

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 1 OF 59

 HP- PIE MODULE QRG

PIE_ROM Manual

HP-41 Module

Introduction and Credits.

This HP-41 module provides a short collection of functions and routines dedicated to the two most-

famous irrational numbers in math: number pi and number e. With just a 10-digit mantissa

capability the HP41 platform surely isn’t the natural choice for ground-breaking, never-before

covered methods and approaches to the calculation of these numbers – remember: our trusty

Coconut “believes that is a rational number equal to 104348/33215). Nevertheless, there’s still

room for interesting exercises and ingenious approaches to work-around such platform limitations.

Several MCODE functions and short FOCAL routines are provided mainly as programming exercises;

that is application examples using general techniques like Continued Fractions or making use of

other fields like integration, random numbers and nested radicals – always applied to the pi/e

subject.

In the “-Pi DIGITS” section the module includes all relevant programs on this subject known to the

author published in different magazines, books, and forums – in what should be a comprehensive

archive of available material on this topic. In particular the MCODE function MDOP written by Peter

Platzer, is a remarkable implementation even if it requires Q-RAM to hold the results, so dust off

your HEPAX RAM for the task.

In terms of the sources used, the usual suspects are to blame: PPC Journals (see Ron Knapp’s

classic programs), application books and user forums. Very special thanks to Valentín Albillo for his

seminal and always original contributions along the years, a real powerhouse on this and many

other math subjects. Many thanks to Gerson W. Barbosa, Jean-Marc Baillard, Thomas Klemm,

Benoit Maag and everybody contributing to the MoHP forum on this subject. As a wise man once

said, “if something works as expected it’s their credit, if it doesn’t it’s my fault”.

Dependencies.

Lastly, note that some programs use functions from the SandMath – which in turn needs the

Library#4 as well. This dependency is more than justified to enable the venerable 41 platform to

use RCL math functions (for direct compatibility with HP-42 code); and to apply off-the-beaten-path

approaches using hyperbolic functions, CROOT solver, AGM and FLOOR, as well as to benefit from

the remarkable Continued Fractions MCODE implementation written by Greg McClure, also available

in that module.

General references:

https://en.wikipedia.org/wiki/Approximations_of_%CF%80#Gregory%E2%80%93Leibniz_series

https://mathworld.wolfram.com/PiApproximations.html

https://en.wikipedia.org/wiki/Approximations_of_%CF%80#Gregory%E2%80%93Leibniz_series
https://mathworld.wolfram.com/PiApproximations.html

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 2 OF 59

 HP- PIE MODULE QRG

Without further ado, here is a list of the functions in the Main FAT table.

XROM# Function Description Author

09.00 -PI/E ROM Section Header n/a

09.01 “3PI Madhava Alternating Series Thomas Klemm

09.02 “GBPI Gerson’s Pi formula Barbosa-Martin

09.03 E2PI From e to Á. Martin

09.04 LIUHUI Liu Hui’s Pi formula Á. Martin

09.05 “LNPI Ramanujan Ln-based formula Á. Martin

09.06 “MCE Monte-Carlo method for e Albillo-Martin

09.07 “MCPI Monte-Carlo method for Albillo-Martin

09.08 “MYPI 10-digit using an AGM closed-form Á. Martin

09.09 “PICUBE from cubic equation root Albillo-Martin

09.10 PI2E From to e Á. Martin

09.11 “PIFL using a FLOOR loop Valentín Albillo

09.12 PISIN using a SIN loop Á. Martin

09.13 PPIE Valentín’s Product formula w/ correction Á. Martin

09.14 RAMA10 Ramanujan formula (10-digit accuracy) Á. Martin

09.15 “SBPI Salamin-Brent Algorithm – based on AGM Á. Martin

09.16 “VAPI using a corrected Leibnitz series Valentín Albillo

09.17 VIETA Viete’s formula Á. Martin

09.18 WALLIS Wallis formula (n in X) Á. Martin

09.19 “WPI Wallis formula – V2 JM Baillard

09.20 “WPIH Wallis formula w/ hyperbolics Werner

09.21 “WWPI Wallis-Wasicki Formula Gerson W. Barbosa

09.22 -PIE DIGITS Section header n/a

09.23 EB Erdós-Borwein constant Á. Martin

09.24 IROUND Integer Round Á. Martin

09.25 MDOP _ _ _”_ Many Digits of – Spigot algorithm Peter Platzer

09.26 “PI1K to 1,000 digits Ron Knapp

09.27 "E2900 E to 2,900 digits Ron Knapp

09.28 “R Result output Ron Knapp

09.29 “PIDIG up to 1,590 digits Jean-Marc Baillard

09.30 “EZHAL E to 1,143 digits Eckard Gehrke

09.31 “PIZHAL to 800 digits – Machin’s method Eckard Gehrke

09.32 “OUT Output results Eckard Gehrke

09.33 “2PI digits Benoit Maag

09.34 -CONT FRAC Section header n/a

09.35 “CFE Continued Fractions for e Martin-McClure

09.36 “*E Auxiliary for “CFE Á. Martin

09.37 “CFPI Continued Fractions for Martin-McClure

09.38 “P0 Auxiliary for “CFPI Á. Martin

09.39 “CFP1 Continued Fractions for – version 1 Martin-McClure

09.40 “P1 Auxiliary for “CFP1 Á. Martin

09.41 “CWPI Wallis-adjusted CF for Martin-McClure

09.42

“*WP Auxiliary for “CWPI Á. Martin

09.43 “PITG by simple integration Á. Martin

09.44 “*I Integrand function Á. Martin

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 3 OF 59

 HP- PIE MODULE QRG

Pi Approximations

The module includes a few short functions based on well-known pi approximations. There are

literally hundreds of them (see for instance Pi Approximations -- from Wolfram MathWorld) but

I’ve chosen those meaningful to the HP-41 platform in terms of decimal digits and somewhat the

available function set and CPU speed.

Function Description Input Output

LIUHUI Liu Hui’s formula none 3,141590529

RAMA10 Ramanujan formula (10-digit) none 3,141592654

E2PI From e to none 3,141592653

PI2E From to e none 2,718281828

PISIN SIN-based iterations none 3.141592654

VIETA Viete’s formula none 3,141592654

“PICUBE as root of cubic equation none 3.141592654

“PIFL FLOOR-based iterations n in X Function of n

“PITG INTEG-based calculation FIX-9 3.141592654

“3PI Madhava Series none 3.141592654

“ GBPI Gerson’s formula (e-based) none 3.141592654

They’re described below.

• RAMA10 uses one of the many Ramanujan’s approximations of pi, correct to 10 decimal

digits. It requires no input. The result is placed in X and the stack is lifted (unless CPU F11

is clear)

 XEQ “RAMA10” => (in FIX 9)

• LIUHUI uses Liu Hui’s formula to calculate an approximation of pi, correct to 5 decimal

digits. It requires no input. The result is placed in X, the stack is lifted (unless CPU F11 is

clear)

XEQ “ LIUHUI” => (in FIX 9)

https://mathworld.wolfram.com/PiApproximations.html

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 4 OF 59

 HP- PIE MODULE QRG

• VIETA uses Viete’s formula for the calculation, a more accurate one in that is returns a

correct value to the 11th. decimal digit (although this is not taken advantage of on the HP-

41 or course).

The FOCAL program listed below would be equivalent to the MCODE implementations of VIETA and

LIUHUI. No data registers are used but ALPHA registers M,N are needed. Refer to the appendix

section of the manual for the details on the MCODE implementation.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 5 OF 59

 HP- PIE MODULE QRG

The next three functions are taken from one of Valentín Albillo’s famous challenges (see: “HP

Challenge VA511 - 2020-03-14 - SRC 006 Pi Day 2020 Special”),

The Function PISIN uses a SIN-based iterative method to

estimate p. The method is a very simple one, and it’s also highly

efficient: starting with the value 3, only three iterations already

achieve a 10-digit accuracy in the result.

See on the right the short & sweet user code routine (who said

FOCAL wasn’t efficient?), which is equivalent to the MCODE code

implemented in the module, also shown below for your

reference.

XEQ “PISIN” ->

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 6 OF 59

 HP- PIE MODULE QRG

• The routine PIFL is based on a FLOOR

algorithm. Although it shares with the previous

one to be short in code length, its efficiency is

drastically worse: it takes quite a large number

of iterations to achieve a decent accuracy, as

the table below shows. For obvious reasons a

TURBO-50 CL or better yet, V41 in turbo mode

are recommended.

of terms Result

10

100

1,000

10,000

100,000

• On the other hand, PICUBE uses a “tuned”

cubic equation as the basis for the calculation.

It is quite fast as no iterations are needed and

because it uses the SandMath’s CROOT (in

MCODE) to obtain the real root of the equation.

Let xo be the real root of:

x^3 - 6x^2 + 4x – 2 = 0

then:

 = 24. Ln(x0) / sqrt(163)

XEQ “PICUBE” =>

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 7 OF 59

 HP- PIE MODULE QRG

Pi using Madhava Alternating Series - 3PI I

See https://www.hpmuseum.org/forum/thread-18129.html

The series expression is as follows:

An interesting expression by itself that proves to be elusive in its implementation due to its

alternating character – one of the known weak points of this computing platform.

Fortunately, Thomas Klemm provided a capable HP-42 version that has been added to the ROM.

I’ve pre-set the number of terms to 43, as per his findings in the thread referenced above.

01▸LBL “3PI”

02 43

03 ▸LBL 00

04 1/X

05 LASTX

06 X<> ST Z

07 3

08 ÷

09 -

10 X<>Y

11 2

12 -

13 X>0?

14 GTO 00

15 R↓

16 END

XEQ “3PI” =>

Another Ramanujan formula to end this section:

A undeniably beautiful approximation of pi, easily programmed as follows:

01 LBL “LNPI”

02 7

03 FACT
04 5

05 FACT
06 ST+ X

07 +
08 9

09 SQRT

10 Y^X
11 4

12 FACT

13 +

14 3
15 FACT

16 FACT
17 +

18 LN
19 67

20 SQRT

21 /
22 END

https://www.hpmuseum.org/forum/thread-18129.html

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 8 OF 59

 HP- PIE MODULE QRG

Merry-go-Round: From pi to e and back again.

The pair of functions below make use of the expressions linking e and pi to obtain one when the

other is known – albeit in a not-so-trivial way; which BTW would be the Euler “identity” (to loosely

use the term) relating pi, e, and i in the famous equation “e^(i)-1=0”

isolating -> = Ln(-1) / i, and isolating e -> e = (-1)^(1/i) ;

which on the 41Z is a trivial, easy as a pie, two mini-programs (5- and 7-steps respectively):

{ LBL “ZPIE”, -1, ZREAL^, ZLN, Z/I, ZAVIEW, END }

{ LBL “ZEPI”, -1, ZREAL^, PI, ZIMAG^, ZINV, W^Z, ZAVIEW, END }

XEQ “ZPIE” =>

XEQ “ZEPI” =>

But we’re digressing, let’s bring the conversation back to the PIE_ROM, shall we?

