PIE_ROM Manual HP-41 Module

Introduction and Credits.

This HP-41 module provides a short collection of functions and routines dedicated to the two mostfamous irrational numbers in math: number pi and number e. With just a 10-digit mantissa capability the HP41 platform surely isn't the natural choice for ground-breaking, never-before covered methods and approaches to the calculation of these numbers – remember: our trusty Coconut "believes that π is a rational number equal to 104348/33215). Nevertheless, there's still room for interesting exercises and ingenious approaches to work-around such platform limitations.

Several MCODE functions and short FOCAL routines are provided mainly as programming exercises; that is application examples using general techniques like Continued Fractions or making use of other fields like integration, random numbers and nested radicals – always applied to the pi/e subject.

In the "-Pi DIGITS" section the module includes all relevant programs on this subject known to the author published in different magazines, books, and forums – in what should be a comprehensive archive of available material on this topic. In particular the MCODE function **MDOP** written by Peter Platzer, is a remarkable implementation even if it requires Q-RAM to hold the results, so dust off your HEPAX RAM for the task.

In terms of the sources used, the usual suspects are to blame: PPC Journals (see Ron Knapp's classic programs), application books and user forums. *Very special thanks to Valentín Albillo* for his seminal and always original contributions along the years, a real powerhouse on this and many other math subjects. Many thanks to Gerson W. Barbosa, Jean-Marc Baillard, Thomas Klemm, Benoit Maag and everybody contributing to the MoHP forum on this subject. As a wise man once said, "*if something works as expected it's their credit, if it doesn't it's my fault*".

Dependencies.

Lastly, note that some programs use functions from the SandMath – which in turn needs the Library#4 as well. This dependency is more than justified to enable the venerable 41 platform to use RCL math functions (for direct compatibility with HP-42 code); and to apply off-the-beaten-path approaches using hyperbolic functions, CROOT solver, AGM and FLOOR, as well as to benefit from the remarkable Continued Fractions MCODE implementation written by Greg McClure, also available in that module.

General references:

https://en.wikipedia.org/wiki/Approximations_of_%CF%80#Gregory%E2%80%93Leibniz_series https://mathworld.wolfram.com/PiApproximations.html

HP- PIE MODULE QRG

Without further add	, here is a	list of the	functions in	the Main	FAT table.
---------------------	-------------	-------------	--------------	----------	------------

XROM#	Function	Description	Author
09.00	-PI/E ROM	Section Header	n/a
09.01	"Σ3ΡΙ	Madhava Alternating Series	Thomas Klemm
09.02	"GBPI	Gerson's Pi formula	Barbosa-Martin
09.03	E2PI	From e to π	Á. Martin
09.04	LIUHUI	Liu Hui's Pi formula	Á. Martin
09.05	"LNPI	Ramanujan Ln-based π formula	Á. Martin
09.06	"MCE	Monte-Carlo method for e	Albillo-Martin
09.07	"МСРІ	Monte-Carlo method for π	Albillo-Martin
09.08	"МҮРІ	10-digit π using an AGM closed-form	Á. Martin
09.09	"PICUBE	π from cubic equation root	Albillo-Martin
09.10	PI2E	From π to e	Á. Martin
09.11	"PIFL	π using a FLOOR loop	Valentín Albillo
09.12	PISIN	π using a SIN loop	Á. Martin
09.13	PPIE	Valentín's Product formula w/ correction	Á. Martin
09.14	RAMA10	Ramanujan formula (10-digit accuracy)	Á. Martin
09.15	"SBPI	Salamin-Brent Algorithm – based on AGM	Á. Martin
09.16	"VAPI	π using a corrected Leibnitz series	Valentín Albillo
09.17	VIETA	Viete's formula	Á. Martin
09.18	WALLIS	Wallis formula (n in X)	Á. Martin
09.19	"WPI	Wallis formula – V2	JM Baillard
09.20	"WPIH	Wallis formula w/ hyperbolics	Werner
09.21	"WWPI	Wallis-Wasicki Formula	Gerson W. Barbosa
09.22	-PIE DIGITS	Section header	n/a
09.23	EB	Erdós-Borwein constant	Á. Martin
09.24	IROUND	Integer Round	Á. Martin
09.25	MDOP"_	Many Digits of π – Spigot algorithm	Peter Platzer
09.26	"PI1K	π to 1,000 digits	Ron Knapp
09.27	"E2900	E to 2,900 digits	Ron Knapp
09.28	"R	Result output	Ron Knapp
09.29	"PIDIG	π up to 1,590 digits	Jean-Marc Baillard
09.30	"EZHAL	E to 1,143 digits	Eckard Gehrke
09.31	"PIZHAL	π to 800 digits – Machin's method	Eckard Gehrke
09.32	"OUT	Output results	Eckard Gehrke
09.33	"Σ2ΡΙ	π digits	Benoit Maag
09.34	-CONT FRAC	Section header	n/a
09.35	"CFE	Continued Fractions for e	Martin-McClure
09.36	"*E	Auxiliary for "CFE	Á. Martin
09.37	"CFPI	Continued Fractions for π	Martin-McClure
09.38	"РО	Auxiliary for "CFPI	Á. Martin
09.39	"CFP1	Continued Fractions for π – version 1	Martin-McClure
09.40	"P1	Auxiliary for "CFP1	Á. Martin
09.41	"CWPI	Wallis-adjusted CF for π	Martin-McClure
09.42	"*WP	Auxiliary for "CWPI	Á. Martin
09.43	"PITG	π by simple integration	Á. Martin
09.44	"*I	Integrand function	Á. Martin

Pi Approximations

The module includes a few short functions based on well-known pi approximations. There are literally hundreds of them (see for instance *Pi Approximations -- from Wolfram MathWorld*) but I've chosen those meaningful to the HP-41 platform in terms of decimal digits and somewhat the available function set and CPU speed.

Function	Description	Input	Output
LIUHUI	Liu Hui's formula	none	3,141590529
RAMA10	Ramanujan formula (10-digit)	none	3,141592654
E2PI	From e to π	none	3,141592653
PI2E	From π to e	none	2,718281828
PISIN	SIN-based iterations	none	3.141592654
VIETA	Viete's formula	none	3,141592654
"PICUBE	π as root of cubic equation	none	3.141592654
"PIFL	FLOOR-based iterations	n in X	Function of n
"PITG	INTEG-based calculation	FIX-9	3.141592654
"Σ3ΡΙ	Madhava Series	none	3.141592654
" GBPI	Gerson's formula (e-based)	none	3.141592654

They're described below.

• **RAMA10** uses one of the many Ramanujan's approximations of pi, correct to 10 decimal digits. It requires no input. The result is placed in X and the stack is lifted (unless CPU F11 is clear)

$$\pi \approx \approx \frac{355}{113} \left(1 - \frac{0.0003}{3533} \right)$$

XEQ "RAMA10" => 크, 1억 15월 2 6 5 억 (in FIX 9)

• **LIUHUI** uses Liu Hui's formula to calculate an approximation of pi, correct to 5 decimal digits. It requires no input. The result is placed in X, the stack is lifted (unless CPU F11 is clear)

$$\pipprox 768\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+1}}}}}}}} pprox 3.141590463236763.$$

XEQ " LIUHUI" => ∃, 14 15 9 Ø 5 2 9 (in FIX 9)

• **VIETA** uses Viete's formula for the calculation, a more accurate one in that is returns a correct value to the 11th. decimal digit (although this is not taken advantage of on the HP-41 or course).

$$rac{2}{\pi} = rac{\sqrt{2}}{2} \cdot rac{\sqrt{2+\sqrt{2}}}{2} \cdot rac{\sqrt{2+\sqrt{2}+\sqrt{2}}}{2} \cdots$$

The FOCAL program listed below would be equivalent to the MCODE implementations of VIETA and LIUHUI. No data registers are used but ALPHA registers M,N are needed. Refer to the appendix section of the manual for the details on the MCODE implementation.

1	LBL "VIETA"		1	LBL "LIUHUI"	
2	Ε		2	8	# ot iters
3	STO M	initial term	3	ENTER^	
4	STO N	initial result	4	Ε	initial value
5	LBL 00		5	LBL 00 <	
6	RCL M		6	2	
7	0	loop result	7	+	
8	LBL 01 <		8	SQRT	
9	2		9	DSE Y	
10	+	add to previous	10	GTO 00	
11	SQRT	square root	11	CHS	final term
12	DSE Y	repeat loop term	12	2	is negative
13	GTO 01	until all done	13	+	
14	2	divide by 2	14	SQRT	
15	1		15	768	
16	RCL N	partial product	16	•	
17	•	updated	17	END	
18	FS? 10				
19	VIEW X	show if F10 set			
20	X<>N				
21	RCL N				
22	-	delta			
23	X=0?	delta=zero?			
24	GTO 02	yes, exit			
25	ISG M	do next term			
26	NOP				
27	GTO 00				
28	LBL 02 <				
29	RCL N				
30	1/X				
31	ST+ X				
32	CLD				
33	END				

estimat	e p. The meth	nod is a	very si	mple one,	and it's also highly		2
efficient: starting with the value 3, only three iterations already							3
achieve	a 10-digit acc	uracy in	the re	sult.			4
acinere	a io algicaco	uruey n		Juici			5
							6
_							7
See on the right the short & sweet user code routine (who said							8
FOCAL	wasn't efficien	t?), whi	ch is ec	uivalent to	o the MCODE code		9
implem	ented in the m	odule,	also sho	wn below	for your		10
referen	ce.						11
XEQ "F	PISIN" ->	3. (4 (59	82654			
	Header	A80B	08E	"N"			
			No. and				

Challenge VA511 - 2020-03-14 - SRC 006 Pi Day 2020 Special'),

estin effici achie

The Function **PISIN** uses a SIN-based iterative method to

The next three functions are taken from one of Valentín Albillo's famous challenges (see: "HP

1	LBL "PISIN"	
2	RAD	
3	3	initial value
4	ENTER^	also # of iters
5	LBL 00	
6	SIN	
7	LASTX	
8	+	x+sin(x)
9	DSE Y	
10	GTO 00	do next
11	RTN	done.

	1000	UDL	r v	
Header	A80C	009	" "	SIN-based iterations
Header	A80D	013	"S"	
Header	A80E	009	" "	
Header	A80F	010	"P"	Martin-Albillo
PISIN	A810	18C	?FSET 11	
	A811	3B5	PC XQ	Stack lift
	A812	051	->14ED	[R_SUB]
	A813	2A0	SETDEC	
	A814	04E	C=0 ALL	
	A815	35C	PT= 12	C=3
	A816	0D0	LD@PT- 3	
	A817	0E8	WRIT 3(X)	initial value
	A818	OEO	SLCT Q	
	A819	01C	PT= 3	will loop three times
LOOP3	A81A	0A0	SLCT P <	
	A81B	070	N=C ALL	required by [TRG100]
	A81C	3C4	ST=0	skips [TRGSET]
	A81D	048	SETF 4	result in RAD
	A81E	229	?NC XQ	it uses [SCR] as well
	A81F	048	->128A	[<u>SIN1]</u>
	A820	11E	A=C MS	bug or what?
	A821	OF8	READ 3(X)	
	A822	025	?NC XQ	
	A823	060	->1809	[AD1_10]
	A824	0E8	WRIT 3(X)	
	A825	0E0	SLCT Q	
	A826	3D4	PT=PT-1	next iteration
	A827	394	?PT= 0	all done?
	A828	393	JNC - 14d	[LOOP3]
	A829	3C1	?NC GO	Normal Function Return
	A82A	002	->00F0	[NFRPU]

• The routine **PIFL** is based on a FLOOR algorithm. Although it shares with the previous one to be short in code length, its efficiency is drastically worse: it takes quite a large number of iterations to achieve a decent accuracy, as the table below shows. For obvious reasons a TURBO-50 CL or better yet, V41 in turbo mode are recommended.

# of terms	Result
10	0 E 0 E 0 E 0 E 0.E
100	3.092 (45949
1,000	a. (a 9027529
10,000	3. 14 133 198 1
100,000	3. 14 1528892

1	LBL "PIFL"	
2	STO 00	n
3	E	
4	-	n-1
5	2 E-3	2.003
6	+	(n+1).003
7	RCL 00	n
8	LBL 01 <	
9	RCL Y	k,003
10	INT	k
11	CHS	- <i>k</i>
12	1	-n/k
13	LASTX	-k
14	X<>Y	
15	FLOOR	floor(-n/k)
16	•	-k*floor(-n/k)
17	DSE Y	n=n-1
18	GTO 01	
19	1/X	1/result
20	RCL 00	n
21	X^2	n^2
22	•	n^2 / Result
23	END	done.

On the other hand, **PICUBE** uses a "tuned" cubic equation as the basis for the calculation. It is quite fast as no iterations are needed and because it uses the SandMath's **CROOT** (in MCODE) to obtain the real root of the equation.

3.141592654

Let xo be the real root of:

$$x^3 - 6x^2 + 4x - 2 = 0$$

then:

 $\pi = 24$. Ln(x0) / sqrt(163)

XEQ "PICUBE" =>

LBL "PICUBE"

1

Pi using Madhava Alternating Series - Σ**3PI**

See https://www.hpmuseum.org/forum/thread-18129.html

The series expression is as follows:

$$rac{\pi}{6} = rac{1}{\sqrt{3}} \left(1 - rac{1}{3^1 \cdot 3} + rac{1}{3^2 \cdot 5} - rac{1}{3^3 \cdot 7} + \cdots
ight)$$

An interesting expression by itself that proves to be elusive in its implementation due to its alternating character – one of the known weak points of this computing platform.

Fortunately, Thomas Klemm provided a capable HP-42 version that has been added to the ROM. I've pre-set the number of terms to 43, as per his findings in the thread referenced above.

<u>01</u> ,	<u>▶ LBL ``∑3PI″</u>	09	-
02	43	10	X<>Y
03	<u>► LBL 00</u>	11	2
04	1/X	12	-
05	LASTX	13	X>0?
06	X<> ST Z	14	GTO 00
07	3	15	R↓
08	÷	16	END

XEQ "Σ**3**PI" =>

3.141592653

Another Ramanujan formula to end this section:

$$\frac{\ln\left\{ [2 \times 5! + (8-1)!]^{\sqrt{9}} + 4! + (3!)! \right\}}{\sqrt{67}}$$

A undeniably beautiful approximation of pi, easily programmed as follows:

<u>01</u>	LBL "LNPI"	12	FACT
02	7	13	+
03	FACT	14	3
04	5	15	FACT
05	FACT	16	FACT
06	ST+ X	17	+
07	+	18	LN
08	9	19	67
09	SQRT	20	SQRT
10	Y^X	21	/
11	4	22	END

HP- PIE MODULE QRG

Merry-go-Round: From pi to e and back again.

The pair of functions below make use of the expressions linking e and pi to obtain one when the other is known – albeit in a not-so-trivial way; which BTW would be the Euler "identity" (to loosely use the term) relating pi, e, and i in the famous equation " $e^{(i\pi)-1}=0$ "

isolating $\pi \rightarrow \pi = Ln(-1) / i$, and isolating $e \rightarrow e = (-1)^{(1/i\pi)}$;

which on the 41Z is a trivial, easy as a pie, two mini-programs (5- and 7-steps respectively):

{ LBL "ZPIE", -1, ZREAL^, ZLN, Z/I, ZAVIEW, END } { LBL "ZEPI", -1, ZREAL^, PI, ZIMAG^, ZINV, W^Z, ZAVIEW, END } XEQ "ZPIE" => 3, 14 15 9 2 6 5 4 ÷ 1 ②

XEQ "ZEPI" => 2,7 1828 1828 + 10

But we're digressing, let's bring the conversation back to the PIE_ROM, shall we?

From pi to e:

Simply making use of the series definition of the exponential function, calculated for $x = \pi$:

$$\exp x:=\sum_{k=0}^\infty rac{x^k}{k!}$$
 ; thus:

 $\pi = \text{Ln} \left(1 + \pi^2 / 2 + \pi^3 / 6 + \pi^4 / 24 + \pi^5 / 120 + \dots\right)$

Which converges moderately fast, so with about 22 terms we reach the 10-digit accuracy sought for.

Using **PI2E** does not require any input, and as expected will place the result in X after lifting the stack:

PI2E => 2,7 (828 (828

Conversely, from e to pi:

Here we're using the formula below:

$$\pi = 4(rctan \operatorname{e} - rctan rac{\operatorname{e} - 1}{\operatorname{e} + 1})$$

Using **E2PI** does not require any input, and as expected will place the result in X after lifting the stack:

E2PI => 3, 14 (592653

1	LBL "E->PI"	23	LBL "PI->E"
2	LBL A	24	LBL B
3	RAD	25	E
4	E	26	ENTER^
5	E^X	27	LBL 00
6	ENTER^	28	PI
7	ATAN	29	RCL Z
8	X<>Y	30	Y^X
9	ENTER^	31	LASTX
10	ENTER^	32	FACT
11	E	33	1
12	-	34	RND
13	X<>Y	35	X=0?
14	E	36	GTO 02
15	+	37	+
16	1	38	ISG Y
17	ATAN	39	NOP
18	-	40	GTO 00
19	4	41	LBL 02
20	•	42	Х⇔Ү
21	RTN	43	PI
22	GTO A	44	1/X
		45	Y^X
		46	RTN
		47	GTO B
		48	END

A FOCAL program listing equivalent to the MCODE functions included in the module is given next –.

