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HP-41 Module - Elliptic Applications

IntroductionElliptic Applications Module

This HP-41 Module includes a collection of MCODEfunctions and short driver FOCAL programs on the

subject of OEIlIliptithesAppli oocat iabred d.edDd&Opimt drahe Mec han

most part an astronomy related module i as the subjects are mostly approached from a geometry

point of view.

It could be said that the module was prepared while learning about the subjects, as an instrument to

verify assumptions and experi ment. Therefore, donodt

subjects. Yethaty 0 @81 Ipossji Yy et h das put saogethér,is@metimast ae uni- a |

biased approach is a more refreshing way to proceed.

Wit hout further ado, herebds the function index for yo
XROM Function Description Input/ Output Author
16,00 -ELLIFAPPS Section Header n/a n/a
16,01 BRHM Area of Cyclic Quadrilateral Data in ROR04 JM Baillard
16,02 CIRCLE Circle through three points P1, P2, P3in Registd®®1R06 Angel Martin
16,03 "ECS#* Driver for ECS Prompts for values Poul Kaarup
16,04 ECS Elliptical Central Sector {a,b,e} in RORO2,a in X Angel Martin
16,05 EFS ElllipticalLeft Focal Sector {a,b,e} in ROMRD2,a,b in RO304 Angel Martin
16,06 & 9 C{ b dElliptical Right Focal Sector | {a,b,e} in RO&R02,a,b in R0304 Angel Martin
16,07 HERON Area of Triangle frorsides Data in X,Y,Z Angel Martin
16,08 "K2-a Kepler 2nd. Law Left Sector = Prompts for values Angel Martin
16,09 bYH b da Kepler2nd. Law Right Sector Prompts for values Angel Martin
16,10 "LCS Central sector Arc Length Prompts for values Angel Martin
16,11 "LF+# Right Focal sectdkrc Length ~ Prompts for values Angel Martin
16,12 RAMA2 Ramanuj an’s 2r ab,inY,X Angel Martin
16,13 TOF Time of Flight (T,eq)in {Z,Y,X} Angel Martin
16,14 ZELIP1 Complex Elliptitg. 1st. kind = z in(Z,Y), min X Angel Martin
16,15 ZELIP2 Complex Elliptic hgt 2nd. kind = zin (Z,Y), min X Angel Martin
16,16 -ORBITS 10 Section Header n/a n/a
16,17 E>M Eccentric to Mean anomaly (e, E)inY,X Angel Martin
16,18 E>T Eccentric to True Anomaly (e, EJnY, X Angel Martin
16,19 M>E Mean to Eccentric anomaly (e, M) inY,X JM Baillard
16,20 T>E True to Eccentric Anomaly (e, T)inY,X Angel Martin
16,21 & h w. L ¢DeltaV Orbit Simulator Under program control hp Co.
16,22 a ¢! £ ¢ ETrue Anomaly via Kepler New Position w/Kepler equatior Angel Martin
16.23 G ¢! b & True Anomaly Direct Mode (+) New Position using Right secto Angel Martin
16.24 a ¢-& True Anomaly Direct Mode)(  New Position using Left sectors Angel Martin
16.25 &df 0 ¢ & Subroutine for Solve Under program control Angel Martin
16.26 G +f whaVel oci ty *“ Vi s Velociy at distance Left focus Angel Martin
16.27 & + wb & Velocity at Position R+ Velocity at distanceright focus Angel Martin
16.28 o +-v Velocity at PositionR Velocity atdistance- Left focus Angel Martin
16.29 TM Period from Gravitational data Mass in Y, sermajor axis in X Angel Martin
16.30 mil/2 Gravitational Parameter Period in Y, sermajor in X Angel Martin
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XROM Function Description Input/ Output Author
16.31 -AUX FNS | Section Header Doubles as QROUT n/a

16.32 <)CR Central angle to Radius {a,b,e} in RORO2,a in X Angel Martin
16.33 <)CXY Central angle to coordinates = {a,b,e} in RO&R02,a in X Angel Martin
16.34 <)CO+ Central angle for Focal 90 (a b,e) in RORO2. Lifts stack  Angel Martin
16.35 <C>F Central to Focal angle {a,b,e} in RORO2,a in X Angel Martin
16.36 <)F>C Focal to Central angle {a,b,e} in RORO2,a in X Angel Martin
16.37 <)FO+ Right focal angle at x=0 (a,b,e) in ROGRO2. Lifts stack  Angel Martin
16.38 <)FO Left Focal anglat x=0 (a,b,e) in ROGRO2. Lifts stack  Angel Martin
16.39 9BR Left Focal angle to radius {a,b,e} in RORO2,a in X Angel Martin
16,40 <)F>R+ Right focal angle to radius {a,b,e} in RORO2,a in X Angel Martin
16,41 a KI 6 & Prompts for semaxis Newvalue or R/S for current  Angel Martin
16,42 & K1 Prompts for leftangles New value or R/S for current  Angel Martin
16,43 a K44 Prompts for rightangles New value or R/S for current  Angel Martin
16,44 a Kt a Prompts for Period New value or R/S farurrent Angel Martin
15,45 QROOT Quadratic Eg. Roots c2,cl,co0inZY,X Angel Martin
15.46 V(X) Velocity atabscissax Period in Y, abccissa in X Angel Martin
15.47 |-SOLARSYS Section Header Doubles as ZOUT n/a

15.48 EARTH Planet orbital data Putsdata in ROER02 & R06 Angel Martin
15.49 JUPITER Planet orbital data Puts data in RO&®02 & R06 Angel Martin
15.50 MARS Planet orbital data Puts data in RG®02 & R06 Angel Martin
15.51 MERCURY Planet orbital data Puts data in RO&®02 & R06 Angel Martin
15.52 MOON Satellite orbital data Puts data in RG®02 & R06 Angel Martin
15.53 NEPTUNE Planet orbital data Puts data in RO&®02 & R0O6 Angel Martin
15.54 PLUTO Planet orbital data Puts data in RG®02 & R06 Angel Martin
15.55 SATURN Planet orbitadata Puts data in RO&®02 & R0O6 Angel Martin
15.56 URANUS Planet orbital data Puts data in RG®02 & R06 Angel Martin
15.57 VENUS Planet orbital data Puts data in RO&®02 & R06 Angel Martin
15.58 +VH12 Hohmann Transfersvl &v2 M, R1, R2in (Z,Y,X) Angel Martin

15.59 +VB123 BiElliptic Transfer V1, V2. V3 (M, r1, r2, rb) in {T,Z,Y,X} Angel Martin
15.60 +VEal2 Elliptic Apogee Transfers V12 (ri, r2, r3, r4,M) in Stack & LasiAngel Martin
15,61 +VEb12 Elliptic Perigee Transfers V12 (r1, r2, r3r4,M) in Stack & Last; Angel Martin

15,62 &/ h w+ GCoOrbital Rendezvous Prompts for Data Angel Martin
16,63 &/ t w+ dCoPlanar Rendezvous Prompts for Data Angel Martin
Moadule Dependencies

The functionality included in this applications module builds on the ELLIPTIC module, and expands the
examples included there, like the ellipse eccentricity and perimeter. It requires the ELLIPTIC module
plugged in the calculator.

In addition to that, some MCODE functions use routines from the Library#4, which therefore also
needs to be plugged to ensure proper operation and correct results.
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Elliptic Sector Areas and Arc Lengths.

This section describesa set of functions to calculate sector areas and arc lengths of an ellipse. As itis,
the Ellipse is an unassuming conic that presents more difficulty than intuitively expected when first
approached.

Letd s ¢ o ansellipdeswith major and minor semi-axis fiad and fbo respectively. Then its eccentricity
is given by the expression: e = sqrt(1 -b”2) / a*2 . We also know that the distance from the foci to
the origin is given by: OF = a.e

1.1. Central Sector Areas.

By Central sector we define the area comprised between the arc of the ellipse and the segments that
link two points in the ellipse with its cen ter, situated at the origin of coordinates x=y=0.

The origin of angles is the horizontal axis, measured counter-clockwise. Thus anull angle (g=0)
corresponds to the point x=a, y=0, and a n angle of 90° ( g =90 ) will represent the point x=0, y=b
where {a, b} are the major and minor semi -axis of the ellipse respectively.

With this convention, the formula that gives the areas is
shown below, where: 0 <ql, and 0<=0g<= 90°

S=F(61)—F(8p)

ab (b—a)sin26 s “
F@)= E[g_mn_l(b-i-a +(6—a)c0525)}

Examples. Obtain the area of the central sector between the angles f0 = 45° and f1 =90 °, for an
ellipse with semi-axis values a=3 and b=2.

The central sector area is calculated by the MCODE functionECS. It expects the ellipse data already
stored in the data registers R0OO to R02, and the delimiting angles in the stack - as follows:

Value Symbol Register
Eccentricity e R0OO
Major Semiaxis a RO1
Minor semi-axis b R02
Lower angle f1 Y
Upper angle f2 X

So for this example we type:

RAD
3, STO 01, 2,ECS®TO 274531098 ,fthe eccentricity
STOO00, P, 4,/, P 1 | 2, HC®, =XIEZey0av811 , the sector area.

© Angel Martin - April 2018 Page |6
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The driver program ECS+ makes the data input/output a much simpler affair; just enter the values at
the corresponding prompts. If you want to re -use the existing data in the registers just press R/S to
bypass the input. The input order is not critical, as the program will ensure that a>b and f1>f0

RHig:!: = i.T7B4HEEE

USER  RAD 12 4
Hereb6s the program listing, a simple application of t
0Ol LBL *“ECS+” 06 “A(c) ="
02 XROM *“ ? a b gemiaxis 07 ARCL X
03 LBL 00 08 PROMPT shows the result
04 XROM * <) +8ector angles 09 GTO 00 other angles
05 ECS does the math 10 END

1.2. Central Sector Arc Length

Also from the same reference, the formula for the arc length is given by the expression:

(2) ellzmtzcal arch:

L= aE(@’H—aE(@’H

(@) =r(@)cosd, k=1 1—(%)2, a>b, 5>0>0
E(z,k): 2nd wncomplete ellaptic integral

Where the radius fArdo is the distance from the origin
252
9 a
rif)c= n
@) b2cos20+a2sind

The arc length is calculated using the incomplete Elliptic Integral of second kind, which as always, is
going to require careful attention to the conventions used - in order to use the functions from the

Elliptic Module. Function LEI2 can be used once we change the parameters to a suitable form, as
follows:

E (x, k) = LEI2 (asin (x) ; e*2) ; with e the eccentricity of the ellipse.

In order to apply LEI2 directly we also need to free the data registers R0O0-R04, which are used by the
program. This is achieved using REGMOVE twice, right before calling LEI2 and after it completes.