From pi to e:

Simply making use of the series definition of the exponential function, calculated for x= :

; thus:

 = Ln (1+ ^2 /2 + ^3 /6 + ^4 /24 + ^5 / 120 + . . .)

Which converges moderately fast, so with about 22 terms we reach the 10-digit accuracy sought

for.

Using PI2E does not require any input, and as expected will place the result in X after lifting the

stack:

 PI2E =>

Conversely, from e to pi:

Here we’re using the formula below:

Using E2PI does not require any input, and as expected will place the result in X after lifting the

stack:

 E2PI =>

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 9 OF 59

 HP- PIE MODULE QRG

A FOCAL program listing equivalent to the MCODE functions included in the module is given next –.

Gerson Barbosa has contributed another way to calculate from e, using his own formula shown

below, that has been programmed in the straightforward GBPI routine as follows:

01 LBL “GBPI”

02 E
03 E^X
04 -12
05 Y^X
06 5.6789 XEQ “GBPI” =>
07 +
08 12 Not sure where this formula came from but sure enough it
09 1/X does the job with flying colors, thanks Gerson!
10 Y^X
11 E
12 E^X
13 *
14 END

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 10 OF 59

 HP- PIE MODULE QRG

Pi in the Sky – The flying squad.

And completing this section we have yet another very recent, Valentín’s 2022 Pi Day contribution –

https://www.hpmuseum.org/forum/thread-18110.html

In it Valentín introduces an original expression also linking the values of pi and e, and furthermore,

he provides up to four correction factors to improve on the results from the product formula, stating

that:

 π ~ PI(N) / (1 + 1/(2*N) - 1/(8*N^2)), and

 π ~ PN(N) / (1 + 1/(2 * N) - 1/(8 * N2) + 13/(144 * N3) - 77/(1152 * N4))

The challenge for the implementation here lies in the limited data format used by the HP-41. With

just a 10-digit mantissa capability the iterative routines are likely to fail due to cumulative errors,

thus we can forget about using FOCAL routines – at least not straightforward ones, anyway.

I decided to give MCODE a chance, to see if three more digits would make a difference – not

expecting it to work but lo and behold it actually does a little good – albeit it can’t cross the

accuracy barrier we’re up against, of course.

The function PPIE expects the number of terms to calculate in X, and returns the pi approximation

already adjusted with the four corrections mentioned above. With the stated limitations it appears

that the sweet spot appears for n=35 terms, giving a result with an absolute percent error of

exactly zero compared to the native 10-digit value in the calculator.

The table below shows the logged details of the tests performed. Notice how things go south once

the sweet spot is passed – due to the platform limitations. I have also included the execution time

(on V41 with default settings, definitely not in TURBO mode)

n result |Delta%| Time H:MMSS

5 3.141630979 1.2199E-05 0.000174

10 3.141593984 4.2335E-07 0.000297

15 3.141592834 5.7296E-08 0.000438

20 3.141592696 1.3369E-08 0.000568

25 3.141592666 3.8197E-09 0.000698

30 3.141592658 1.2732E-09 0.000829

35 3.141592654 0 0.00096

40 3.141592652 6.3662E-10 0.001088

45 3.141592651 9.5493E-10 0.001219

50 3.14159265 1.2732E-09 0.001337

55 3.141592648 1.9099E-09 0.001468

60 3.141592644 3.1831E-09 0.001606

And here’s the MCODE listing with all the details of the implementation:

https://www.hpmuseum.org/forum/thread-18110.html

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 11 OF 59

 HP- PIE MODULE QRG

Header AD5A 085 "E"
Header AD5B 009 "I"
Header AD5C 010 "P"
Header AD5D 010 "P" Ángel Martin
PPIE AD5E 2A9 ?NC XQ Show "RUNNING" - leaves F8 as-is

 AD5F 13C ->4FAA [RUNMSG]

 AD60 2A0 SETDEC

 AD61 135 ?NC XQ naturalize the input

 AD62 134 ->4D4D [NATX4]

 AD63 04E C=0 ALL

 AD64 35C PT= 12 C = 1

 AD65 222 C=C+1 @PT

 AD66 070 N=C ALL initial N=1

 AD67 1A0 A=B=C=0 zero trinity

 AD68 089 ?NC XQ current sum

 AD69 064 ->1922 [STSCR]
LOOPN AD6A 3CC ?KEY

 AD6B 360 ?C RTN

 AD6C 0B0 C=N ALL k-1

 AD6D 1E1 ?NC XQ {A,B} = C+1

 AD6E 100 ->4078 [INCC10]

 AD6F 070 N=C ALL k

 AD70 22D ?NC XQ 1/k

 AD71 060 ->188B [1/X_10]

 AD72 13D ?NC XQ 1/k^2

 AD73 060 ->184F [MP1_10]

 AD74 2BE C=-C-1 MS sign change

 AD75 11E A=C MS same in 13-digit form

 AD76 001 ?NC XQ 1-1/k^2

 AD77 060 ->1800 [ADDONE]

 AD78 3C4 ST=0

 AD79 121 ?NC XQ Ln(1-1/k^2)

 AD7A 06C ->1B48 [LN13]

 AD7B 0B0 C=N ALL k

 AD7C 13D ?NC XQ k.Ln(1-1/k^2)

 AD7D 060 ->184F [MP1_10]

 AD7E 0B0 C=N ALL k

 AD7F 13D ?NC XQ k^2.Ln(1-1/k^2)

 AD80 060 ->184F [MP1_10]

 AD81 001 ?NC XQ 1+k^2.Ln(1-1.k^2)

 AD82 060 ->1800 [ADDONE]

 AD83 0D1 ?NC XQ current sum

 AD84 064 ->1934 [RCSCR]

 AD85 031 ?NC XQ updated sum

 AD86 060 ->180C [AD2-13]

 AD87 089 ?NC XQ current sum

 AD88 064 ->1922 [STSCR]

 AD89 0B0 C=N ALL current term

 AD8A 10E A=C ALL put k in A for compares

 AD8B 0F8 READ 3(X) number of terms

 AD8C 36E ?A#C ALL all done?

 AD8D 2EF JC -35d do next

file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!RUNMSG
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!STSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!RCSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!AD2_13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!STSCR

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 12 OF 59

 HP- PIE MODULE QRG

 AD8E 0A9 ?NC XQ final product

 AD8F 064 ->192A [EXSCR] - {A,B} <-> {Q,+}

 AD90 04E C=0 ALL

 AD91 35C PT= 12 C = 1.5

 AD92 050 LD@PT- 1

 AD93 150 LD@PT- 5

 AD94 025 ?NC XQ

 AD95 060 ->1809 [AD1_10]
ADJUST AD96 0AE A<>C ALL save product result:

 AD97 070 N=C ALL 13-digit sign & exp

 AD98 0CE C=B ALL

 AD99 128 WRIT 4(L) 13-digit mantissa

CT4 AD9A 0F8 READ 3(X) n

 AD9B 10E A=C ALL

 AD9C 135 ?NC XQ n^2

 AD9D 060 ->184D [MP2_10]

 AD9E 13D ?NC XQ n^4

 AD9F 060 ->184F [MP1_10]

 ADA0 04E C=0 ALL

 ADA1 35C PT= 12

 ADA2 050 LD@PT- 1

 ADA3 050 LD@PT- 1 c = 1152

 ADA4 150 LD@PT- 5

 ADA5 090 LD@PT- 2

 ADA6 130 LDI S&X

 ADA7 003 CON:

 ADA8 13D ?NC XQ 1152.n^4

 ADA9 060 ->184F [MP1_10]

 ADAA 239 ?NC XQ 1/1152.n^4

 ADAB 060 ->188E [ON/X13

 ADAC 04E C=0 ALL

 ADAD 2DC PT= 13

 ADAE 250 LD@PT- 9

 ADAF 1D0 LD@PT- 7 C = -77

 ADB0 1D0 LD@PT- 7

 ADB1 130 LDI S&X

 ADB2 001 CON:

 ADB3 13D ?NC XQ -77/1152.n^4

 ADB4 060 ->184F [MP1_10]

 ADB5 089 ?NC XQ -77/1152.n^4

 ADB6 064 ->1922 [STSCR]
CT3 ADB7 0F8 READ 3(X) n

 ADB8 10E A=C ALL

 ADB9 135 ?NC XQ n^2

 ADBA 060 ->184D [MP2_10]

 ADBB 0F8 READ 3(X) n

 ADBC 13D ?NC XQ n^3

 ADBD 060 ->184F [MP1_10]

 ADBE 04E C=0 ALL

 ADBF 130 LDI S&X

 ADC0 144 CON: C = 144

 ADC1 07C RCR 4

 ADC2 130 LDI S&X

file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!ONX13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!STSCR

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 13 OF 59

 HP- PIE MODULE QRG

 ADC3 002 CON:

 ADC4 13D ?NC XQ 144.n^3

 ADC5 060 ->184F [MP1_10]

 ADC6 239 ?NC XQ 1/144.n^3

 ADC7 060 ->188E [ON/X13

 ADC8 04E C=0 ALL

 ADC9 35C PT= 12

 ADCA 050 LD@PT- 1 C = 13

 ADCB 0D0 LD@PT- 3

 ADCC 130 LDI S&X

 ADCD 001 CON:

 ADCE 13D ?NC XQ 13/144.n^3

 ADCF 060 ->184F [MP1_10]

 ADD0 0D1 ?NC XQ -77/1152.n^4

 ADD1 064 ->1934 [RCSCR]

 ADD2 031 ?NC XQ 13/144.n^3 -77/1152.n^4

 ADD3 060 ->180C [AD2-13]

 ADD4 089 ?NC XQ 13/144.n^3 -77/1152.n^4

 ADD5 064 ->1922 [STSCR]

CT2 ADD6 0F8 READ 3(X) π ~ PN(N) / (1 + 1/(2*N) - 1/(8*N2))

 ADD7 10E A=C ALL

 ADD8 135 ?NC XQ n^2

 ADD9 060 ->184D [MP2_10]

 ADDA 04E C=0 ALL

 ADDB 130 LDI S&X c = -8

 ADDC 098 CON:

 ADDD 23C RCR 2

 ADDE 13D ?NC XQ -8.n^2

 ADDF 060 ->184F [MP1_10]

 ADE0 239 ?NC XQ -1/8.n^2

 ADE1 060 ->188E [ON/X13

 ADE2 0D1 ?NC XQ 13/144.n^3 -77/1152.n^4

 ADE3 064 ->1934 [RCSCR]

 ADE4 031 ?NC XQ -1/8.n^2+13/144.n^3 -77/1152.n^4

 ADE5 060 ->180C [AD2-13]

 ADE6 089 ?NC XQ -1/8.n^2+13/144.n^3 -77/1152.n^4

 ADE7 064 ->1922 [STSCR]
CT1 ADE8 0F8 READ 3(X) n

 ADE9 10E A=C ALL

 ADEA 01D ?NC XQ 2n

 ADEB 060 ->1807 [AD2_10]