Gerson Barbosa has contributed another way to calculate π from e, using his own formula shown below, that has been programmed in the straightforward **GBPI** routine as follows:

01	LBL "GBPI"	
02	E	$a \times \frac{12}{a-3\times4} + 5.67900$
03	E^X	$e \times \sqrt{e} \rightarrow + 3.01090$
04	-12	
05	Υ^χ	
06	5.6789	XEQ "GBPI" => 크. 1월 15 월 2 6 5 월
07	+	
08	12	Not sure where this formula came from but sure enough it
09	1/X	does the job with flying colors, thanks Gerson!
10	Υ^χ	
11	E	
12	E^X	
13	*	
14	END	

HP- PIE MODULE QRG

Pi in the Sky – *The flying squad.*

And completing this section we have yet another very recent, Valentín's 2022 Pi Day contribution – *https://www.hpmuseum.org/forum/thread-18110.html*

In it Valentín introduces an original expression also linking the values of pi and e, and furthermore, he provides up to four correction factors to improve on the results from the product formula, stating that:

$\pi = e^{3/2} \prod_{n=2}^{\infty} e \left(1 - \frac{1}{n^2} \right)^{n^2}$	$\pi \sim PI(N) / (1 + 1/(2*N) - 1/(8*N^2)),$ and
$\pi \sim PN(N) / (1 + 1/(2 * N) - 1/(8 * N))$	N_2) + 13/(144 * N_3) - 77/(1152 * N_4)

The challenge for the implementation here lies in the limited data format used by the HP-41. With just a 10-digit mantissa capability the iterative routines are likely to fail due to cumulative errors, thus we can forget about using FOCAL routines – at least not straightforward ones, anyway.

I decided to give MCODE a chance, to see if three more digits would make a difference – not expecting it to work but lo and behold it actually does a little good – albeit it can't cross the accuracy barrier we're up against, of course.

The function **PPIE** expects the number of terms to calculate in X, and returns the pi approximation already adjusted with the <u>four</u> corrections mentioned above. With the stated limitations it appears that the sweet spot appears for n=35 terms, giving a result with an absolute percent error of exactly zero compared to the native 10-digit value in the calculator.

The table below shows the logged details of the tests performed. Notice how things go south once the sweet spot is passed – due to the platform limitations. I have also included the execution time (on V41 with default settings, definitely not in TURBO mode)

n	result	Delta%	Time H:MMSS
5	3.141630979	1.2199E-05	0.000174
10	3.141593984	4.2335E-07	0.000297
15	3.141592834	5.7296E-08	0.000438
20	3.141592696	1.3369E-08	0.000568
25	3.141592666	3.8197E-09	0.000698
30	3.141592658	1.2732E-09	0.000829
35	3.141592654	0	0.00096
40	3.141592652	6.3662E-10	0.001088
45	3.141592651	9.5493E-10	0.001219
50	3.14159265	1.2732E-09	0.001337
55	3.141592648	1.9099E-09	0.001468
60	3.141592644	3.1831E-09	0.001606

And here's the MCODE listing with all the details of the implementation:

HP- PIE MODULE QRG

Header	AD5A	085	"E"	
Header	AD5B	009	" I "	
Header	AD5C	010	" P "	
Header	AD5D	010	" P "	Ángel Martin
PPIE	AD5E	2A9	?NC XQ	Show "RUNNING" - leaves F8 as-is
	AD5F	13C	->4FAA	[RUNMSG]
	AD60	2A0	SETDEC	
	AD61	135	?NC XQ	naturalize the input
	AD62	134	->4D4D	[NATX4]
	AD63	04E	C=0 ALL	
	AD64	35C	PT= 12	C = 1
	AD65	222	C=C+1 @PT	
	AD66	070	N=C ALL	initial N=1
	AD67	1A0	A=B=C=0	zero trinity
	AD68	089	2NC XO	current sum
	AD69	064	->1922	ISTSCRI
	1000	200	?KFY	
LOOPIN		260		l
		080		k-1
		151		$\int A \mathbf{P} = C + 1$
		100	×1079	[A, b] = C I
	ADGE	070		
		220		R
		220		1/K [1/V 10]
	AD71	120	->1888	[1/X_10]
	AD72	130	21045	1/K ²
			- 3/ 8// 6	
		205		
	AD75 AD74	2BE	C=-C-1 MS	sign change
	AD74 AD75	2BE 11E	C=-C-1 MS A=C MS	sign change same in 13-digit form
	AD73 AD74 AD75 AD76	2BE 11E 001	C=-C-1 MS A=C MS ?NC XQ	sign change same in 13-digit form 1-1/k^2
	AD74 AD75 AD76 AD77	2BE 11E 001 060	C=-C-1 MS A=C MS ?NC XQ ->1800	sign change same in 13-digit form 1-1/k^2 [ADDONE]
	AD73 AD74 AD75 AD76 AD77 AD78	2BE 11E 001 060 3C4	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0	sign change same in 13-digit form 1-1/k^2 [ADDONE]
	AD74 AD75 AD76 AD77 AD78 AD79	2BE 11E 001 060 3C4 121	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2)
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD7A	2BE 11E 001 060 3C4 121 06C	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1B48	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13]
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD7A AD78	2BE 11E 001 060 3C4 121 06C 0B0	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1B48 C=N ALL	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k
	AD73 AD74 AD75 AD76 AD77 AD78 AD78 AD79 AD7A AD7B AD7C	2BE 11E 001 060 3C4 121 06C 0B0 13D	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1B48 C=N ALL ?NC XQ	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2)
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD7A AD78 AD70 AD7C	2BE 11E 001 060 3C4 121 06C 0B0 13D 060	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10]
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD7A AD78 AD70 AD7C AD7D	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD7A AD78 AD7C AD7D AD7C AD7D	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2)
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD78 AD79 AD7A AD7B AD7C AD7D AD7E AD7F AD80	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D 060	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1B48 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2) [MP1_10]
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD78 AD79 AD7A AD70 AD70 AD70 AD77 AD77 AD77 AD77	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D 060 001	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2) [MP1_10] 1+k^2.Ln(1-1.k^2)
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD78 AD79 AD7A AD70 AD70 AD70 AD70 AD77 AD76 AD77 AD80 AD81 AD82	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D 060 001 060	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F ?NC XQ ->184F	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2) [MP1_10] 1+k^2.Ln(1-1.k^2) [ADDONE]
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD78 AD79 AD7A AD78 AD77 AD70 AD77 AD77 AD77 AD77 AD77 AD78 AD77 AD78 AD72 AD72 AD70 AD72 AD73	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D 060 0B0 13D 060 001 060	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->184F ?NC XQ	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2) [MP1_10] 1+k^2.Ln(1-1.k^2) [ADDONE] current sum
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD78 AD79 AD7A AD78 AD77 AD70 AD77 AD77 AD77 AD77 AD77 AD78 AD77 AD78 AD72 AD78 AD72 AD78 AD73 AD74 AD75 AD76 AD75 AD76 AD75 AD76 AD75 AD76 AD77 AD78 AD78 AD79 AD78 AD78 AD79 AD78 AD78 AD78 AD78 AD78 AD78 AD78 AD78	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D 060 001 060 001 060	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->1800 ?NC XQ	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2) [MP1_10] 1+k^2.Ln(1-1.k^2) [ADDONE] current sum [RCSCR]
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD78 AD79 AD7A AD78 AD77 AD70 AD77 AD77 AD77 AD77 AD77 AD77	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D 060 001 060 001 060 001 060	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->1934 ?NC XQ	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2) [MP1_10] 1+k^2.Ln(1-1.k^2) [ADDONE] current sum [RCSCR] updated sum
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD78 AD79 AD7A AD70 AD70 AD70 AD70 AD77 AD70 AD77 AD80 AD81 AD82 AD83 AD84 AD85 AD86	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D 060 001 060 001 060 0D1 064 031 060	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->184F	imit 100 sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2) [MP1_10] 1+k^2.Ln(1-1.k^2) [ADDONE] current sum [RCSCR] updated sum [AD2-13]
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD78 AD79 AD7A AD78 AD77 AD70 AD77 AD70 AD77 AD70 AD77 AD70 AD77 AD80 AD81 AD82 AD83 AD83 AD84 AD85 AD86 AD87	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D 060 001 060 001 064 001 064 031 060	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->1800 ?NC XQ ->1934 ?NC XQ	imit 100 sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2) [MP1_10] 1+k^2.Ln(1-1.k^2) [ADDONE] current sum [RCSCR] updated sum [AD2-13] current sum
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD78 AD79 AD7A AD78 AD77 AD70 AD77 AD70 AD77 AD77 AD80 AD77 AD80 AD81 AD82 AD83 AD84 AD85 AD86 AD87 AD88	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D 060 001 060 001 060 0D1 064 031 060 089 064	 > 1844 C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F ?NC XQ ->1800 ?NC XQ ->1934 ?NC XQ ->180C ?NC XQ ->1922 	imit 100 sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2) [MP1_10] 1+k^2.Ln(1-1.k^2) [ADDONE] current sum [RCSCR] updated sum [AD2-13] current sum [STSCR]
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD78 AD79 AD74 AD78 AD77 AD70 AD77 AD70 AD77 AD70 AD77 AD80 AD81 AD82 AD83 AD84 AD83 AD84 AD85 AD86 AD87 AD88 AD89	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D 060 001 060 001 064 031 060 031 060 031 060	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->1800 ?NC XQ ->1800 ?NC XQ ->1934 ?NC XQ ->1932 C=N ALL	imit 100 sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2) [MP1_10] 1+k^2.Ln(1-1.k^2) [ADDONE] current sum [RCSCR] updated sum [AD2-13] current sum [STSCR] current term
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD78 AD79 AD7A AD78 AD77 AD70 AD77 AD70 AD77 AD70 AD77 AD80 AD77 AD80 AD81 AD83 AD83 AD84 AD85 AD86 AD87 AD88 AD89 AD8A	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D 060 001 060 001 064 031 060 031 060 089 064 0B0 10E	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->184C ?NC XQ ->184C	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2) [MP1_10] 1+k^2.Ln(1-1.k^2) [ADDONE] current sum [RCSCR] updated sum [AD2-13] current sum [STSCR] current term put k in A for compares
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD70 AD78 AD70 AD71 AD78 AD70 AD71 AD72 AD71 AD83 AD83 AD84 AD85 AD84 AD84 AD84 AD84 AD84 AD84	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D 060 001 060 001 064 001 064 031 060 031 060 031 060 089 064	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->1934 ?NC XQ ->1934 ?NC XQ ->1934 ?NC XQ ->1932 C=N ALL ?NC XQ ->1922 C=N ALL A=C ALL READ 3(X)	sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2) [MP1_10] 1+k^2.Ln(1-1.k^2) [ADDONE] current sum [RCSCR] updated sum [AD2-13] current term put k in A for compares number of terms
	AD73 AD74 AD75 AD76 AD77 AD78 AD79 AD70 AD78 AD70 AD71 AD78 AD70 AD71 AD72 AD70 AD71 AD72 AD71 AD72 AD71 AD72 AD71 AD72 AD71 AD72 AD72 AD71 AD72 AD71 AD72 AD71 AD72 AD71 AD72 AD71 AD83 AD84 AD85 AD84 AD85 AD88 AD84 AD88 AD84 AD88 AD84	2BE 11E 001 060 3C4 121 06C 0B0 13D 060 0B0 13D 060 001 060 001 060 001 064 031 060 089 064 089 064 0B0 10E 0F8 36E	C=-C-1 MS A=C MS ?NC XQ ->1800 ST=0 ?NC XQ ->1848 C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F C=N ALL ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->184F ?NC XQ ->1800 ?NC XQ ->1934 ?NC XQ ->1934 ?NC XQ ->1934 ?NC XQ ->1934 ?NC XQ ->180C ?NC XQ ->180C ?NC XQ ->180C ?NC XQ ->180C ?NC XQ ->180C	imit 100 sign change same in 13-digit form 1-1/k^2 [ADDONE] Ln(1-1/k^2) [LN13] k k.Ln(1-1/k^2) [MP1_10] k k^2.Ln(1-1/k^2) [MP1_10] 1+k^2.Ln(1-1.k^2) [MP1_10] 1+k^2.Ln(1-1.k^2) [ADDONE] current sum [RCSCR] updated sum [AD2-13] current sum [STSCR] current term put k in A for compares number of terms all done?

HP- PIE MODULE QRG					
	AD8E	0A9	?NC XQ	final product	
	AD8F	064	->192A	[EXSCR] - {A,B} <-> {Q,+}	
	AD90	04E	C=0 ALL		
ADS		35C	PT= 12	C = 1.5	
	AD92	050	LD@PT- 1		
	AD93	150	LD@PT- 5		
	AD94	025	?NC XQ		
	AD95	060	->1809	[AD1_10]	
ADJUST	AD96	0AE	A<>C ALL	save product result:	
	AD97	070	N=C ALL	13-digit sign & exp	
	AD98	0CE	C=B ALL		
	AD99	128	WRIT 4(L)	13-digit mantissa	
СТА	۵۵۵۵	0F8	READ 3(X)	n	
		10F			
· · · · · · · · · · · · · · · · · · ·		125		nA2	
		155	->184D	II 2 [MD2 10]	
· · · · · · · · · · · · · · · · · · ·		120	2NC YO	[NFZ_10]	
('		060	->18/F	[MP1 10]	
· · · · · · · · · · · · · · · · · · ·		046	C-0 ALL		
· · · · · · · · · · · · · · · · · · ·		04E 350	C-0 ALL PT= 12		
		55C 050			
		050		c - 1152	
, i i i i i i i i i i i i i i i i i i i		150		C = 1152	
, i i i i i i i i i i i i i i i i i i i		100			
· · · · · · · · · · · · · · · · · · ·		120			
,		130			
,	ADA7	003		1152 - 11	
,		13D	2NU XQ	1152.0^4	
,		060	->184F		
,		239	2NU XQ	1/1152.0*4	
,		060	->188E		
,		04E	C=0 ALL		
'		200			
· · · · · · · · · · · · · · · · · · ·		250		C - 77	
· · · · · · · · · · · · · · · · · · ·		100		C = -77	
· · · · · · · · · · · · · · · · · · ·		120			
		001	CON		
		120		-77/1152 n/4	
· · · · · · · · · · · · · · · · · · ·		060	->184F	[MP1 10]	
· · · · · · · · · · · · · · · · · · ·		089	2NC XO	-77/1152 n^4	
· · · · · · · · · · · · · · · · · · ·		064	->1922	ISTSCRI	
CT3		004		n	
		0F0 10F		"	
,		10E		- 42	
		135	2184D		
,		000		[IVIF2_10]	
				11	
	ADBC	13D	21VC XQ	n**3	
	ADBD	060	->184F	[MP1_10]	
	ADBE	04E			
	ADBF	130			
	ADCO	144	CON:	C = 144	
	ADC1	07C	RCR 4		
,	ADC2	130	LDI S&X		

HP- PIE MODULE QRG					
	ADC3	002	CON:		
	ADC4	13D	?NC XQ	144.n^3	
	ADC5	060	->184F	[MP1_10]	
	ADC6	239	?NC XQ	1/144.n^3	
	ADC7	060	->188E	[<u>ON/X13</u>	
	ADC8	04E	C=0 ALL		
	ADC9	35C	PT= 12		
	ADCA	050	LD@PT- 1	C = 13	
	ADCB	0D0	LD@PT- 3		
	ADCC	130	LDI S&X		
	ADCD	001	CON:		
	ADCE	13D	?NC XQ	13/144.n^3	
	ADCF	060	->184F	[MP1_10]	
	ADD0	0D1	?NC XQ	-77/1152.n^4	
	ADD1	064	->1934	[RCSCR]	
	ADD2	031	?NC XQ	13/144.n^3 -77/1152.n^4	
	ADD3	060	->180C	[<u>AD2-13]</u>	
	ADD4	089	?NC XQ	13/144.n^3 -77/1152.n^4	
	ADD5	064	->1922	[STSCR]	
CT2	ADD6	0F8	READ 3(X)	$\pi \sim PN(N) / (1 + 1/(2^*N) - 1/(8^*N^2))$	
	ADD7	10E	A=C ALL	,	
	ADD8	135	?NC XQ	n^2	
	ADD9	060	->184D	[MP2_10]	
	ADDA	04E	C=0 ALL		
	ADDB	130	LDI S&X	c = -8	
	ADDC	098	CON:		
	ADDD	23C	RCR 2		
	ADDE	13D	?NC XQ	-8.n^2	
	ADDF	060	->184F	[MP1_10]	
		239	2100F	-1/8.n ²	
		000	->108E	<u>12/114 p22 77/1152 p24</u>	
		001	SI024	13/144.11 ^{··} 3 - / //1152.11 ^{··} 4	
		004	2NC YO	$\frac{1}{2} \frac{1}{2} \frac{1}$	
		051	->1800	[4D2-13]	
	ADE6	000	2NC XO	$-1/8 n^{2}+13/144 n^{3}-77/1152 n^{4}$	
	ADE7	064	->1922	ISTSCRI	
CT1	ADE8	0F8	READ 3(X)	n	
	ADE9	10E	A=C ALL		
	ADEA	01D	?NC XQ	2n	
	ADEB	060	->1807	[AD2 10]	
	ADEC	239	?NC XQ	1/2n	
	ADED	060	->188E	[<u>ON/X13</u>	
	ADEE	0D1	?NC XQ	-1/8.n^2+13/144.n^3 -77/1152.n^4	
	ADEF	064	->1934	[RCSCR]	
				1/2n -1/8.n^2+13/144.n^3 -	
	ADF0	031	?NC XQ	77/1152.n^4	
	ADF1	060	->180C	[AD2-13]	
		001	21/2 / 2	1+1/2n -1/8.n^2+13/144.n^3 -	
	ADF2	001	?NC XQ	///1152.n^4	
	ADF3	060	->1800		
		121	SINC XU	[1 1 1 2]	
			->1048		
	AULQ	ZDE		sign chunge	

HP- PIE MODULE QRG					
	ADF7	11E	A=C MS	ditto for 13-digit form	
	ADF8	0B0	C=N ALL	recover product result:	
ADF9 ADFA		158	M=C ALL	13-digit sign & exp	
		138 READ 4(L)		13-digit mantissa	
	ADFB	031	?NC XQ	Ln(PN(N))	
ADFC		060	->180C	[AD2-13]	
	ADFD	035	?NC XQ	PN(N)	
ADFE		068	->1A0D	[EXP13]	
	ADFF	331	?NC GO	Overflow, DropST, FillXL & Exit	
	AE00	002	->00CC	[NFRX]	

So here you have it, quite a long code but conceptually not a complicated one – such is the nature of the MCODE game sometimes.

