vary as more programs or content is written to the

HRAM page, thus should not be overwritten by HEPINI – or else the HEPAX FileSys catalog will
become corrupt.

This explains why HEPINI won’t disturb the actual contents of the HRAM FileSystem, so it can

be used at any time provided that the entries used are compatible with the HRAM arrangement.

It is also possible to use them to configure only a subset of the available HRAM, as long as such
subset uses the lower pages. An example will clarify this.

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 10 of 3 April 2021

The maximum number of HRAM pages accepted by the function is 7, but typical HEPAX
configurations have TWO pages (Standard HEPAX, 8k) or FOUR (Advanced HEPAX, 16k). The

ROM id#’s are assigned using the same value as the page number – be aware that this may
conflict with other ROMS currently plugged in your CL, notably POWERCL uses ROM id# “C”,

and YFNS uses “F” so those two pages will have to be their id# manually re-issued to avoid any
issues (!). You can use ROMED or HEXEDIT for that.

HEPINI will check the validity of the entry for first page, which is obviously related to the
number of pages (n) chosen in the first prompt. The first page must be greater than 8 and lower

than (17-n). Should that not be the case, one of the following error messages will be produced:

Even if there is a considerable amount of error protection built-in, nothing will prevent you from

using this function over non-HEPRAM pages, including YFNS itself! – Therefore, exercise caution
as always.

Example:- Say you have a configuration of 16k of HRAM, that is pages C to F contain copies of

the HEPAX RAM template. You may want to use some pages for the FileSys, and others to hold
other ROM images, and this done in a dynamic way.

Then the following options are available to configure the HEPAX File System with HEPINI:

N PG# Result Comment

1 C Page C Can extend upwards to {C,D}, {C,D,E}, or {C,D,E,F}

1 D Page D Can extend upwards to {D,E}; or {D,E,F}

1 E Page E Can extend upwards to {E,F}

1 F Page F

2 C Pages C,D Can extend upwards to {C,D,E}; or {C,D,E,F}

2 D Pages D,E Can extend upwards to {D,E,F}

2 E Pages E,F

3 C Pages C,D,E Can extend upwards to {C,D,E,F}

3 D Pages D,E,F

4 C Pages C,D,E,F

Notice that the configuration can always be extended to include other pages located at upper
addresses, but not the other way around. This is because the HEPAX code searches for the

blocks sequentially to determine whether they belong to its FileSystem, starting at page 8. So

once they are configured, changing the location of the first page to a lowered-number block will
create a conflict.

Obviously for all this to work the target pages must be mapped to sRAM – or otherwise the byte

values could obviously not be changed. So it is expected that the appropriate number of HRAM

pages are configured, which is the subject of the functions described in the previous section.

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 11 of 3 April 2021

New H:RAM File Types

HSAVEB Save Buffer to H:RAM Buf id# in X, FileName in ALPHA FileType 7

HGETB Get buffer from H:RAM File Name in ALPHA

HSAVEST Save Status Regs in H:RAM File Name in ALPHA FileType 4

HGETST Get Status Regs from H:RAM File Name in ALPHA

These functions extend the H:RAM support to two new file types, dedicated to storing the

contents of I/O Buffers and the Status regs - from T(0) to Q(9) only. Interestingly, the

HEPAX_4H will display these files with their own code (BF and ST), so the HEPDIR enumeration
will show a properly labeled code for them. How is that so, you may ask? This is a collateral

effect derived from the Extended-IL ROM, which is indeed capable of creating these file types
on the HP-IL Drive. Add to that the action of the HEPAX functions WRTFL and READFL and you

have a nice way to save those files in the HLRAM FileSystem as well.

Inspired by such an scenario the FOCAL routines in this module can be used to store/recall I/O

buffers and sets of Status Registers in H:RAM. Initially the new files have DATA format, so we
can use the standard GETX/SAVEX commands on them – but thanks to the HRTPFL function the

file type is changed to the special ones at the end and the beginning of the programs, tricking
the user into believing they have full support, so to speak.

Notice that if the I/O buffer already exists in RAM, HGETB will override its content (and resize it
appropriately) so it can be considered a buffer update. Apart from this the remaining routines are

self-explanatory as well, just mind the duplicate files and wrong types on input.

Note: this is not to be confused with the buffer and status regs files that can also exist in X-

Memory, managed by the OS/X and other advanced modules. So here we’re not moving between
X-Mem and H:RAM… don’t lose your bearings just yet ;-)

The sketch below shows the possible exchanges between the four main data repositories in the
HP-41 System. Many functions exist in this and other modules to do the swapping and copying…

And now that we’re on this subject, have you ever noticed the mis-naming convention used by

HP in the X-Functions module with the GETAS and SAVEAS functions? Since they move data
between X-Mem and the HP-IL Drive, they should have been called WRTAS and READAS

instead. We don’t know who we have to thank for that blunder but certainly will remain as a
source of confusion forever… names should matter!