 ADEC 239 ?NC XQ 1/2n

 ADED 060 ->188E [ON/X13

 ADEE 0D1 ?NC XQ -1/8.n^2+13/144.n^3 -77/1152.n^4

 ADEF 064 ->1934 [RCSCR]

 ADF0 031 ?NC XQ
1/2n -1/8.n^2+13/144.n^3 -
77/1152.n^4

 ADF1 060 ->180C [AD2-13]

 ADF2 001 ?NC XQ
1+1/2n -1/8.n^2+13/144.n^3 -
77/1152.n^4

 ADF3 060 ->1800 [ADDONE]

 ADF4 121 ?NC XQ

 ADF5 06C ->1B48 [LN13]

 ADF6 2BE C=-C-1 MS sign change

file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!ONX13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!RCSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!AD2_13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!STSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!ONX13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!RCSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!AD2_13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!STSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!ONX13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!RCSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!AD2_13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!ADDONE

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 14 OF 59

 HP- PIE MODULE QRG

 ADF7 11E A=C MS ditto for 13-digit form

 ADF8 0B0 C=N ALL recover product result:

 ADF9 158 M=C ALL 13-digit sign & exp

 ADFA 138 READ 4(L) 13-digit mantissa

 ADFB 031 ?NC XQ Ln(PN(N))

 ADFC 060 ->180C [AD2-13]

 ADFD 035 ?NC XQ PN(N)

 ADFE 068 ->1A0D [EXP13]

 ADFF 331 ?NC GO Overflow, DropST, FillXL & Exit
 AE00 002 ->00CC [NFRX]

So here you have it, quite a long code but conceptually not a complicated one – such is the nature

of the MCODE game sometimes.

PS.- Jean-François Garnier has provided the following FOCAL routine that cleverly overcomes the

10-digit accuracy issue to effectively reach good results with about 45 terms (that is 10 more than

the MCODE version, using the first two correction factors instead of four - not bad at all!)

01 LBL "PN2" 21 +
02 "RUNNING" 22 DSE 01
03 AVIEW 23 GTO 00 ; sum endloop --^

04 STO 00 ; N 24 1.5
05 E 25 +
06 - 26 RCL 00
07 STO 01 ; control loop 1..N-1 27 2
08 0 28 *
09 LBL 00 ; sum loop <--- 29 1/X
10 RCL 01 30 RCL 00
11 E 31 X^2
12 + ;n=2..N 32 8
13 X^2 33 *
14 ENTER^ 34 1/X
15 1/X 35 -
16 CHS 36* LN1+X ; correction factor

17 LN1+X 37 -
18 * 38 E^X
19 E 39 CLD
20 + 40 END

file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!AD2_13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!EXP13

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 15 OF 59

 HP- PIE MODULE QRG

Appendix.- Integral Pie

And what about using an integral form, you may ask? Well, mixed results

here to report. The good news is that using a simple simple expression

like the one below works like a charm with a quick call to FROOT:

Setting FIX 9:

XEQ “PITG” =>

References: See https://functions.wolfram.com/Constants/Pi/07/

So far so good, however I’ve not succeeded with other more complex derivations included in other

“Short & Sweet Challenge” threads, such as those shown below:

Which doesn’t converge no matter how I try it, and:

Which includes pi in the definition of pi, if you see my circular point…

See the original thread for more details:

HP Challenge VA515 - 2021-03-14 - SRC 009 Pi Day 2021 Special.pdf

https://functions.wolfram.com/Constants/Pi/07/
https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA515%20-%202021-03-14%20-%20SRC%20009%20Pi%20Day%202021%20Special.pdf

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 16 OF 59

 HP- PIE MODULE QRG

Salimin-Brent Algorithm.

In 1976 Eugene Salamin and Richard Brent independently discovered a new algorithm for pi, which

is based on the arithmetic-geometric mean and some ideas originally due to Gauss in the 1800s

(although for some reason Gauss never saw the connection to computing pi). This algorithm

produces approximations that converge to pi much more rapidly than any classical formula. It may

be stated as follows:

Then pk converges quadratically to pi. This means that each iteration of the algorithm

approximately doubles the number of correct digits of pi. To be specific, successive iterations

produce 1, 4, 9, 20, 42, 85, 173, 347, and 697 correct digits of pi. However, each of these

iterations must be performed using a level of numeric precision that is at least as high as that

desired for the final result; and that unfortunately means just three iterations are meaningful for

the HP-41’s 10-digit precision ceiling.

The FOCAL routine below implements the algorithm for the PIE ROM:

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 17 OF 59

 HP- PIE MODULE QRG

Heretical Pi (an early April’s 1st joke :-)

Inspired by the clever elegance in the Salamin-Brent method I wondered whether a non-iterative

form could be extrapolated from the same approach, using the same starting “anchor” points { 1,

1/sqr(2) } and based on the AGM and GHM means; plus using a “magic” fudge factor “k” to make

it all somehow work out. A totally absurd anathema but just for fun, consider the following

expression:

𝑝𝑖 =
2. 𝑎𝑔𝑚2

1
2 − (𝑎𝑔𝑚2 − 𝑔ℎ𝑚2). 2𝑘

One could even attempt to legitimize this derangement by stating that the fudge factor “k” is based

on the Erdós-Borwein constant, EB as follows: (oh this is getting too weird, or is it?)

And this (see left) is the tonge-in-cheek, no-nonsensical (uh?)

FOCAL routine used that consolidates the heresy and

materializes this wondrous, innovative bluff.

Trying it out for size:

XEQ “MYPI” =>

If you thought this made no sense (say what?) then wait to

read my dissertation on the search - and finding - of a new

transcendent number (a.k.a ’s cousin) through which the

length of the ellipse circumference can be expressed in a

closed form by:

L = 2. sqr(a^2+b^2)

Where a,b are, of course, the semi-axis of said ellipse.

Not convinced yet? Well, perhaps you may want to check my

string-theory-based quick proof of the Riemann hypothesis in

the next section of the manual…

Note: see here for another rant on the subject, it’s worth

reading – but keep your mind open!

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Borwein_constant
https://www.theverge.com/tldr/2018/3/14/17119388/pi-day-pie-math-tau-circle-constant-mathematics-circumference-diameter-radius-holiday-truth

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 18 OF 59

 HP- PIE MODULE QRG

Extra bonus: speaking of Erdós-Borwein, here’s a nice MCODE Utility and corresponding FOCAL

routine side by side to calculate this constant – using the definition series:

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Borwein_constant

01 LBL “EBC”

02 0
03 E
04 LBL 00
05 2^X-1
06 LASTX
07 X<>Y
08 1/X
09 ST+ Z
10 FS? 10
11 VIEW Z
12 X=0?
13 GTO 02
14 RDN
15 ISG X
16 NOP
17 GTO 00
18 LBL 02
19 X<> Z
20 CLD
21 END

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Borwein_constant

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 19 OF 59

 HP- PIE MODULE QRG

Wallis-based Approximations

Also included in the module are a handful of routines based on the infamous Wallis product

expression for the approximation It’s well known that said expression requires a very large number

of terms to get a decent accuracy in the result, hence its usage is limited from a practical point of

view. However, there are ways to go around that deficiency using “correction” factors or other

modifications on top of the basic one.

Function Description Input Author

WALLIS Wallis formula (n in X) n in X Ángel Martin

“WP42 Wallis product Formula n in X Gerson W. Barbosa

“WPI Wallis product Formula n in X Jean-Marc Baillard

“WPIH Wallis Formula w/ Hyperbolics n in X Werner

“CFWP Conti. Fractions correction n in X Martin-Barbosa

“WWPI Wallis-Wasicki Formula n in X Gerson W. Barbosa

• WALLIS is the MCODE implementation of the infamous Walls product. It requires a

number of terms input in X and returns the estimation of pi to the stack X register.

The table below shows (left column) the results for different number of terms; note how the values

get closer to the actual pi value when the Wallis formula is combined with a correction factor (right

column), as we’ll see next:

of terms Wallis Result Wallis-Wasicki Result

10

100

1,000

10,000

100,000 n/a

example:

10,000 , XEQ “WALLIS” =>

Not much to write home about, to say the least, so let’s see other more efficient approaches (read:

fewer number of terms) while still based on the basic Wallis formula.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 20 OF 59

 HP- PIE MODULE QRG

The two programs below are different versions contributed by forum members to compute the

Wallis product (without correction factors). On the left using data registers and the RCL math

(taken from an HP-42 solution); on the righ two more concise routines using only the stack.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 21 OF 59

 HP- PIE MODULE QRG

Wallis-Wasicki formula.

See: https://www.hpmuseum.org/forum/post-139434.html#pid139434

See also: https://www.hpmuseum.org/forum/post-9194.html#pid9194

Gerson W. Barbosa has proposed a correction factor on top of the Wallis product for slightly more

accurate results and definitely better efficiency. The correction factor is the finite continued fraction

shown below, with a constant B(n) term pattern reflecting the number of terms used in the Wallis

part of the combined formula.

So right off the shoe we could use the Continued Fractions engine to calculate the correction factor,

which should definitely converge relatively quick given the large values for both A(n) and B(n). This

is what the routine CWPI does, listed below:

https://www.hpmuseum.org/forum/post-139434.html#pid139434
https://www.hpmuseum.org/forum/post-9194.html%23pid9194

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 22 OF 59

 HP- PIE MODULE QRG

The other approach is obviously to combine both the Wallis product and the correction factor at the

same time, during the execution of the main body code segment. This is done in routine WWPI

listed below:

Table of results/-

Uncorrected Wallis:

N WP42 WPI WPIH

10

100

1,000

10,000

100,000

The three versions are totally identical for any number of iterations.

Corrected Wallis:

n WWPI CWPI

10

100

1,000

10,000

The sweet spot appears to be n=1,000 for both, no doubt the workings of the finite continued

functions term.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 23 OF 59

 HP- PIE MODULE QRG

Pi/e using Continued Fractions

There are many different expressions related to pi and e using continued fractions, both with and

without a clear pattern to the coefficients. As usual, some of them converge very slowly and aren’t

practical for the calculations - thus only have an academic value.

Amongst those useful for our purposes, we find these two for pi:

Routine name: CFPI Routine name: CFP1

With the following recurrent pattern parameters on each case being:

B(0) = 0 B(0)=3

A(1) = 4 ; B(1) = 1 A(n) = (2n-1)^2 ; B(n)= 6

A(n) = (n-1)^2 ; B(n) = 2n-1

And this one for e, beautifully simple and even more efficient for the calculation:

with the following recurrent parameters:

B(0)=2 ;

A(1) = 1 ; B(1)= 1

A(n)=(n-1) ; B(n)=n

XEQ “CFE” => ; with just 5 terms needed

XEQ “CFPI” => ; with 420 terms needed.

XEQ “CFP1” => ; with 14 terms needed

As always, you can set flag 10 to see the progress of the convergence in the display.