Example. - Calculate the arc length for the sector used in the previous example, defined by 45 and 90
degrees. The solution is 1.709841

X E QLCS arb?
2, ENTERA, 3, R/S 9/ 790: <(+)
PI,4,/,Pl, 2,/,RIS NRKKFKDYY o

I (+):/%.762]/

© Angel Martin - April 2018 Page |7



HP-41 Module - Elliptic Applications

Theprogram LCS ( iLengt h of Ciglistédrb®ll oSve c tNmrt ®) t hat daltulae al s o
arclengthsforf ocal sectors, which will be the subject of
[ 1 LBL"LF+" | [ 1 LBL"9C-XxY
2 SF 04 2  XROM "1/R"2"
3 GTO 04 3 1/X
[ 4 LBL"LCS" | 4 SQRT ri
5 CF 04 5 ENTER”
| 6 LBLO4 | 6 ENTERA
7 XROM "?ab" 7 RCL N sin E1
| 8 LBLO1 | 8 * rl.sin E1
9 XROM "?<)+" 9 XY
10 RCL 04 al 10 RCLM cos E1
11 ?FS 04 11 7 rl.cos E1
12 XROM "F2C" E1l 12 RTN
13 sTO11 [ 13 LBL"1/R2"]
14 RCL 03 az2 14 ENTER?
15 FS? 04 15 COS cos E1
16 XROM "F2C" 16 STOM
17 STO 10 E2 17 RCLO1 a
18  XEQO3 18 /
19 STO 12 19 X2
20 STO 12 20 X<>Y
21 RCL11 El 21 SIN sin E1
22 XEQ 03 22 STON
23 ST-12 23 RCLO02 b
24 RCL 12 24 ]
25 RCL 01 a 25 X"2
26 * 26+
27 "L=" 27 END
28 ARCL X
29 PROMPT
30 GTO 01
| 31 LBLO3 |
32 XROM "<)C-XY" X =r.cosa
33 RCL 01 a
34 /
35 ASIN asin (x/a)
36 RCL 00 e
37 X2 en2
38 X<>Y
39 '5,000005
40 REGMOVE
41 RDN
42  XROM "LEI2'
43 0,005005
44 REGMOVE
45 RDN
46 END
The auxiliary function calculates the coordinates (x,y) of the point in the ellipse situated at
the central angle F. In turn, it also uses , another auxiliary routine to obtain the radius at that
point, i.e. the segment connecting it with the origin of coordinates.
© Angel Martin - April 2018 Page |8
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2.1. Focal Sector Areas.

By Focal sector we define the area comprised between the arc of the ellipse and the segments that link
two points in the ellipse with one of its foci. This type is very relevant in areas of orbital mechanics and
e exampl es.

the Keplerlawsi as wedl | see | ater in th

From this definition we see that there are two different focal sectors, depending on which focus is used
as it s, ditheeRr oré&x.dherefore, wedll call

1 Left Focal sector to the one using the left focus as vertex, situated at F- =( -a.e ;0), and
1 Right Focal sector to the one with the right focus as vertex, at F+=(a.e;0).

Y

For either case webl|l use the
axis y=0 as origin for angles, with the

counter-clockwise convention as positive,

i.e. the same one used for the central

sectors. . a-

P.(x¥),

The angle q = 90 represents the points
Péand Poin figure 2 (next page) and left sectors

respectively; i.e. totally different on each case and different
as well from the central case, as shown above as P.

The formulas for the focal sector areas for each case are given below:

a) Right Focal Sector Area

(formula from: http://bado -shanai.net/Platonic%20Dream/pdAreaofEllipticSector.htm)

S, =za'1—e'(y — v, )—ea’V1—e’sin[3[ug —w.])cos(F[ug + ).

Where the parametric angle Y is calculated from the azimuth angles q as follows:

e+cosf,
cos Y = ————=

1+ ecosé,

b) Left Focal Sector Area (formula by David Cantrell).-

S=ab/2.[F(l) 7 Fq0)]

F(g) = q + e.Sqgrt(1-e72).sin q/(1-e.cosq) + 2.Arctan(e.sing/ (1-e.cos q + Sqrt(1-e"2)))

Note that the relationships between left and right focal sectors are obviously given by the symmetrical
nature of the ellipse. After all, each case is the mirror reflection of the other T orin terms of the Sun-

Earth system, it all depends on
(from the top or from below), swapping the perihelion and the aphelion.

t he

observereds

© Angel Martin - April 2018
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Figure 2. Relevant Central and Focal angles.

Examples . Let the semi-axis be a=3 m. and b=2 m. Calculate the right and left focal sector areas
between g0 =0and gl = p/2. Is there any relationship between them?

X E QK2 arb<
2, ENTER", 3 9)/";)0: <(+)
0,Pl, 2,/ RIS >S(+):.%763 m2

Note that you can also enter the semi-axis and the angles in the reverse order, the program will sort
them appropriately before saving them in the data registers so that a>b and g2 >ql. Note as well
that you can just press R/S at the prompts to reuse the existing values in the data registers

X E QK2-i a"b<
R/S (uses current) 9)/ N )0:<(,)
R/S (uses current) >(,):6%041 m™2

The observant reader would notice that A(-) = pab/2 T (A+) = 9.4248 1 0.6985 = 8.7263.

The general form expresses that the Left focal sector is the complementary to the semi -ellipse and the
Right focal sector. This is just one of the many interdependencies, which will be covered in the next
sections.

Assuming g0 =0, see the table below with the specific relationships (some of them trivial) for the
different values of the gl angle, between 0 and 2p:

gl 0 p/2 q p 2p-q 3p/2 2p
A+ 0 Ao Ab pab/2 pabi A&| pabi Ao pab
gl 0 q’ p/2 p 3p/2 2p-q’ 2p
A- 0 A'=pab/2 1 A4 pab/27 Ao | pab/2 | pab + Ao pabi Ao| pab
fl 0 f' f" p/2 p 3p/2 2p
Ac 0 Ao + DO 3pab/2 - DO | pab/4 pab/2 3pab/4 pab

© Angel Martin - April 2018 Page |10
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SectorDelimiting angles.

There are a couple of important border angles in these cases, becausethey determine a change of the
criteria for the calculations 1 delimiting a sign change in the expressions of the {x,y} coordinates.

1 For right Focal sectors, let q0the angle between the X-axis and the segment F(+) to P(0, b).
1 For Left focal sectors, let qO the angle between the X axis and the segment F(-) to P(0, b).

In other words, these are the left and right focal angles corresponding to the point in the

ellipse with abscissa zero, x=0.

1 We can also find the central angles called f 6and f 0 oreesponding to points on the ellipse with
abscissa equal to the foci, i.e. x=a.e and: x= - a.e,

Obviously, we have: q0 p=- g6 That and a couple of MCODE functionsincluded in the module can
be used to determine the significant anglesqd agod as f ol | ows:

i Usetocalculatefé , as given by tihe=cecelpeBaet Oh:
i Use to calculate g6 , giees by the expression: tan (p-qb) =b/a.e

1 Useto calculate the left focal angle gofor x=0, determinedby:tangd = b [/ a.

Important remark: these functions expect the eccentricity and semi -major axis values
to be already stored in data registers ROO and RO1 respectively.

Note:- The Focal angleq = p/2 (i.e. the Central angle f = f’ ) determines the point P palso known as
Gausiishéa | f p ar a mmetifieallydts Y-velge (ordinate).

Example . For the same ellipse with a=3 and b=2, calculate the values of the central and focal border
angles. Justin case the contents of the data registers had been altered, w e first set the calculator in
RAD mode andinput the parameters in the data registers (including the eccentricity as well).

3, STO 01, 2,ECOTO #2F2XEIB7¢1 m
STO 00, RAPB+O XEQ fA=>0%//642775 rad

R-D =/ 16K¥67463/ °
X E Q<)Q0+ 0 =>.3%15461031 rad
R-D =>1.8.476//0°

Therefore, the left focal angle is: q0  p=i g0 05729727657 rad

Using these assector upper angles and zero the lower one, the respective areas are:

A+(0, ) =2.476321000 - for the right focal sector,
A-(0,qg0) =6. 948 45 ferahe kft focal sector, and:
Ac(0, f§ = 2.189182968 - for the central sector.

© Angel Martin - April 2018 Page |11
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2.2. Focal Sector Arc Length.

The approach followed has been to calculate the central angles corresponding to the points defining
the focal sector, and then use the formula for the central arc length from the previous section. This
allows for a reuse of the same code i namely the application of ELI2 .

In its initial FOCAL implementation it involved solving a quadratic equation o n

ftee docal segment

linking the point in the ellipse with the focus (i.e. hypotenuse of the triangle with vertices P -F-0). The

quadratic equation is derived from the Cartesianequation of the ellipse: (x/a)*2 + (y/b)"2 =1

A.d"2 + B.d + C =0, with coefficients as follows:

A=(cos q/a)*2+(sin q/by*2 =1/rM"2
B =2.0F.cosq/a”2=2.e.cos q/a

C = (OF/a)*2 = e"2

The final expression for the central angle depends on the region, with four regions being considered as

shown below:
Focal angle Central angle Region
q f = atan [d.sin g/ (OF + d.cos )] 0<qg<= o
q f = p - atan|d.sinq / (OF + d.cosq) | g6 <= p
q f = p+atan |d.sin q/ (OF + d.cosq) | p<g<= Qo
q f =2p - atan |d.sinq/ (OF + d.cosq) | Qo g<=2p

Although explicit, these expressions are not the best for an efficient algorithm implementation. That 6 s
why on the current revision they were replaced for more concise approach, based on the parametric
expressions linking the variables involved:

|OF| +dcosqg =rcos f
dsing =rsin f

Knowing the values o the central radius i raad the focal segment fido, we can use the R-P function on
this pair of equations for the direct and inverse conversions, i.e. from focal to central angle - and back.

Two MCODE functions are included in the module,they are inverse from each other and the input

angle can be in degrees or radians:

1 <)F>C isused to obtain the central angle from the (right) focal angle
1 <)C>F isused to obtain the (right) Focal angle from the central angle

Finally, the quadratic

equation

i snot t he

best

been further replaced by a direct calculation using the formula below; where q is the right focal angle:

d(+) =a.(1-e"2)/ (1 +e.cos Q)

d(-) =2ai d(+)

for the right segment, and

for the left segment

© Angel Martin - April 2018
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Example . Calculate the central angle equivalent to g6 from the previous section.

X E X)Fo+ o = 0%//642775 rad
XE Q) R>Co => [/ 85.574104 =p/2
Note that this is not the sameas féeven if both are central angles

Examples. - For our favorite ellipse with a=3 and b=2, obtain the central angles for the points defined
by the focal angles between 0 and 2p, at 15 degrees intervals. The solutions are plotted in the chart
below.

360

315
270 Central vs. Focal Angle
225
180
135
90

45

0 15 30 45 60 75 90 105120135150165180195210225240255270285300315330345360

=== FOCAL ==o==CENTRAL

Armed with this ammunition, calculating Focal arc lengths is reduced to the same case as Central arc
lengths. Let ds see glestodemonstratectie agphkcability. -

Example. Calculate the arc length of a focal sector with (focal) angles g1 =45° and g2 =90°

X E QFf a“"b: <

R/S 9)/ 79)0: <
PI,4,/,PI,2,/,RIS NRKKFKDYYY

= I (+):.Y3215/.1/5

Example. Calculate the arc length of a Central sector with (central) angles f1 = 45°and f2 =90°

X E QLC@® a"b: <

RIS 9)/79)0: <

RIS NRKKFKDYYY

= I (+):/%.762/261

Example. Calculate the semi-circumference of the ellipse using the Central or Focal sectors defined by
the angles q1=f 1=0° , and g2=f2 = 180°

X E QLF¥D a“b: <

R/S 9)/"9)0: <

0, PI, R/S NRKKFKDYYY

=> I (+):5Y105/ 7574

ST+ X => /| 384321737 for the complete circumference

© Angel Martin - April 2018 Page |13
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i Foc al angleocon@egsion. r a |

0

As you can see this version uses a couple of MCODE auxiliary functionsfrom the module to reduce the
program length and the execution time.