H:RAM

X-Mem

Main RAM

IL Drive

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 12 of 3 April 2021

Program listing.-

Obvious use of the buffer functions in here, both from the AMC_OS/X and from this module as

well - now you know why they were included in the module. Note also the utilization of functions
PEEKR and POKER from the AMC_OS/X Module, whose mission is to read/write the buffer

registers to/from the X-register

Also, the observant reader would have noticed that the H:RAM buffer file type is 7. Hold on to

this fact for a later discussion on file type numbers across the systems.

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 13 of 3 April 2021

Program listing (Con’t).-

Here the major nuisance is to avoid overwriting the original contents of the stack registers due to
the actual use of them by the running program – which makes us resort to a couple of tricks,

even if the program length suffers a bit. Thankfully we can reuse part of the restore code in the

LBL 10 subroutine for both the saving and the restoring cases.

PS. I should point out that the Q register is irredeemably lost, but that’s inevitable when using
FOCAL code since Q is used as scratch in multiple functions.

Also note that the Status File in H:RAM has type = 4

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 14 of 3 April 2021

Exchanging X-Mem and H:RAM like-to-like Files

HSAVEFL Save X-Mem file to H:RAM File Name in ALPHA FileTypes:

1,2,3,4,5,8 HGETFL Get H:RAM File to X-Mem File Name in ALPHA

HSAVEDF Save X-Mem DataFile in H:RAM File Name in ALPHA FileType 2

HGETDF Get H:RAM DataFile to X-Mem File Name in ALPHA

HSAVEAS Save X-Mem DataFile in H:RAM File Name in ALPHA FileType 3

HGETAS Get H:RAM DataFile to X-Mem File Name in ALPHA

HSAVEM Save Matrix in H:RAM File Name in ALPHA FileType 8

HGETM Get H:RAM Matrix to X-Mem File Name in ALPHA

These routines provide a convenient method to exchange files between X-Memory and the

H:RAM FileSystem. All of them follow a similar design, whereby the file name is expected in

ALPHA and will be the same in both storage areas. The “SAVE” in the name implies moving it to
the H:RAM, whereas “GET” means the opposite direction, i.e. moving it back to X-Memory.

Strictly speaking, the Matrix Case will not only support X-Memory Matrix files but also matrices

stored in main RAM (and even the CL Y-registers), but that’s just an additional functionality

controlled by the matrix name as you know (‘R” or “Y” followed by a number to denote those
cases respectively). An extra bonus for you.

As you can see, we have dedicated global labels for DATA, ASCII and MATRIX types – but not so

for Program and Keys files, right? This is done to avoid confusion with already existing functions
such as HSAVEP and HSAVEK (and their “GET” counterparts of course). For these cases we have

the general-purpose HGETFL and HSAVEFL, which automatically determine the specific type

using the HFLTYP function.

As always, make sure there’s not already a file with the same name in the destination location or
you’ll get the “H:DUP FL” error message.

Like-to-Like File Exchange Routines.

The tables below show the routines used to exchange like-to-like files between (a) X-Mem and

H:RAM, and (b) X-Mem and HP-IL.

File type ➔ HEPAX ➔ X-Mem File type ➔ HP-IL ➔ X-Mem

Program “HSAVEFL” “HGETFL” Program WRTFL READFL

Data “HSAVEDF” “HGETDF” Data WRTDF READF

ASCII “HSAVEAS” “HGETAS” ASCII SAVEAS GETAS

KEYS “HSAVEFL” “HGETFL” KEYS WRTFL READFL

MATRIX(*) “HSAVEM” “HGETM” X-MEM WRTXM READXM

(*) Requires SandMatrix

Note that for Data and ASCII files with the HP-IL as destination the file must already exist in the

drive and be of the same size as in the source, so technically only the contents are transferred.

The Extended-IL ROM overcame this limitation with the more powerful WRTFL/READFL and
WRTXM/READXM functions.

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 15 of 3 April 2021

Program listing/-

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 16 of 3 April 2021

Program remarks.

1.- A couple of observations on the code above pertain to the use of the SAVEK/GETK functions

in the AMC_OS/X to manage Key Assignment files in X-Memory. With them the Keys file type is a
trivial exercise, simply pairing them with the HEPAX-equivalent functions HSAVEK/HGETK. This

requires actual re-assignment of the keyboard in the process, be aware of this fact so you won’t

wonder where the original key assignment went.

2.- The Data Files use a similar approach, making the transfer “in masse” with the block functions

GETR/SAVER – instead of using a one-by-one register with GETX/SAVEX. It’s faster this way but

requires that sufficient SIZE be allocated in the calculator, which may not be possible for very
large DATA files of course. See below for an alternative routine using the one-record at a time

approach.