PS.- Jean-François Garnier has provided the following FOCAL routine that cleverly overcomes the 10-digit accuracy issue to effectively reach good results with about 45 terms (that is 10 more than the MCODE version, using the first two correction factors instead of four - not bad at all!)

ſ	01	LBL "PN2"]	21	+	
	02	"RUNNING"	-	22	DSE 01	
	03	AVIEW		23	GTO 00	; sum endloop^
	04	STO 00	; N	24	1.5	
	05	E		25	+	
	06	-		26	RCL 00	
	07	STO 01	; control loop 1N-1	27	2	
_	08	0	_	28	*	
I	09	LBL 00	; sum loop <	29	1/X	
	10	RCL 01	-	30	RCL 00	
	11	E		31	X^2	
	12	+	;n=2N	32	8	
	13	X^2		33	*	
	14	ENTER^		34	1/X	
	15	1/X		35	-	
	16	CHS		36*	LN1+X	; correction factor
	17	LN1+X		37	-	
	18	*		38	E^X	
	19	E		39	CLD	
	20	+		40	END	

Appendix.- Integral Pie

And what about using an integral form, you may ask? Well, mixed results here to report. The good news is that using a simple simple expression like the one below works like a charm with a quick call to FROOT:

$$\pi=\int_{-1}^1rac{dx}{\sqrt{1-x^2}}.$$

Setting FIX 9:

References: See https://functions.wolfram.com/Constants/Pi/07/

So far so good, however I've not succeeded with other more complex derivations included in other

$$\int_0^x \left(rac{\sin t}{t} \mathrm{e}^{t/\tan t}
ight)^x dt - rac{x^x}{\Gamma x} = 0$$

"Short & Sweet Challenge" threads, such as those shown below:

Which doesn't converge no matter how I try it, and:

$$\pi = \frac{1}{W_0(1)} \int_0^\pi \log\left(1 + \frac{\sin t}{t} e^{t \cot t}\right) \mathrm{d}t.$$

Which includes pi in the definition of pi, if you see my circular point...

See the original thread for more details:

HP Challenge VA515 - 2021-03-14 - SRC 009 Pi Day 2021 Special.pdf

1	LBL "PITG"
2	u+lu
3	0
4	ENTER^
5	1
6	FINTG
7	4
8	•
9	RTN
10	LBL "*I"
11	CHS
12	Ε
13	-
14	SQRT
15	END

Salimin-Brent Algorithm.

In 1976 Eugene Salamin and Richard Brent independently discovered a new algorithm for pi, which is based on the arithmetic-geometric mean and some ideas originally due to Gauss in the 1800s (although for some reason Gauss never saw the connection to computing pi). This algorithm produces approximations that converge to pi much more rapidly than any classical formula. It may be stated as follows:

Set
$$a_0 = 1, b_0 = 1/\sqrt{2}$$
 and $s_0 = 1/2$. For $k = 1, 2, 3, \cdots$ compute
 $a_k = \frac{a_{k-1} + b_{k-1}}{2}$
 $b_k = \sqrt{a_{k-1}b_{k-1}}$
 $c_k = a_k^2 - b_k^2$
 $s_k = s_{k-1} - 2^k c_k$
 $p_k = \frac{2a_k^2}{s_k}$
 $\pi \approx \frac{4 a_N^2}{1 - \sum_{k=1}^N 2^{k+1}(a_k^2 - g_k^2)}$

Then pk converges quadratically to pi. This means that each iteration of the algorithm approximately doubles the number of correct digits of pi. To be specific, successive iterations produce 1, 4, 9, 20, 42, 85, 173, 347, and 697 correct digits of pi. However, each of these iterations must be performed using a level of numeric precision that is at least as high as that desired for the final result; and that unfortunately means just three iterations are meaningful for the HP-41's 10-digit precision ceiling.

The FOCAL routine below implements the algorithm for the PIE ROM:

1	LBL "SBPI"		23	CHS	
2	2		24	RCL M	a(k)
3	1/X	1/2	25	X^2	a(k)^2
4	STO O		26	+	c(k)
5	SQRT	a(0)	27	RCL Y	k,003
6	STO N		28	INT	k
7	E		29	2^X-1	2^(k) - 1
8	STO M	b(0)	30	E	
9	0,003		31	+	2^k
10	+	1.003	32	•	2^k. C(k)
11	LBL 00		33	CHS	
12	RCL M	b(k-1)	34	ST+ O	s(k) in O
13	RCL N	a(k-1)	35	RDN	k,003
14	+		36	ISG X	do next?
15	2		37	GTO 00	yes
16	1	a(k)	38	RCL M	a(k)
17	X<> M	b(k-1)	39	X^2	a(k)^2
18	RCL N	a(k-1)	40	ST+ X	2(a(k)^2
19	•		41	RCL O	s(k))
20	SQRT	b(k)	42	1	p(k)
21	STO N		43	END	
22	X^2	b(k)^2			

HP- PIE MODULE QRG

Heretical Pi (an early April's 1st joke :-)

Inspired by the clever elegance in the Salamin-Brent method I wondered whether a non-iterative form could be extrapolated from the same approach, using the same starting "anchor" points { 1, 1/sqr(2) } and based on the AGM and GHM means; plus *using a "magic" fudge factor* "k" to make it all somehow work out. A totally absurd anathema but just for fun, consider the following expression:

$$pi = \frac{2.\,agm^2}{\frac{1}{2} - (agm^2 - ghm^2).\,2^k}$$

One could even attempt to legitimize this derangement by stating that the fudge factor "k" is based on the Erdós-Borwein constant, \mathcal{E}_{EB} as follows: *(oh this is getting too weird, or is it?)*

$$\frac{5 \left(\mathcal{E}_{EB} + 2 \right)}{\mathcal{E}_{EB} + 16} \approx 1.0242396773481$$

And this (see left) is the tonge-in-cheek, no-nonsensical (uh?) FOCAL routine used that consolidates the heresy and materializes this wondrous, innovative bluff.

Trying it out for size:

XEQ "MYPI" => 3.14 (592654

If you thought this made no sense (say what?) then wait to read my dissertation on the search - and finding - of a new transcendent number τ (a.k.a π 's *cousin*) through which the length of the ellipse circumference can be expressed in a closed form by:

L = 2. τ . sqr(a^2+b^2)

Where a,b are, of course, the semi-axis of said ellipse.

Not convinced yet? Well, perhaps you may want to check my string-theory-based quick *proof of the Riemann hypothesis* in the next section of the manual...

Note: <u>see here for another rant on the subject</u>, it's worth reading – but keep your mind open!

1	LBL "MYPI"	
2	2	
3	SQRT	
4	1/X	
5	Ε	
6	AGM	agm(1, 1/sqr(2))
7	X^2	agm^2
8	STO 00	
9	2	
10	SQRT	
11	1/X	
12	Ε	
13	GHM	ghm(1,1/sqr(2))
14	X^2	ghm^2
15	-	agm^2 - ghm^2
16	2	
17	ENTER	
18	1.024239678	k
19	Y^X	2^k
20	CHS	-2^k
21	•	-(agm^2 - ghm^2) /
22	0.5	
23	+	1/2- (agm^2-ghm^2
24	1/X	
25	RCL 00	agm^2
26	ST+ X	2.agm^2
27	•	final result
28	END	done

<u>Extra bonus</u>: speaking of Erdós-Borwein, here's a nice MCODE Utility and corresponding FOCAL routine side by side to calculate this constant – using the definition series:

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Borwein constant

$$E = \sum_{n=1}^\infty rac{1}{2^n-1} pprox 1.606695152415291763\ldots$$

		Header	A6E4	082	"B"	Erdós-Borwein constant
		Header	A6E5	005	"E"	Ángel Martin
01	LBL "EBC"	EB	A6E6	18C	?FSET 11	
02	0		A6E7	3B5	?C XQ	Stack lift
03	F		A6E8	051	->14ED	[R_SUB]
0.1			A6E9	1A0	A=B=C=0	zero trinity
04	LBL UU		A6EA	070	N=C ALL	k=0
05	2^X-1	LOOP	A6EB	3CC	?KEY <	converges in 30 iterations
06	LASTX		A6EC	360	PC RTN	
07	X<>Y		AGED	089	PNC XQ	current sum
08	1/X		ABEE	064	->1922	<u>[SISCR]</u>
00			ADEF	151		$(A, B) = C \cdot 1$
09	S1+Z		A0FU	100	->4078	[A,D] = C+1 [INCC10]
10	FS? 10		A6F2	070	->4078	
11	VIEW Z		A6F3	04F		
12	X=0?		A6F4	350	PT=12	huilds "2" in C
12			A6F5	090	LD@PT- 2	
12	GTU UZ		A6F6	084	CLRF 5	Natural Ln
14	RDN		A6F7	115	?NC XQ	
15	ISG X		A6F8	06C	->1B45	[LN10]
16	NOP		A6F9	0B0	C=N ALL	
17	GTO 00		A6FA	13D	?NC XQ	n.Ln(2)
10			A6FB	060	->184F	[MP1_10]
18	LBL UZ		A6FC	048	SETF 4	substract one: e^x-1
19	X<> Z		A6FD	035	?NC XQ	13-digit precision here
20	CLD		A6FE	068	->1A0D	[EXP13]
21	END		A6FF	239	?NC XQ	1/(2^x-1)
			A700	060	->188E	[ON/X13
			A701	'0E8	WRIT 3(X)	n-th. term
			A702	351	2NC XQ	Check error tolerance
			A703	255	>4AD4	[TOLEK4]
			A704	210		ves exit loop
			A705	0.049		yes, exit loop
			A707	064	->1924	[EXSCR1 - (A B) <-> (O +)
			A708	0F8	READ 3(X)	12/10/01/17/10/17
			A709	025	?NC XQ	new result(k)
			A70A	060	->1809	[AD1 10]
			A70B	303	JNC -32d	do next
		EXIT	A70C	0A9	?NC XQ 🗲	
			A70D	064	->192A	[EXSCR] - {A,B} <-> {Q,+}
			A70E	OAE	A<>C ALL	Mant sign and exponent
			A70F	0DA	C=B M	Mantissa value
			A710	0E8	WRIT 3(X)	
			A711	3C1	?NC GO	Normal Function Return
			A712	002	->00F0	[NFRPU]

Wallis-based Approximations

Also included in the module are a handful of routines based on the infamous Wallis product expression for the approximation It's well known that said expression requires a <u>very large</u> number of terms to get a decent accuracy in the result, hence its usage is limited from a practical point of view. However, there are ways to go around that deficiency using "correction" factors or other modifications on top of the basic one.

Function	Description	Input	Author
WALLIS	Wallis formula (n in X)	n in X	Ángel Martin
"WP42	Wallis product Formula	n in X	Gerson W. Barbosa
"WPI	Wallis product Formula	n in X	Jean-Marc Baillard
"WPIH	Wallis Formula w/ Hyperbolics	n in X	Werner
"CFWP	Conti. Fractions correction	n in X	Martin-Barbosa
"WWPI	Wallis-Wasicki Formula	n in X	Gerson W. Barbosa

• **WALLIS** is the MCODE implementation of the infamous Walls product. It requires a number of terms input in X and returns the estimation of pi to the stack X register.

$$\pipprox 2\left(rac{4}{3} imesrac{16}{15} imesrac{36}{35} imesrac{64}{63} imes\cdots imesrac{4n^2}{4n^2-1}
ight)$$

The table below shows (left column) the results for different number of terms; note how the values get closer to the actual pi value when the Wallis formula is combined with a correction factor (right column), as we'll see next:

# of terms	Wallis Result	Wallis-Wasicki Result
10	9,0677098 (00	<u>a 142523 109</u>
100	3, 133787496	3. IH I602424
1,000	3, INØ8Ø7792	3. IN IS92798
10,000	3, 14 15 14648	3. 14 1593 184
100,000	3, 14 15626 18	n/a

example:

10,000 , XEQ "WALLIS" =>

3, 14 15 14648

Not much to write home about, to say the least, so let's see other more efficient approaches (read: fewer number of terms) while still based on the basic Wallis formula.

The two programs below are different versions contributed by forum members to compute the Wallis product (without correction factors). On the left using data registers and the RCL math (taken from an HP-42 solution); on the righ two more concise routines using only the stack.

01×	LBL "W42"	42	X<>Y
02	STO 01	43►	LBL 00
03	NOT	44	STO+ ST T
04	2	45	Х<>Y
05	MOD	46	R个
06	ENTER	47	RCL× ST T
07	STO+ ST X	48	RCL 03
08	E	49	Х⇔Ү
09	-	50	SIGN
10	4	51	+/-
11	RCL× 01	52	STO× ST Z
12	E	53	X<> ST L
13	RCL- ST T	54	÷
14	x	55	X<> ST Z
15	R个	56	RCL 01
16	STO+ ST X	57	STO+ ST X
17	+	58	X↑2
18	3	59	STO× 02
19	RCL× ST T	60	DSE ST X
20	-2	61	STO÷ 02
21	STO 02	62	R↓
22	RCL+ 01	63	RCL ST Y
23	X<>Y	64	SIGN
24	+	65	X<> ST Z
25	STO 03	66	ABS
26	RCL 02	67	X<> 04
27	X<> ST L	68	+/-
28	STO+ ST X	69	STO+ 03
29	RCL+ ST L	70	NOT
30	STO 04	71	+/-
31	-	72	NOT
32	RCL- 02	73	+/-
33	RCL× ST Z	74	X<> 04
34	+/-	75	DSE 01
35	4	76	GTO 00
36	RCL× 01	77	SIGN
37	RCL- ST Z	78	RCL+ ST T
38	RCL- 02	79	RCL× 02
39	STO÷ ST Y	80	ABS
40	Х⇔Ү	81	END
41	R↓		

1	LBL "WPI"	JM Baillard
2	2	
3	LBL 01	
4	RCL Y	
5	ST+ X	
6	X^2	
7	ST* Y	
8	DSE X	
9	1	
10	DSE Y	
11	GTO 01	
12	RTN	
13	LBL "WPIH"	Werner
13 14	LBL "WPIH" 2	Werner
13 14 15	LBL "WPIH" 2 LBL 02	Werner
13 14 15 16	LBL "WPIH" 2 LBL 02 RCL Y	Werner
13 14 15 16 17	LBL "WPIH" 2 LBL 02 RCL Y ST+ X	Werner
13 14 15 16 17 18	LBL "WPIH" 2 LBL 02 RCL Y ST+ X HACOS	Werner
13 14 15 16 17 18 19	LBL "WPIH" 2 LBL 02 RCL Y ST+ X HACOS HTAN	Werner
13 14 15 16 17 18 19 20	LBL "WPIH" 2 LBL 02 RCL Y ST+ X HACOS HTAN X^2	Werner
13 14 15 16 17 18 19 20 21	LBL "WPIH" 2 LBL 02 RCL Y ST+ X HACOS HTAN X^2 /	Werner
13 14 15 16 17 18 19 20 21 21 22	LBL "WPIH" 2 LBL 02 RCL Y ST+ X HACOS HTAN X^2 / DSE Y	Werner
13 14 15 16 17 18 19 20 21 22 23	LBL "WPIH" 2 LBL 02 RCL Y ST+ X HACOS HTAN X^2 / DSE Y GTO 02	Werner

Wallis-Wasicki formula.