[ 1 LBL"F2C" |Focal to Central

2 CF 00

3 CF 01

4 CF 02

5 X=0?

6 RTN

7 <FO+ a 0 =atgn(b/e.a)

8 X>Y? is 0<a<a0

9 GTO 00 yes, skip over

10 SF 00 flag region

11 CLX

12 Pl new boundary

13 X>Y? is a<p ?

14 GTO 00 yes, skip over

15 SFO01 flag region

16 Pl

17 X=Y?

18 RTN al0 <=pa

19 RCLM isa=p?

20 + al=p+ atan (b/e.a)

21 X<=Y? is a &2E 2

22 SF02 yes, flag it for later
[ 23 1BLOO <— |

24  RDN drop boundary

25 <)F>R+ right focal angle to radius

26 ENTER”? d

27 ENTER”?

© Angel Martin - April 2018

Prr)

?

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

RCL N

X<>Y
RCL M

RCL 00
RCL 01

FS? 00
ABS
ATAN
FC? 00
RTN
FS? 02
CHS
FC? 01
CHS

PI

FC? 02
RTN
PI

END

sin a

Cos a

e
a
OF

OF + d. cosm

tan E1

E1l

I‘i major axis

Figure O- Basic geometry parameters in the Ellipse
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Polar form relative to center P
In polar coordinates, with the origin at the center of the r;x';
el lipse and with thetameasured ul,/ar co&fﬂﬂdinggqse d
from the major axis, the ellipse's equation is 'dz -
ab
r(f) = S
v/ (beos )% + (asin 6)?

Polar form relative to focus P

If instead we use polar coordinates with the origin at one focus,
with the angularcoordinated = 0 theta =0 still measurddom Al Fy
the major axis, the ellipse's equation is

1- ¢
r{f;]:u
1+ ecosf

where the sign iplus for RIGHT focal anglesibtended by right focus segments d1), amithus when
using LEFT focal anglssibtended by left focus segments d2)

The FOCAL program below makes the conversions betwea left and right focal angles, q(-) and q(+).
ltds an easy application of tthrFocakrautines, anget theeguations:e d i n t

r(-). sin q(-) =r(+). sinq(+)
r(-). cos q(-) = 2.e + r(+). cos q(+)

1 LBL"F+>f-" | 12 RCLOO e

2 CF 0D 13 RCLO1 a

3 <)F=R+ right radius 14 - e.a

4 GTO 00 15 ET+ X 2ea

5 LBL "F->F+" | 16 Fs? 00 left-to-right ?

] SF 00 17 CHS yes, sign change
Fi <JF=R- left rodius 18 + add to x-coordinate
8 LBLOD  =—— | 13 | R-P back to polar

9 LASTX recall angle 20 »=yY result to X

10 Xy sort locations 21 EMD done.

11 P-R to rectanguiar

Note that t he angle result is in the X register, and the left or right focal radius is left in the Y register.

Example . Calculate the left focal angle corresponding to a right focal angle of 45 degrees. Check the
result using <)F>R - Assuming DEG is on, ve type:

45, XBE©-if 47/ 4471020 deg
X E X)F&ER -i 3704632443 left-radius
- A | difference
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Digression 1:Circles, Trianglest Circumferences

A short digression on subjects unrelated to the geometry of the ellipses.

1 [CIRCLE | calculates the radius of a circle passing thru three data points, using the point X,y
coordinates. The values are expected to be stored in R0O1-R06. Besides that, it
the Y-register the area of the circumscribed triangle defined by the th ree points.

o

Example : Calculate the radius of the circle passing thru P(5,1), Q(6,2), and R(5,3)
The results are:

XEQACIRCIEO =>r=1,000000000,

3 P X<>Y => A=1,000000000
'r \.I
24 [---» ’
| \. Note that you can use the routines IN or INPUT to

populate the registers automatically. The input
sequence starts with the abscissa of P1 in RO1.

4 Joo3 2 3 4 5 &

f |HERON|cal cul ates the area of a triangle knowing it

enter the sides values in the stack, and execute the function (located in the auxiliary FAT). The
result is stored in X, with the original side saved in LastX. The rest of the stack is unchanged.

Let the triangle ABC with 3 known sides{a, b, c}and s = (a+b+c)/2 the semi -perimeter
Heron's formulais: ~ Area = [ s(sa)(sb)(sc) ]1/2

Example ;. a=2, b=3, c=4
Type: 2, ENTER?, 3, ENTERY, 4, XEQ"HERON => Area =2.904737510

Note: the function CIRCLE described above makes use of the HERON formula internally after it
first calculates the triangle sides from the point coordinates.

1 is related to it, but the calculation for the area of the cyclic quadrilateral - using
Brhamaguptads formula. Just enter the four values
secondary FAT). The result is stored in X, with the original side saved in LastX. The rest of the
stack is unchanged.

Let a, b, ¢, and d be its sides lengths, and the semi-perimeter /
s=(a+b+c+d)/2.The area A of the cyclic quadrilaterals:

A =[(s-a).(sb).(sc).(sd).]1/2

Example . Cdculate the area for the values:
a=4,b=5,c=6,d=7

Type: 4, ENTER”?, 5, ENTER?, 6, ENTER", 7,
XEQ"BRHM => Area = 28.98275349
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Circumference of the Ellipse {{RAMA2]}

The ELLIPTIC module has the routine ELP that calculates the accurate value for the perimeter of the
ellipse. ELP uses the complete Elliptic integral of 2", kind, which is based on the AGM implementation
i and therefore is relatively fast.

The function RAMA2 us e s R a ma ™ appraximatien, vhich has the advantage of being even
faster 1 albeit the accuracy may not be as good, as shown in the table below for a few examples.

Let h=(a-b)"2/ (a+b)*2, then the formula used is:

C=n-(a+b)-(1+ 3 h )

10++4—=3-h
a b ELP RAMA2 Error %
3 2 15.86543959 15.86543959 0
4 1 17.15684355 17.15683926 -2.5005E07
5 3 25.52699886 25.52699886 0
6 2 26.72978556 26.72978556 0
10 2 42.02008908 42.02005330 8.514982009

Note that RAMA2 expects the semi-axis values in the X, Y registers. The input order is indistinct but
for ELP the order is important, with b in Y and a in X.

The reason this formula is called the 2", approximation is because i you guessed it i Ramanujan had
already put forward another expression for the circumference of the ellipse, shown below. It was very
accurate for near-circular cases, but as the ellipticity increases the accuracy was lost.

The simplifiedexpression for the circumference is:

c- al3(a+h)-ffat3b)(Gar b)),

Refer tothe link below for a comprehensive discussion of the different approximations used
historically on this subject.

http://www.ebyte.it/library/docs/math05a/EllipsePerimet&pprox05.html
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Digression2: Complex Elliptic Integrals.

The Complex Elliptic integrals are covered in several FOCAL programsall included in the 41Z Deluxe
module. For your convenience, the Incomplete types are also included in this module. Note that:

1 The amplitude can be a complex number but the modulus is expected to be a real value. This
method uses dedicated formulas that apply the real expressions on a repeated basis according
to changes of variable. Here the program ZELIP1 corresponds to F(z; m) , andZELIP2
corresponds to E(z; m).

1 No provision is made for the case where both amplitude and modulus are complex numbers. To

check the results you can use the syntax AEIIlipti
arguments for incomplete cases or just one argument for complete cases.

L et 6 sn exaenple next. Be aware that the execution time can range from long to very long
depending on the case. You can abort the execution pressing the R/S key at any time.

Example . Calcuate the incomplete Elliptic integrals for a=1-i, m=0.5

1, CHS,ENTER®, CHS,ENTERA, .5, XEQAAi ZEL | P 1= 0.804+J1.163
EllipticF(2-i, .5): http://www.wolframalpha.com/input/? i=EllipticF%281-i,+.5%29

1, CHS,ENTER", CHS,ENTER?, .5, XEQfi Z ER0l P => 1.128+J0.789
EllipticE(1-i, .5): http://www.wolframalpha.com/input/?i=EllipticE%281 -i,+.5%29

Formulasused (from AbramowitStegun, Section 14.4)

Writing z= (phi+ i psi) then we have for the first kind:
F(o+um) = F(Am)+iF(p|l —m)

Where cot*2 (|) is the positive root of the quadratic equation:

'—[cot? ¢+m sinh¥y csclp—me—m; cot’e=0
and m tan? p=tan’p cot’A—1.

And similarly for the second kind integral:

E(p+i\a) =E(\\a) —iE(s\90°—a) botib
HiF(\O0° - a) +2

where now:

b,=sin? a sin A cos \ sin? u(1—sin? a sin® A)}
b,=(1—sin? a sin? \)(1—cos? a sin? )} sin u cos u

by=cos? u+sin® a sin® A sin?® p
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as you can see an elaborate set of equations that requires a relatively long FOCAL program even if
some auxiliary functions really expedite things significantly. Refer to next page for the FOCAL program
listing as a reference.

The solution is therefore expressed as a linear combination of the real-variable case for the Elliptic
integrals, which are also included in the ELLIPTIC moduleas functions ELIPF and LEI1 and LEI2 .

Program Listing: ComplexIncomplete Elliptic Integrals.

Data Registers: ROO-R08 ;User flag: F1

01 LBL "ZELIP1" 35 ATAN 69 STOO03 103 =
02 SFO01 36 STOO01 70 SQRT 104 *
03 GTOO00 37 E 71 RCLOO 105 RCLO02
04 LBL"ZELIP2" 38 RCLO0O 72 * 106 STO 05
05 CFO1 39 - 73 RCLO02 107 SIN
06 LBL OO 40 RCLO1 74 E 108 *
07 RAD 41 ELIPF 75 PR 109 X"2
08 STO 00 42 FS?01 76 * 110 RCL OO
09 RDN 43 GTO 00 7 * 111 *
10 STO 01 44 STOO01 78 RCLO1 112 RCLO1
11 RDN 45 RCL 00 79 SIN 113 COS
12 SINH 46 RCL 02 80 X72 114 X"2
13 X"2 47 SQRT 81 * 115 +
14 |/ 48 1/X 82 RCLO1 116 ST/ 06
15 RCL 00 49 ATAN 83 SIN 117 ST/ 07
16 E 50 ELIPF 84 X2 118 RCL 08
17 - 51 STOO00 85 STO 06 119 ST+07
18 * 52 ZRCIOO 86 RCLO0O 120 E
19 E 53 zZOuT 87 SQRT 121 RCL 00
20 STO T(0) 54 RTN 88 ASIN 122 STO 08
21 RDN 55 LBLOO 89 COS 123 -
22 QROOT 56 STO 08 90 RCLO1 124 RCLO1
23 X<Y? 57 RCLOO 91 SIN 125 X R OMEIZ
24 X<>Y 58 RCLO02 92 * 126 STFO7
25 STO 02 59 SQRT 93 XN2 127 RCL 08
26 RCLO1 60 1/X 94 CHS 128 RCL 05
27 TAN 61 ATAN 95 E 129 X R OMEIZ
28 X2 62 STO 02 96 + 130 ST+06
29 * 63 SIN 97 SQRT 131 RCIlO7
30 E 64 X"2 98 RCL 03 132 RCL6
31 - 65 * 99 * 132 zOUT
32 RCLOO 66 E 100 RCLO1 133 END
33 / 67 - 101 E
34 SQRT 68 CHS 102 PR

Granted, this | i st i nopmptoxfawmditsinck iaready opetateson edl a

variable functions. Pulling all stops with the aid of key functions we deflect the complex variable with

linear combinations as per the formulas shown before.
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Orbital PositionusingKepler Equation{ TA<T >}

Discl ai mer : | f theo ahances aretieatydu havg alrealyi fargotten more astronomy
than what | have everlearned T s o bear that in mind, youdre |ikely go
newcomer 6s p ethesvseveel astablishen §tuff.