3.- Matrix files are handled in a separate routine called from the main one. See below the listing.

Note the obvious use of the matrix functions from the SandMatrix module:

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 17 of 3 April 2021

4.- Also remark the use of PCOPY for the Program files, paired with HSAVEP to achieve a clean
and efficient program transfer between both media – if it only requires that the program be in

main RAM as intermediate step, which may introduce some practical limitations.

5,- Conspicuously absent is the case of Buffer file transfer, which indeed poses an interesting
challenge for User code. You would think that shouldn’t be the case, since the AMC_OS/X module

is equipped with SAVEB/GETB, so together with PEEKR/POKER will certainly fit the need, right?
The issue lies in getting the buffer id# from its binary value in the buffer header into a proper

BCD value in X-register. This made the program length long enough to exceed the available room
in the ROM, thus it wasn’t included in the module. The routine below closes the gap, should you

be in need for it.

The sketch below shows the six functions and how they apply to the different systems:

SAVEBF /

GETBF

H:RAM

X-Mem

Main RAM

HSAVEBF / HGETBF

HSAVEB / HGETB

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 18 of 3 April 2021

“HASED” - ASCII File Editor X: File Size (if new); ALPHA: File Name

HASED is a poor-man’s ASCII file Editor for the H:RAM File System. Its main interface presents a

choice of commands to execute actions on the current record or on the file itself, as follows:

 E: Exit the Editor

 R: Resize File

 G: Goto (and show) Record

 I: Insert Record at current pointer

 A: Append Record at end of File

 M: Move record (From: –> To:)

 C: Copy record (From: -> To:)

 S: Search for Text

The File may be new or exist previously; the editor will allow for either case but if it’s new then

the file size needs to be entered X as well as the name in ALPHA.

The Editor checks for ASCII File type if it already exists, showing the customary “H:FL TYPE ERR”
error message when that condition is not met.

The Add Record command will prompt “TEXT:” for you to enter the text string, max. 24 chars.
Then press R/S to input the text and repeat the process until no more text is needed, so R/S is

pressed with no text introduced.

The Resize File command allows you to change the size of the DATA and Text files. The file can
be upsized or downsized, in case more text records need to be added. Two special circumstances

are:

• If you input the same file no call to HRESZFL will take place, and

• If you press R/S at the “SIZE=?” prompt the file will be downsized again eliminating the
unused empty records that may exist.

The Move and Copy Record commands use a “From: - To:” approach to select which record news

to be moved or copied (“FROM:”) and to where (“TO:”). Both need to be within the file size quite
obviously, and the record will be inserted at the specified record number.

Use the Search command to position the file pointer at the (first) record containing the string

entered at the “TEXT:” prompt. The search will start at the beginning of the file (i.e. record #0).
If not found the prompt will appear again, press R/S to return to the command choices.

The other options are self-explanatory in the summary above, and don’t require any special
considerations.

Note that HASED uses functions from the AMC_OS/X Module (PMTA, PMTK, ARCLI) - therefore

ensure that it’s also plugged in the calculator.

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 19 of 3 April 2021

Program listing.-

*LBL "HASED" ; ASCII Files 1

 SF 25 ; set error flag 2
 HFLSIZE ; get file size 3
 FC?C 25 ; already exists? 4
 HCRFLAS ; no, create it 5
 3 ; must be ASCII 6
 XROM "?HFT" ; check type 7
 *LBL 00 ; MENU 8

 "CMD: SCMAIGRE" 9
 PMTK ; input choice 10
 GTO IND X ; divert there 11

 *LBL 01 ; SEARCH Text 12

 CLA ; clear ALPHA 13
 PMTA ; input text 14
 , ; start of file 15
 HSEKPT ; put pointer 16
 HPOSFL ; search for string 17
 >"?" 18
 X<0? ; found? 19
 AVIEW ; no, show 20
 X<0? 21
 PSE ; and pause 22
 GTO 00 ; go to Menu 23

 *LBL 02 ; COPY Record 24

 XEQ 10 25
 X<>Y 26
 HSEKPT 27
 GTO 00 ; Go To Menu 28

 *LBL 03 ; MOVE Record 29

 XEQ 10 30
 RCL 00 31
 RCL Z 32
 X<Y? 33
 ISG Y 34
 "" 35
 X<>Y 36
 HSEKPT 37
 HDELREC 38
 X<>Y 39
 X>Y? 40
 DSE X 41
 "" 42
 HSEKPT 43
 GTO 00 ; To Menu 44