See: https://www.hpmuseum.org/forum/post-139434.html#pid139434 See also: https://www.hpmuseum.org/forum/post-9194.html#pid9194

Gerson W. Barbosa has proposed a correction factor on top of the Wallis product for slightly more accurate results and definitely better efficiency. The correction factor is the finite continued fraction shown below, with a constant B(n) term pattern reflecting the number of terms used in the Wallis part of the combined formula.

So right off the shoe we could use the Continued Fractions engine to calculate the correction factor, which should definitely converge relatively quick given the large values for both A(n) and B(n). This is what the routine CWPI does, listed below:

1	LBL "CWPI"		23	RTN	
2	"*WP"		24	LBL 01	
3	2		25	ENTER^	
4	ENTER^		26	X^2	(n-1)^2
5	CF2V		27	4	
6	RCL 10		28	•	4(n-1)
7	WALLIS		29	ENTER^	
8	2		30	-	4(n-1)^2 - 1
9	1		31	X<>Y	n-1
10	•		32	8	
11	RTN		33	•	8(n-1)
12	LBL "+WP		34	4	
12 13	LBL "+WP RCL 02		34 35	4 +	8(n-1)+4
12 13 14	LBL "*WP RCL 02 ENTER^		34 35 36	4 + /	8(n-1)+4 A(n) = (4)n-1)^2
12 13 14 15	LBL "*WP RCL 02 ENTER^ -	(n-1)	34 35 36 37	4 + / LBL 02	8(n-1)+4 A(n) = (4)n-1)^2 - 1)/[8(n-1)+4]
12 13 14 15 16	LBL "*WP RCL 02 ENTER^ - X#0?	(n-1)	34 35 36 37 38	4 + / LBL 02 RCL 10	8(n-1)+4 A(n) = (4)n-1)^2 - 1)/[8(n-1)+4] N
12 13 14 15 16 17	LBL "*WP RCL 02 ENTER^ - X#0? GTO 01	(n-1)	34 35 36 37 38 39	4 + /LBL 02 RCL 10 8	8(n-1)+4 A(n) = (4)n-1)^2 - 1)/[8(n-1)+4] N
12 13 14 15 16 17 18	LBL "*WP RCL 02 ENTER^ - X#0? GTO 01 XEQ 02	(n-1)	34 35 36 37 38 39 40	4 + / LBL 02 RCL 10 8 •	8(n-1)+4 A(n) = (4)n-1)^2 - 1)/[8(n-1)+4] N 8N
12 13 14 15 16 17 18 19	LBL "*WP RCL 02 ENTER^ - X#0? GTO 01 XEQ 02 X<>Y	(n-1)	34 35 36 37 38 39 40 41	4 + / LBL 02 RCL 10 8 • 4	8(n-1)+4 A(n) = (4)n-1)^2 - 1)/[8(n-1)+4] N 8N
12 13 14 15 16 17 18 19 20	LBL "*WP RCL 02 ENTER^ - X#0? GTO 01 XEQ 02 X<>Y ENTER^	(n-1)	34 35 36 37 38 39 40 41 42	4 + / LBL 02 RCL 10 8 • 4 +	8(n-1)+4 A(n) = (4)n-1)^2 - 1)/[8(n-1)+4] N 8N B(n) = 8N+4
12 13 14 15 16 17 18 19 20 21	LBL "*WP RCL 02 ENTER^ - X#0? GTO 01 XEQ 02 X<>Y ENTER^ -	(n-1) B(1)= 8N+3	34 35 36 37 38 39 40 41 42 43	4 + / LBL 02 RCL 10 8 • 4 + X<>Y	8(n-1)+4 A(n) = (4)n-1)^2 - 1)/[8(n-1)+4] N 8N B(n) = 8N+4

The other approach is obviously to combine both the Wallis product and the correction factor at the same time, during the execution of the main body code segment. This is done in routine WWPI listed below:

01	LBL "WWPI"	16	X<> Z	
02	4	17	ST/ Y	
03	0	18	X<> L	
04	8	19	R↓	
05	RC* T	20	X<>Y	
06	RC+ Z	21	DSE T	
07	LBL 00	22	GTO 00	
08	R个	23	DSE X	
09	RC+ X	24	+	
10	ST* X	25	1/X	
11	ST* T	26	0.5	
12	DSE X	27	+	
13	ST÷ T	28	×	
14	X<>Y	29	END	
15	ST+ Z			

Table of results/-

Uncorrected Wallis:

Ν	WP42	WPI	WPIH
10	3.067703807	3.067703807	2.067703807
100	3. 13 3 78 74 99	3. 133787499	3. 133787499
1,000	3. 140807756	3. 140807756	<u> 3. 140807756</u>
10,000	3.141514015	3. 14 15 140 15	3. 14 15 140 15
100,000	3. 14 157 1397	3. 14 157 1397	3. 14 157 1397

The three versions are totally identical for any number of iterations.

Corrected Wallis:

n	WWPI	CWPI
10	3.141592654	<u>a. 142523 109</u>
100	3 <u>. 14 15926</u> 66	<u>3. 14 1</u> 602424
1,000	3 <u>. 14 1592</u> 682	<u>3. 14 1592</u> 798
10,000	3 <u>. 14 1592</u> 768	3 <u>. 14 159</u> 3 184

The sweet spot appears to be n=1,000 for both, no doubt the workings of the finite continued functions term.

Pi/e using Continued Fractions

There are many different expressions related to pi and e using continued fractions, both with and without a clear pattern to the coefficients. As usual, some of them converge very slowly and aren't practical for the calculations - thus only have an academic value.

Amongst those useful for our purposes, we find these two for pi:

Routine name: **CFPI**

Routine name: CFP1

With the following recurrent pattern parameters on each case being:

And this one for e, beautifully simple and even more efficient for the calculation:

 $e = 2 + \frac{1}{1 + \frac{1}{2 + \frac{2}{3 + \frac{3}{2}}}}$ with the following recurrent parameters: B(0)=2; A(1) = 1; B(1)= 1 A(n)=(n-1); B(n)=n

XEQ "CFE" =>	2.7 1828 1830	; with just 5 terms needed
XEQ "CFPI" =>	3. 14 1592640	; with 420 terms needed.
XEQ "CFP1" =>	3. 14 1592652	; with 14 terms needed

As always, you can set flag 10 to see the progress of the convergence in the display.

References: https://mathworld.wolfram.com/eContinuedFraction.html https://en.wikipedia.org/wiki/Continued_fraction

The Path not taken:-

Two of the non-practical continued fractions are shown below, for the $\pi/2$ and $4/\pi$ cases– both requiring many thousands of iterations to achieve decent accuracy (say 5 decimal digits or better), and thus taking an awfully long execution time even on V41 in turbo mode.

Brouncker's formula:

1	LBL "CFPI2"		32	RCL X	
2	LBL A		33	E	
3	"\$P"		34	-	(n-2)
4	E	B(0) = 1	35	•	(n-1).(n-2)
5	ENTER^		36	CHS	A(2n+1) = -(n-1).(n-2)
6	CF2V	π/2	37	3	B(2n+1)= 3
7	ST+ X	π	38	X<>Y	
8	RTN		39	RTN	
9	GTO A		40	LBL "CFPI4"	
10	LBL "\$P"		41	LBL B	
11	FS? 10		42	"*P"	
12	VIEW 00		43	E	B(0) = 1
13	3	B(1)= 3	44	ENTER^	
14	RCL 02	n	45	CF2V	4/π
15	X=1?		46	1/X	π/4
16	CHS	A(1)= -1	47	4	
17	X<0?		48	•	π
18	RTN		49	RTN	
19	ODD?	odd?	50	GTO B	
20	GTO 01	yes, divert	51	LBL "*P"	
21	RCL 02	n	52	FS? 10	
22	E		53	VIEW 00	
23	+	(n+1)	54	RCL 02	n
24	•	n.(n+1)	55	ST+ X	2n
25	CHS	A(2n) = -n.(n+1)	56	E	
26	E	B(2n)= 1	57	-	2n-1
27	X<>Y		58	X^2	$A(n) = (2n-1)^{2}$
28	RTN		59	2	B(n)= 2
29	LBL 01	odd term,n#1	60	X<>Y	
30	E		61	END	
31	-	(n-1)			

Programmed as follows:

Random Pie – Monte Carlo method

This section uses a variation of the Monte Carlo strategy to evaluate both pi and e. It's not, however, based in circle relationships derived from randomly throwing needles or shooting at targets, but on probability theory instead. It was explained by Valentín himself in his <u>HP Challenge</u> VA511 - 2020-03-14 - SRC 006 Pi Day 2020 Special.pdf

Quoting directly from that article:

"It's quite simple, actually. My recent program is this:

- 1 DESTROY ALL @ RANDOMIZE 1 @ FOR K=1 TO 5 @ N=10^K @ S=0
- 2 FOR I=1 TO N @ IF NOT MOD(IROUND(RND/RND),2) THEN S=S+1
- 3 NEXT I @ P=S/N @ STD @ DISP N, @ FIX 3 @ DISP 5-P*4 @ NEXT K

which is computing the probability that the closest integer to A/B is even, where A and B are uniformly distributed random numbers in [0,1), as produced by the RND keyword. Each time the rounded value is even (i.e., it's 0 modulo 2) the number of favorable outcomes (S) is incremented by one (see line 2). After N tries have been sampled, the probability P for the even case will be the number of favorables outcomes (S) divided by the number of tries (N), thus we have the estimated probability P = S/N. But I know from theory that in the limit, for $N \rightarrow$ Infinity, the exact probability P = (5-Pi)/4, so isolating Pi we have Pi = 5-P*4, which is displayed by the program in line 3 above."

Note that he goes on to include yet another possible approach, which results in an even shorter BASIC program. Here's the explanation:

"Now, my earlier program, the one-liner, namely:

10 INPUT K @ N=0 @ FOR I=1 TO K @ N=N-MOD(IROUND(RND/RND),2) @ NEXT I @ DISP 1-4*N/K

is computing the probability that the closest integer to A/B is odd, where A and B are uniformly distributed random numbers in [0,1), as produced by the RND keyword. Each time the rounded value is odd (i.e., isn't 0 modulo 2) the number of favorable outcomes (N) is decremented by one, and after K tries have been sampled, the probability for the odd case will be the number of favorable outcomes (-N) divided by the number of tries (K), thus we have the estimated probability P = -N/K.

As the probability of the rounded division being either even or odd is 1 (certainty), the probability for the odd case is 1 minus the probability for the even case, thus it's P = 1-(5-Pi)/4 = (Pi-1)/4, so isolating Pi we have Pi = 1+4*P = 1+4*(-N/K) = 1-4*N/K, which is then displayed by the one-line program."

I chose to use the first approach in this module, partially because it also requires the IROUND function, and I was intrigued by it. I ended up writing a short MCODE utility for that purpose, which facilitates the porting of the BASIC code to HP-41 FOCAL, shown in next page.

With regard to the e calculation, the source has also been Valentín's <u>HP Challenge VA030 - Short</u> <u>Sweet Math Challenge 25 San Valentin Special - Weird Math.pdf.</u> In that thread there's one section (the first "concoction") about calculating a "weird limit" that can be used for the calculation of e (making the sum--to-exceed s=1).

"The limit average count for the sum of a series of [0,1) uniformly distributed random numbers to exceed 1 is exactly e = 2.71828182845904523536+, the base of the natural logarithms, which is pretty "weird" and can be considered an analog of Buffon's Needle experiment to estimate the value of Pi. Here we don't throw needles on a grid but merrily add up random numbers keeping count and we get e instead."

"This is the general formula to numerically compute the theoretically exact value and my simple 1line, 53-byte HP-71B program to instantly compute them given the sum to exceed: "

$$f(x) = \sum_{k=0}^{[x]} (-1)^k \frac{(x-k)^k}{k!} e^{x-k}$$

1 DESTROY ALL @ INPUT X @ S=0 @ FOR K=0 TO IP(X) @ S=S+(K-X)^K/FACT(K)*EXP(X-K) @ NEXT K @ DISP S

For the porting we'll certainly need the new **IROUND** utility and obviously capable random number capabilities, which shouldn't be much of a problem using the SandMath's functions **SEEDT** and **RNDM**. E'll use a time-generated initial seed (input zero for SEEDT), and RNDM will do the work using the well-known RNG recurrence:

$$r(k+1) = FRC [r(k) * 9,821 + 0.211327]$$

A few results are given in the table below:

Iterations	MCE	MCPI
10	2.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.0000000000
100	2.8 5 0 0 0 0 0 0 0 0 0	3. 120000000
1,000	2.705000000	3. 136000000
10,000	2.7 / 7400000	3. 13 1600000
100,000	2.7 7 7 6 0 0 0 0	3. 149320000
1,000,000		

As you can see from the table results both routines require a very large number of iterations to get to a reasonably accurate result, which of course was expected as "it 'comes with the territory" when resorting to this type of approaches. See below for the actual program code.

1	LBL "MCE"		10	LBL "MCPI"	
2	LBL A		11	LBL B	
3	STO 01	number of iterations	12	STO 00	number of iterations
2	E	sum limit	11	0	initial value
3	0		12	SEEDT	Time-based Seed
4	STO 00	initial count	13	LBL 11	
3	E^X		12	RNDM	PPC Method +
4	SEEDT	initial seed	13	RNDM	PPC Method +
5	LBL 01		14	1	
4	CLX	reset sum	13	IROUND	
5	LBL 00		14	2	
6	ISG 00	increase count	15	MOD	
5	NOP		14	-	
6	RNDM	PPC Method +	15	FS? 10	
7	+	update sum	16	VIEW Y	
6	FS? 10	need to show?	16	DSE Y	
7	VIEW Z	yes, oblige	17	GTO 11	
8	X <y?< td=""><td>sum less than limit?</td><td>17</td><td>RCL 00</td><td>number of iterations</td></y?<>	sum less than limit?	17	RCL 00	number of iterations
7	GTO 00	yes, get next RAN	18	1	
8	DSE Z	decrease counter	18	-4	
9	GTO 01	do next if not finished	19	•	
8	RCL 00	final count	19	Ε	
9	RCL 01	number of iterations	20	+	
10	1		20	CLD	
9	CLD		21	RTN	
10	RTN		21	GTO B	
11	GTO A		22	END	

Note:- The poor-man version of **IROUND** would consist of setting FIX 0 before the LBL 11 loop, and adding an INT instruction after the division of both random numbers (i.e. replacing IROUND with INT). That's almost equivalent but doesn't handle the EVEN condition for the result, i.e. IROUND(5.5)=5 whereas INT(4.5) in FIX 0 is equal to 4 instead. Not a show-stopper though, considering how unlikely it is to find such an occurrence amongst the hundreds of random points used by the routine.

PAGE 27 OF 59

Humble Pie – Series Correction, "Speed it up!"

Yet another wonderful contribution by Mr. Albillo's at the top of his game - taken from the challenge thread <u>HP Challenge VA125 - 2006-07-12 - HP-15C Mini-challenge Speeding it up.pdf</u>

Here's the direct description from that thread, read on and enjoy !

"As stated in the challenge's description, the task is to find a way to use the well-known Gregory-Leibnitz series to compute Pi to 10 correct places while keeping program size and running time small.

$$\pi = 4\sum_{n=0}^{\infty}rac{(-1)^n}{2n+1} = 4\left(rac{1}{1} - rac{1}{3} + rac{1}{5} - rac{1}{7} + -\cdots
ight)$$

A direct approach seems doomed to failure as this series converges so incredibly slowly that millions of terms must be added up to get no more than 6 or 7 correct digits, let alone 10. To clearly demonstrate it, this simple 15- step HP-15C program, which will serve as the basis for my solutions, will add up any specified even number of terms from the series:

01*LBL A	06 0	11 STO 0
02 STO I	07*LBL 0	12 RCL/I
03 STO+I	08 DSE I	13 +
04 4	09 RCL 0	14 DSE I
05 STO O	10 CHS	15 GTO 0

To improve accuracy, the program begins adding up the smallest terms and goes backwards until it reaches the largest term, 1. Upon running it, you'll see that, as expected, the convergence is awfully slow. Let's try to add 4 terms, then 44, then 444:

4 , GSB A -> 2.895238096 (barely one correct digit) 44 , GSB A -> 3.118868314 (barely three correct digits) 444, GSB A -> 3.139340404 (barely four correct digits)

This last result took almost 7 minutes, yet we've got no more than four not-so-correct digits, so the situation seems hopeless. At this point, it seems we can do no better than try some relatively complicated techniques, such as the Euler-McLaurin formula or extrapolation mechanisms for summation of infinite, alternating series such as this one. This would incur in a serious penalty in vastly increased complexity and program size, as seen in several working

programs posted by contributors.