Because the velocity is not constant during the trajectory, determining the position of a satellite in its

orbit at a given time was a daunting problem when Kepler embarked into the search for a solution. He

devised ingenious methods and models to approach the task, using the tools known back then

(obviously no powerful computers and numerical methods were available). They continue to be

taught, although |1 086d i mifegdemeos.not | i kely used in real

Anomalies galore.

Concepts like auxiliary circle and Mean & Eccentric
anomalies originate from those days, and are
profusely utilized today by astronomer and flight -path
planners. Very likely today they use numerical
methods and more complex models, bearing higher orbit
accuracy in the results.

circle

Transferring the problem to a fictitious planet that
moves at constant angular velocity W in the auxiliary

circle is no doubt a great trick; as in there the new i Yy
position can be easily calculated using the mean E
velocity (w=2p / Period ) and the elapsed time of % -
passage (t1 T to). 9 ¢
c t d z
Therefore: |M6= Mo+ W. (t1 71 tO)‘ - Eq.(1)
The question then is how to relate the real focalangle q( a. k. a. the Atrue anomal yo)

oneA MO0 al so cal |l ed. Themreswenis taroughnaa duxiliary, intermediate angle fi E-0
called the fieccentric anomalMZODEfunstiossareinauflediathg | e tr ansf
module to perform the conversions, as described below.

i T>E and E>T will convert between True and Eccentric anomaly back and forth, using the

expression:
e+cosy

cosE = ——m88
l+ecosvy

1 E>M and M>E will convert back and forth between Eccentric and mean anomaly, using
Kepl er és: | M 1 El'l'aetsih(E)lh Note that the indirect conversion E>M requires an
iterative process, implemented as a custom formula for the successive approximations:

Entl=En - 2f(En)/{f'(En) -[f'(En)2 -2f(En)f"(En)]1/2} ,usingE0=M

Note also that for accuracy reasons, the E>M algorithm expects the inputs in_degrees and
returns the result also in degrees.
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The complete process is rather simple:

Mean => Eccentric => True new position

PownNPR

Initial True position => Eccentric Anomaly => Mean anomaly
New position in the auxiliary circle given by Eg.(1) above

elliptical arc length expressions from previous sections.

Which has beenimplemented into the following driver program :

[ 1 LBL'TA<T>" |
2 XROM "?ab" semi-axis values
3 "p=?" Period
4 PROMPT
5 STO 06
6 "<)0=? (+)" initial position
7 PROMPT
8 STO 03
[ 9 LBLOO |
10 "dT=?" elapsed time
11  PROMPT
12 STOO05
13 RCLO0O e
14 RCL 03 <)0
15 T>E True to Eccentric
16 E>M Eccentric to Mean
17 RCLO05 t1-t0
18 -

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Finally, Once the new angle is known, the travelled distance can be quickly obtained from the

RCL 06 P

/ (t1-t0)/P

PI

ST+ X 2p

*

+

R-D required by M>E
M>E Mean to Eccentric
D-R inrad

RCL 00 e

X<>Y needed by M>E
E>T Eccentric to True
STO 04 final result

ney =

ARCL X

PROMPT

GTO 00 new position
END

Refer to the QRG in the intro section for the input parameters needed by the anomaly conversion

functions.

Example. - A point orbiting the ellipse with a=3, b=2, with a period of 24 hours, is known to be at

the periapsis at t=0. What will be its position 2 hours later?

We type:
X E QTA€r> 0o a“b: <
3, ENTER, 2, R/S 0: <
24, RIS 9).:<(+)
0, R/S dQ: <
2, RIS => 9) ' : 0K¥2332362/

Therefore, the new focal angle is 122.93 °

Plugging this result as upper angle in LF+, the travelled distance results:

I (+) : 0Y1743//16

© Angel Martin - April 2018
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Orbital Positionusing Direct Approach|TA+ ],

Kepl erds second fbcalareas swaept ey s satellitadre ptopodional to the times taken
to sweep them. Therefore, calculating areas is a great surrogate to determine times, and from there
actual positions if we can also link them to the trajectories (arc lengths of the orbit). This is the basis
of the direct approach, which puts together many components covered in this manual so far.

Position and travelled distance at a given time.

Say we want to find the position of t he satellite at a certain time t1, knowing where it was at an
earlier moment t0. During that time interval the satellite has swept an area A(t1 -t0), which can be
expressed in té&lawas: of Keplerobs 2

A(t1-t0)=(t1-t0). p.a.b /T  ; where T is the period of the movement.

As it is, we have an expression for said area, as a f
a n o ma l; in fact we have it both for the left and right focal sectors in case we need to choose.

What 6s t he @hvisuslyaraiationship llnking the time elapsed i1 and the new true
anomaly g1 i but this can be replaced by an iterative approach to solve the equation for (, calculating
di fferent areas iterati'¥lawexpression:i | it matches Kepleros

Guessq => A( ) => matches known result? If Yes =>done
If NO, modify guess value and try again

In other words, solve: ‘A(tl) T (t1-10). pab/T=0 ‘

Here the tricky part is going to be the expression for the successive approximations of the true
anomaly, which will be deferred to the numerical method (Newton, Secant, etc.). For initial guess
value we can use a circular estimation based on a mean angular velocity, wo =2 p/T; thus: o = wo.
t1. Further refinement can be done to reduce the number of iterations, using some kind of correction

through the orbitdés eccentricity fAed (not necessarily

Important remark . The module includes two ways to calculate this, TA+ and TA- ,which internally
use right or left focal sector areas respectively. The direct method assumes that the body orbited
around (t he Sun i n tIsfcaledin thetREGH T facassokthe ellipse. Consequently. Both
programs expect the same input values, including the initial angle - as aright focal angle

Example .- Using the direct approach, calculate the true anomaly in the same new position given by
the previous example.

We type:
X E QrAfio a“"b: <
3, ENTERA, 2, R/S 0: <
24, RIS 9).:<(+)
0, RIS dQ: <
2, RIS NRKKFKDYYY
=> 9)(Q):0K¥2332362/
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Example 2 .- Using the data from appendix 1, calculate the position of the earth 25 days after the

perihelion. Do it first via the Kepler indirect method, and verify it using the direct approach.

We type:

XEQrM<T>0

1.496 E8, ENTER", 149579116.1,

R/S
365.25, R/S
0, R/S

25, R/S

Alternatively:

X E QTAf

R/S (will use current)
365.25, R/S

0, R/S

25, R/S

Thatdéds to say

t he

a’b: <

O: <
9).:<(+)
dQ: <
9) ' :

a“"b: <
O: <

9) . :<(+)
dQ: <
9) Q:

new position

. ¥220333.7

. 2220333. 7

S

Plugging this result as upper angle in LF+, the travelled distance results:

| (+):432627Z.

The program uses a really simple initial guess for the interval, adding one radian for TA+ case, or

subtracting it in TA- case.

6¥6 km

at 25.

47 2

degrees

Note: This method requires a general-purpose solver. There are a few available in different modules:

Function Module XROM Note
FROOT SandMath XROM 02,15

FROOT S&I ROM XROM 27,04 Used here
SOLVE Advantage XROM 24,03

Using the SIROMrequires only 4k in the bus i and makes the operation independent from the

SandMath. This is aligned with the ELLIPTIC module approach as well.

© Angel Martin - April 2018
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Program Listing. -

1 LBL'TA+" |Right Sectors
o2 CF 04

3 GTO04 —

' 4 |LBL'TA-" |Left Sectors
¥ 5  SF04

F6 1BLOA <« |

o7 XROM "?ab" axis data

F 38 "pP=?" period

F o PROMPT

F 10 sTOO6

F o PI pre-loaded

F o1 "<)0+=?" initial angle

¥ 13 PROMPT

F 14 Fs?204 left sectors?
F 15 - complementary!
F 16 sSTOO03

17  LBLOO |

F18 rdT=?"

¥ 19  PROMPT

F 20 sTOO5

F T function name
Fo RCL 03 upper guess
F 23 RcCLO3

F oa N

F 25 Fs?04

¥ 26 CHS

Foo7 + lower guess
F 28 FROOT in the SandMath
F 29 FC? 04 right sectors?
¥ 30 GTOO04

¥ 31 CHS

F 32 P

" 33 +

[ 34 LBL0O4 <—

¥ 35 "9TA=

¥ 3 ARCLX

¥ 37  PROMPT

¥ 38 GTO 00 new position

[ 39 LBL"9T" | function to solve
¥ 40 sSTOO04 current angle
41 FC?04 right sectors?
F 42 XROM"EFC+" yes, calculate it
¥ 43 FC?204 right sectors?
¥ 44 GTOO04 yes, skip

¥ 45 RcCLO3 upper angle

F 46 EFs- upper left sector
F 47 sTOO7 temporary store
F 48 RCLO4 lower angle

F 49 EFs- lower left sector
F 50 sST-07 subtract from upper
F 51 RcLO7 sector area

¥ 52 RCLO1 a

¥ 53 RCLO02 b

54 a.b

F 55 * ab.A

56 2

¥ 57 | a.b.A2

F58 1BLO4A <« |

¥ 59 RCLO5 dT

¥ 60 RCL06 P

61/ dT/P

F 62 PI p

F 63 * p.dT/P

¥ 64 RcCLO1L a

F 65 = p.adT/P

¥ 66 RCLO02 b

F 67 = p.ab.dT/P

¥ 68 - ab.A-p.ab.dT/P
¥ 69 END done.
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Time of Flight: Time to travel a given arc

To round up the

options,

herebs the inverse probl em:
certain distance (also known as Time of Flight) i measured by its new true anomaly.

Here the easiest approach is to move in the auxiliary circle using the mean anomaly, from an initial
location (t=0) to a final one (t=TOF). Since the speed is constant in such circle the equation is a

trivial one:

TOF =DM . To/2p =(ETi essinE). To/2p

The MCODEfunction TOF calculates the Time of Flight from the following input values in the stack:

Register Input Output
Z. To, period To i remains there
Y: e, eccentricity e - remains there
X: Dg, true anomaly delta | TOF - result
L: n/a g - previous TA delta

This stack arrangement facilitates repeated executions for different true anomalies: simply press RDN
and input a new angle (or call LastX to retrieve the original one).