 *LBL 04 ; ADD Rec 45

 CF 00 46
 GTO 01 47

 *LBL 05 ; INSERT Rec 48

 SF 00 49

 *LBL 01 50

 CF 23 51
 CLA 52
 PMTA 53
 FC? 00 54
 HAPPREC 55
 FS? 00 56
 HINSREC 57
 FS?C 23 58
 GTO 04 59
 GTO 00 60

 *LBL 06 ; GOTO Rec 61

 "REC#=?" 62
 PROMPT 63
 SF 25 64
 HSEKPT 65
 FC?C 25 66
 GTO 06 67
 HGETREC 68
 AVIEW 69
 HSEKPT 70
 GTO 00 ; To Menu 71

 *LBL 07 ; RESIZE File 72

 HFLSIZE 73
 CF 22 74
 “SIZE=?”” 75
 PROMPT 76
 FC? 22 77
 GTO 07 78
 X#Y? 79
 XROM “HRESZFL” 80
 GTO 00 ; To Menu 81
* LBL 07 82

 CLA 83
 HASROOM 84
 7 85
 / 86
 INT 87
 - 88
 HWRKFL 89
 XROM "HRESZFL" 90
 RTN 91

*LBL 08 ; EXIT Editor 92

 HWRKFL 93
 RTN 94
*LBL 10 ; From/To 95

 HRCLPT 96
 "FROM:" 97
 PROMPT 98

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 20 of 3 April 2021

 HSEKPT 99
 STO 00 100
 "TO:" 101
 PROMPT 102
 E 103
*LBL 09 104

 HGETREC 105
 ALENG 106
 6 E-5 107
 + 108
 E 109
*LBL 13 110

 ASTO IND Z 111
 ASHF 112
 ST+ Z 113
 DSE Y 114
 GTO 13 115
 R^ 116
 R^ 117
 FS? 17 118
 GTO 09 119
 E 120
 - 121
 X<>Y 122

 HSEKPT 123
 X<>Y 124
 E3 125
 / 126
 R^ 127
 + 128
 SF 17 129
*LBL 12 130

 CLA 131
 ARCL IND X 132
 ISG X 133
 ARCL IND X 134
 ISG X 135
 ARCL IND X 136
 ISG X 137
 ARCL IND X 138
 FS? 17 139
 HINSREC 140
 FC?C 17 141
 HAPPCHR 142
 ISG X 143
 GTO 12 144
 END145

146

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 21 of 33 April 2014

“HASVFL” – View ASCII File ALPHA: File Name

HASVFL has been promoted into its own, separate routine (it used to be part of the Editor). This

short routine sequentially shows all records starting from the beginning and leaves the file

pointer at the end. The contents are preceded by a short indication with the record number, so
you know its exact whereabout within the file.

, ;

 ; , etc…

Program Listing.-

01 *LBL “HASVFL”

02 ,
03 HSEKPTA
04 *LBL 11

05 "#"
06 E
07 HRCLPT
08 X#0?
09 +
10 ARCLI
11 >”:"
12 AVIEW
13 PSE

14 SF 25
15 HGETREC
16 FC?C 25
17 GTO 00
18 AVIEW
19 12
20 ALENG
21 X<=Y?
22 PSE
23 GTO 11
24 *LBL 00

25 HWRKFL
26 END

“HCLFS” – Clear H:RAM FileSystem

HCLFS is a minimalistic routine that deletes all files from the H:RAM FileSystem, one by one in a
sequential fashion. Use it to reset your RAM pages without changing the CHAIN pointers (as

would occur if you used CLRAM, for instance).

Routine listing:
01*LBL "HCLFS"
 02*LBL 00
 03 E
 04 HEPDIRX
 05 SF 25
 06 HPURFL
 07 FS?C 25
 08 GTO 00
 09 END

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 22 of 33 April 2014

“HCPYAS” – Copy ASCII File ALPHA: “FROM,TO” File Names

HCPYAS is a new addition to the module. As its name implies, you can use it to make an exact

copy of an ASCII file into another, just write the “FROM,TO” file names in ALPHA and execute the

routine.

If the destination file already exists, it’ll be purged and recreated to make sure it has the same
size and no contents when the routine begins.

The routine does not use any data registers, only the stack. Note how the files are selected using

the HUNSEC function, chosen because it does not return any value to the stack (which is already

holding the record contents or the “FROM,TO” string.