A bit of sleuthing:

However, math is full of surprises and serendipitous findings are bound to happen when and where you least expect them, as we'll immediately see. Let's use our basic program to add up exactly 50 terms:

50, GSB A -> 3.121594653

Now, this has a fairly large error, as we're getting 3.12+ instead of 3.14+, so that the 3rd digit is already 2 units off. But, don't you notice something truly eerie? Yes, we get a "2" where a "4" should be. But the following three digits (159) are correct ! Then we get another wrong digit, a "4" which should be a "2", but then the next three digits (653) are once again correct !!

Let's align our value and the correct Pi value and carefully examine the differences:

Sum -> 3.121594653 PI -> 3.141592653 (58979...) +2 -2

which, in absolute values means:

+0.02 -0.000002

Let's see if this is just a weird coincidence, or else it also happens for other numbers of terms being added up. Let's try 100 terms, for instance:

100, GSB A -> 3.131592904 3.141592654 +1 -25 +0.01 -0.00000025

and we see that our initial impression does hold, because after one wrong digit, the subsequent four digits (1592) are indeed correct, then another a couple of wrong digits, and once again another correct digit follows.

Let's call these two corrections' C1 and C2 (i.e: +0.02 and -0.000002 for 50 terms, +0.01 and -0.00000025 for 100 terms, respectively) and see how they relate to the number of terms being used. A little insight or a little data-fitting will allow us to issue the following plausible, tentative hypothesis, where N is the number of terms:

C1 = 1/N $C2 = -0.25/N_3 = -1/4N_3$

which do indeed work for N = 50 and N = 100 terms. Now we'll put our hypothesis to the test, by using it to predict the values of C1 and C2 for N=200 terms:

Prediction for N = 200 -> C1 = 1/200 = 0.005 C2 = -1/(4*2003) = -0.000000031

and we'll now check if they agree with actual results, by running our basic program with 200 as the input value:

which indeed do exactly agree with our predicted corrections, +0.005 and -0.000000031. At this point, we can be fairly sure that our empirical finding holds, and can then proceed to make use of it by simply computing one or both correction terms, C1 and C2, and using them to refine the sum provided by our basic program, as follows:

First version, using just one correction term, C1 = 1/N:

Just two little changes to our basic program will compute and add the correction term C1, resulting in a program just a single step longer, at 16 steps, yet much faster and accurate:

01*LBL A	
02 STO I	
03 STO+I	50, GSB A -> 3.141594653 in 55"
04 1/X	
05 4	error = 2E-6, actually all digits are correct except the "4"
06 STO O	
07 X<>Y	100, GSB A -> 3.141592904 in 1'50"
08*LBL 0	
09 DSE I	error = 2.5E-7
10 RCL 0	
11 CHS	400, GSB A -> 3.141592658 in 7'45"
12 STO 0	
13 RCL/I	error = 4E-9
14 +	
15 DSE I	
16 GTO 0	

so this simple version, with just the one correction term C1 does achieve a 10-digit correct value (within 4 ulps) while using just 400 terms, in less than 8 minutes. That's many orders of magnitude better than the basic program could achieve, but we can do still much better:

Second version, using two correction terms, C1=1/N and C2=-1/4N3:

A few stack manipulations will allow us to compute and use both correction terms, C1 and C2 while using just 5 additional steps, for a very small total of just 21 steps:

01*LBL A 02 STO I 03 STO+I 40, GSB A -> 3.141592651 in 40" (error = 3E-9) 04 1/X 05 ENTER

HP- PIE MODULE QRG

06 ENTER 50, GSB A -> 3.141592653 in 50" (error = 1E-9) 07 3 08 Y^X 09 4 62, GSB A -> 3.141592654 in 60" (error = 0) 10 STO 0 11 / 12 -13*LBL 0 14 DSE I 15 RCL 0 16 CHS 17 STO 0 18 RCL/I 19 + 20 DSE I 21 GTO 0

so this improved version needs to add up just 62 terms to return a full 10 correct-digit value within 60 seconds. Here's a table summarizing the different degrees of approximation using 0, 1, and 2 correction terms, for up to 60 terms added up:

Ν	bare series	+C1	+C1+C2	t
10	3.041839619	3.141839619	3.141589619	10"
20	3.091623807	3.141623807	3.141592557	20"
30	3.108268567	3.141601900	3.141592641	30"
40	3.116596557	3.141596557	3.141592651	40"
50	3.121594653	3.141594653	3.141592653	50"
60	3.124927144	3.141593811	3.141592653	60"

Further empirical confirmation:

As we've been able to indeed get 10 correct digits by using our empirically discovered corrections, we can be fairly confident that they are no mere coincidences but hold for greater number of terms added up and thus greater precision. To test this, just out of curiosity, these are the results for N = 500, 5000, 50000, 500000, and 5 million terms added up:

```
N = 500 terms added up
3.13959265<mark>5</mark>5897<mark>8</mark>3238<mark>584</mark>64...
3.14159265<mark>3</mark>5897<mark>9</mark>323846264...
     +2
           -2 +10 -122
N = 5,000 terms added up
3.141<mark>3</mark>926535<mark>91</mark>793238<mark>3</mark>626433<mark>954</mark>7950...
3.141<mark>5</mark>926535<mark>89</mark>793238<mark>4</mark>626433<mark>832</mark>7950...
                    -2
       +2
                                +10
                                            -122
N = 50,000 terms added up
3.1415<mark>7</mark>265358979<mark>5</mark>23846264<mark>2</mark>38327950410419716...
3.1415<mark>9</mark>265358979<mark>3</mark>23846264<mark>3</mark>38327950288419716...
        +2
                          -2
                                         +10
                                                         -122
```

```
N = 500,000 terms added up
3.14159065358979324046264338326950288419729139937510...
3.14159265358979323846264338327950288419716939937510...
+2 -2 +10 -122
N = 5,000,000 terms added up
3.14159245358979323846464338327950278419716939938730582097494...
3.14159265358979323846264338327950288419716939937510582097494...
+2 -2 +10 -122
```

Notice in particular the values for N = 5,000,000 terms: the 7th decimal is already in error by 2 units. But the next 13 digits are all correct ! Then, the following digit is also 2 units wrong. But the next 12 digits are again correct !! All in all, among the first 47 digits, only 3 of them are a few units wrong !

In other words, the original series converges incredibly slowly, granted, but the errors when you stop at N terms are extremely predictable and easy to compute, so you can increase your accuracy 3-fold or 5-fold by using just one or two easily derived correction terms.

Final notes

This empirical discovery, once made, can be substantiated by theory, and a nifty expression is arrived at which results in an asymptotic approximation to Pi based on the sum of the original series truncated to N terms plus a 'correction' series (the asymptotic component) in negative powers of N (1/N, 1/N3, etc) where the so-called Euler numbers are the coefficients.

Similar phenomena occur for constants other than Pi, for example similarly truncating the series:

 $Ln(2) = 1 - 1/2 + 1/3 - 1/4 + 1/5 - \dots$

results in:

Sum = 0.69314708055995530941723212125817656807551613436025525...Ln(2) = 0.69314718055994530941723212145817656807550013436025525... 1 -1 2 -16

and another asymptotic series can be theoretically substantiated, the required coefficients being now the so called "tangent numbers" instead: 1, -1, 2, -16, ...

Thanks for your interest and many excellent posted contributions, hope you enjoyed yourselves while working them out."

And here's how all this is applied to the HP-41 in this module, a deceptively simple code that however encompasses the devilish wizardry so well explained in the previous pages:

The routine is deservedly labeled "VAPI", I'm sure you'll understand why.

1	LBL "VAPI"
2	STO M
3	ST+ M
4	1/X
5	ENTER^
6	X^3
7	4
8	STO N
9	/
10	LBL 00 <
11	DSE M
12	RCL N
13	CHS
14	STO N
15	RC/ N
16	+
17	DSE M
18	GTO 00
19	END

The table of results is shown below. Note the small number of iterations needed for a good accuracy, proof of the very efficient algorithm used.

Result
3. 1354 16667
3.14 133 1846
3.141555436
3.141583536
3.14 15896 19
3.141591424
3.141592082
3.141592359
3.141592490
3. 14 1592557

This concludes the first part of the manual. In the next section you'll find a short description of the MCODE and FOCAL programs to calculate many digits of pi and e.

© ÁNGEL M. MARTIN – MARCH 2022

PAGE 33 OF 59

Many Digits of Pi. (by Peter Platzer, MoHPC Forum)

https://www.hpmuseum.org/cgi-sys/cgiwrap...587#147587

The module includes the remarkable and impressive MCODE implementation of the Spigot algorithm by Peter Platzer, published in the Museum of HP Calculators forum. His description is available in the appendix, but here are the highlights:

The code asks for three inputs: The page where the MLDL ram starts to use, the number of digits and the base b to use (max = 5 for 5 digits at a time). One can set Flag 0 and the calc will stop at each group of digits and wait for a key to be pressed, otherwise it just keeps calculating ...

Setting Flag 1 will store the found digits in the same compressed format – each group of up to 5 digits is stored in 2 words, with the right nibble converted to hex. They are stored in reversed order though

In manual execution the function prompts for the number of digits to calculate (limited to 1999 by the prompt) and the destination page where to store them. This needs to be a q-RAM page to allow writes into it. The maximum number of digits is 4095 – which will fill up the page in its entirety.

The screens below show an example to calculate 1,046 digits to be stored in page B:

In an unmodified HP-41 it delivers 1,160 digits in about 9 hours 3,600 digits in about 4 days , and 4,915 digits in about 8 days. The chart below shows a comparison with the previous record-holding approaches described in the article.

- ; Many Digits of PI
- ; Spigot algorithm from Pi-book
- ; uses base b <= 5 to show 5 digits at a time
- ;Flag0 wait for key press after each group is shown
- ;Flag1 store result digits in reverse order from end (iStart)

;Input:

- ; Z : p page number of start of MLDL ram to use
- ; Y : n number of digits wanted
- ; X : base b in powers of 10

;-----

- ; All Stack and Alpha is used for temp storage
- ; 3(X): i in dec, 1step 5(M): orig iStart in hex and 2 step
- ; 2(Y): tmp 6(N): last addr in hex and 2 step
- ; 1(Z): iBits in dec, 1 step 7(O): iBits in hex, 2 step
- ; 4(L): iStart in dec, 1 step 8(P): b|iStart in hex and 2 step
- ; 9(Q): q remainder 0(T): page number in hex in C:[0]

;-----

- ; All numbers are integers without exponent starting at C[0]
- ; User-Flag 0 -> wait for key press after each numbers shown. Stored in M-Flag 9

Extended precision: Pi to 1,000 places. (by Ron Knapp, PPCCJ V8N6 p69)

"*Compute the first 1,000 decimal digits of Pi in less than 11 hours, 30 minutes*". That was the friendly challenge put out by the PPC 'Journal", especially to members of the TI Personal Calculator Club, approximately a year ago. This challenge was repeated in the "Calcu-letter" of Popular Science Magazine, July 1981.

Up to the present time, I have heard of no serious attempts to eclipse this record. So,-- I decided to improve my own program. The program listed below computes Pi to 1,000 decimal places in just 8 hours, 30 minutes.

Ed. note: with 2x machines, and some will run Faster, (fastest reported so far was Emett Ingram (17) at 2.8x) a 4 hour, 1,000 digit Pi program is the state of the PPC art. How long will it be before someone places 100,000 digits of Pi on a cassette? A printer on the HP-IL would take nearly 45 minutes to print it on 70 feet of paper at 20 digits per line, 2 lines per second.

The first 1.000 decimal places of Pi contains 93 0s, 116 1s, 103 2s, 102 3s, 93 4s, 97 5s, 94 6s, 95 7s, 101 8s, and 106 9s. Below is "3 dot" followed by the first 1,000 decimals of Pi.

3.14159265358979323846264338327950288419716939937510582 0974944592307816406286208998628034825342117067982148086 51328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196442881097566593344 6128475648233786783165271201909145648566923460348610454 3266482133936072602491412737245870066063155881748815209 2096282925409171536436789259036001133053054882046652138 4146951941511609433057270365759591953092186117381932611 7931051185480744623799627495673518857527248912279381830 $1\,1\,9\,4\,9\,1\,2\,9\,8\,3\,3\,6\,7\,3\,3\,6\,2\,4\,4\,0\,6\,5\,6\,6\,4\,3\,0\,8\,6\,0\,2\,1\,3\,9\,4\,9\,4\,6\,3\,9\,5\,2\,2\,4\,7\,3\,7\,1\,9\,0\,7\,0\,2\,1\,7$ 9860943702770539217176293176752384674818467669405132000 $5\,6\,8\,1\,2\,7\,1\,4\,5\,2\,6\,3\,5\,6\,0\,8\,2\,7\,7\,8\,5\,7\,7\,1\,3\,4\,2\,7\,5\,7\,7\,8\,9\,6\,0\,9\,1\,7\,3\,6\,3\,7\,1\,7\,8\,7\,2\,1\,4\,6\,8\,4\,4\,0\,9$ 0122495343014654958537105079227968925892354201995611212 9021960864034418159813629774771309960518707211349999998 $3\,7\,2\,9\,7\,8\,0\,4\,9\,9\,5\,1\,0\,5\,9\,7\,3\,1\,7\,3\,2\,8\,1\,6\,0\,9\,6\,3\,1\,8\,5\,9\,5\,0\,2\,4\,4\,5\,9\,4\,5\,5\,3\,4\,6\,9\,0\,8\,3\,0\,2\,6\,4\,2\,5$ 2230825334468503526193118817101000313783875288658753320 8381420617177669147303598253490428755468731159562863882 3537875937519577818577805321712268066130019278766111959 092164201989

HP- PIE MODULE QRG

Program listing.-

1	*LBL "PI1K"	49	RCL 10	97	R^	
2	*LBL A	50	*	98	INT	
3	" PI -?-"	51	STO 06	99	LASTX	
4	AVIEW	52	CLX	100	FRC	
5	CLRG	53	STO 01	101	RDN	
6	FIX 3	54	X<>Y	102	+	
7	4	55	RCL 13	103	X<>Y	
8	STO 09	56	*	104	INT	
9	E5	57	ENTER^	105	RCL 04	
10	ST/Y	58	GTO 02	106	ST* T	
11	STO 04	59	*LBL 01	107	ST* Z	
12	X^2	60	RCL 06	108	*	
13	STO 05	61	ST/Z	109	STO IND 00	
14	X<>Y	62	MOD	110	RDN	
15	427	63	X<>Y	111	ENTER^	
16	+	64	INT	112	*LBL 03	
17	STO 02	65	X<>Y	113	RCL 08	
18	239	66	RCL 04	114	ST/Z	
19	X^2	67	ST* Z	115	MOD	
20	STO 07	68	*	116	X<>Y	
21	LASTX	69	ENTER^	117	INT	
22	E2	70	*LBL 02	118	ST+ IND 00	
23	*	71	RCL 06	119	RDN	
24	STO 13	72	ST/Z	120	+	
25	RDN	73	MOD	121	STO 01	
26	X^2	74	STO 03	122	RCL 03	
27	STO 08	75	RDN	123	RCL 04	
28	94 E-5	76	INT	124	*	
29	STO 11	77	+	125	ENTER^	
30	14.0139	78	RCL 05	126	ISG 00	
31	STO 12	79	ST- Y	127	GTO 01	
32	25	80	X<>Y	128	DSE 02	
33	STO 10	81	RCL IND 00	129	GTO 00	
34	*LBL 00	82	+	130	4096 E-7	
35	RCL 11	83	X>0?	131	STO 08	
36	ST+ 12	84	ISG 01	132	1439.00006	
37	RCL 12	85	*LBL 03	133	STO 02	
38	RND	86	X<0?	134	837 E-6	
39	STO 00	87	+	135	STO 11	
40	RCL 07	88	RCL 01	136	115.115	
41	RCL 02	89	RCL 04	137	STO 12	
42	INT	90	ST/Z	138	80	
43	ENTER^	91	*	139	STO 13	
44	ST* Z	92	ENTER^	140	5 E6	
45	2	93	*LBL 02	141	STO 07	
46	-	94	RCL 08	142	.75	
47	ST- Z	95	ST/Z	143	STO 06	
48	*	96	MOD	144	*LBL "Q"	