References: https://mathworld.wolfram.com/eContinuedFraction.html

 https://en.wikipedia.org/wiki/Continued_fraction

https://en.wikipedia.org/wiki/Continued_fraction
https://mathworld.wolfram.com/eContinuedFraction.html
https://mathworld.wolfram.com/eContinuedFraction.html
https://en.wikipedia.org/wiki/Continued_fraction

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 24 OF 59

 HP- PIE MODULE QRG

The Path not taken:-

Two of the non-practical continued fractions are shown below, for the /2 and 4/ cases– both

requiring many thousands of iterations to achieve decent accuracy (say 5 decimal digits or better),

and thus taking an awfully long execution time even on V41 in turbo mode.

 Brouncker's formula:

Programmed as follows:

http://en.wikipedia.org/wiki/William_Brouncker,_2nd_Viscount_Brouncker

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 25 OF 59

 HP- PIE MODULE QRG

Random Pie – Monte Carlo method

This section uses a variation of the Monte Carlo strategy to evaluate both pi and e. It’s not,

however, based in circle relationships derived from randomly throwing needles or shooting at

targets, but on probability theory instead. It was explained by Valentín himself in his HP Challenge

VA511 - 2020-03-14 - SRC 006 Pi Day 2020 Special.pdf

Quoting directly from that article:

“It's quite simple, actually. My recent program is this:

1 DESTROY ALL @ RANDOMIZE 1 @ FOR K=1 TO 5 @ N=10^K @ S=0
2 FOR I=1 TO N @ IF NOT MOD(IROUND(RND/RND),2) THEN S=S+1
3 NEXT I @ P=S/N @ STD @ DISP N, @ FIX 3 @ DISP 5-P*4 @ NEXT K

which is computing the probability that the closest integer to A/B is even, where A and B

are uniformly distributed random numbers in [0,1), as produced by the RND keyword.

Each time the rounded value is even (i.e., it's 0 modulo 2) the number of favorable

outcomes (S) is incremented by one (see line 2). After N tries have been sampled, the

probability P for the even case will be the number of favorables outcomes (S) divided by the

number of tries (N), thus we have the estimated probability P = S/N.

But I know from theory that in the limit, for N -> Infinity, the exact probability P = (5-

Pi)/4, so isolating Pi we have Pi = 5-P*4, which is displayed by the program in line 3

above.”

Note that he goes on to include yet another possible approach, which results in an even shorter

BASIC program. Here’s the explanation:

“Now, my earlier program, the one-liner, namely:

10 INPUT K @ N=0 @ FOR I=1 TO K @ N=N-MOD(IROUND(RND/RND),2) @ NEXT I @ DISP 1-

4*N/K

is computing the probability that the closest integer to A/B is odd, where A and B are

uniformly distributed random numbers in [0,1), as produced by the RND keyword. Each

time the rounded value is odd (i.e., isn't 0 modulo 2) the number of favorable outcomes (N)

is decremented by one, and after K tries have been sampled, the probability for the odd

case will be the number of favorable outcomes (-N) divided by the number of tries (K), thus

we have the estimated probability P = -N/K.

As the probability of the rounded division being either even or odd is 1 (certainty), the probability

for the odd case is 1 minus the probability for the even case, thus it's P = 1-(5-Pi)/4 = (Pi-1)/4, so

isolating Pi we have Pi = 1+4*P = 1+4*(-N/K) = 1-4*N/K, which is then displayed by the one-line

program.”

https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA511%20-%202020-03-14%20-%20SRC%20006%20Pi%20Day%202020%20Special.pdf
https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA511%20-%202020-03-14%20-%20SRC%20006%20Pi%20Day%202020%20Special.pdf

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 26 OF 59

 HP- PIE MODULE QRG

I chose to use the first approach in this module, partially because it also requires the IROUND

function, and I was intrigued by it. I ended up writing a short MCODE utility for that purpose, which
facilitates the porting of the BASIC code to HP-41 FOCAL, shown in next page.

With regard to the e calculation, the source has also been Valentín’s HP Challenge VA030 - Short

Sweet Math Challenge 25 San Valentin Special - Weird Math.pdf. In that thread there’s one section

(the first “concoction”) about calculating a “weird limit” that can be used for the calculation of e

(making the sum--to-exceed s=1).

“The limit average count for the sum of a series of [0,1) uniformly distributed random numbers to

exceed 1 is exactly e = 2.71828182845904523536+, the base of the natural logarithms, which is

pretty "weird" and can be considered an analog of Buffon's Needle experiment to estimate the value

of Pi. Here we don't throw needles on a grid but merrily add up random numbers keeping count and

we get e instead.”

“This is the general formula to numerically compute the theoretically exact value and my simple 1-

line, 53-byte HP-71B program to instantly compute them given the sum to exceed: “

1 DESTROY ALL @ INPUT X @ S=0 @ FOR K=0 TO IP(X) @ S=S+(K-X)^K/FACT(K)*EXP(X-K) @

NEXT K @ DISP S

For the porting we’ll certainly need the new IROUND utility and obviously capable random number

capabilities, which shouldn’t be much of a problem using the SandMath’s functions SEEDT and

RNDM. E’ll use a time-generated initial seed (input zero for SEEDT), and RNDM will do the work
using the well-known RNG recurrence:

r(k+1) = FRC [r(k) * 9,821 + 0.211327]

A few results are given in the table below:

Iterations MCE MCPI

10

100

1,000

10,000

100,000

1,000,000

As you can see from the table results both routines require a very large number of iterations to get

to a reasonably accurate result, which of course was expected as “it ‘comes with the territory”
when resorting to this type of approaches. See below for the actual program code.

https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA030%20-%20Short%20Sweet%20Math%20Challenge%2025%20San%20Valentin%20Special%20-%20Weird%20Math.pdf
https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA030%20-%20Short%20Sweet%20Math%20Challenge%2025%20San%20Valentin%20Special%20-%20Weird%20Math.pdf

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 27 OF 59

 HP- PIE MODULE QRG

Note:- The poor-man version of IROUND would consist of setting FIX 0 before the LBL 11 loop,

and adding an INT instruction after the division of both random numbers (i.e. replacing IROUND

with INT). That’s almost equivalent but doesn’t handle the EVEN condition for the result, i.e.
IROUND(5.5)=5 whereas INT(4.5) in FIX 0 is equal to 4 instead. Not a show-stopper though,

considering how unlikely it is to find such an occurrence amongst the hundreds of random points
used by the routine.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 28 OF 59

 HP- PIE MODULE QRG

Humble Pie – Series Correction, “Speed it up!”

Yet another wonderful contribution by Mr. Albillo’s at the top of his game - taken from the

challenge thread HP Challenge VA125 - 2006-07-12 - HP-15C Mini-challenge Speeding it up.pdf

Here’s the direct description from that thread, read on and enjoy !

“As stated in the challenge's description, the task is to find a way to use the well-known

Gregory-Leibnitz series to compute Pi to 10 correct places while keeping program size and

running time small.

A direct approach seems doomed to failure as this series converges so incredibly slowly

that millions of terms must be added up to get no more than 6 or 7 correct digits, let alone

10. To clearly demonstrate it, this simple 15- step HP-15C program, which will serve as the

basis for my solutions, will add up any specified even number of terms from the series:

01*LBL A 06 0 11 STO 0
02 STO I 07*LBL 0 12 RCL/I
03 STO+I 08 DSE I 13 +
04 4 09 RCL 0 14 DSE I
05 STO O 10 CHS 15 GTO 0

To improve accuracy, the program begins adding up the smallest terms and goes

backwards until it reaches the largest term, 1. Upon running it, you'll see

that, as expected, the convergence is awfully slow. Let's try to add 4 terms, then 44, then

444:

4 , GSB A -> 2.895238096 (barely one correct digit)
44 , GSB A -> 3.118868314 (barely three correct digits)
444, GSB A -> 3.139340404 (barely four correct digits)

This last result took almost 7 minutes, yet we've got no more than four not-so-correct digits,

so the situation seems hopeless. At this point, it seems we can do no better than try some

relatively complicated techniques, such as the Euler-McLaurin formula or extrapolation

mechanisms for summation of infinite, alternating series such as this one. This would incur

in a serious penalty in vastly increased complexity and program size, as seen in several

working

programs posted by contributors.

A bit of sleuthing:

However, math is full of surprises and serendipitous findings are bound to happen when

and where you least expect them, as we'll immediately see.

https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA125%20-%202006-07-12%20-%20HP-15C%20Mini-challenge%20Speeding%20it%20up.pdf

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 29 OF 59

 HP- PIE MODULE QRG

Let's use our basic program to add up exactly 50 terms:

50, GSB A -> 3.121594653

Now, this has a fairly large error, as we're getting 3.12+ instead of 3.14+, so that the 3rd

digit is already 2 units off. But, don't you notice something truly eerie ? Yes, we get a "2"

where a "4" should be. But the following three digits (159) are correct ! Then we get

another wrong digit, a "4" which should be a "2", but then the next three digits (653) are

once again correct !!

Let's align our value and the correct Pi value and carefully examine the differences:

Sum -> 3.121594653
PI -> 3.141592653 (58979...)

+2 -2

which, in absolute values means:

+0.02 -0.000002

Let's see if this is just a weird coincidence, or else it also happens for other numbers of

terms being added up. Let's try 100 terms, for instance:

100, GSB A -> 3.131592904

 3.141592654

 +1 -25
+0.01 -0.00000025

and we see that our initial impression does hold, because after one wrong digit, the

subsequent four digits (1592) are indeed correct, then another a couple of wrong digits,

and once again another correct digit follows.

Let's call these two corrections' C1 and C2 (i.e: +0.02 and -0.000002 for 50 terms, +0.01

and -0.00000025 for 100 terms, respectively) and see how they relate to the number of

terms being used. A little insight or a little data-fitting will allow us to issue the following

plausible, tentative hypothesis, where N is the number of terms:

C1 = 1/N
C2 = -0.25/N3 = -1/4N3

which do indeed work for N = 50 and N = 100 terms. Now we'll put our hypothesis to the

test, by using it to predict the values of C1 and C2 for N=200 terms:

Prediction for N = 200 -> C1 = 1/200 = 0.005
C2 = -1/(4*2003) = -0.000000031

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 30 OF 59

 HP- PIE MODULE QRG

and we'll now check if they agree with actual results, by running our basic program with

200 as the input value:

200, GSB A -> 3.136592685

 3.141592654

 +5 -31

which indeed do exactly agree with our predicted corrections, +0.005 and -0.000000031.