Program listing.-

 *LBL "HCPYAS" 1
 HFLSIZE 2
 ASWAP 3
 SF 25 4
 HPURFL 5
 CF 25 6
 HCRFLAS 7
 . 8
 HSEKPTA 9
 ASWAP 10
 HSEKPTA 11
 *LBL 02 12

 RCL M 13
 RCL N 14
 RCL O 15
 RCL P 16
 HUNSEC 17
 SF 25 18
 HGETREC 19
 FC?C 25 20

 RTN 21
 XEQ 01 22
 ASWAP 23
 HUNSEC 24
 XEQ 01 25
 HAPPREC 26
 XEQ 01 27
 ASWAP 28
 GTO 02 29
 *LBL 01 30
 X<> P 31
 RDN 32
 X<> O 33
 RDN 34
 X<> N 35
 RDN 36
 X<> M 37
 RDN 38
 END 39

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 23 of 33 April 2014

“HDFED” - ASCII File Editor ALPHA: File Name

HDFED is the counterpart editor routine for DATA files in the H:RAM File System. It’s however

less feature-rich and thus much simpler to use, offering just a sequence of prompts showing the

current values starting from the beginning of the file. At each prompt you can enter a new value
to update the file record if user flag F8 is clear, or press R/S to keep the current values as shown

in the prompt. Setting F8 will only do a review of the values without editing capability

 Note the “?” with F8 clear

 with F8 set (no editing)

Note that contrary to HASED, the data file must exist already when you call this poor-man’s
editor routine – or else the “H:FL NOT FOUND” error will be shown. You can always use the

HRESZFL routine manually to adjust the file size as appropriate.

You can leave the editor at any time but note that the file name won’t be in ALPHA until you

review all file records. If you need it back you can use function HWRKFL in the HEPAX_4H
module.

Program listing.-

*LBL "HDFED" ; DATA Files 1
 HFLSIZE 2
 E 3
 - 4
 E3 5
 / 6
*LBL 00 7
 HSEKPT 8
 HGETX 9
 X<>Y 10
 "D" 11
 ARCLI 12
 >"=" 13
 X<>Y 14
 ARCL X 15
 CF 22 16
 FC? 08 17
 >"?" 18
 PROMPT 19
 FC?C 22 20

 GTO 02 21
 FS? 08 22
 GTO 01 23
 X<>Y 24
 RDN 25
 X<>Y 26
 HSEKPT 27
 X<>Y 28
 HSAVEX 29
 *LBL 02 30

 X<>Y 31
 *LBL 01 32

 ISG X 33
 GTO 00 34
 "DONE" 35
 AVIEW 36
 CLA 37
 HWRKFL 38
 END 39

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 24 of 33 April 2014

“HUPDP” – Update Program ALPHA: Program Name

Editing a program saved in HLRAM requires copying it to RAM first, and then saving it back to

H:RAM. Unfortunately, the standard behavior during HSAVEP *moves* the program file from its

initial location within the chain (and the FAT) to the end of the list. This is a problem if the
routine was called from other user programs, because the XROM id# gets changed.

Written by Werner Huysegom, HUPDP allows you to update a program in the H:RAM FileSystem

without the undesired effect of changing its FAT location in the process, and therefore

maintaining compatibility with any potential user code (both in RAM and in H:RAM). This routine
takes advantage of the programmable Copy function PCOPY, coupled with HSAVEP to move

those program files in H:RAM

Limitations: Note that PCLPS will purge all programs located after the one being updated, should
that be the case. Also, because the program name it’s saved using ASTO, it can’t be seven

characters long. This restriction could be easily removed using RCL M/N instead of ASTO X/Y…

Program listing.-

*LBL "HUPDP" ; Update PRGM 1
 ASTO X 2
 >" " ; add 5 blanks 3
 ASTO Y 4
 E 5
*LBL 02 6

 HEPDIRX 7
 0 8
 X=Y? 9
 GTO 00 10
 ASTO X 11
 R^ 12
 X#Y? 13
 ISG L 14
 GTO 01 15
 R^ 16
 LASTX 17
 GTO 02 18
*LBL 01 19

 RDN 20
 CLX 21
 LASTX 22
*LBL 00 23
 CLA 24
 ARCL Z 25
 HSAVEP 26
 X=0? 27
 RTN 28
*LBL 03 29

 HEPDIRX 30

 X#Y? 31
 GTO 00 32
 ASTO X 33
 R^ 34
 X=Y? 35
 RTN 36
 RCL Z 37
 32 38
 ENTER^ 39
 *LBL 04 40

 CLX 41
 -1 42
 AROT 43
 CLX 44
 ATOX 45
 X=Y? 46
 GTO 04 47
 XTOA 48
 PCOPY 49
 HSAVEP 50
 PCLPS 51
 RDN 52
 GTO 01 53
 *LBL 00 54

 ISG L 55
 *LBL 01 56
 CLX 57
 LASTX 58
 GTO 03 59
 END 60

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 25 of 33 April 2014

“HRESZFL” – Resize File ALPHA: H:File Name

Written by Steen Petersen, this routine was contributed in the HEPAX Manual. You can use it to

resize Data or ASCII files; either upsize it so more records can be added to it, or downsize it to

optimize the space used in cases that not all records are used (i.e. removing blank records at the
end of the file). For example: Removing blank records of an ASCII file is easy to do:

HFLSIZE, HASROOM, 7, / , - , “HRESZFL”

This routine is also used in the ASCII File editor HASED at the beginning and end of the editing
session. Note that ASCII Files in H:RAM cannot be larger than 557 records.