	HP- PIE MODULE QRG					
145	RCL 11	197	ENTER^	249	LASTX	
146	ST+ 12	198	GTO 09	250	INT	
147	RCL 12	199	*LBL 08	251	RCL 08	
148	RND	200	RCL 01	252	*	
149	STO 00	201	ST/Z	253	FRC	
150	STO 03	202	MOD	254	LASTX	
151	SF 00	203	X<>Y	255	INT	
152	*LBL 05	204	INT	256	ST+ IND 00	
153	RCL 02	205	X<>Y	257	RDN	
154	INT	206	RCL 04	258	X<>Y	
155	ENTER^	207	ST* Z	259	RCL 05	
156	ENTER^	208	*	260	ST* T	
157	*LBL 02	209	ENTER^	261	ST* Z	
158	2	210	*LBL 09	262	*	
159	-	211	RCL 01	263	RCL 08	
160	ST* Z	212	ST/Z	264	*	
161	RCL 10	213	MOD	265	FRC	
162	ST* Z	214	RDN	266	X<>Y	
163	X<>Y	215	INT	267	LASTX	
164	*	216	+	268	INT	
165	2	217	RCL IND 00	269	R^	
166	ST-L	218	-	270	+	
167		210	X >0?	271	RCL 05	
168	LASTX	220	GTO 02	272	-	
169	ST* T	220	DSF 00	273	+	
170	ST-Y	221	*I BL 03	274	X>0?	
171	RDN	222		275	ISG IND 00	
172	*	225	DSE IND 00	276	X>0?	
172	R^	224	ISC 00	277	GTO 03	
174	ST+ T	225	KCL 05	278	RCL 05	
175	X^2	220	+ *I DI 02	279	+	
176	R^	227	*LBL 02	280	*LBL 03	
177	к +	228	STO IND 00	281	ISG 00	
178	+ +	229	R^	282	GTO 11	
170	T FC 2 00	230	RCL 04	283	GTO "O"	
100		231	*	283	*LBL 04	
100	BCL 13	232	ENTER^	285	PCL 03	
101	KCL 15 *	233	ISG 00	285	STO 00	
182	3	234	GTO 08	280	BCL 10	
103	5 DSE 02	235	RCL 03	207	KCL 10 XA2	
104		236	STO 00	200	A 2 2	
105	*1 PL 02	237	FS?C 00	209	J VAV	
100		238	GTO 05	290		
187	RCL 07	239	CLX	291	LASIA	
188		240	ENTER^	292		
189	RCL 06	241	DSE 02	293	S10.08	
190	*LBL 03	242	FS? 00	294	ULA *1 DL 12	
191	X<>Y	243	GTO 04	295	*LBL 13	
192	RDN	244	*LBL 11	296	RCL IND 00	
193	/	245	X<> IND 00	297	X<>Y	
194	STO 01	246	RCL 04	298	RCL 04	
195	CLX	247	/	299	ST/Z	
196	R^	248	FRC	300	*	

© ÁNGEL M. MARTIN – MARCH 2022

PAGE 38 OF 59

		н	P- PIE MODULE QRG		
301	ENTER^	340	RCL IND 00	379	ISG 00
302	*LBL 02	341	-	380	GTO 07
303	RCL 08	342	0	381	AVIEW
304	ST/Z	343	X<>Y	382	RTN
305	MOD	344	X<0?	383	*LBL 10
306	R^	345	X>0?	384	RCL IND 00
307	INT	346	GTO 02	385	RCL 04
308	LASTX	347	RCL 05	386	/
309	FRC	348	+	387	INT
310	RDN	349	DSE Y	388	LASTX
311	+	350	*LBL 02	389	FRC
312	X<>Y	351	STO IND 00	390	RCL 04
313	INT	352	RDN	391	XEQ 12
314	RCL 04	353	DSE 03	392	
315	ST* T	354	DSE 00	393	XEQ 12
316	ST* Z	355	GTO 06	394	RTN
317	*	356	BEEP	395	*LBL 12
318	STO IND 00	357	RTN	396	*
319	RDN	358	*LBL E	397	RCL Y
320	ENTER^	359	SF 21	398	X=0?
321	*LBL 03	360	CLA	399	GTO 03
322	RCL 08	361	FIX 0	400	LOG
323	ST/Z	362	14.114	401	INT
324	MOD	363	STO 00	402	*LBL 03
325	X<>Y	364	SF 29	403	RCL 09
326	INT	365	RCL IND 00	404	X<>Y
327	ST+ IND 00	366	ACX	405	X=Y?
328	RDN	367	ADV	406	GTO 02
329	+	368	CF 29	407	-
330	ISG 00	369	ISG 00	408	0
331	GTO 13	370	*LBL 07	409	*LBL 14
332	114.013	371	XEQ 10	410	ARCL X
333	STO 00	372	ISG 00	411	DSE Y
334	215	373	FS? 00	412	GTO 14
335	STO 03	374	RTN	413	*LBL 02
336	CLX	375		414	ARCL T
337	*LBL 06	376	XEQ 10	415	ACA
338	RCL IND 03	377	ADV	416	CLA
339	+	378	CLA	417	END

Extended precision: E to 2,900 places. (by Ron Knapp, PPCCJ V9N1 p12)

This program is an abbreviated version designed to compute the decimal places of "e" to the greatest possible limit allowed in an HP-41CV or an HP-41C with a Quad Memory module. The program does the initialization including setting the SIZE to 294 data registers.

R01 shows the count-down number at all times. Originally this indicates the number of terms of the series necessary to obtain the accuracy desired. The number of terms yet to be computed is continuously displayed to allow the operator to know the progress of the computation. When the count-down number reaches zero the execution can proceed to the readout (or printout) routine, which displays 10 digits at a time, broken into two groups of five digits each, for easy reading. All leading and ending zeros are shown.

Instructions:

XEQ "E2900" XEQ "R" Will take around 25 minutes at TURBO50 speed ! To see/Print the results

01	LBL "R"	Readout results
02	FIX 0	
03	CF 29	
04	"2,″	
05	AVIEW	
06	4	
07	ST+ 03	
08	LBL 06	
09	CLA	
10	SF 01	
11	RCL IND 03	
12	E5	
13	/	
14	FRC	
15	LASTX	
16	INT	
17	LBL 07	
18	ENTER^	
19	ENTER^	
20	4	
21	X<>T	
22	X=0?	
23	GTO 08	
24	LOG	

25	INT	
26	_	
27	0	
28	X=Y?	
29	GTO 09	
30	LBL 08	
31	ARCL X	
32	DSE Y	
33	GTO 08	
34	LBL 09	
35	ARCL Z	
36	FC?C 01	
37	GTO 10	
<u>38</u>	"/- "	; two spaces
39	R^	
40	E5	
41	*	
42	GTO 07	
43	LBL 10	
44	AVIEW	
45	ISG 03	
46	GTO 06	
47	END	

Program listing. -

1	*LBL "E2900"	47	ST* Y	93	*
2	294	48	X<> L	94	ENTER^
3	PSIZE	49	ST+Y	95	R^
4	CF 01	50	ST+ L	96	ST/Z
5	CF 02	51	DSE Z	97	MOD
6	4 004	52	GTO 03	98	LASTX
7	5TO 00	53	*	99	RDN
0	1112	54	+	100	X<>Y
0	STO 01	55	*LBL 04	101	INT
9 10	51001	56	E5	102	ST+ IND 00
11	E STO 02	57	*	103	CLX
10	310 03	58	ENTER^	104	+
12	.293 STO 02	50	DA	105	+
15	\$10.05	60	к ST/7	106	ISG 00
14	*LBL e	61	MOD	107	GTO 04
15	RCL 01	62		108	X
16	ENTER^	62	A<>I INT	100	
17	VIEW X	64	11N I 175	105	
18	DSE 01	64 65		111	F
19	E10	65	X > Y (117	ST 00
20	X<>Y	00	610.05	112	$\mathbf{X} \sim \mathbf{V}$
21	ISG Z	67		113	$\Lambda <>1$
22	*LBL 00	68	INI	114	SI + IND 00
23	RCL 01	69	E	115	К ¹
24	X<>Y	70	ST- 00	110	E-10
25	*	/1	X<>Y	117	ст* 0 2
26	X>Y?	72	ST+ IND 00	118	S1* 02
27	GTO 01	73	RDN	119	RCL 02
28	DSE 01	74	ST+ 00	120	LASIX
29	GTO 00	75	CLX	121	X>Y?
30	SF 01	76	LASTX	122	SF 02
31	ENTER^	77	FRC	123	FS? 02
32	*LBL 01	78	E5	124	S17 02
22		79	*	125	E-3
27	I A STV	80	LASTX	126	RCL 00
24 25	LASIA	81	*LBL 05	127	FRC
35	A <> 1	82	*	128	FC?C 02
30	RCL 01	83	X<> IND 00	129	+
3/	3	84	LASTX	130	RCL 03
38	FC?01	85	/	131	X <y?< td=""></y?<>
39	DSE X	86	INT	132	X<>Y
40	*LBL 02	87	ST+Y	133	RDN
41	+	88	X<>L	134	4
42	-	89	FRC	135	+
43	E	90	X<>Y	136	STO 00
44	ENTER^	91	E5	137	FC?C 01
45	*LBL 03	92	ST* Z	138	GTO e
46	X<> L		~	139	END

	64274 92069 01416 79312	43117 24496 07016 50354	08868 96409 35743 99828 86298	00169 64310 98139 98139	96437 40160 13908 58048 36187	09586 99376 71807 66327
	52516 95251 777449 20931 30098	25094 06981 63463 08887 95703	29725 96970 24796 91644 91644	16674 99707 39207 28123 85263	87779 34447 07321 13722	58029 42345 53801 58543
	82178 07531 96977 96892	32036 61332 84443 18369 54688	69973 89448 93441 59004 14590	60688 42818 72870 03644 87610	48279 09711 34392 05669 54016	85731 30754 69672 01366
	45713 82988 37107 72306 93163	88793 67173 67173 48419 52096 52096	66041 39855 02388 01910 01910	09455 88623 26484 18063 82947	15097 56647 79778 79778 79778	72990 85082 80605 46195
	54759 54424 54424 54424 54424 54704 55987	98294 30175 79610 62531 96552	93503 78675 14174 25164 63964	78630 54995 26023 65851 28418	32625 66618 220005 07054 63917	90433 97477 79256
	33353 24907 27423 27423 27433 27457 27433 27433 27453 27453 27453 274557 27457	93923 55815 57492 64054 87396	77770 432.52 36372 36372	00113 98506 06275 24817 24817 951.58	44182 55096 69652 99149 38939	42794 56420 23151 16501
ង្កា	46766 62794 87091 94686	05820 98194 80582 38143 86106	41995 67719 56648 56648 72556	39220 53224 36835 02057 27944	03381 46618 87485 86323 08761	33259 39186 47792 18035
PLACE	62772 32328 84774 70932 69967	78250 92086 7717189	04730 21236 14235 33386 33386	33405 39662 03136 03136	26039 52795 71858 40001 53537	35291 57248 50881 90665
to 290	66967 07381 80016 13200 54499	39849 02328 84998 31409 47704	58539 03059 78182 62779 91529	20541 38744 74152 98889 98889 60037	48826 63304 02353 38354 98330	29460 99465 25572 25572
"e"	95749 59563 82264 67371 77078	28869 53118 57922 57922 57922 01157	74501 64450 64450 64450 64450 64450 64832 84832	88459 88386 62953 36450 15219	47564 65070 68620 51326 51326 26029	43961 25126 23661 08740
- NOIS	69995 95260 06680 229760 239696 53696	31825 80429 89428 99418 75051	33224 51246 42251 92622 46959	56812 51177 447109 32275 28183	13991 66394 50054 50054 16072	35128 58459 29435 52189
PREC I	47093 03342 76146 26560 50569	66803 76464 67385 30436 30436	51930 13419 89613 25620 69829	57320 78369 77275 15137 68532	98197 90717 70959 70120 83241	40254 06064 23722 29697
TENDED	77572 57290 09244 49338 78442	95193 32823 27386 90235 72085	88023 51787 28364 28364 25778 44258	677 <i>57</i> 613 <i>52</i> 86398 86398 69381 08003	36192 25611 85596 42163 90413	77983 58636 76964 42115
X	66249 29043 41675 75204 75204 52389	82698 32068 45807 21609 30310	05627 98826 74272 78509 56532	98546 32256 92966 92966	45780 88241 98821 83795 81285	06164 16894 78084 78084
	71352 35966 93488 83000 21112	48220 37679 85193 20900 49061	01210 25607 12047 54922 54922 15519	71747 04024 89707 47254 55194	18462 777297 71436 90717 55236	55386 24003 10163 56050
	02874 81741 89149 13845 46377	76351 70198 59888 78623 45635	06817 14716 01621 01612 31864	58586 45203 34558 30236 72115	75287 83605 78443 27734 95876	33709 33709 09417 58506
	23536 59921 21540 26133 26133 08657	92295 14039 90351 70419 59271	34321 62268 23637 37998 27786	50489 95376 65014 52970 01172	22443 22713 48187 48187 48187 48187 48187 48187 48187 48187 48187 48187 48187	41587 16396 36273 77846
	59045 20030 93070 38606 55151	42499 68416 30416 62482 78140	98193 557071 56380 72580	06870 33637 03494 12094 5465	64829 86778 80717 97273 19432	81.558 14771 80085 59278
	18284 39193 34187 27618 81902	78215 81.970 981.59 60233 60233	40784 40355 18569 75529 56604	12874 58040 83928 41166 75102	06737 70388 62156 63447 62951	26053 68329 19777 34624
	2.71828 27466 15738 55170 92836	77361 30123 96181 84875 76839	02123 76966 75459 70263 93150	49679 84205 61717 05958 50704	55990 30899 70462 03293 96690	89365 31382 91704 76360

© ÁNGEL M. MARTIN – MARCH 2022

PAGE 42 OF 59

HP- PIE MODULE QRG

Extended precision for Pi. (by Benoit Maag)

This section is a reproduction of the original article in the museum forum, see:

https://www.hpmuseum.org/forum/post-139434.html#pid139434

HP-41C Program / 41CL – DM41X

(X-functions only needed for memory sizing)

n decimal precision obtained after INT(n/log(2)) iterations

Data stored as xxxxx.xxxx - calculations done with 5 digits at a time. The fractional and integer part of the store number are separated and processed separately. The program is longer and slower as a result but memory use is maximized. Every iteration of i runs the multiplication by i from Rmax down to R03 and then the division by 2i+1 from R03 to Rmax.

Memory Usage

R00: indirect addressing register R01: i, starting at INT(n/log(2)) and decreasing to 1 R02: number of last register of data R03: x.xxxx R04 = Rmax: xxxxx.xxxx (Rmax: last register of data)

Instructions

Nb of decimals desired (multiple of 10) XEQ "PI"

When the program ends (with a BEEP), the approximation of is stored in $R03 \sim Rmax - nb$ of decimals = number of decimals desired + 5

Benckmarking:-

Notable absence is the V41 – TURBO test case, which of course will perform as good as the hosting PC machine is capable of performing.

Starting with the plain configuration:

HP- PIE MODULE QRG

HP-41C

# of Digits	# of iteration	# of registers	Time	Time (s)
15	49	2	5 min 46 s	346 s
25	83	3	14 min 15 s	855 s
45	149	5		
105	348	11	3 hrs 28 min 49 s	12,529 s

HP-41CL - TURBO50 Mode

# of Digits	# of iteration	# of registers	Time	Time (s)
15	49	2	23 s	23 s
25	83	3	54 s	54 s
45	149	5	2 min 32 s	152 s
105	348	11	12 min 21 s	741 s
255	847	26	1 hr 09 min 25 s	4,165 s

SWISSMICROS DM41X - Battery Power (*)

# of Digits	# of iteration	# of registers	Time	Time (s)
15	49	2	28 s	28 s
25	83	3	1 min 6 s	66 s
45	149	5	3 min 6 s	186 s
105	348	11	15 min 9 s	909 s
255	847	26	1hr 25 min 16 s	5,116 s

(*) printer module unplugged

# of Digits	# of iteration	# of registers	Time	Time (s)
15	49	2	12 s	12 s
25	83	3	26 s	26 s
45	149	5	1 min 9 s	69 s
105	348	11	5 min 23 s	323 s
255	847	26	29 min 27 s	1,767 s

SWISSMICROS DM41X - USB Power (*)

(*) printer module unplugged

Note: the printer module on the DM41X slows down the calculation significantly. For example, the calculation of 15 digits takes 74 seconds with the printer module plugged in, and just 28 seconds without it

Program Listing

1	LBL "Σ2ΡΙ"	
2	ENTER	
3	CLRG	
4	5	
5	+	
6	2	
7	STO 03	
8	LOG	
9	/	
10	INT	
11	STO 01	
12	RDN	
13	E1	
14	/	
15	3	
16	+	
17	STO 00	
18	STO 02	
19	E	
20	+	
21	PSIZE	
22	0	
23	LBL 00	
24	RCL IND 00	
25	FRC	
26	XEQ 01	
27	X<> IND 00	
28	INT	
29	E5	
30	/	
31	XEQ 01	
32	E5	
33	*	
34	ST+ IND 00	
35	RDN	
36	DSE 00	
37	RCL 00	

38	3
39	X>Y?
40	GTO 02
41	RDN
42	RDN
43	GTO 00
44	LBL 01
45	RCL 01
46	*
47	X<>Y
48	E5
49	/
50	+
51	INT
52	LAST X
53	FRC
54	RTN
55	LBL 02
56	0
57	ISG 00
58	FIX 5
59	LBL 05
60	E5
61	*
62	RCL IND 00
63	INT
64	+
65	XEQ 03
66	X<> IND 00
67	FRC
68	+
69	E5
70	*
71	XEQ 03
72	E5
73	/
74	ST+ IND 00

75	RDN	
76	ISG 00	
77	FIX 5	
78	RCL 00	
79	RCL 02	
80	X <y?< td=""><td></td></y?<>	
81	GTO 04	
82	RDN	
83	RDN	
84	GTO 05	
85	LBL 03	
86	ENTER	
87	ENTER	
88	RCL 01	
89	ST+ X	
90	ISG X	
91	FIX 5	
92	STO T	
93	MOD	
94	X<>Y	
95	R^	
96	/	
97	INT	
98	RTN	
99	LBL 04	
100	0 2	
101	ST+ 03	
102	DSE 01	
103	GTO 06	
104	BEEP	
105	RTN	
106	LBL 06	
107	VIEW 01	
108	DSE 00	
109	0	
110	GTO 00	
111	END	

Pi Decimals for the HP-41 (by Jean-Marc Baillard) http://hp41programs.yolasite.com/pi.php

Overview

You place a positive integer n < 319 in the X-register, and your HP-41 returns 5.n decimals of PI, that is 5-digits per register up to 319 registers max or 1,595 digits.