At this point, we can be fairly sure that our empirical finding holds, and can then proceed

to make use of it by simply computing one or both correction terms, C1 and C2, and using

them to refine the sum provided by our basic program, as follows:

First version, using just one correction term, C1 = 1/N:

Just two little changes to our basic program will compute and add the correction term C1,

resulting in a program just a single step longer, at 16 steps, yet much faster and accurate:

01*LBL A
02 STO I
03 STO+I 50, GSB A -> 3.141594653 in 55"
04 1/X
05 4 error = 2E-6, actually all digits are correct except the "4"
06 STO O
07 X<>Y 100, GSB A -> 3.141592904 in 1'50"
08*LBL 0
09 DSE I error = 2.5E-7

10 RCL 0

11 CHS 400, GSB A -> 3.141592658 in 7'45"

12 STO 0

13 RCL/I error = 4E-9

14 +

15 DSE I

16 GTO 0

so this simple version, with just the one correction term C1 does achieve a 10-digit correct

value (within 4 ulps) while using just 400 terms, in less than 8 minutes. That's many orders

of magnitude better than the basic program could achieve, but we can do still much better:

Second version, using two correction terms, C1=1/N and C2=-1/4N3:

A few stack manipulations will allow us to compute and use both correction terms, C1 and

C2 while using just 5 additional steps, for a very small total of just 21 steps:

01*LBL A
02 STO I
03 STO+I 40, GSB A -> 3.141592651 in 40" (error = 3E-9)
04 1/X
05 ENTER

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 31 OF 59

 HP- PIE MODULE QRG

06 ENTER 50, GSB A -> 3.141592653 in 50" (error = 1E-9)
07 3
08 Y^X
09 4 62, GSB A -> 3.141592654 in 60" (error = 0)
10 STO O
11 /
12 -
13*LBL 0
14 DSE I
15 RCL 0
16 CHS
17 STO 0
18 RCL/I
19 +
20 DSE I
21 GTO 0

so this improved version needs to add up just 62 terms to return a full 10 correct-digit value

within 60 seconds. Here's a table summarizing the different degrees of approximation using

0, 1, and 2 correction terms, for up to 60 terms added up:

N bare series +C1 +C1+C2 t
--
10 3.041839619 3.141839619 3.141589619 10"
20 3.091623807 3.141623807 3.141592557 20"
30 3.108268567 3.141601900 3.141592641 30"
40 3.116596557 3.141596557 3.141592651 40"
50 3.121594653 3.141594653 3.141592653 50"
60 3.124927144 3.141593811 3.141592653 60"

Further empirical confirmation:

As we've been able to indeed get 10 correct digits by using our empirically discovered

corrections, we can be fairly confident that they are no mere coincidences but hold for

greater number of terms added up and thus greater precision. To test this, just out of

curiosity, these are the results for N = 500, 5000, 50000, 500000, and 5 million terms

added up:

N = 500 terms added up
3.13959265558978323858464...
3.14159265358979323846264...
 +2 -2 +10 -122

N = 5,000 terms added up
3.14139265359179323836264339547950...
3.14159265358979323846264338327950...
 +2 -2 +10 -122

N = 50,000 terms added up
3.14157265358979523846264238327950410419716...
3.14159265358979323846264338327950288419716...
 +2 -2 +10 -122

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 32 OF 59

 HP- PIE MODULE QRG

N = 500,000 terms added up
3.14159065358979324046264338326950288419729139937510...
3.14159265358979323846264338327950288419716939937510...
 +2 -2 +10 -122

N = 5,000,000 terms added up
3.14159245358979323846464338327950278419716939938730582097494...
3.14159265358979323846264338327950288419716939937510582097494...
 +2 -2 +10 -122

Notice in particular the values for N = 5,000,000 terms: the 7th decimal is already in error

by 2 units. But the next 13 digits are all correct ! Then, the following digit is also 2 units

wrong. But the next 12 digits are again correct !! All in all, among the first 47 digits, only 3

of them are a few units wrong !

In other words, the original series converges incredibly slowly, granted, but the errors

when you stop at N terms are extremely predictable and easy to compute, so you can

increase your accuracy 3-fold or 5-fold by using just one or two easily derived correction

terms.

Final notes

This empirical discovery, once made, can be substantiated by theory, and a nifty expression

is arrived at which results in an asymptotic approximation to Pi based on the sum of the

original series truncated to N terms plus a 'correction' series (the asymptotic component) in

negative powers of N (1/N, 1/N3, etc) where the so-called Euler numbers are the

coefficients.

Similar phenomena occur for constants other than Pi, for example similarly truncating the

series:

Ln(2) = 1 - 1/2 + 1/3 - 1/4 + 1/5 - ...

results in:

Sum = 0.69314708055995530941723212125817656807551613436025525...
Ln(2) = 0.69314718055994530941723212145817656807550013436025525...

 1 -1 2 -16

and another asymptotic series can be theoretically substantiated, the required coefficients

being now the so called "tangent numbers" instead: 1, -1, 2, -16, ...

Thanks for your interest and many excellent posted contributions, hope you enjoyed

yourselves while working them out.”

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 33 OF 59

 HP- PIE MODULE QRG

And here’s how all this is applied to the HP-41 in this module, a deceptively simple code that

however encompasses the devilish wizardry so well explained in the previous pages:

The routine is deservedly labeled “VAPI”, I’m sure you’ll understand why.

The table of results is shown below. Note the small

number of iterations needed for a good accuracy, proof

of the very efficient algorithm used.

N in X Result

2

4

6

8

10

12

14

16

18

20

This concludes the first part of the manual. In the next section you’ll find a short description of the

MCODE and FOCAL programs to calculate many digits of pi and e.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 34 OF 59

 HP- PIE MODULE QRG

Many Digits of Pi. (by Peter Platzer, MoHPC Forum)

https://www.hpmuseum.org/cgi-sys/cgiwrap...587#147587

The module includes the remarkable and impressive MCODE implementation of the Spigot

algorithm by Peter Platzer, published in the Museum of HP Calculators forum. His description is

available in the appendix, but here are the highlights:

The code asks for three inputs: The page where the MLDL ram starts to use, the number of digits

and the base b to use (max = 5 for 5 digits at a time). One can set Flag 0 and the calc will stop

at each group of digits and wait for a key to be pressed, otherwise it just keeps calculating …

Setting Flag 1 will store the found digits in the same compressed format – each group of up to 5

digits is stored in 2 words, with the right nibble converted to hex. They are stored in reversed

order though

In manual execution the function prompts for the number of digits to calculate (limited to 1999

by the prompt) and the destination page where to store them. This needs to be a q-RAM page to

allow writes into it. The maximum number of digits is 4095 – which will fill up the page in its

entirety.

The screens below show an example to calculate 1,046 digits to be stored in page B:

 ….

In an unmodified HP-41 it delivers 1,160 digits in about 9 hours 3,600 digits in about 4 days ,

and 4,915 digits in about 8 days. The chart below shows a comparison with the previous record-

holding approaches described in the article.

https://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/archv019.cgi?read=147587#147587

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 35 OF 59

 HP- PIE MODULE QRG

; Many Digits of PI

; Spigot algorithm from Pi-book

; uses base b <= 5 to show 5 digits at a time

;Flag0 - wait for key press after each group is shown

;Flag1 - store result digits in reverse order from end (iStart)

;Input:

; Z : p - page number of start of MLDL ram to use

; Y : n - number of digits wanted

; X : base b in powers of 10

;--------------

; All Stack and Alpha is used for temp storage

; 3(X): i in dec, 1step 5(M): orig iStart in hex and 2 step

; 2(Y): tmp 6(N): last addr in hex and 2 step

; 1(Z): iBits in dec, 1 step 7(O): iBits in hex, 2 step

; 4(L): iStart in dec, 1 step 8(P): b|iStart in hex and 2 step

; 9(Q): q - remainder 0(T): page number in hex in C:[0]

;-------------

; All numbers are integers without exponent starting at C[0]

; User-Flag 0 -> wait for key press after each numbers shown. Stored in M-Flag 9

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 36 OF 59

 HP- PIE MODULE QRG

Extended precision: Pi to 1,000 places. (by Ron Knapp, PPCCJ V8N6 p69)

“Compute the first 1,000 decimal digits of Pi in less than 11 hours, 30 minutes”. That was the

friendly challenge put out by the PPC ‘Journal”, especially to members of the TI Personal

Calculator Club, approximately a year ago. This challenge was repeated in the “Calcu-letter” of

Popular Science Magazine, July 1981.

Up to the present time, I have heard of no serious attempts to eclipse this record. So,-- I decided

to improve my own program. The program listed below computes Pi to 1,000 decimal places in

just 8 hours, 30 minutes.

Ed. note: with 2x machines, and some will run Faster, (fastest reported so far was Emett Ingram

(17) at 2.8x) a 4 hour, 1,000 digit Pi program is the state of the PPC art. How long will it be before

someone places 100,000 digits of Pi on a cassette? A printer on the HP-IL would take nearly 45

minutes to print it on 70 feet of paper at 20 digits per line, 2 lines per second.

The first 1.000 decimal places of Pi contains 93 0s, 116 1s, 103 2s, 102 3s, 93 4s, 97 5s, 94 6s, 95

7s, 101 8s, and 106 9s. Below is "3 dot" followed by the first 1,000 decimals of Pi.

3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7 5 1 0 5 8 2

0 9 7 4 9 4 4 5 9 2 3 0 7 8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6 2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7 9 8 2 1 4 8 0 8 6

5 1 3 2 8 2 3 0 6 6 4 7 0 9 3 8 4 4 6 0 9 5 5 0 5 8 2 2 3 1 7 2 5 3 5 9 4 0 8 1 2 8 4 8 1 1 1 7 4 5 0 2 8 4 1

0 2 7 0 1 9 3 8 5 2 1 1 0 5 5 5 9 6 4 4 6 2 2 9 4 8 9 5 4 9 3 0 3 8 1 9 6 4 4 2 8 8 1 0 9 7 5 6 6 5 9 3 3 4 4

6 1 2 8 4 7 5 6 4 8 2 3 3 7 8 6 7 8 3 1 6 5 2 7 1 2 0 1 9 0 9 1 4 5 6 4 8 5 6 6 9 2 3 4 6 0 3 4 8 6 1 0 4 5 4

3 2 6 6 4 8 2 1 3 3 9 3 6 0 7 2 6 0 2 4 9 1 4 1 2 7 3 7 2 4 5 8 7 0 0 6 6 0 6 3 1 5 5 8 8 1 7 4 8 8 1 5 2 0 9

2 0 9 6 2 8 2 9 2 5 4 0 9 1 7 1 5 3 6 4 3 6 7 8 9 2 5 9 0 3 6 0 0 1 1 3 3 0 5 3 0 5 4 8 8 2 0 4 6 6 5 2 1 3 8

4 1 4 6 9 5 1 9 4 1 5 1 1 6 0 9 4 3 3 0 5 7 2 7 0 3 6 5 7 5 9 5 9 1 9 5 3 0 9 2 1 8 6 1 1 7 3 8 1 9 3 2 6 1 1

7 9 3 1 0 5 1 1 8 5 4 8 0 7 4 4 6 2 3 7 9 9 6 2 7 4 9 5 6 7 3 5 1 8 8 5 7 5 2 7 2 4 8 9 1 2 2 7 9 3 8 1 8 3 0