Program Listing.-

The strategy of the routine is to copy all records into an auxiliary file (”$”) with the new size,
removing the original afterwards and renaming the auxiliary file with the same name. This means

sufficient available space must exists in the FileSystem to hold both files during the execution.

01*LBL "HRESZFL"

 02 STO 00
 03 ABS
 04 ,
 05 HSEKPTA
 06 RDN
 07 HFLSIZE
 08 ASTO 01
 09 ASHF
 10 ASTO 02
 11 SF 25
 12 HASROOM
 13 FC?C 25
 14 GTO 01
 15 CLA
 16 HAPPCHR
 17 RCL 00
 18 X<0?
 19 GTO 02
 20 RDN
 21 7
 22 /
 23 INT
 24 -
 25 X>Y?
 26 GTO 15
 27*LBL 02

 28 "$"
 29 RCL 00
 30 HCRFLAS
 31 CF 00

 32 SF 25
 33*LBL 03

 34 CLA
 35 ARCL 01
 36 ARCL 02
 37 HRCLPTA
 38 "$,"
 39 HARCLRC
 40 FC? 25
 41 GTO 16
 42 HRCLPTA
 43 ATOX
 44 ATOX
 45 FC? 00
 46 HAPPREC
 47 FS? 00
 48 HAPPCHR
 49 FC? 25
 50 GTO 05
 51 CF 00
 52 FS? 17
 53 SF 00
 54 GTO 03
 55*LBL 05

 56 -1
 57 AROT
 58 ATOX
 59 SF 25
 60 FC? 00
 61 HAPPREC
 62 FS? 00

 63 HAPPCHR
 64 FC?C 25
 65 GTO 05
 66 GTO 16
 67*LBL 01

 68 RCL 00
 69 X<0?
 70 GTO 07
 71 SF 25
 72 HSEKPT
 73 FC? 25
 74 GTO 07
 75 .
 76*LBL 08

 77 HGETX
 78 X#Y?
 79 GTO 15
 80 FS? 25
 81 GTO 08
 82 HSEKPT
 83*LBL 07

 84 "$"
 85 RCL 00
 86 HCRFLD
 87 SF 25
 88*LBL 09

 89 CLA
 90 ARCL 01
 91 ARCL 02
 92 HRCLPTA
 93 HGETX

 94 FC? 25
 95 GTO 16
 96 "$"
 97 HRCLPTA
 98 RDN
 99 HSAVEX
100 FS? 25
101 GTO 09
102 GTO 16
103*LBL 15

104 "H:FL SIZE ERR"
105 AVIEW
106 GTO 10
107*LBL 16

108 CLA
109 ARCL 01
110 ARCL 02
111 HPURFL
112 "$,"
113 ARCL 01
114 ARCL 02
115 HRENAME
116*LBL 10

117 CLA
118 ARCL 01
119 ARCL 02
120 ,
121 HSEKPT
122 RCL 00
123 CF 00
124 END

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 26 of 33 April 2014

PCOPY – Copy program from ROM. ALPHA: Program Name

The function that HP left out of the X-Functions ROM – likely due to space restrictions – is finally

here. In fact, this is just the same COPY code preceded and trailed by a few more instructions to

manage the FOCAL pointer so that the execution returns to the calling program. Unfortunately
COPY ends with a call to [NFRPU] so its code cannot be used in a subroutine and therefore needs

to be integrally copied to the module, oh well, such is life.

The price we pay for this trick is losing the contents of the T-register, so bear that in mind.

 …....
Original COPY here, minus call to [NFRPU]

……..

Note that PCOPY works on any user program residing in ROM, not only with Program Files in the
H:RAM FileSystem.

This function is used in the routines HUPDP and HGETFL/HSAVEFL to transfer program files
between X-Mem and H:RAM under program control.

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 27 of 33 April 2014

ROMTEST – ROM Checksum X: Page#

ROMCHKX – ROM Checksum X: XROM id#

These two functions perform the same job, namely calculating the ROM checksum that goes into
the last position of each ROM and comparing it with the current value. The difference is that

ROMTEST expects the page number in the X-register and ROMCHKX uses the XROM id#
instead. Messaging is also slightly different, as can be seen in the examples below:

6, ROMTEST: 29, ROMCHKX:

Or in case of a wrong checksum result:

RAMTEST – Checking RAM Pages X: Page #

The analogous function for RAM checking is RAMTEST. It expects the page number in X and does

an exhaustive test to each location within the tested page – verifying that the written values are
correct.