Formula:

 $\pi = 2 + (1/3) (2 + (1/5) (2 + (3/7) (2 + (2 + k/(k+1))....)))$

Program Listing

125 bytes / SIZE nnn+1

Data Registers: R00 = n; {R01 ... Rnn} = the decimals of PI in groups of 5 digits.

Flags: / Subroutines: /

01 LBL "PIDIG"	17 E5	33	+	49	MOD	65	STO IND Z
02 CLRG	18 STO O	34	STO P	50	ST- Y	66	RDN
03 STO 00	19 ISG N	35	MOD	51	X<>Y	67	ISG Y
04 5	<u>20 LBL 01</u>	36	ST- 01	52	LASTX	68	GTO 02
05 *	21 RCL M	37	LASTX	53	/	69	DSE N
06 2	22 RCL O	38	ST/ 01	54	RCL O	70	GTO 01
07 LOG	23 ST+ X	39	CLX	55	ST* Z	71	E5
08 /	24 RCL 01	40	RCL O	56	X>Y?	72	ST+ 01
09 INT	25 +	41	*	57	GTO 03	73	ST+ 01
10 STO N	26 RCL N	42	LBL 02	58	ST- Y	74	ST/ 01
11 2	27 *	43	RCL IND Y	59	SIGN	75	RCL 00
12 RCL 00	28 STO 01	44	RCL N	60	ST- T	76	0.1
13 E3	29 LASTX	45	*	61	ST+ IND T	77	%
14 /	30 ST+ X	46	+	62	ST+ T	78	ISG X
15 +	31 ENTER	47	RCL X	<u>63</u>	LBL 03	79	CLA
16 STO M	32 SIGN	48	RCL P	64	RDN	80	END

STACK	INPUT	OUTPUT
Х	n < 319	1.nnn

Example1: Calculate $5 \ge 8 = 40$ decimals of PI

8, XEQ "PIDIG" =>>> 1.008 --- Execution time = 11m14s---

-And we find in registers R01 thru R08: (add zeros on the left if need be)

3.14159 26535 89793 23846 26433 83279 50288 41971

All these decimals are exact !

Example2: Calculate 5 x 318 = 1590 decimals of PI

SIZE 319 318 XEQ "PIDIG" =>>>> 1.318

---Execution time = 27m20s---With V41 in Turbo Mode

And we get in registers R01 thru R318: (add zeros on the left if need be)

3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 82148 08651 32823 06647 09384 46095 50582 23172 53594 08128 48111 74502 84102 70193 85211 05559 64462 29489 54930 38196 44288 10975 66593 34461 28475 64823 37867 83165 27120 19091 45648 56692 34603 48610 45432 66482 13393 60726 02491 41273 72458 70066 06315 58817 48815 20920 96282 92540 91715 36436 78925 90360 01133 05305 48820 46652 13841 46951 94151 16094 33057 27036 57595 91953 09218 61173 81932 61179 31051 18548 07446 23799 62749 56735 18857 52724 89122 79381 83011 94912 98336 73362 44065 66430 86021 39494 63952 24737 19070 21798 60943 70277 05392 17176 29317 67523 84674 81846 76694 05132 00056 81271 45263 56082 77857 71342 75778 96091 73637 17872 14684 40901 22495 34301 46549 58537 10507 92279 68925 89235 42019 95611 21290 21960 86403 44181 59813 62977 47713 09960 51870 72113 49999 99837 29780 49951 05973 17328 16096 31859 50244 59455 34690 83026 42522 30825 33446 85035 26193 11881 71010 00313 78387 52886 58753 32083 81420 61717 76691 47303 59825 34904 28755 46873 11595 62863 88235 37875 93751 95778 18577 80532 17122 68066 13001 92787 66111 95909 21642 01989 38095 25720 10654 85863 27886 59361 53381 82796 82303 01952 03530 18529 68995 77362 25994 13891 24972 17752 83479 13151 55748 57242 45415 06959 50829 53311 68617 27855 88907 50983 81754 63746 49393 19255 06040 09277 01671 13900 98488 24012 85836 16035 63707 66010 47101 81942 95559 61989 46767 83744 94482 55379 77472 68471 04047 53464 62080 46684 25906 94912 93313 67702 89891 52104 75216 20569 66024 05803 81501 93511 25338 24300 35587 64024 74964 73263 91419 92726 04269 92279 67823 54781 63600 93417 21641 21992 45863 15030 28618 29745 55706 74983 85054 94588 58692 69956 90927 21079 75093 02955 32116 53449 87202 75596 02364 80665 49911 98818 34797 75356 63698 07426 54252 78625 51818 41757 46728 90977

The Decimals of PI/E for the HP-41 (by Eckard Gehrke)

This section is a direct translation from the relevant sections of the chapter in the book "*HP-41 Sammlung*", pages 65, 66 and following. *Vieweg Programmbibliothek #23.*

3.3 The calculator program

The HP-41CV programmable calculator is used for the calculation. The HP-41 works with the RPN system, which is based on a bracket-free representation of all operations.

The HP-41 cannot define variables. It has numbered memories. A call is made with RCL nm, with a STO nm the number a is stored in register nm. For the used R00 holds i, R01 and R02 are needed for the loop counter j. 0 is stored in R03 and DR in R04. The following 81 memories R05 - R85 form $[\R1'']$

In these registers the successive elements are summed up to the registers R86 - R166 (R2) take in (b n), the division with D is handled in the registers R167 - R247.

The addressing of these registers is done indirectly with R 01 and R 02. For the subroutines addition and subtraction, the registers of R1 are called with RCL IND 01, those of R3 with RCL IND 02. The calculation of R 01 and R 02 is done in the subroutine loop counter. Only R 01 is needed for division. The register R0 (J) takes the remainder Registers. Register M ([) and N (\) are intended for ["M"] and ["N"] respectively.

The HP-41 can only jump to marks ("labels"). These are indicated in the diagrams with circles. For the labels NFG, ADD, DIV and SUB the labels 02, 03, 06 and A are used. Subroutines are executed with XEQ. On an RTN, the computer returns to the line following the subroutine call. Simple jumps are made with GTO.

For questions answered "no", the computer skips a line. The loop control is done with ISG and DSE. For i the result is: R 00 has the initial value 1.081 (a,b). If the computer comes to an ISG instruction, a is increased by 1: 2.081. If a > b, the computer skips one line. With a DSE instruction, a is decreased by 1. If a < b, one line is line is skipped.

With the help of lines 02 - 05 the calculator shows during the calculation

"PI=?" in the display. The rest of the program can be with the diagrams and the remarks on the basis of the commented program printout. program printout. To save memory space during the calculation, the output program has been separated. First the last digit is rounded, with LBL 00 the output begins the output. A diagram is not given for this.

With SIZE 248 the memory registers are reserved. The display format must be set to FIX 0. With XEQTPI the program is started. In the following 33 .4 hours the HP-41 calculates 800 decimals of pi. For this purpose, 580 subsequent elements an/D and 180 subsequent elements bn/D are calculated. The calculator switches on.

The number Pi program is then switched off. After switching on, SIZE 087 is used to create memory space for the output program. After reading in it is started with XEQ "OUT". When the printer is switched on, the following result is obtained:

Pi accurate to 800 decimals

π =		
3,141592653	0454326648	7190702179
5897932384	2133936072	8609437027
6264338327	6024914127	7053921717
9502884197	3724587006	6293176752
1693993751	6063155881	3846748184
0582097494	7488152092	6766940513
4592307816	0962829254	2000568127
4062862089	0917153643	1452635608
9862803482	6789259036	2778577134
5342117067	0011330530	2757789609
9821480865	5488204665	1736371787
1328230664	2138414695	2146844090
7093844609	1941511609	1224953430
5505822317	4330572703	1465495853
2535940812	6575959195	7105079227
8481117450	3092186117	9689258923
2841027019	3819326117	5420199561
3852110555	9310511854	1212902196
9644622948	8074462379	0864034418
9549303819	9627495673	1598136297
6442881097	5188575272	7477130996
5665933446	4891227938	0518707211
1284756482	1830119491	3499999983
3378678316	2983367336	7297804995
5271201909	2440656643	1059731732
1456485669	0860213949	8160963186
2346034861	4639522473	

The Number e

Let $e(n) = \sum 1/k!$, with k=0 to n.

Then $|e-e(n)| < \varepsilon$ is valid with $\varepsilon = (n+2)/(n+1)/(n+1)!$. For $\varepsilon = 10^{(-3002)}$ one obtains n = 1143.

If one modifies the indicated procedure, one can achieve with the following algorithm that only the division subroutine and a register block are required.

The register assignment was made as follows: R00 - R301 (R1) contain e. The index j is stored in M ([), the divisor DR = n in N (\). R0 (J) takes up the remainder RE. The registers P (^) and a serve as temporary storage.

After a SIZE 302 the program can be started with XEQ "ZAHLE". After <u>6d 8h 24min</u> the calculation is finished. The program **OUT** serves as output program. It can be loaded into the computer only after the program **ZAHLE** has been deleted. The addresses must be adapted to the register assignments. It results for e: = 2,718281828.

HP- PIE MODULE QRG

Program listing.

01*LBL "PIZHAL"	47 XEO 02	93 RND	139 +
02 248	48 XEO 03	94 E1	140 LASTX
03 PSIZE	49 RCL 00	95 *	141 -
04 "PI=?"	50 85	96 X<>Y	142 E
05 RCL d	51 +	97 E1	143 X=Y?
06 AVIEW	52 RCL IND X	98 *	144 ST- IND 01
07 STO d	53 X#0?	99 -	145 RCL T
08 CLRG	54 GTO 01	100 ST- IND 01	146 X<> 0
09 SF 00	55*LBL 02	101 SF 02	147 E10
10 E	56 SF 01	102*LBL 05	148 *
11 STO 03	57 XEQ 06	103 E	149 RCL 04
12 8 E10	58 CF 21	104 ST- 01	150 MOD
13 STO 86	59 RCL 03	105 0	151 ST+ O
14 1.081	60 STO 04	106 STO IND 02	152 RCL 04
15 STO 00	61 XEO 06	107 DSE 02	153 /
16*LBL 00	62.2	108 GTO 04	154 RCL N
17 25	63 ST+ 03	109 RTN	155 +
18 STO 04	64 RTN	110*LBL 06	156 LASTX
19 XFO 02	65*I BL 03	110 LBL 00	157 -
20 XEQ 02	66 CE 02	112 166 166	158 F
21 25	67 XEO B	113 RCL 00	159 X=V?
22 STO 04		114 ES2 01	160 ST- IND 01
22 310 04 23 XEO 02	60 0		
	70 ES2C 02	115 85.085	162 PCL 04
	7013:C02 71 E	110 + 117 STO 01	162 X V2
25 RCL 00			103 AZT:
20 85 27 ±			164 010 08
	75 RCL IND 02		
		120 RCL 04	160 510 0
29 \#0!		121 / 122 INT	
	70 + 77 STO IND 01		108 ST+ IND UI
31 150 00		123 STO M	100 ° LBL 08
32 GTO 00	78 EIU 70 X X2	124 KCL U	170 FC? 01
33 CF 00	/9 X>Y?	125 EIU 126 *	171 GTO 10
34 E	80 GTU 05	126 *	172 FC? 00
35 510 03	81 ST- IND 01	127 RCL 04	1/3 GTO 09
36 9.56 E11	82 RCL IND 02	128 /	174 RCL IND 01
37 STO 86	83 E1	129 INT	1/5 X#0?
38 1.081	84 /	130 STO N	1/6 GTO 09
39 STO 80	85 FRC	131 +	177 FS?C 02
40*LBL 01	86 RCL M	132 X<> IND 01	178 RTN
41 57121	87 E1	133 RCL 04	179 SF 02
42 STO 04	88 /	134 MOD	180*LBL 09
43 XEQ 02	89 FRC	135 STO Z	181 RCL 01
44 XEQ A	90 +	136 RCL 04	182 81
45 57121	91 FRC	137 /	183 +
46 STO 04	92 ENTER [^]	138 RCL M	184 RCL IND 01

HP- PIE MODULE QRG					
185 STO IND Y	196 0	207 ST+ IND 01	218 RCL 00		
186*LBL 10	197 FS?C 02	208 SF 02	219 INT		
187 ISG 01	198 E	209*LBL 12	220 E3		
188 GTO 07	199 -	210 E	221 /		
189 RTN	200 RCL IND 02	211 ST- 01	222 85.003		
190*LBL A	201 -	212 0	223 +		
191 CF 02	202 STO IND 01	213 STO IND 02	224 STO 01		
192 XEQ B	203 0	214 DSE 02	225 162.162		
193*LBL 11	204 X<=Y?	215 GTO 11	226 +		
194 RCL IND 01	205 GTO 12	216 RTN	227 STO 02		
195 FC? 02	206 E10	217*LBL B	228 END		
01*LBL "EZHAL"	32 MOD	63 MOD	16 E9		
02 302	33 STO Z	64 STO O	17 /		
03 PSIZE	34 RCL N	65 E	18 ARCL X		
04 CLRG	35 /	66 ST+ IND M	19 AVIEW		
05 1143	36 RCL ^	67*LBL 02	20 FIX 0		
06 STO N	37 +	68 ISG [21 CF 29		
07 E	38 LASTX	69 GTO 01	22 6.084		
08 STO 00	39 -	70 E	23 STO T		
09*LBL 00	40 E	71 ST+ 00	24*LBL 01		
10.301	41 X=Y?	72 ST- \	25 RCL T		
11 STO M	42 ST- IND M	73 RCL \	26 STO T		
12 0	43 RCL T	74 X>0?	27 CLA		
13 STO O	44 X<> O	75 GTO 00	28 "0000"		
14*LBL 01	45 E10	76 OFF	29 ARCL IND T		
15 RCL IND M	46 *	77 END	30 RCL M		
16 RCL N	47 RCL N		310		
17 /	48 MOD	01*LBL "OUT"	32 STO M		
18 INT	49 ST+ O	02 RCL 85	33 "`^^^"		
19 E10	50 RCL N	03 E9	34 STO O		
20 X<>Y	51/	04 /	35 "`^^^"		
21 STO P	52 RCL a	05 INT	36 RCL O		
22 X<>Y	53 +	06 4	37 CLA		
23 RCL M	54 LASTX	07 X>Y?	38 STO M		
24 *	55 -	08 GTO 00	39 "`^^^^^"		
25 RCL N	56 E	09 E9	40 X<> Z		
26 /	57 X=Y?	10 ST+ 84	41 STO M		
27 INT	58 ST- IND M	11*LBL 00	42 AVIEW		
28 STO a	59 RCL O	12 CF 28	43 ISG T		
29 +	60 RCL N	13 FIX 9	44 GTO 01		
30 X<> IND M	61 X>Y?	14 CLA	45 CLST		
31 RCL N	62 GTO 02	15 RCL 05	46 END		

Appendix. A few MCODE Listings.