1 1 9 4 9 1 2 9 8 3 3 6 7 3 3 6 2 4 4 0 6 5 6 6 4 3 0 8 6 0 2 1 3 9 4 9 4 6 3 9 5 2 2 4 7 3 7 1 9 0 7 0 2 1 7

9 8 6 0 9 4 3 7 0 2 7 7 0 5 3 9 2 1 7 1 7 6 2 9 3 1 7 6 7 5 2 3 8 4 6 7 4 8 1 8 4 6 7 6 6 9 4 0 5 1 3 2 0 0 0

5 6 8 1 2 7 1 4 5 2 6 3 5 6 0 8 2 7 7 8 5 7 7 1 3 4 2 7 5 7 7 8 9 6 0 9 1 7 3 6 3 7 1 7 8 7 2 1 4 6 8 4 4 0 9

0 1 2 2 4 9 5 3 4 3 0 1 4 6 5 4 9 5 8 5 3 7 1 0 5 0 7 9 2 2 7 9 6 8 9 2 5 8 9 2 3 5 4 2 0 1 9 9 5 6 1 1 2 1 2

9 0 2 1 9 6 0 8 6 4 0 3 4 4 1 8 1 5 9 8 1 3 6 2 9 7 7 4 7 7 1 3 0 9 9 6 0 5 1 8 7 0 7 2 1 1 3 4 9 9 9 9 9 9 8

3 7 2 9 7 8 0 4 9 9 5 1 0 5 9 7 3 1 7 3 2 8 1 6 0 9 6 3 1 8 5 9 5 0 2 4 4 5 9 4 5 5 3 4 6 9 0 8 3 0 2 6 4 2 5

2 2 3 0 8 2 5 3 3 4 4 6 8 5 0 3 5 2 6 1 9 3 1 1 8 8 1 7 1 0 1 0 0 0 3 1 3 7 8 3 8 7 5 2 8 8 6 5 8 7 5 3 3 2 0

8 3 8 1 4 2 0 6 1 7 1 7 7 6 6 9 1 4 7 3 0 3 5 9 8 2 5 3 4 9 0 4 2 8 7 5 5 4 6 8 7 3 1 1 5 9 5 6 2 8 6 3 8 8 2

3 5 3 7 8 7 5 9 3 7 5 1 9 5 7 7 8 1 8 5 7 7 8 0 5 3 2 1 7 1 2 2 6 8 0 6 6 1 3 0 0 1 9 2 7 8 7 6 6 1 1 1 9 5 9

0 9 2 1 6 4 2 0 1 9 8 9

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 37 OF 59

 HP- PIE MODULE QRG

Program listing.-

 *LBL "PI1K" 1
 *LBL A 2

 " PI -?-" 3
 AVIEW 4
 CLRG 5
 FIX 3 6
 4 7
 STO 09 8
 E5 9
 ST/ Y 10
 STO 04 11
 X^2 12
 STO 05 13
 X<>Y 14
 427 15
 + 16
 STO 02 17
 239 18
 X^2 19
 STO 07 20
 LASTX 21
 E2 22
 * 23
 STO 13 24
 RDN 25
 X^2 26
 STO 08 27
 94 E-5 28
 STO 11 29
 14.0139 30
 STO 12 31
 25 32
 STO 10 33
 *LBL 00 34

 RCL 11 35
 ST+ 12 36
 RCL 12 37
 RND 38
 STO 00 39
 RCL 07 40
 RCL 02 41
 INT 42
 ENTER^ 43
 ST* Z 44
 2 45
 - 46
 ST- Z 47

 * 48

 RCL 10 49
 * 50
 STO 06 51
 CLX 52
 STO 01 53
 X<>Y 54
 RCL 13 55
 * 56
 ENTER^ 57
 GTO 02 58
 *LBL 01 59

 RCL 06 60
 ST/ Z 61
 MOD 62
 X<>Y 63
 INT 64
 X<>Y 65
 RCL 04 66
 ST* Z 67
 * 68
 ENTER^ 69
 *LBL 02 70

 RCL 06 71
 ST/ Z 72
 MOD 73
 STO 03 74
 RDN 75
 INT 76
 + 77
 RCL 05 78
 ST- Y 79
 X<>Y 80
 RCL IND 00 81
 + 82
 X>0? 83
 ISG 01 84
 *LBL 03 85

 X<0? 86
 + 87
 RCL 01 88
 RCL 04 89
 ST/ Z 90
 * 91
 ENTER^ 92
 *LBL 02 93

 RCL 08 94
 ST/ Z 95
 MOD 96

 R^ 97
 INT 98

 LASTX 99
 FRC 100
 RDN 101
 + 102
 X<>Y 103
 INT 104
 RCL 04 105
 ST* T 106
 ST* Z 107
 * 108
 STO IND 00 109
 RDN 110
 ENTER^ 111
*LBL 03 112

 RCL 08 113
 ST/ Z 114
 MOD 115
 X<>Y 116
 INT 117
 ST+ IND 00 118
 RDN 119
 + 120
 STO 01 121
 RCL 03 122
 RCL 04 123
 * 124
 ENTER^ 125
 ISG 00 126
 GTO 01 127
 DSE 02 128
 GTO 00 129
 4096 E-7 130
 STO 08 131
 1439.00006 132
 STO 02 133
 837 E-6 134
 STO 11 135
 115.115 136
 STO 12 137
 80 138
 STO 13 139
 5 E6 140
 STO 07 141
 .75 142
 STO 06 143

*LBL “Q” 144

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 38 OF 59

 HP- PIE MODULE QRG

 RCL 11 145
 ST+ 12 146
 RCL 12 147
 RND 148
 STO 00 149
 STO 03 150
 SF 00 151
*LBL 05 152

 RCL 02 153
 INT 154
 ENTER^ 155
 ENTER^ 156
*LBL 02 157

 2 158
 - 159
 ST* Z 160
 RCL 10 161
 ST* Z 162
 X<>Y 163
 * 164
 2 165
 ST- L 166
 CLX 167
 LASTX 168
 ST* T 169
 ST- Y 170
 RDN 171
 * 172
 R^ 173
 ST+ T 174
 X^2 175
 R^ 176
 + 177
 + 178
 FC? 00 179
 GTO 02 180
 RCL 13 181
 * 182
 3 183
 DSE 02 184
 GTO 03 185
*LBL 02 186

 RCL 07 187
 * 188
 RCL 06 189
*LBL 03 190
 X<>Y 191
 RDN 192
 / 193
 STO 01 194
 CLX 195
 R^ 196

 ENTER^ 197
 GTO 09 198
*LBL 08 199

 RCL 01 200
 ST/ Z 201
 MOD 202
 X<>Y 203
 INT 204
 X<>Y 205
 RCL 04 206
 ST* Z 207
 * 208
 ENTER^ 209
*LBL 09 210

 RCL 01 211
 ST/ Z 212
 MOD 213
 RDN 214
 INT 215
 + 216
 RCL IND 00 217
 - 218
 X>0? 219
 GTO 02 220
 DSE 00 221
*LBL 03 222

 DSE IND 00 223
 ISG 00 224
 RCL 05 225
 + 226
*LBL 02 227

 STO IND 00 228
 R^ 229
 RCL 04 230
 * 231
 ENTER^ 232
 ISG 00 233
 GTO 08 234
 RCL 03 235
 STO 00 236
 FS?C 00 237
 GTO 05 238
 CLX 239
 ENTER^ 240
 DSE 02 241
 FS? 00 242
 GTO 04 243
*LBL 11 244

 X<> IND 00 245
 RCL 04 246
 / 247
 FRC 248

 LASTX 249
 INT 250
 RCL 08 251
 * 252
 FRC 253
 LASTX 254
 INT 255
 ST+ IND 00 256
 RDN 257
 X<>Y 258
 RCL 05 259
 ST* T 260
 ST* Z 261
 * 262
 RCL 08 263
 * 264
 FRC 265
 X<>Y 266
 LASTX 267
 INT 268
 R^ 269
 + 270
 RCL 05 271
 - 272
 + 273
 X>0? 274
 ISG IND 00 275
 X>0? 276
 GTO 03 277
 RCL 05 278
 + 279
*LBL 03 280

 ISG 00 281
 GTO 11 282
 GTO “Q” 283
*LBL 04 284

 RCL 03 285
 STO 00 286
 RCL 10 287
 X^2 288
 3 289
 Y^X 290
 LASTX 291
 * 292
 STO 08 293
 CLX 294
*LBL 13 295

 RCL IND 00 296
 X<>Y 297
 RCL 04 298
 ST/ Z 299
 * 300

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 39 OF 59

 HP- PIE MODULE QRG

 ENTER^ 301
*LBL 02 302

 RCL 08 303
 ST/ Z 304
 MOD 305
 R^ 306
 INT 307
 LASTX 308
 FRC 309
 RDN 310
 + 311
 X<>Y 312
 INT 313
 RCL 04 314
 ST* T 315
 ST* Z 316
 * 317
 STO IND 00 318
 RDN 319
 ENTER^ 320
*LBL 03 321

 RCL 08 322
 ST/ Z 323
 MOD 324
 X<>Y 325
 INT 326
 ST+ IND 00 327
 RDN 328
 + 329
 ISG 00 330
 GTO 13 331
 114.013 332
 STO 00 333
 215 334
 STO 03 335
 CLX 336
*LBL 06 337

 RCL IND 03 338
 + 339

 RCL IND 00 340
 - 341
 0 342
 X<>Y 343
 X<0? 344
 X>0? 345
 GTO 02 346
 RCL 05 347
 + 348
 DSE Y 349
*LBL 02 350

 STO IND 00 351
 RDN 352
 DSE 03 353
 DSE 00 354
 GTO 06 355
 BEEP 356
 RTN 357

*LBL E 358

 SF 21 359
 CLA 360
 FIX 0 361
 14.114 362
 STO 00 363
 SF 29 364
 RCL IND 00 365
 ACX 366
 ADV 367
 CF 29 368
 ISG 00 369
*LBL 07 370

 XEQ 10 371
 ISG 00 372
 FS? 00 373
 RTN 374
 " " 375
 XEQ 10 376
 ADV 377
 CLA 378

 ISG 00 379
 GTO 07 380
 AVIEW 381
 RTN 382
*LBL 10 383

 RCL IND 00 384
 RCL 04 385
 / 386
 INT 387
 LASTX 388
 FRC 389
 RCL 04 390
 XEQ 12 391
 " " 392
 XEQ 12 393
 RTN 394
*LBL 12 395

 * 396
 RCL Y 397
 X=0? 398
 GTO 03 399
 LOG 400
 INT 401
*LBL 03 402
 RCL 09 403

 X<>Y 404
 X=Y? 405
 GTO 02 406
 - 407
 0 408
*LBL 14 409

 ARCL X 410
 DSE Y 411
 GTO 14 412
*LBL 02 413
 ARCL T 414
 ACA 415
 CLA 416
 END 417

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 40 OF 59

 HP- PIE MODULE QRG

Extended precision: E to 2,900 places. (by Ron Knapp, PPCCJ V9N1 p12)

This program is an abbreviated version designed to compute the decimal places of “e” to the

greatest possible limit allowed in an HP-41CV or an HP-41C with a Quad Memory module. The

program does the initialization including setting the SIZE to 294 data registers.