 →

When read/write errors are found the function reports the error below:

If the RAM page is protected (via RAMTOG) the function returns the warning message below:

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 28 of 33 April 2014

HP-IL File Functions

The Extended Functions module gave us GETAS and SAVEAS to write and read ASCII files to HP-
IL Mass Storage devices, but nothing about DATA files. This gap is now closed by the functions

described below.

FSIZE HPIL Drive File Size FileName in ALPHA Assembler3 ROM
READF Read Data File IL FName, XM FName Raymond del Tondo
WRTDF Write Data File XM FName, IL FName Raymond del Tondo

• FSIZE Returns to X the length in registers of the (primary) mass storage file which name
is specified in Alpha. If no HP-IL is present on the system the error message “NO HPIL”

will be shown.

• READF and WRTDF are used to read and write individual DATA files between the IL

Drive and XMEM. To use them properly you need to first create the destination files (like
GETAS and SAVEAS do for ASCII file types).

Fortunately, you can use FSIZE And FLSIZE to find out that required piece of information, and

then create the file appropriately either in X-Mem or in the Mass Storage device. The FOCAL
programs below would do that automatically – just type the source and destination file names in

ALPHA separated by a comma:

01 LBL “GETDF” 08 LBL “SAVEDF”

02 FSIZE 09 FLSZE

03 ASWAP 10 ASWAP
04 CRFLD 11 CREATE

05 ASWAP 12 ASWAP
06 READF 13 WRTDF

07 RTN 14 END

Note: These functions are related to READXM and WRTXM seen before but remember that
those operate on the whole XMEM contents, not on individual files.

(*) The function ASWAP is available in the AMC_OS/X Module, The ALPHA_ROM, and the

PowerCL Module among other sources.

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 29 of 33 April 2014

Proposed Standard HP41 Machine language Bar Code

Written by Steen Petersen, the following two HP-41 machine language routines will enable you to

make bar code from HP-41 machine language (M-Code). These bar codes will be type 0, which is
unused by the normal HP-41 system.

MCPR - M-Code Bar Code PRINT

MCPR works like BCP in the HP-41 Plotter module, and creates a pattern in the ALPHA register
to make bar codes from . You will need the Plotter module to print the bar codes on a HP7470 or

on a HP82162.

The format of the bar codes is as follows:

• Bit 0 -> 7 contains the checksum, which is the sum of all the bytes with wrap-around
carry, not a running checksum.

• Bit 8 -> 11 are all set to 0, the type number of M-Code bar code.

• Bit 12 -> 15 contains the row number minus one, mod 16 (example: row 1 = 0).

• Bit 16 -> 15+10*N contains the information of N M-Code instructions, each occupying 10

bits.

• Bit 16+10+N is the end indicator. If it is one, this row is the last row; if it is zero, you will

be prompted for more rows. After this row there will be between 1 and 7 bits to fill up
the last byte in the row.

The final bar code looks as follows:

| | Type Seq. N M-code End | |

| | Checksum =0 NO. instructions bitFiller | |

Instructions for use:

Input:

• Y-reg.: 000000|aaaa|bbbb Where aaaa-bbbb indicate the interval from which to make
bar code.

• X-reg.: ccc,dd, where ccc is the row number, and dd is the number of instructions in

each row. If dd=00 then 11 will be used (maximum length)

.
Note that it is not possible to have a row number higher than 999, giving a maximum of 8k 10-

bits words of bar code in one sequence.

Output:

• Z-reg.: -ee,00 ; Where ee is the number of bytes in ALPHA register. Together with the

minus sign, this is necessary to make bar codes on a HP82162

(LBL 01 , MCPR, RCl Z, BCO, RDN, X#0?, GTO 01 , RTN).

• Y-reg.: 000000aaaabbbb Unchanged.

• X-reg. : ccc+l,dd or 0 Increment to the next row if not done, else X-reg. is cleared.

• L-reg. : 000000ffffgggg ffff is the number of the first instruction in the row (if the
instructions are numbered sequentially from 0000 and onward), and gggg is the number

of the last instruction.

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 30 of 33 April 2014

If used together with a HP7470 Plotter, the MCPR function must be followed by the BC function
in the Plotter Module.

Error messages:

DATA ERROR if aaaa>bbbb, aaaa+2000<bbbb or dd>11.

OUT OF RANGE if ccc > 999.

MCSCAN - M-Code Bar Code SCAN

MCSCAN reads the bar codes made by MCPR. You will of course need a wand. It works as

follows:

Input :

• X-reg.: 0000000000aaaa; Where aaaa is the first address you want to read bar codes to.