Example. For our friendly test ellipse ( a=3, b=2) calculate the time it would take a fictitious body
orbiting around the RIGHT focus with an orbital period of 24 hours to move from the point P1 (0, b)
to the opposite point P20, -b) it hat

We type:

2, STO 02 3, STO 03X E CEC®
STOO00, 2 4, X<>¥FQ+Ai XEQ @2/ /642775
1¥30727601 hoursfrom perigee to x=0

X E Qrom

i s,

=>

=>

t telipsefis| owd hal f

. ¥23133771

Therefore the time between go and the perigee is:

t=12 -3.152949823 = 8.847050177 hours

And finally the requested time is twice that amount:

ST+ X

=>

I 5%72/ ..

1 3 hours between P1-P2

Example : Calculate the time taken by the Earth to move from apogee to q(+)= p/2. Use the data
from appendix1: e=0.01671 and T = 365.25 days/

We type:

XE QGEARTH (s o
RCLO6, RCL

we donot

00, Pl

2

need t-po type the

=# 6 7X E Q1 T3T7GF days

number s é
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Orbital VelocityusingConservation of Energy.v<R>}

Moving on, | etbés see how to calculate the instantaneo
position, determined by its true anomaly. As before,
first one based on the energy conservation and the second based on the angular moment

conservation. The second method also requires knowing the velocity at a reference point, typically the

periapsis (aka. perihelion for the earth around the sun, or perigee for satellites around the earth).

The energy conservation states that the sum of kinetic and potential energies is constant. In
particular, for a point situated at a distance r from the focus, the formula below determines the
magnitude of its velocity i expressed only as a function of the orbital period and the geometry:

V(r) = 2 p/T sqrt[(2a/r) -1]
In particular for the periapsis and apoapsis, r = a(1 i e) and r= a(1+e) respectively ; thus we have:

Vp =2p.alTsqrt[(1 +e)/(1-€e)]
Va =2p.a/T sqrt [(1-e)/(1+e)]

Thus their ratio: Va/Vp = (1 -e)(1+e) ; a common parameter of the ellipse.

Vis Viva Equation.

In astrodynamics, the vis-viva equation, also referred to as orbital -energy-invariance law, is one of the
equations that model the motion of orbiting bodies. It is the direct result of the principle of
conservation of mechanical energy which applies when the only force acting on an object is its own
weight. For any Keplerian orbit (elliptic, parabolic, hyperbolic, or radial), the vis -viva equation is as

follows:
vt = GM (E — l)
T ()

Where r is the distance between the two bodies, and
m=G.M is standard gravitational parameter. In our
programs weodl | use the oorb
an elliptic orbit: m2 = 2p/T sqrt(a”3) ;

which is the format wedl |

t hus f

The distance r (elliptic radius) varies with the focal angle, so we need to be careful on which one to
use. For a LEFTconfiguration (i.e. with the Sun in the left focus) it also has a closedform

representation: "
a(l —e*)

1~ ecosd

r(#) =

Remember: For the program V<R> the convention is to use the LEFT focal anglesi
and not the right ones; make sure you input the correct one.
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Examples. Using the data from appendix#1, calculate the instantaneous velocity of the Earth in its
orbit around the sun f or t he-orbithapegee (G-0)apertheerfgEp)d0 poi nt s
and g(x=0)

Solution.- We type:

X E QV<R>0 a"b: <

1.496 E8, ENTER", 149,579,116.1 , R/S 0O: <

365.24 , R/S 9):<(,)

0, RIS => S(9)):021.2.3Y04 km/day

R/S => Sc:14. 730132/ at the apogee
R/S 9):< ()

Pl, RIS => S(9)):02/ 42/ 6814 km/day

R/S => Sc:145.%223Y53 at the perigee
R/S 9):<(,)

XEQf < Ff0, /| $32.64734

R/S => S(9)):0351331Y45 km/day

R/S => Sc:1Z217331%3. at x=0

Program Listing.

1 | LBL"V<R>" | F 22 = alr

¥ 2 XROM "?ab" F 23 ST+ X(3) 2alr

F 3  "p= ¥ 24 FS?00 to tell the cases apart
¥4  PROMPT F'25 1

[ 5 LBLOO | ¥ 26 FS?00

6 "<)=2 ()" Foor - (2alr) -1

Fo7 PROMPT left focal angle F 28 SQRT sqrt[(2a/r)-1]

F 8 sTOO3 F 29 RCL 01 a

F 9 9FR- left radius F 30 = a.sqrt[(2a/r)-1]

¥ 10 sTOO05 " 31 PI

F 11 SFoo first pass F 32 ST+ X(3) 2p

Fo1 XEQ 02 velocity F 33 = 2p.a.sqrt[(2a/r)-1)]
F 13 sTOO4 V(r) F 34 RCL 06 Period

14 v(<)=" ¥ 35 2p.a.sqrif(2a/r)-1)] / Tc
¥ 15 ARCLX ¥ 36 FS?00 first pass?

¥ 16 PROMPT ¥ 37 RTN yes, return here
¥ 17 CFo00 second pass ¥ 38 "ve="

{18 LBLO2 |velocity ¥ 39 ARCLX

¥ 19 RCLO5 ¥ 40 PROMPT show result
20 1x ¥ 41 GTOO00 new position

¥ 21 RCLO1 a ¥ 42 END
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Orbital Velocity as function of the abscissa

For a known period of the movement To, it 6s possi bl e tatoanypairpinthesosbitt he vel o
as a function of the abscissa, i.e. the x -coordinate of the ellipse. The formula is derived directly from
the vis viva equation, replacing the (right) focal s e

r=a.(1 1 e.cosE) ;where cos E =x/a

the final expression is:

V) = (2 paiTo) V(L +exia) /(1 i ex/a)]

Note that the eccentric anomaly substitution assumes the orbited body is located in the right focus.

The function V(X) calculates the point velocity; it expects the period in the Y -register and the x-
coordinate in the X-register as inputs. Upon completion the result is in X and the coordinate in LastX
T but the period remains in Y for convenience in case of repeated executions.

Example : Obtain the table of velocities for the same ellipse at points between perigee (x=3) and
apogee (x=-3) at intervals of the abscissa of Dx = 0.25. Use T0=24 h for the period.

Assuming the ellipse parameters stored in RO0-R02, the minimalistic FOCAL program below produces
all the results:

01 LBL AVX¢ Velocity
02 24 2,50
03 ENTER?
04 -3 2,00 P
05 LBL 00 /
06 V(X) 1,50
07 STOP /
08 RDN 100 /
09 LASTX 0.50
10 ,25 —_—
11 + 000 b
12 cro00 231L3831031831L3K8K312388L2883KL8
13 END MO AN ANNNAAA 10000000 d-ddodNNNNMm
X \' 0,00 0,7854

-3,00 0,3000 0,25 0,8358

-2,75 0,3407 0,50 0,8899

-2,50 0,3797 0,75 0,9484

-2,25 0,4177 1,00 1,0123

-2,00 10,4553 1,25 1,0829

-1,75 0,4929 1,50 1,1618

-1,50 0,5309 1,75 1,2514

-1,25 0,5696 2,00 11,3548

-1,00 0,6094 2,25 1,4767

-0,75 0,6504 2,50 1,6246

-0,50 10,6932 2,75 1,8105

-0,25 10,7380 3,00 2,0562
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Orbital VelocityusingAngular Momentunm{|vR+ |, | VR- |}

An alternative approach is based on the conservation of the angular momentum. Because in a two-
boy problem no external torque is applied on the set star/planet (or planet/satellite), its angular
momentum is constant. In other words, the angular momentum has the same value in all positions on
the elliptic orbit.

In particular, on the periapsis and apoapsis the velocity vectors are perpendicular to the elliptic radius,
thus the angular momentum at those positions will verify:

r(a). m. Va=r(p) m. Vp ; and therefore: V(a)/V(p) = r(a)/r(p)

At a generic position determined by its focalangle g, bot h vectors arendt perpendi
momentum depends on the angle between the velocity and radius vectors, a.

Va.r(@) =V.r(q).sin a => V=[Va.a(l+e)]/r( q).sin a
where we can apply the Vis Viva equation to obtain either V(a) or V(p).

An expression of r(q) is easy to get based on the geometric properties of the ellipse. It follows that if
we can calculate said angle a, then the velocity will also be known. How to go about it?Simply using
the fact that the velocity vector is tangent to the ellipse at the given point, which is the same as
saying the derivative of the elljpse at that point will give us the slope of the tang ent line,

b(q) = atan(dy/dx)|x=x( q) ; Andfrom here: a=q+b(q)

From the equation of t hitedesvhtive, gasbetween [épsp] easy t o deri ve
y 0dy/dx = - b.x/[a.sgrt(a™2 T x*2)]

Two programs are included to cover both he Left and Right focal angle configurations:

1 use right focal angles with , i.e. the sunis at the right focus
1 use left focal angles with , i.e. the sunis at the left focus

The direction of the movement can be either clockwise or counter -clockwise indistinctly.

Escape Velocity

The formula for escape velocity can be obtained from the Vis-viva equation by taking the limit as fad
approaches infiniteb :

Ve (r) = 2 p.a/P sqgrt(2a/r)
We 61 | remark the fact that t he ebstwermptieetwobddiesci ty depend

Note: Vc is also calculated by the program.
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Example. Calculate the velocity distribution for a body orbiting in an ellipse with semi -axis a=3m,
b=2m, if the period is 24 hours and the body orbited around is placed at the LEFT focus.

The solutions are provided in the table below. Note that the convention is Left focal angles, i.s. the
apoapsis occurs atg=0, and the periapsis occurs at g=p

Special Position VisViva q r(qQ) X@) V()
apogee 0.3 0 5.2361 3 0.3
0.3928 0.25 4.7994 2.4141 0.3928
0.5859 0.5 3.8548 1.1468 0.5859
x=0 0.7854 q" 3 1.00E-09 0.7854
0.8032 0.75 2.9328 -0.0902 0.8032
1.0203 1 2.2323 -1.0299 1.0204
1.2274 1.25 1.2275
1.4187 15 1.4075 -2.1365 1.4187
Left Focus 1.4693 p/2 1.3333 -2.2361 1.4693
1.7378 2 1.0177 -2.6596 1.7378
1.9536 25 0.8348 -2.9049 1.9537
2.0512 3 0.7672 -2.9956 2.0511
perigee 2.0562 p 0.7639 -3 2.0562

The position x=0 is a particular point, and its left focal angle can be obtained using the MCODE

function , the counterpart of for the right -focal angle at the same point.

The velocity distribution is shown in the chart below, using equally spaced angles by an interval of

0.25 rad.

2.25

1.75 m—a)

= \/isViva
1.5

1.25

0.75
0.5

0.25

0 025 05 0.75
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Program listing.