R01 shows the count-down number at all times. Originally this indicates the number of terms of

the series necessary to obtain the accuracy desired. The number of terms yet to be computed is

continuously displayed to allow the operator to know the progress of the computation. When the

count-down number reaches zero the execution can proceed to the readout (or printout)

routine, which displays 10 digits at a time, broken into two groups of five digits each, for easy

reading. All leading and ending zeros are shown.

Instructions:

XEQ “E2900” Will take around 25 minutes at TURBO50 speed !

XEQ “R” To see/Print the results

01 LBL “R” Readout results

02 FIX 0

03 CF 29

04 “2,”

05 AVIEW

06 4

07 ST+ 03

08 LBL 06

09 CLA

10 SF 01

11 RCL IND 03

12 E5

13 /

14 FRC

15 LASTX

16 INT

17 LBL 07

18 ENTER^

19 ENTER^

20 4

21 X<>T

22 X=0?

23 GTO 08

24 LOG

25 INT

26 –

27 0

28 X=Y?

29 GTO 09

30 LBL 08

31 ARCL X

32 DSE Y

33 GTO 08

34 LBL 09

35 ARCL Z

36 FC?C 01

37 GTO 10

38 “|- “ ; two spaces

39 R^

40 E5

41 *

42 GTO 07

43 LBL 10

44 AVIEW

45 ISG 03

46 GTO 06

47 END

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 41 OF 59

 HP- PIE MODULE QRG

Program listing. -

 *LBL "E2900" 1

 294 2
 PSIZE 3
 CF 01 4
 CF 02 5
 4.004 6
 STO 00 7
 1112 8
 STO 01 9
 E 10
 STO 03 11
 .293 12
 STO 03 13

*LBL e 14

 RCL 01 15
 ENTER^ 16
 VIEW X 17
 DSE 01 18
 E10 19
 X<>Y 20
 ISG Z 21
 *LBL 00 22

 RCL 01 23
 X<>Y 24
 * 25
 X>Y? 26
 GTO 01 27
 DSE 01 28
 GTO 00 29
 SF 01 30
 ENTER^ 31
 *LBL 01 32
 R^ 33
 LASTX 34
 X<>Y 35
 RCL 01 36
 3 37
 FC? 01 38
 DSE X 39
 *LBL 02 40

 + 41
 - 42
 E 43
 ENTER^ 44
 *LBL 03 45

 X<> L 46

 ST* Y 47
 X<> L 48
 ST+ Y 49
 ST+ L 50
 DSE Z 51
 GTO 03 52
 * 53
 + 54
 *LBL 04 55
 E5 56
 * 57
 ENTER^ 58
 R^ 59
 ST/ Z 60
 MOD 61
 X<>Y 62
 INT 63
 E5 64
 X>Y? 65
 GTO 05 66
 / 67
 INT 68
 E 69
 ST- 00 70
 X<>Y 71
 ST+ IND 00 72
 RDN 73
 ST+ 00 74
 CLX 75
 LASTX 76
 FRC 77
 E5 78
 * 79
 LASTX 80
 *LBL 05 81

 * 82
 X<> IND 00 83
 LASTX 84
 / 85
 INT 86
 ST+ Y 87
 X<> L 88
 FRC 89
 X<>Y 90
 E5 91
 ST* Z 92

 * 93
 ENTER^ 94
 R^ 95
 ST/ Z 96
 MOD 97
 LASTX 98
 RDN 99
 X<>Y 100
 INT 101
 ST+ IND 00 102
 CLX 103
 + 104
 + 105
 ISG 00 106
 GTO 04 107
 X<>Y 108
 / 109
 RND 110
 E 111
 ST- 00 112
 X<>Y 113
 ST+ IND 00 114
 R^ 115
 E-10 116
 * 117
 ST* 02 118
 RCL 02 119
 LASTX 120
 X>Y? 121
 SF 02 122
 FS? 02 123
 ST/ 02 124
 E-3 125
 RCL 00 126
 FRC 127
 FC?C 02 128
 + 129
 RCL 03 130
 X<Y? 131
 X<>Y 132
 RDN 133
 4 134
 + 135
 STO 00 136
 FC?C 01 137
 GTO e 138
 END 139

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 42 OF 59

 HP- PIE MODULE QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 43 OF 59

 HP- PIE MODULE QRG

Extended precision for Pi. (by Benoit Maag)

This section is a reproduction of the original article in the museum forum, see:

https://www.hpmuseum.org/forum/post-139434.html#pid139434

HP-41C Program / 41CL – DM41X

(X-functions only needed for memory sizing)

The program uses the formula: π = 2 + 1/3*(2 + 2/5*(2 + 3/7*(2 + …

n decimal precision obtained after INT(n/log(2)) iterations

Data stored as xxxxx.xxxxx – calculations done with 5 digits at a time. The fractional and integer

part of the store number are separated and processed separately. The program is longer and slower

as a result but memory use is maximized. Every iteration of i runs the multiplication by i from Rmax

down to R03 and then the division by 2i+1 from R03 to Rmax.

Memory Usage

R00: indirect addressing register

R01: i, starting at INT(n/log(2)) and decreasing to 1

R02: number of last register of data

R03: x.xxxxx

R04 = Rmax: xxxxx.xxxxx (Rmax: last register of data)

Instructions

Nb of decimals desired (multiple of 10) XEQ “PI”

When the program ends (with a BEEP), the approximation of is stored in R03 ~ Rmax – nb

of decimals = number of decimals desired + 5

Benckmarking:-

Notable absence is the V41 – TURBO test case, which of course will perform as good as

the hosting PC machine is capable of performing.

Starting with the plain configuration:

https://www.hpmuseum.org/forum/post-139434.html#pid139434

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 44 OF 59

 HP- PIE MODULE QRG

Note: the printer module on the DM41X slows down the calculation significantly. For example,

the calculation of 15 digits takes 74 seconds with the printer module plugged in, and just 28

seconds without it

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 45 OF 59

 HP- PIE MODULE QRG

Program Listing

LBL “2PI” 1

ENTER 2

CLRG 3

5 4

+ 5

2 6

STO 03 7

LOG 8

/ 9

INT 10

STO 01 11

RDN 12

 E1 13

/ 14

3 15

+ 16

STO 00 17

STO 02 18

 E 19

+ 20

PSIZE 21

0 22

LBL 00 23

RCL IND 00 24

FRC 25

XEQ 01 26

X<> IND 00 27

INT 28

 E5 29

/ 30

XEQ 01 31

 E5 32

* 33

ST+ IND 00 34

RDN 35

DSE 00 36

RCL 00 37

3 38

X>Y? 39

GTO 02 40

RDN 41

RDN 42

GTO 00 43

LBL 01 44

RCL 01 45

* 46

X<>Y 47

 E5 48

 / 49

 + 50

 INT 51

 LAST X 52

 FRC 53

 RTN 54

 LBL 02 55

 0 56

 ISG 00 57

 FIX 5 58

 LBL 05 59

 E5 60

 * 61

 RCL IND 00 62

 INT 63

 + 64

 XEQ 03 65

 X<> IND 00 66

 FRC 67

 + 68

 E5 69

 * 70

 XEQ 03 71

 E5 72

 / 73

 ST+ IND 00 74

 RDN 75

 ISG 00 76

 FIX 5 77

 RCL 00 78

 RCL 02 79

 X<Y? 80

 GTO 04 81

 RDN 82

 RDN 83

 GTO 05 84

 LBL 03 85

 ENTER 86

 ENTER 87

 RCL 01 88

 ST+ X 89

 ISG X 90

 FIX 5 91

 STO T 92

 MOD 93

 X<>Y 94

 R^ 95

 / 96

 INT 97

 RTN 98

 LBL 04 99

0 2 100

 ST+ 03 101

 DSE 01 102

 GTO 06 103

 BEEP 104

 RTN 105

 LBL 06 106

 VIEW 01 107

 DSE 00 108

 0 109

 GTO 00 110

 END 111

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 46 OF 59

 HP- PIE MODULE QRG

Pi Decimals for the HP-41 (by Jean-Marc Baillard)

http://hp41programs.yolasite.com/pi.php

Overview

You place a positive integer n < 319 in the X-register, and your HP-41 returns 5.n decimals

of PI , that is 5-digits per register up to 319 registers max or 1,595 digits.

Formula:

 = 2 + (1/3) (2 + (1/5) (2 + (3/7) (2 + (2 + k/(k+1)))))

Program Listing

125 bytes / SIZE nnn+1

Data Registers: R00 = n ;

 {R01 ... Rnn} = the decimals of PI in groups of 5 digits.

Flags: /

Subroutines: /

01 LBL "PIDIG"
 02 CLRG
 03 STO 00
 04 5
 05 *
 06 2
 07 LOG
 08 /
 09 INT
 10 STO N
 11 2
 12 RCL 00
 13 E3
 14 /
 15 +
 16 STO M

 17 E5
 18 STO O
 19 ISG N
 20 LBL 01
 21 RCL M
 22 RCL O
 23 ST+ X
 24 RCL 01
 25 +
 26 RCL N
 27 *
 28 STO 01
 29 LASTX
 30 ST+ X
 31 ENTER
 32 SIGN

 33 +
 34 STO P
 35 MOD
 36 ST- 01
 37 LASTX
 38 ST/ 01
 39 CLX
 40 RCL O
 41 *
 42 LBL 02
 43 RCL IND Y
 44 RCL N
 45 *
 46 +
 47 RCL X
 48 RCL P

 49 MOD
 50 ST- Y
 51 X<>Y
 52 LASTX
 53 /
 54 RCL O
 55 ST* Z
 56 X>Y?
 57 GTO 03
 58 ST- Y
 59 SIGN
 60 ST- T
 61 ST+ IND T
 62 ST+ T
 63 LBL 03
 64 RDN

 65 STO IND Z
 66 RDN
 67 ISG Y
 68 GTO 02
 69 DSE N
 70 GTO 01
 71 E5
 72 ST+ 01
 73 ST+ 01
 74 ST/ 01
 75 RCL 00
 76 0.1
 77 %
 78 ISG X
 79 CLA
 80 END

STACK INPUT OUTPUT

X n < 319 1.nnn

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 47 OF 59

 HP- PIE MODULE QRG

Example1: Calculate 5 x 8 = 40 decimals of PI

 8 , XEQ "PIDIG" =>>> 1.008 ---Execution time = 11m14s---

-And we find in registers R01 thru R08: (add zeros on the left if need be)

 3.14159 26535 89793 23846 26433 83279 50288 41971

All these decimals are exact !