Output:

• X-reg.: 000000|aaaa|bbbb; Where aaaa is the start address and bbbb is the address of
the last instruction (see SST) plus one.

• L-reg. : 0000000000|aaaa; True LASTX.

If you want to read several programs immediately after each other, you can just repeat using
MCSCAN without thinking of input expect for the first program.

During the execution of MCSCAN the following keys are active:

• ON Turns the HP~41 off,

•  Terminates the MCSCAN routine,

• R/S As above

• SST Asks for the next row (skips one row) if it is not possible to read the current row.
The words skipped will not be cleared as it may be possible to read the missing rows

later. The number of instructions skipped will be the number of instructions in the last
read row. If the first row is skipped, the jump will be calculated after the first possible

row has been read. The X-reg. will be updated after each read row and after SST (if row

1 not skipped).

Once you have entered the MCSCAN routine, some routines in the wand-ROII will be used,
setting the time-out period to approx. 7 min. at normal speed. You will be prompted as usual:

“W: RDY nnn” to scan row nnn. If the MCSCAN routine meets an end-bit set to one, the routine
will terminate.

Error messages: NO WAND if wand no present,
W: CHKSUM ERR if error in checksum, try again.

W: TYPE ERR if you are trying to read non M-Code bar code.
W: SEQ ERR if you are trying to read in a wrong sequence

(this message will not occur if you read exactly 16 rows wrong).

Both MCPR and MCSCAN will be in the BOOT ROM EPROMI set, expected to be completed soon.

MCPR and MCSCAN are released for non-commercial use only, but the type zero bar code
described under MCPR is of course free to anyone.

(c) Copyright 1985 Steen Petersen, PPC-Denmark

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 31 of 33 April 2014

The sequel: HEPAX Disassembler ROM

A derivative of this project is the Hepax Disassembler ROM. As you can expect by its name, it

contains the DISASM function – extracted from the fourth bank in the original module – but it
also adds a few functions to complement the disassembling functionality, such as the single-step

execution.

Here is the list of functions available in this module:

1. DISASM - Hepax Disassembler

2. “DISSST - Single-step DISASM
3. CODE / DECODYX Used in DISSST program

4. HPROMPT - Used in DISSST program

5. “CLHM - Clears all files in the Hepax File System

6. “HRESZFL - Hepax File Resize
7. “?JUMP - Gets MCODE for jump instructions

8. RLSRAM - Releases page from RAM Hepax chain

9. HEPCHN? - Shows configured RAM Hepax chain

10. HEPCHN - Re-configures RAM Hepax chain

You have no doubt recognized DISSST, HRESZFL and ?JUMP, from the HEPAX Manual. CLHM

is a small example of utilization, which could be enhanced with HFLTYP to only delete those files
of a given type, say DATA for instance.

Because of the inclusion of the auxiliary functions CODE, DECODYX and HPROMPT, the
program DISSST from this module is self-contained and can be executed without the HEPAX

module plugged in the calculator. Note however that the other FOCAL programs included require
the HEPAX module also to be present.

In summary, the HEPAX Disassembler is partially independent from the HEPAX itself – either the

original or the enhanced revision 1G. Both can coexist being plugged in simultaneously although
there is a large overlap between them - the DISASM functionality being the most obvious one.

Note also that even if it’s not required for the basic FileSystem operations, it’s very

recommendable to have the Library#4 plugged in at all times. The extended CATalogs will fail if
not present!

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 32 of 33 April 2014

HEPAX RAM vs. Other Memory Types

The picture below shows the analogies and correspondence between HEPAX RAM and other

types available in the 41 System. It includes all functions and sub-functions available in the
PowerCL and other advanced modules.

HEPAX File Types vs. Other Systems

File Type HEPAX X-Mem HP-IL

Program HSAVEP – HGETP (COPY) SAVEP - GETP WRTP/V – READP

Data HSAVER/X – HGETR/X SAVEREG/X – GETRG/X WRTR/X – READR/X

ASCII HAPPREC - HGETREC APPREC - GETREC SAVEAS - GETAS

Matrix HSAVEM, HGETM MATDIM, et al. n/a

Key Assignments HSAVEK - HGETK SAVEKA - GETKA WRTK - READK

Buffer HSAVEB , HGETB SAVEBF - GETBF WRTBUB - READBUF

Complex Stack n/a SAVEZS - GETZS n/a

Status Regs n/a SAVEST - GETST WRTS - READS

16C Buffer n/a SAVE16C – GET16C n/a

ALL HSAVEA - HGETA n/a WRTA - READA

X-Mem n/a n/a WRTXM - READXM

CALC n/a n/a WRTCAL - READCAL

ROM COPYROM n/a WRTROM - READROM

HEPAX Plus / HEPAX Apps ROM

(c) Ángel M. Martin Page 33 of 33 April 2014