[ 1 LBL"VR+"
2 CFO04
3 GTOO04

[ 4 LBL"VR-"
5 SFO04

| 6 LBLO4
7 XROM "?ab"
g8  "p=?"
9  PROMPT
10 STOO06
1 1
12 RCL 0O
13 -+
14 SQRT
15 RCLO1
6 *
17 Pl
18 ST+ X
19 *
20 RCLO06
21/
22 STOO04
23 LBL 0O
24 "Q)=7 ("
25 FC?04
26 "-4H)"
27 FS?04
28 M-
29 PROMPT
30 STOO03
31 FC?04
32 <)F-R-
33 FS?04
34  <)F-R+
35 STO 05
361X
YA
38 RCL 00
39+
40 *
41 RCL 01
42 x
43 RCL 04
44 x
45 X<> 05

period

left radius

right radius

r

1/r

function derivative
e

1+e

(1+e)/r

a

a.(1+e)lr

V(a)
V(a).a.(1+e) /r
r

46 RCL 03
47 COS
48 *

49 RCL 00
50 RCL 01
51 *

52 FC? 04
53 CHS
54 +

55 ENTER~
56 ENTER”
57 RCL 02
58 *

59 RCL 01
60 |/

61 X<>Y
62 X2

63 CHS
64 RCL 01
65 X2

66 +

67 SOQRT
68 X#0?
69 |/

70 CHS
71 ATAN
72 RCL 03
73 X<>Y
74 -

75 FC? 04
76 GTO 04
77 CHS
78 Pl

79 +

80 LBL 04
81 SIN

82 RND
83  X#07?
84 ST/ 05
85 RCL 05
86 "V(<))="
87 ARCLX
88 PROMPT
89 GTO 00
90 END

q
cosq

r.cosq
e
a
ae = OF

X = r.cosq -a.e
X= r.cosqg a.e+
X

X

b

b.x

a

X
X2

-(x"2)

a

an2

ar2 - x"2
sgrt(a™2- x"2)

b.x./ sqrt(a”2 - x"2)

y'(x)
a
q

q- atan(Y")

recall result

shos result
new position
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AppendixOther Auxiliary functions

The tables below summarize the auxiliary functions by categories:

1. Input/output utilities

The input/output functions will skip the data entry if you press R/S without entering any humeric
value. This is very convenient to use the current values in the data registers.

1
2
3.
4

. a4 K6

. & K| 0 Promptsfor semitaxis.

Prompts for leftangles.
a ¥+ Prompts for rightangles.
. @ Kt & Prompts for Orbital Perioi new Values or R/S for currer See (*

New values or R/S for currerSee (*
new Values or R/S for currer See (*
new Values or R/S for currer See(*)

(*) You can also call one of the Planet Data function at this point to populate the data registers with
the orbital data corresponding to that planet. If you do, note that the semi-axis are given in km, and
the orbital period in days.

2. Special Angle Values

Note that all of these functions use the data registers holding the values of the semi -axis (RO1
and R02), and the eccentricity (R00). They are marked with an asterisk in the table.

*)
(*)
(*)
*)
(*)
(*)
*)

<)CO+ Central angle for Focal =< (a b,e) in RORO2. Lifts Stack
<)CR Central angle to Radius
<)CGXY Central angle to coordinat( {a,b,e} in RO4R02,a in X Savesa in LastX
<)FO+ Right focal angle at x=0

<)FO

Left Focal angle at x=0

<)F>R4Right focal angle teadius
<R Left Focal angle to radius {a,b,e} in RO&R02,a in X Savesa in LastX

{a,b,e} in ROMRO2,a in X Savesa in LastX

(a,b,e) in ROGRO2. Lifts Stack
(a,b,e) in ROGRO2. Lifts Stack
{a,b,e} in ROMRO2,a in X Savesa in LastX

Warning: remember that the input angles for <)F -R+ and <)F>R - are different; left or right focal

angles respectively depending on the function. AlsoR(+)+R(-) does no 0 e qgual fi2a

3. Planet Data functions.

Their name says it all: one for each of the planets plus another one for the Moon. They will silently
populate the data registers with the appropriate dat a, not distur bing the stackor AL PHA . Her ebds
register mapping:

Warning: The values are stored in km for the semi

Register

ROO

RO1

R0O2 RO6

Value

Eccentricity

Semimajor axis| Semiminor axis| Orbital Period

-axis, and in days for the orbital periods

The semi-minor axis value is derived from the eccentricity and the semi-major axis.
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Appendix. Solar System Orbits Data

The table below summarizes the ellipse data for the planets and the moon orbits. The Semi-minor axis
is calculated from the semi-major and the e ccentricity using: b = a.sqrt(1 -e*2)

| Orbital Elements _ _
Name_uf Semimajor Axis B Orbital Period
Planetary Body AD) Eccentricity (vears)
| Mercury | 03870993 || 020564 || 02408467 |
| Venus | 0723336 | 000678 | 061519726 |
| Earth [ 1000003 | 001671 | 10000174 |
| Mars | 152371 || 009339 | 18808158 |
[ Jupiter | 52020 || oo04s4 || 11862615 |
| Saum | 9537 | 00539 | 20447408 |
| Urams | 19189 || 004726 | 84016846 |
Neptune ‘ 30.0699 ‘ 0.00859 ‘ 164.79132 [

The following diagram shows the relation between the line of solstice and the line of apsides of Earth's
elliptical orbit. The orbital ellipse goes through each of the six Earth images, which are sequentially
the perihelion (periapsis & nearest point to the Sun) on anywhere from January 2 to January 5, the
point of March equinox on March 19, 20, or 21, the point of June solstice on June 20, 21, or 22, the
aphelion (apoapsis 0 farthest point from the Sun) on anywher e from July 3 to July 5, the September
equinox on September 22, 23, or 24, and the December solstice on December 21, 22, or 23.[7] The
diagram shows an exaggerated shape of Earth's orbit; the actual orbit is less eccentric than pictured

21. March
- ' N Periapsis
S ‘ 3. January
/ ' NS
P % W1 ':'?/
4 ,../
21. June r - ' ’ 21. December
/ o /
';‘/_/ /
.'/ ,/
4 W0 <= 4
' -‘slfy N
« v
Apoapsis N\ e
3. July T - 23. September
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Standard Gravitational Parameter and Orbital periods.

Two other functions are related to this chapter; and in fact to all sections as we have already
mentioned. The function names are |(T(rr)|and|ml/ 2 |—yes,t ricky to use but thatds p
charm ;-) Tip: use XROM in the OS/X module.

The first one calculates the period of an elliptical orbit with major semi -axis given, around a
body with mass known (i.e. using its mass as data). The expression used is

T=2p. a.\/(a/n)

Example . If the mass of the sun is 1.9885 E30 kg, calculate the orbital period of the Earth around
the sun. Make use of EARTH to retrieve the major semi -axis value to RO1.

We type:
X E GEARTH => writes EARTH data to RO0-R06
1.9885 E30, RCLT@®d, E 3»31557,670.XIEQ periodin seconds
3600, /, 24,/ => 365.2508115 period in days

The second one derives the standard gravitational parameter m for a body, when the orbital
period and the semi-axis are known, using the expression:

B 4:”.2 ﬂ-ﬁ
= T?
Example - Derive the value of the standard gravitational Body p(m®s73)

parameter for the Sun wusing thig 1.327 124 400 18(9)=1020011 /2 t & .

We type: Mercury |2.2032(9)=1013[2]
365.25, ENTER, 3600, *, 24, * => 31,557,600.00 e e
period in seconds Earth  |3.986 004 418(9)=1014
Moon  |4.904 8695(9)=1012
Mars 4.282 837(2)=107131!
Ceres |6.263 25x1010[=151E]
Jupiter |1.266 865 34(9)x1017

Saturn |3.793 1187(9)=10"¢
Which is close enough to the value found in the literature, as Uranus |5.793 939{9)x101507]
shown in the table on the right.

RCL 01, E3, * =>1.4959831 11
major semi-axis in m

XEQfML/2 0 =>1.1520357 10
Xn2 =>1.3271864 20

Neptune 6.836 529(9)x1015
Pluto  |8.71(9)x10M12]
Eris  |1.108(9)x10122:
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Delta-V Orbit Simulator{[ORBI T} - from HP41 Physics Solutions Bok.

Delta-v (literally "change in velocity"), symbolizedas &v, as used in spacecraft f
measure of the impulse that is needed to perform a maneuver such as launch from, or landing on a

planet or moon, or in -space orbital maneuver. It is a scalar that has the units of speed. As used in this

context, it is not the same as the physical change in velocity of the vehicle.

Delta-v is produced by reaction engines, such as rocket engines, and is proportional to the thrust per
unit mass and the burn time. It is used to determine the mass of propellant required for the given
maneuver through the Tsiolkovsky rocket equation. For multiple maneuvers, delta-v sums linearly.

Program Description

This program calculates orbit parameters from initial position and velocity data both for elliptical and
hyperbolic orbits in a plane. It is also possible to move the point of interest to anywhere along the
orbit and then recalculate orbit parameters.

Earth

Current
Orbit

Target
Orbit

The program is taken from the HP-41 Physics Solutions Bookwithout fundamental changes. Only a
top-level menu and parameter input prompts have been added for a more convenient use. This main
menu is presented after the user has entered the initial orbital data:

Parameter Position Velocity

Mass Angle ‘ Magnitude Angle Magnitude

The options menu offers the following choices:

-

NiWw OO0 £ £33 M
USER  RAD 01234
1 LBLA isused to input new initial conditions .
1 LBLB is used to show the orbit Geometry
1 LBLC isusedto move to a new position in the old orbit
1 LBLD is used to enter the Delta-V in angle and magnitude
1 LBLE is used to present this options menu again.
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Each of these options proceeds to prompt for the variables changed or added to the initial set. This
approach makes it easier to use withwooft access to the

Once the calculations are done with the new data, the program enumerat es the four new orbital
conditions: R, <), V, and V<) . You can return to the main menu at any time during this enumeration.

Il n o pt iheprogiaB will telltyou the type of orbit created by the initial conditions or after the
delta-V changes. The possible choices are Elliptical, Paraboli@and Hyperbolic, as determined by the
eccentricity value derived from the inputs.