Example2: Calculate 5 x 318 = 1590 decimals of PI

SIZE 319

 318 XEQ "PIDIG" =>>>> 1.318 ---Execution time = 27m20s---

 With V41 in Turbo Mode

And we get in registers R01 thru R318: (add zeros on the left if need be)

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 48 OF 59

 HP- PIE MODULE QRG

The Decimals of PI/E for the HP-41 (by Eckard Gehrke)

This section is a direct translation from the relevant sections of the chapter in the book “ HP-41

Sammlung”, pages 65, 66 and following. Vieweg Programmbibliothek #23.

3.3 The calculator program

The HP-41CV programmable calculator is used for the calculation. The HP-41 works with the RPN

system, which is based on a bracket-free representation of all operations.

The HP-41 cannot define variables. It has numbered memories. A call is made with RCL nm, with a

STO nm the number a is stored in register nm. For the used R00 holds i, R01 and R02 are needed

for the loop counter j. 0 is stored in R03 and DR in R04. The following 81 memories R05 - R85 form

[“R1”]

In these registers the successive elements are summed up to the registers R86 - R166 (R2) take in

(b n), the division with D is handled in the registers R167 - R247.

The addressing of these registers is done indirectly with R 01 and R 02. For the subroutines

addition and subtraction, the registers of R1 are called with RCL IND 01, those of R3 with RCL IND

02. The calculation of R 01 and R 02 is done in the subroutine loop counter. Only R 01 is needed

for division. The register R0 (J) takes the remainder Registers. Register M ([) and N (\) are

intended for [“M”] and [“N”] respectively.

The HP-41 can only jump to marks ("labels"). These are indicated in the diagrams with circles. For

the labels NFG, ADD, DIV and SUB the labels 02, 03, 06 and A are used. Subroutines are executed

with XEQ. On an RTN, the computer returns to the line following the subroutine call. Simple jumps

are made with GTO.

For questions answered "no", the computer skips a line. The loop control is done with ISG and DSE.

For i the result is: R 00 has the initial value 1.081 (a,b). If the computer comes to an ISG

instruction, a is increased by 1: 2.081. If a>b, the computer skips one line. With a DSE instruction,

a is decreased by 1. If a<b, one line is line is skipped.

With the help of lines 02 - 05 the calculator shows during the calculation

"PI=?" in the display. The rest of the program can be with the diagrams and the remarks on the

basis of the commented program printout. program printout. To save memory space during the

calculation, the output program has been separated. First the last digit is rounded, with LBL 00 the

output begins the output. A diagram is not given for this.

With SIZE 248 the memory registers are reserved. The display format must be set to FIX 0. With

XEQTPI the program is started. In the following 33 .4 hours the HP-41 calculates 800 decimals of

pi. For this purpose, 580 subsequent elements an/D and 180 subsequent elements bn/D are

calculated. The calculator switches on.

The number Pi program is then switched off. After switching on, SIZE 087 is used to create memory

space for the output program. After reading in it is started with XEQ “OUT”. When the printer is

switched on, the following result is obtained:

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 49 OF 59

 HP- PIE MODULE QRG

Pi accurate to 800 decimals

The Number e

Let e(n) = 1/k!, with k=0 to n.

Then | e-e(n) |< is valid with = (n+2)/(n+1)/(n+1)! . For =10^(-3002) one obtains n = 1143.

If one modifies the indicated procedure, one can achieve with the following algorithm that only the

division subroutine and a register block are required.

The register assignment was made as follows: R00 - R301 (R1) contain e. The index j is stored in M

([), the divisor DR = n in N (\). R0 (J) takes up the remainder RE. The registers P (^) and a serve

as temporary storage.

After a SIZE 302 the program can be started with XEQ “ZAHLE”. After 6d 8h 24min the calculation

is finished. The program OUT serves as output program. It can be loaded into the computer only

after the program ZAHLE has been deleted. The addresses must be adapted to the register

assignments. It results for e: = 2,718281828 .

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 50 OF 59

 HP- PIE MODULE QRG

Program listing.

01*LBL "PIZHAL"
 02 248
 03 PSIZE
 04 "PI=?"
 05 RCL d
 06 AVIEW
 07 STO d
 08 CLRG
 09 SF 00
 10 E
 11 STO 03
 12 8 E10
 13 STO 86
 14 1.081
 15 STO 00
 16*LBL 00
 17 25
 18 STO 04
 19 XEQ 02
 20 XEQ 03
 21 25
 22 STO 04
 23 XEQ 02
 24 XEQ A
 25 RCL 00
 26 85
 27 +
 28 RCL IND X
 29 X#0?
 30 GTO 00
 31 ISG 00
 32 GTO 00
 33 CF 00
 34 E
 35 STO 03
 36 9.56 E11
 37 STO 86
 38 1.081
 39 STO 80
 40*LBL 01
 41 57121
 42 STO 04
 43 XEQ 02
 44 XEQ A
 45 57121
 46 STO 04

 47 XEQ 02
 48 XEQ 03
 49 RCL 00
 50 85
 51 +
 52 RCL IND X
 53 X#0?
 54 GTO 01
 55*LBL 02
 56 SF 01
 57 XEQ 06
 58 CF 21
 59 RCL 03
 60 STO 04
 61 XEQ 06
 62 2
 63 ST+ 03
 64 RTN
 65*LBL 03
 66 CF 02
 67 XEQ B
 68*LBL 04
 60 0
 70 FS?C 02
 71 E
 72 ST+ IND 02
 73 RCL IND 02
 74 RCL IND 01
 75 STO M
 76 +
 77 STO IND 01
 78 E10
 79 X>Y?
 80 GTO 05
 81 ST- IND 01
 82 RCL IND 02
 83 E1
 84 /
 85 FRC
 86 RCL M
 87 E1
 88 /
 89 FRC
 90 +
 91 FRC
 92 ENTER^

 93 RND
 94 E1
 95 *
 96 X<>Y
97 E1
98 *
99 -
100 ST- IND 01
101 SF 02
102*LBL 05
103 E
104 ST- 01
105 0
106 STO IND 02
107 DSE 02
108 GTO 04
109 RTN
110*LBL 06
111 CLA
112 166.166
113 RCL 00
114 FS? 01
115 85.085
116 +
117 STO 01
118*LBL 07
119 RCL IND 01
120 RCL 04
121 /
122 INT
123 STO M
124 RCL O
125 E10
126 *
127 RCL 04
128 /
129 INT
130 STO N
131 +
132 X<> IND 01
133 RCL 04
134 MOD
135 STO Z
136 RCL 04
137 /
138 RCL M

139 +
140 LASTX
141 -
142 E
143 X=Y?
144 ST- IND 01
145 RCL T
146 X<> O
147 E10
148 *
149 RCL 04
150 MOD
151 ST+ O
152 RCL 04
153 /
154 RCL N
155 +
156 LASTX
157 -
158 E
159 X=Y?
160 ST- IND 01
161 RCL O
162 RCL 04
163 X>Y?
164 GTO 08
165 MOD
166 STO O
167 E
168 ST+ IND 01
160*LBL 08
170 FC? 01
171 GTO 10
172 FC? 00
173 GTO 09
174 RCL IND 01
175 X#0?
176 GTO 09
177 FS?C 02
178 RTN
179 SF 02
180*LBL 09
181 RCL 01
182 81
183 +
184 RCL IND 01

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 51 OF 59

 HP- PIE MODULE QRG

185 STO IND Y
186*LBL 10
187 ISG 01
188 GTO 07
189 RTN
190*LBL A
191 CF 02
192 XEQ B
193*LBL 11
194 RCL IND 01
195 FC? 02

196 0
197 FS?C 02
198 E
199 -
200 RCL IND 02
201 -
202 STO IND 01
203 0
204 X<=Y?
205 GTO 12
206 E10

207 ST+ IND 01
208 SF 02
209*LBL 12
210 E
211 ST- 01
212 0
213 STO IND 02
214 DSE 02
215 GTO 11
216 RTN
217*LBL B

218 RCL 00
219 INT
220 E3
221 /
222 85.003
223 +
224 STO 01
225 162.162
226 +
227 STO 02
228 END

 01*LBL "EZHAL"
 02 302
 03 PSIZE
 04 CLRG
 05 1143
 06 STO N
 07 E
 08 STO 00
 09*LBL 00
 10 .301
 11 STO M
 12 0
 13 STO O
 14*LBL 01
 15 RCL IND M
 16 RCL N
 17 /
 18 INT
 19 E10
 20 X<>Y
 21 STO P
 22 X<>Y
 23 RCL M
 24 *
 25 RCL N
 26 /
 27 INT
 28 STO a
 29 +
 30 X<> IND M
 31 RCL N

 32 MOD
 33 STO Z
 34 RCL N
 35 /
 36 RCL ^
 37 +
 38 LASTX
 39 -
 40 E
 41 X=Y?
 42 ST- IND M
 43 RCL T
 44 X<> O
 45 E10
 46 *
 47 RCL N
 48 MOD
 49 ST+ O
 50 RCL N
 51 /
 52 RCL a
 53 +
 54 LASTX
 55 -
 56 E
 57 X=Y?
 58 ST- IND M
 59 RCL O
 60 RCL N
 61 X>Y?
 62 GTO 02

 63 MOD
 64 STO O
 65 E
 66 ST+ IND M
 67*LBL 02
 68 ISG [
 69 GTO 01
 70 E
 71 ST+ 00
 72 ST- \
 73 RCL \
 74 X>0?
 75 GTO 00
 76 OFF
 77 END

 01*LBL "OUT"
 02 RCL 85
 03 E9
 04 /
 05 INT
 06 4
 07 X>Y?
 08 GTO 00
 09 E9
 10 ST+ 84
 11*LBL 00
 12 CF 28
 13 FIX 9
 14 CLA
 15 RCL 05

 16 E9
 17 /
 18 ARCL X
 19 AVIEW
 20 FIX 0
 21 CF 29
 22 6.084
 23 STO T
 24*LBL 01
 25 RCL T
 26 STO T
 27 CLA
 28 "0000"
 29 ARCL IND T
 30 RCL M
 31 0
 32 STO M
 33 "`^^^^"
 34 STO O
 35 "`^^^"
 36 RCL O
 37 CLA
 38 STO M
 39 "`^^^^^^^"
 40 X<> Z
 41 STO M
 42 AVIEW
 43 ISG T
 44 GTO 01
 45 CLST
 46 END

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 52 OF 59

 HP- PIE MODULE QRG

Appendix. A few MCODE Listings.

1. Liu Hui formula.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 53 OF 59

 HP- PIE MODULE QRG

2. Ramanujan 10-digit formula.

3. Viete’s Formula. (next page)

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 54 OF 59

 HP- PIE MODULE QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 55 OF 59

 HP- PIE MODULE QRG

4. From Pi to e.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 56 OF 59

 HP- PIE MODULE QRG

5. Wallis Formula (next page)

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 57 OF 59

 HP- PIE MODULE QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 58 OF 59

 HP- PIE MODULE QRG

5 . From e to pi

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 59 OF 59

 HP- PIE MODULE QRG

6. Erdós-Borwein constant.