Example . Execute a Hohmann transfer from a low -earth orbit to a high-earth orbit, using a delta -V of
2,300 m/s at the initial point, and another of 1,450 m/s at the transfer orbit. The initial conditions are
listed below:

Parameter Position Velocity
5.979 E24 kg 0° 7.1 E3km 90° 7.4 E3 m/s

With the calculator in DEG mode we type:

X E QORBITO J>PP: <

5.979 E24, R/S N. : <

7.1 E6, RIS N.9): <

0, R/S /'S. 1 :<

74 E3,R/S S.9):<

90, R/S -> N: 5Z..2Z..Y. ;o 9) Y. Y.
R/S |S|: 5Z2..Y.. ;) S9) 1 7.Y. .
R/S KT LD 9) 9; J

The first step is a burst from the low -earth orbit into a TRANSFEPorbit:

XEQD S9)M|S|: <(9;) - amount and angle of change
90, ENTER", 2300, R/S N:5z..2Z..Y. ;9):.Y. - same position
R/S |S|: 78. . Y. 7 S9):7.Y. -newvelocity

After this burst the object is placed in an elliptical orbit that shares the same point with the original
one, but with a different velocity due to the boost. The geometry of this transfer orbit can be
reviewed using LBL B, as follows:

XEQB e: . ¥521 ; 9':137Y7540 positioninthe new orbit -
R/S NJFK: 5. .2Z..Y. same as original orbit -
R/S BI' I FOPB

R/S a:0/8..8/.%¥1 ; b:/42762Z227K%1

R/S Q: 6872/

The next step is another burst when the body has reached the opposite position, i.e. determined by
the current angle in the new orbit plus 180 degrees. Thus we first let the object travel to the new
posi tion, i itsgasitiowfomfhencuweatdn e (whichis why we used LBL B before).
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XEQ C 9)' : <

359.9976, ENTER®, 180, + 317Y754 -180° are added to the first position! -
R/S N:14Z./20. 95 7 9):/57Y754
R/S |S|=/ B64%¥537 ; S9):05.Y..7

And now we place the object into its FINAL orbit with another burst:

XEQ D S9) MIS|: <(9;)

270.009, enter®, 1450, R/S N: 142./ Z0. ¥5

R/S 9):/57Y754 I same position -
R/S |[S|: 121458537

R/S S9):05.Y.22 i newvelocity i

To see the high-earth orbit geometry we use LBL B as before:

XEQ B e: .Y/ 64 ; 9)':/6.Y505
R/S NJFK: 14Z2./2Z.3Y
R/S Bl | FOPB
R/S a: 15770267%. ; b: 1526423791
R/S Q:/ 78/ 71
Remarks: itds important to note that two bursts are

second burst occurs at 180 degrees opposite from the position after the first one.

The figure below shows a generic transfer situation, wheretheveloci ty bur sts dondt occur
points but at other determined by the bi -elliptical conditions. This type is faster but requires more fuel.
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Velocity IncrementforHohmann Transfer§+ VH12]}

For most Earth orbits which were serviced by the Space Shulttle, the distancesfrom the earth was
small in terms of Earth radii. For such orbits (even out to and beyond geosynchronous distance), the
Hohmann transfer is the best transfer to use when transferring between circular coplanar orbits.

For transfers between circular coplanar orbits, the information usually given consists of the radii of the
initial and final orbits. The information desired consists of the semi -major axis of the transfer orbit, the
velocity increments at the ends of the transfer orbit, and the total velocity increment required for the
transfer. The semi-major axis of the transfer orbit is given by :

ar=(rp+ra 12.

In order to calculate the required information, it is necessary to calculate the following four velocities:

The velocity in the initial circular orbit, B
n

2 1
The velocity in the transfer orbit at initial orbit height, _|u [— - —]
A

The velocity in the transfer orbit at final orbit height | (L

The velocity in the final circular orbit | 2
r'|

The initial and final velocity increments are then given by the equations below :

2 1 2 1
Al = pl‘——— - |E ﬂxI{=JE—’j.l[———]
Fod ¥ r, L
Where:
1 rlisthe radius of the initial circular orbit
1 r2is the radius of the final circular orbit
1 a(r) is the semi-mayor axis of the transfer orbit: a(r) = (r1 +r2) /2
1 m s the gravitational parameter of the central body

The MCODE functionr VH12 performs both velocity increments calculations. It expects the input
parameters in the stack registers, as follows:

Register Input Function Output
Z M = Mass of central body M = mass of central body
Y: R1 = Initial orbit radius +VH12 DV1 = Velocity increment#1
X: R2 = Final orbit radius DV2 = Velocity Increment # 2
LastX: - R2 = Final Orbit radius
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Bi-Elliptic tangentialTransfers{ +vB123 }

A variation of the previous case, the bi-elliptic transfer requires two elliptical orbits that share the

same apoapsis (or apogee in case of Earth orbits). This transfer requires three velocity increments, so
in principle it dgeduiredshoddabe largeh Howevaredepgnding on the apogee
distance used, the total velocity increment may be smaller than the standard Hohmann transfer - even
i f ther e dsepiovoleed. mor e

Let rl and r3 be the radii of the initial and final ) .
circular orbits. Let r2 be the common apogee of / \\'
the two elliptical transfer orbits. 1)

P |2 1Y 1} |3

Letds now define:

al=(rl+r2)/2
a2=(r3+r2)/2

The expressions are shown below. First leaving the initial orbit (prograde burst) and arriving to the
final orbit (retrograde burst):

I|I 2 f III > /
"ﬂ'ﬂl — II| i — i — IIIl i. &f_‘:} — III _'FL _ ﬁ . II|I ﬂ .
M 1 i1 ‘\f ™ \. T3 a2 “-' T3

And the intermediate bi-elliptical transfer:

I.'I 2u L I." 2u L

ﬂT.-‘g —_ V P~ ~ \‘Ill P~ 2 N

Note that if r2 = r3 then DV3=0, and it becomes a standard Hohmann transfer.

The function calculates the three velocity increments at the same time. There are four input
parameters required for this case, expected to be in the stack as shown in the table below:

Register Input Function Output
T: M = Central body Mass M = Central body Mass
Z: R1 = Initial orbit radius DV1 = Velocity increment#1
Y: R2 = Final orbit radius +VB123 DV2 = Velocity Increment #2
X: Rb = Elliptical orbit apogee DV3 = Velocity Increment #3
LastX: - Rb = Elliptical Orbit apogee

Important remark s. The input values are expected in Sl units, i.e. meters for the radii and kg for
the mass. This is because internally the gravitational constant is used with the Sl values:

G = 6.6742800 E-11 N*M2/KG2

Note: The ALPHA register is used for scratch 1 its previous contents will be lost.
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Example #1 . Calculate the speed increments used in the ORBIT problem example if the data are the
two orbit radii, as per the table below:

Parameter LEO GEO
5.979 E24 kg 7.1E3 km 36.5014059 km
We type : (donét mi sequitements!) mpl i cit unit
5.979 E24, ENTER", 36.5014059 E6, ENTER", 7.1 E6
X E Q+VI120 = 0@d.1%66. mis
X<>Y = [ Z]/ 73/ 65 mis

Note that these results are not quite the same exact values as the ones used in the problem, which
may be just rounding errors, and the slightly different values for the Earth mass.

Example #2 . Find the total delta-v requirement for a bi -elliptic Hohmann transfer from a geocentric
circular orbit of 7,000 km radius to one of 105,000 km radius. Let the apogee of the first ellipse de
210,000 km. Compare the delta-v schedule and the total flight tim e with that for a standard Hohmann
transfer ellipse. ( No t e : nEa3rP8600484s14).

First for the bi-elliptic transfer. Gt R et oo

5.979 E24, ENTER”, 7 E6 , ENTER",

105 E6, ENTERA, 210 E6 7000 km radius

initial orbit

XEQf + V B 1 2>3 2,953.825526

RDN => 775.4013118 17 ____________ Y
RDN => 301.5877266

RDN, => 5.9790000 24 trajectories *Hohm.}nn

RDN, +, + => 4,030.814565 ' transfer

ellipse

Then for the simple transfer:

X<>Y (the mass was still there)
7 E6, ENTER”?, 105 E6

~31

105 000 km
210 000 km 5]

X E Q+VIA120 => 1,259.525314
RDN => 2,786.805728
+ => 4,046.331042

with TOF = T/2 = p. V(105 E6 + 7 £6)3 / V8ne V[(112 E6)"3 / 8m] = 65,942.138225

The counterpart are of course the times of flight:
In the first ellipse, TOR1) = T1/2 = p. \/[(205 E6 + 7 E6)"3 / 8m]= p.\/[(212 E63 / 8m]

In the second one, TOR2) = T2/2 = p. V. [(205 E6 + 105 E3)"3 /8ni= p. v [(310 E6)*3 / 8m]
And the total TOF = TOF(1) + TOF(2) = p.( 54,662.55282 + 96,655.96462) = 475,381.1427 s

i.e. greater by the factor: 475,381.1428 - 65,942.13822 = 409,439.0046 s = 4.738877367 days
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Transfer between Coaxial Elliptical Orbigsv Ea12

[+VEb12 |}

We knowthatpl anet or bits ar e nibdthough their acceatricitids are noeldrge.i pt i c al
Therefore, using this approach would appear to be more appropriate, evenif the accuracy increase
i sndt that si gni-dgitmaatisdaworlh a | i mited 10

This type of transfers has two possible trajectories, depending on whether it is initiated at the apogee
or at the perigee of the initial orbit 1 which are the two points in the orbit where the velocity is
perpendicular to the radius; the required condition for a tangential velocity increment goal.

The perigee and apogee of the two orbits are labeled in the se quence of transfer: From A to B
(perigee-1 to apogee-2 ) , or from AldopergeeRd (apogee

The expressions for the velocity increments for both cases are as follows:

1. Starting at the perigee: 2. Starting at the apogee:
Av), = Av, + Avg Av), = Av, + Avy
_[ |u 2, u 2, s _[ | ry e 2r
FaTytTy Pyl tly Py Ty * 13 Py Ty ¥ 7y
o 2r, | 2r, u 2rg w2y
Fp 1y + 1% rp Ty tiy rp Iy 7y g Ty Ty

Warning: these formulas are not verified with a second source, so they may contain transcription

errors. Also itds not entirely clear they are di mensi
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There are five input parameters required for this case. The function expects the radii in the stack, and
the mass of the central object in the LastX register. Use SF 00 / CF 00 to toggle the cases.

Register Input Function Output
T: A1l = initial orbit apogee M = Central body Mass
Z: B1 = Initial orbit perigee +V Eal2 A1 = initial orbit apogee
Y: A2 = final orbit apogee +VEDb12 DV1 = Velocity increment#1
X: B2 = Final orbit perigee DV2 = Velocity Increment #2
LastX: M = Central body Mass B1 = Final orbit perigee

Example . A spacecraft is in a 480 km by 800 km earth orbit (orbit 1). Determine the most

efficient

transfer from orbit 1 to a nother elliptical orbit of 1000 km by 7 000 km, and the required delta -v.

First for the perigee jumps, w e type:

5.97219 E24, STO L

- mass of the Earth

480 E3, ENTER?, 8 E5, ENTER, -perigee and apdalgsee of Al ower o0
1 E6, ENTER", 7 E6 -perigee and apogee of HAuppero
XEQii + VEa 12 => 3847%2. 3/ 4 m/s
X<>Y => 13Z54%41. /] mis
And the transfers at the apogee:
RDN, RDN,5.97219 E24, STO L
CLX,1 E6, ENTERA, 7 E6
X E Q VEbLD => /| 23Z62Y/ 57 mls
X<>Y => 06/ Z60Y03. mis
Comparing these results, itéd appear initiating the
efficient. This is logical because the velocity at the apogee is always smaller than at the perigee, as
determined by the relationship:
Va=Vp[(1l-e)/(1+e)]; thus:Va/Vp=(1 -e)/(1+e)<1
On the other hand, this assumes the numbers correct which as mentioned before, may not be true.
Note that these velocity increments are much larger than those used in circular orbits. T his may be
yet another reason why elliptical orbits are avoided for satellite placement i besides the many other
facts that complicate calculations and arené6t well
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Orbital Rendea/ous.{CORV |, CPRV [}

Orbital transfer becomes more complicated when the object is to rendezvous with or intercept another
object in space: both the interceptor and the target must arrive at the rendezvous point at the same
time. This precision demands a phasing orbit to accomplish the maneuver. A phasing orbit is any orbit
that results in the interceptor achieving the desired geometry relative to the target to initiate a
Hohmann transfer.

Co-orbital Rendezvous.

This is the easier of the two cases. Both interceptor and target are in the same orbit, at a relative
position given by the initial phase angle Fo measured from the interceptor /n the direction of
rotation. Therefore, the initial angle will be positive if the interceptor is behind the target, and
negative if it is ahead of it. This makes an important difference in the velocity increments to apply.

9 If the targ et is ahead of the chaser, the latter needs to reduce its speed to move into a
smaller elliptical orbit (inside th e circular one, tangential to the transfer point) 1 with a smaller
period, and thus i t b& &ble to catch up with the target in the next revolution at the tangent
point. The period of such elliptical orbit must equal the time taken by the target to travel to
the rendezvous point, i.e. to move an angle:Ft=2p-Fo.

91 If the target is behind the chaser, th e latterneeds to increase its speed to move into an outer
elliptical orbit (with a positive velocity increment) into an elliptical orbit with greater perio d
than the circular one, to allow the target to move a travel angle Ft=2p + F 0 up to the point
of tangency (one revolution later).

1 Ineither case the chaser requires a second velocity increment equal to the first one but in
opposite direction, to return to the original circular orbit. The rendezvous can be initiated at
any time, ther eosafilmaumeaed tatdaudwaniot f or

Final Position

Ta>T2

Phasing
Orbit

T2

Original Orbit

Ta Focal Point

( Apoapsis >< Periapsis N
I'a Ip
7 2*Semimajor Axis
N rd
2%a:z

Left: Chaser ahead of target
Right: Chaser behind the target (clockwise rotation)
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For circular orbit s, the phasing elliptical orbit semi-major axis is easily calculated as:

a 6 =p+Ro)/pp('®/2)

and the TOF is the full period of such orbit:

ToF = go (a8 /)
For elliptical orbits  one must resort to the Mean anomaly instead 7 or use an area-based approach.
In that case the expression for the semi-major axis of the phasing phase is:

a 0 =pt+RRo)/2p("&B/2), with : Mo =Eoi e.sin(Eo), etc.

Example. Spacecrafts at A and B are in the same elliptical orbit 1. At the instant shown, the chaser
vehicle at A executes a phasing maneuver so as to catch the target S/C back at B after just one
revolution of t loit2cWhatiseahe teguirep total geltan-g.

(Phasing orbit)

13 600 km " 6800 km
Solution: The driver program CORVdoes al | t he w0 (rak+.rp) Wead b E \é(saep:) 2
X E QCOR\D J>PP: <
5.972186 E24, R/S a”“b: <
13600, ENTER”, 6800, +, 2 ,/, ENTER” [ .d..2Z..Y.
13600 E3, ENTER”?, 6800 E3, *, SQRT 74/ 4230802
R/S 9).: <( @ Q)
PI,2,/,RIS a': 62/ 74/ 2262
R/S dS/:,557%5671/
R/S QLC: 54267Y2453.

Note the very small retrograde increment of velocity in direction contrary to the movement. Note also
that it must be repeated as prograde (in the same direction this time) at the rendezvous point to
return to the initial orbit.
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Co-orbital Rendezvous Program Listing:

[ 1 LBL"CORV" |
2 CF 00 default: circular
3 "MASS=?"
4 PROMPT
5 STO 05 M
6 XROM "?ab"
7 RCL 00 e
8 X#0? elliptical?
9 SF 00 yes, flag case

[ 10 LBLOO |
11 "<)=? (C>T)" phase angle
12 PROMPT
13 FC?43
14 D-R
15 FS?00 elliptical?
16 T>E yes, Eccectric anomaly
17 FS?00 elliptical?
18 E>M yes, Mean anomaly
19 STO 03 Fo
20 CHS
21 PI
22 ST+ X (3) 2p
23
24+ Fo+2p
25 LASTX 2p
26 |/ (FP+2p)/ 2p
27  X"2
28 73
29 1X

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

Y/ X
RCL 01
*

STO 06
ng =
ARCL X
AVIEW
AVIEW
RCL 05
X<>Y
ST+ X (3)

RCL 01
RCL 01
X<>Y
+VH12
STO 04
"dvi="
ARCL X
AVIEW
RCL 05
RCL 06
T(m
"TOF="
ARCL X
PROMPT
GTO 00
END

put in expected order

Note. Using the area-based approach instead of the mean anomaly could also be possible, once we
can establish the central angle corresponding to the initial phase angle (which is measured as a true

anomaly).

Let A(Ft) be the focal sector area swept by the target. Then the semi-a x i s

orbit would be given by:

Unfortunately no more room was available in the module, so this option is not included.

a6 = amt)/ palf]Al/3)

of

t

he
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Co-planar Rendezvous.

If the initial and final orbits are circular, coplanar, and of different sizes, then the phasing orbit is
simply the initial interceptor orbit. The interceptor remains in the initial orbit until the relative motion
between the interceptor and t arget results in the desired geometry. At that point, we would inject the
interceptor into a Hohmann transfer orbit. Chances are the initial relative positions of target and
chaser are not the required ones for the transfer, so a wait time will be required .

R

Left: Launching condition. Right: Initial condition

The required conditions specify a lead angle a between the target and the rendezvous point,
determined by the time taken by the chaser to move along the Hohmann transfer . Only in that
circumstance both object will meet at the desired point.

The TOF of the Hohmann section is given by the known geometry (radii for both circular orbits Rc and
Rt), as half the period of the elliptical phasing orbit:

TOF:p.\/(a(m;With a®t)/Z ( Rc

and this time must equal the one taken by the target to travel the lead angle a. If it travels with a
known angular velocity wt, then the conditionis: T T= a/ wt = TOF, hence:

a= p.vvt.\/(abrr) = p.\/(n}/Rt"S) .\/(a/a’x) = p.\/( a6/ Rt) "3

Next, we need to determine the wait time, i.e. how | ong
appropriate position; which is obviously dependent on their initial relative position. Say initially they

are situated an angle F o apart from one another, and let wt, wc be the angular velocities of target

and chaser in their circular orbits 1 i.e. their relative velocity is (wc T wt)

The situation we want is when si mulamdetolues|tyart et & als
isa; t hat 6 s argle besvaeyn themhnaust bep - a. Thus, the traveled angle until that point is:
Ft=(p-a)- FO ;and the wait time is simply such traveled angle over the relative velocity:

WT=[(p-a)- FO]/(wci wt); orWT=[- (p+a)+FO0]/(wci wt)
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Example. Determine the transfer conditions for an automated repair spacecraft in LEO with Ri =
6570 km to rendezvous with a disabled target spacecraft in a geosynchronous orbit with Rt =
42160km, if the initial angle between the two spacecrafts is 180.

Solution - The driver program CPRYV does all the work:

X E QCPR\ J>PP: <

5.972186 24, R/S N(@) : <

6570 E3, R/S N(Q): <

42160 E3, R/S 9).:<

180, R/S QLC: /7Z07%0161

R/S TQ: 0/ E 20 JFK 1097 P
R/S dS/:0Z.3974414

R/S dS0:/2Z237Y¥65510
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Co-Planar w/ Circular orbits.

[ 1 LBL"CPRV" |
2 "MASS=?"
3  PROMPT
4 STOO05 M
5 "R(C)=?'
6 PROMPT
7 STOO04 R1
8 "R(T)=?'
9 PROMPT
10 STOO03 R2
11 RCL04 R1
12 +
13 2
14/
15 STO 06

[ 16 LBLOO |
17 "<)0=?"
18 PROMPT
19 FC?43
20 D-R
21 STO 00 fo
22 RCL 05 M
23 RCL 04 R2
24 RCL 03 R1
25  +VH12
26 STO 02 dv2
27 X<>Y
28 STO 01 dvi
29 RCL 05 M
30 RCL 06
31 TMm
32 STOO7
33 2
34
35 "TOF"=
36 ARCLX
37 AVIEW
38 RCL 06 a
39 RCL 03 Rt
40 |/
41 B
42 YX
43  SQRT

Program Listing:

a = (R1+R2)/2

a = (R1+R2)/2

44 Pl
45  *

46 CHS

47 RCL 00
48 -

49 Pl

50 +

51  X<=0?
52 GTO 00
53 Pl

54 ST+X
55 -

56 LBL 00
57 RCL 03
58 3

59  YAX

60  1/X

61 SORT
62 RCL 04
63 3

64  Y~X

65 1X

66 SOQRT
67 -

68 |/

69 RCL 07
70 RCL 06
71 ml/ 2
72 X<>Y
73  RDN
74 |

75 STO 08
76 "WT="
77  ARCL X
78  AVIEW
79  "dvi="
80 ARCLO1
81 AVIEW
82 "dv2="
83 ARCL 02
84 PROMPT
85 GTO 00
86 END

lead angle
- a
fo
-a-fo

p-a-frfo

Rt

5

- aolfw- uc)

m_—|h§

mi/2
Wait
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Projectile Trajectory. {{PRITL} - by PoulKaarup.

This program can be used as an applet to calculate the different variables of a projectile motion. The
initial conditions are the position and velocity (both in magnitude and angle) at the point of launch.

Then a menu of choices is displayed, where the unknown variablesare shown - as follows:

ar ar v & ir A
" i i i ¥ OE!

USER  RAD 0123d

LBL A is used to find the altitude (y) at a given distance (x)

LBL B calculates the distance and time for a given altitude (y)

LBL C finds the x,y position for a given time (t)

LBL D finds the angle required to hit a target x,y and the time to get there
LBL E finds the velocity required to hit a target x,y and the time to get there.

= =4 =4 -4 -4

Note that LBL D and E will prompt for new values for the initial variables

On each of these options the program will prompt for the know n variables needed for the calculation
of the unknown. Simply answer the prompts and press R/S to proceed.

Example. A projectile is launched with the following initial conditions: from (xo,yo) = (1, 2) T red dot -
and with a velocity Vo= 10 m/s, with an a ngle <(o = 45 deg from the horizon line.

Dll
> |
} L ]

Qo m
34 - '

- |
24 - ' -
1 i

o 1 2 3 4 5 -] P 8 L] 10 1 12 13

Find the altitude at x=5m; the distance for y=4m, and the position at t=1s.

XEQ A U: <

5, RIS Q:.%.54;V: 22066 (greenline)

XEQ B V: <

4, RIS Q: . Y645 ;U: 15¥12. (blueline)

XEQC Q: <

1, RIS U: 6Y5//;V: 2K¥4/ | (greendot on the far right)
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Find now the angle to hit the fAblueodo target at (2,

XEQ D UM V: < (blue dot)
2, ENTERA, 3, R/S 9):25Y504 ; Q: . 272
R/S 9):65Y052 ; Q: /Y061
XEQE UrV: <
2,ENTERMN 25,R/IS S. : 78436 Q:/Y323;
Lastly, find the |l aunch velocity to hit the Agreeno
XEQE UnrvVv: <

2,ENTERM, 25, RIS S. : 78436 ; Q: /Y323
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