1. Liu Hui formula.

Header	ACE8	089	" "	
Header	ACE9	015	"U"	
Header	ACEA	008	"H"	
Header	ACEB	015	"U"	
Header	ACEC	009	" "	
Header	ACED	00C	"L"	
LIUHUI	ACEE	391	PORT DEP:	 shows "RUNNING" and init vars
	ACEF	08C	XQ	1 in {A,B}, 0 in N
	ACF0	070	->A870	[INIT] - lifts stack, sets DEC
	ACF1	OEO	SLCT Q	
	ACF2	25C	PT= 9	do eight times
LOOP9	ACF3	0A0	SLCT P <	
	ACF4	04E	C=0 ALL	
	ACF5	35C	PT= 12	C=2
	ACF6	090	LD@PT- 2	
	ACF7	025	?NC XQ	 2+result(k)
	ACF8	060	->1809	[AD1_10]
	ACF9	305	?NC XQ	 sar(2+result(k))
	ACFA	060	->18C1	[SQR13]
	ACFB	OEO	SLCT Q	
	ACFC	3D4	PT=PT-1	
	ACED	314	?PT= 1	
	ACFE	01B	JNC +03	INOT71
PT=7	ACFF	2BE	C=-C-1 MS	sian chanae
	AD00	11F	A=C MS	ditto for 13-diait form
NOT7	AD01	394	?PT= 0 ←	
	AD02	38B	INC-15d	(LOOP91
	AD03	04F	C=0 ALL	[20015]
	AD04	350	PT= 12	
	AD05	100	1D@PT- 7	C=768
	AD06	190	LD@PT- 6	- 100
	AD07	210	ID@PT-8	
	4008	130	IDI S&X	
	4009	002	CON	
	ADOA	130	PNC XO	
	ADOB	060	->184F	(MP1_10)
	ADOC	0E8	WRIT 3(X)	
		301	2NC 60	 Normal Function Return
	ADOF	002	->00F0	INFRPUI
INIT	A970	190	DESET 11	
11411	A070	285	20.00	Stack lift
	A8/1	051	>1450	
	A072	240	->14EU	Show "RUNNING" Laguas 50 and
	A8/3	120	SINC AQ	IRLINING - Teaves F8 as-Is
	A8/4	150	->4FAA	
	A875	IAU	A=B=C=U	zero trinity
	A876	0/0	N=C ALL	K=U
	A877	2A0	SETDEC	
	A878	001	PNC GO	iniital sum = 1
	A879	062	->1800	[ADDONE]

2. Ramanujan 10-digit formula.

Header	ACBB	080	"0"	
Header	ACBC	031	"1"	Ramanuian Approximation
Header	ACBD	001	" <u>A</u> "	correct to 10 decimal diaits
Header	ACBE	000	"M"	
Header	ACBE	001	" A "	
Header	ACC0	012	" P "	Ángel Martin
RAMA10	ACC1	180	PESET 11	
1010120	ACC2	385	20 X0	Stack lift
	ACC3	051	->14FD	
	ACC4	240	SETDEC	<u>[n_000]</u>
	ACC5	04F	C=0 AU	
	ACC6	350	PT=12	
	ACC7	000	1D@PT-3	C= 3 F-4
	ACC8	130	IDI S&X	
	ACC9	096	CON:	
	ACCA	286	C=-C-1 XS	
	ACCB	10F	A=C ALL	
	ACCC	04F	C=0 AU	
	ACCD	2BE	C=-C-1 MS	
	ACCE	350	PT=12	
	ACCE	000	1D@PT-3	
	ACDO	150	LD@PT-5	C= -3533
	ACD1	ODO	LD@PT-3	
	ACD2	0D0	LD@PT-3	
	ACD3	130	LDI S&X	
	ACD4	003	CON:	
	ACD5	261	?NC XQ	
	ACD6	060	->1898	IDV2 101
	ACD7	001	?NC XQ	
	ACD8	060	->1800	IADDONE1
	ACD9	04E	C=0 ALL	
	ACDA	130	LDI S&X	C= 355
	ACDB	355	CON:	
	ACDC	07C	RCR 4	
	ACDD	13D	?NC XQ	
	ACDE	060	->184F	[MP1_10]
	ACDF	04E	C=0 ALL	
	ACE0	130	LDI S&X	C= 113
	ACE1	113	CON:	
	ACE2	07C	RCR 4	
	ACE3	269	?NC XQ	
	ACE4	060	->189A	[DV1_10]
	ACE5	0E8	WRIT 3(X)	
	ACE6	3C1	?NC GO	Normal Function Return
	ACE7	002	->00F0	[NFRPU]

3. Viete's Formula. (next page)

HP- PIE MODULE QRG						
Header	A654	081	"A"			
Header	A655	014	"T"			Viete's Formula
Header	A656	005	"E"			
Header	A657	009	" "			
Header	A658	016	"V"			Ángel Martin
VIETA	A659	391	PORT DEP:			shows "RUNNING" and init vars
	A65A	08C	XQ			1 in {A,B}, 0 in N
	A65B	070	->A870			[INIT] - lifts stack, sets DEC
LOOP1	A65C	089	?NC XQ < 🔶			initial value
	A65D	064	->1922			[STSCR]
	A65E	0F0	C<>N ALL			save N in M
	A65F	158	M=C ALL			(N is used by [DSPCRG])
	A660	OAE	A<>C ALL			Mant. Sign & Exponent
	A661	0DA	C=B M			Mantissa value
	A662	099	?NC XQ			Sends C to display - sets HEX
	A663	02C	->0B26			[DSPCRG]
	A664	198	C=M ALL			restore things
	A665	2A0	SETDEC			
	A666	03C	RCR 3			bring C<3:5> to C.X
	A667	226	C=C+1 S&X			k+1
	A668	106	A=C S&X			save it in A.X
	A669	1BC	RCR 11			put it in C<3:5>
	A66A	0A6	A<>C S&X			bring it back to C.X
	A66B	070	N=C ALL			update register
	A66C	1A0	A=B=C=0			zero trinity
LOOP2	A66D	3CC	?KEY <			
	A66E	360	?C RTN			bail out upon key depressed
	A66F	04E	C=0 ALL			
	A670	35C	PT= 12			builds "2" in C
	A671	090	LD@PT- 2			
	A672	025	?NC XQ			2+result(k)
	A673	060	->1809			[AD1_10]
	A674	305	?NC XQ			sqrt(2+ result(k))
	A675	060	->18C1			[SQR13]
	A676	080	C=N ALL			bring counter to C.X
	A6//	266	C=C-1 S&X			decrease count
	A678	070	N=C ALL			update counter
	A679	266	?C#0 S&X			all done?
	A67A	39F 2D0	JC -130			no, ao next
	A670	120	-MEEE			[A,D] = [A,D] / 2
	A67D	OF8	WPIT SIXI			term value
	A67E	001	2NC YO			$IO + 3 \rightarrow ICM^3$
	467E	064	->1934			IBCSCR1
	A680	149	PNC XO			$(A B) = (A B)^* (C M)$
	A681	060	->1852			(MP2 13)
	A682	0F8	READ 3(X)			term value
	A683	35C	PT= 12			
	A684	262	C=C-1 @PT			
	A685	2EE	?C#0 ALL			was it eaual to 1?
	A686	2B7	JC -42d			no, -> [LOOP]
	A687	239	PNC XQ			
	A688	060	->188E			[ONE BY X13]
	A689	025	?NC XQ			2x
	A68A	060	->1809			[AD1_10]
	A68B	0E8	WRIT 3(X)			
	A68C	3C1	?NC GO			Normal Function Return
	A68D	002	->00F0			[NFRPU]

4. From Pi to e.

Header	A82C	085	"E"	From <u># to E</u>
Header	A82D	032	"2"	
Header	A82E	009	<i>" "</i>	Ángel Martin
Header	A82F	010	" P "	
PI2E	A830	379	PORT DEP:	shows "RUNNING" and init vars
	A831	03C	XQ	1 in {A,B}, 0 in N
	A832	070	->A870	[INIT] - lifts stack, sets DEC
LOOP	A833	3CC	?KEY <	
	A834	360	?C RTN	
	A835	089	?NC XQ	current sum
	A836	064	->1922	[STSCR]
	A837	0B0	C=N ALL	n-1
	A838	1E1	?NC XQ	$\{A,B\} = C+1$
	A839	100	->4078	[INCC10]
	A83A	070	N=C ALL	n
	A83B	3B1	?NC XQ	Calculates Factorial
	A83C	060	->18EC	[XFT100]
	A83D	0E8	WRIT 3(X)	n!
	A83E	00E	A=0 ALL	clears MS and S&X
	A83F	269	?NC XQ	Puts p/2 in {M,C}
	A840	064	->199A	<u>[PI/2]</u>
	A841	1EE	C=C+C ALL	pi in {M,C}
	A842	OEE	B<>C ALL	moves it over to B
	A843	3C4	ST=0	
	A844	121	?NC XQ	Ln(π)
	A845	06C	->1B48	[LN13]
	A846	0B0	C=N ALL	n
	A847	13D	?NC XQ	n.Ln(π)
	A848	060	->184F	[MP1_10]
	A849	035	?NC XQ	π^n
	A84A	068	->1A0D	[EXP13]
	A84B	OF8	READ 3(X)	<u>n!</u>
	A84C	269	?NC XQ	π^n / n!
	A84D	060	->189A	[DV1_10]
	A84E	0E8	WRIT 3(X)	
	A84F	351	?NC XQ	Check error tolerance
	A850	128	>4AD4	[TOLER4]
	A851	2FE	?C#0 MS	negative? (passes tolerance)
	A852	03F	JC +07	yes, exit loop
	A853	0A9	?NC XQ	
	A854	064	->192A	<u>[EXSCR] - {A,B} <-> {Q,+}</u>
	A855	OF8	READ 3(X)	
	A856	025	?NC XQ	2+result(k)
	A857	060	->1809	[AD1_10]
	A858	2DB	JNC -37d	do next
EXITL	A859	0A9	?NCXQ <	
	A85A	064	->192A	[EXSCR] - {A,B} <-> {Q,+}

		HP	P- PIE MODULE QRG	
	A85B	121	?NC XQ	
	A85C	06C	->1B48	[LN13]
	A85D	089	?NC XQ	
	A85E	064	->1922	<u>ISTSCR1</u>
	A85F	00E	A=0 ALL	clears MS and S&X
	A860	269	?NC XQ	Puts p /2 in {M,C}
	A861	064	->199A	<u>[PI/2]</u>
	A862	1EE	C=C+C ALL	pi in {M,C}
	A863	OEE	B<>C ALL	moves it over to B
	A864	239	?NC XQ	1/π
	A865	060	->188E	<u>[ON/X13</u>
	A866	0D1	?NC XQ	
	A867	064	->1934	[RCSCR]
	A868	149	?NC XQ	
	A869	060	->1852	[MP2-13]
	A86A	035	?NC XQ	final result
	A86B	068	->1A0D	[EXP13]
	A86C	0E8	WRIT 3(X)	
	A86D	3C1	?NC GO	Normal Function Return
	A86E	002	->00F0	[NFRPU]
	A86F	000	NOP	
INIT	A870	18C	PFSET 11	
	A871	385	2C XQ	Stack lift
	A872	051	->14ED	[K_SUB]
	A873	2A9 120	PNC XQ	Show "KUNNING" - leaves F8 as-I
	A674	140	->4FAA	TRUNINS61
	A875	1A0	N=C ALL	200 milly
	4870	240	SETDEC	
	4878	001	2NC 60	iniital sum = 1
	A879	062	->1800	
		002		The second se

TOLER4	TOLER4	4AD4	01E	A=0 MS	absolute value
		4AD5	2A0	SETDEC	
expects error	r value stored	4AD6	04E	C=0 ALL	
in {A,B} in 13	8-digit form	4AD7	2BE	C=-C-1 MS	
		4AD8	35C	PT=12	
TOLER4		4AD9	050	LD@PT- 1	C= -1 E-9
TOLER4		4ADA	266	C=C-1 S&X	
TOLER4		4ADB	39C	PT= 0	
TOLER4		4ADC	050	LD@PT- 1	
TOLER4		4ADD	025	?NC GO	
TOLER4		4ADE	062	->1809	[AD1_10]

5. Wallis Formula (next page)

			HP- PIE MODULE Q	RG	
Header	AEAD	093	"S"		
Header	AEAE	009	" "		Wallis Formula Pi
Header	AEAF	00C	"["		n in X
Header	AEBO	00C	"["		
Header	AEB1	001	"A"		
Header	AEB2	017	"W"		Ángel Martin
WALLIS	AEB3	2A9	?NC XQ		Show "RUNNING" - leaves F8 as-is
	AEB4	13C	->4FAA		[RUNMSG]
	AEB5	1A0	A=B=C=0		zero trinity
	AEB6	001	?NC XQ		
	AEB7	060	->1800		[ADDONE]
	AEB8	128	WRIT 4(L)		initial term = 1
	AEB9	0F8	READ 3(X)		
	AEBA	05E	C=0 MS		no negatives
	AEBB	2EE	?C#0 ALL		zero input?
	AEBC	3A0	?NC RTN		yes, bail out
	AEBD	361	?NC XQ		(this includes SETDEC)
	AEBE	050	->14D8		[CHK_NO_S]
LOOP	AEBF	070	N=C ALL		update counter
	AEC0	3CC	?KEY		
	AEC1	360	?C RTN		bail out upon key depressed
	AEC2	10E	A=C ALL		
	AEC3	135	?NC XQ		n^2
	AEC4	060	->184D		[MP2_10]
	AEC5	04E	C=0 ALL		
	AEC6	35C	PT= 12		C=4
	AEC7	110	LD@PT- 4		
	AEC8	13D	?NC XQ		4n^2
	AEC9	060	->184F		[MP1_10]
	AECA	089	?NC XQ		intermediate result
	AECB	064	->1922		<u>[STSCR]</u>
	AECC	009	?NC XQ		4n^2 - 1
	AECD	060	->1802		[SUBONE]
	AECE	0D1	?NC XQ		4n^2 to {C,M}
	AECF	064	->1934		[RCSCR]
	AED0	24D	?NC XQ		[M,C} / {A,B}
	AED1	060	->1893		[X/Y13]
	AED2	138	READ 4(L)		previous result
	AED3	13D	?NC XQ		
	AED4	060	->184F		[MP1_10]
	AED5	128	WRIT 4(L)		updated result
	AED6	0B0	C=N ALL		get current iteration
	AED7	10E	A=C ALL		holds sign and S&X
	AED8	02E	B=0 ALL		clears it
	AED9	OFA	B⇔C M		holds 13-digit mant
	AEDA	009	?NC XQ		13-digit form
	AEDB	060	->1802		[SUBONE]
	AEDC	2EE	?C#0 ALL		all done?
	AEDD	317	JC -30d		[LOOP]
EXIT	AEDE	138	READ 4(L)		
	AEDF	10E	A=C ALL		
	AEEO	01D	?NC XQ		2x
	AEE1	060	->1807		[AD2_10]
	AEE2	331	?NC GO		Overflow, DropST, FillXL & Exit
	AEE3	002	->00CC		[NFRX]

5 . From e to pi

Header	A87A	089	" "	
Header	A87B	010	"р"	
Header	A87C	032	"2"	
Header	A87D	005		Ángel Martin
F2PI	A87E	379	PORT DEP	shows "RUNNING" and init vars
	487F	030	XO	1 in {A B} 0 in N
	4880	070	->4870	INIT1 - lifts stack sets DEC
	A881	035	ZNCXO	P
	A882	068	->1400	
	A883	OE8	WRIT 3(X)	10-digit e
	A884	089	2NC XO	e as 13-diait value
	4885	054	->1022	ISTSCRI
	A886	001	2NC XO	e+1
	A887	060	->1800	
	A007	000	2NC YO	e
	A000	054	->1024	
	A005	004	->132A 2NC VO	e-1 in (A B)
	A00A	003	>1902	E-1 III (A, D)
	A000	000	2NC YO	aul to (CMI)
	ADD	001	>1024	
	A00D	004	->1934	
	ABBE	275	- 180D	(e-1)/(e+1)
	A88F	000	->1890	
	A890	070	N=C ALL	required by [ATAN1]
	A891	304	ST=U	skips [TRGSET]
	A892	048	SETF 4	result in RAD
	A893	205	PNC XQ	it uses [SCR] as well
	A894	040	->1081	IATANII
	A895	2BE	C=-C-1 MS	sign change
	A896	0/0	N=C ALL	store it in N
	A897	0F8	READ 3(X)	e
	A898	OFO		required by [ATAN1]
	A899	OE8	WRIT 3(X)	
	A89A	080	C=N ALL	
	A89B	304	ST=0	skips [TRGSET]
	A89C	048	SEIF 4	result in RAD
	A89D	205	PNC XQ	it uses [SCK] as well
	A89E	040	->1081	<u>[ATAN1]</u>
	A89F	11E	A=C MS	bug or what?
	A8A0	OF8	READ 3(X)	
	A8A1	025	PNC XQ	2+result(k)
	A8A2	060	->1809	[AD1_10]
	A8A3	04E	C=0 ALL	
	A8A4	35C	PT= 12	C=4
	A8A5	110	LD@PT- 4	
	A8A6	13D	?NC XQ	
	A8A7	060	->184F	[MP1_10]
	A8A8	'0E8	WRIT 3(X)	
	A8A9	3C1	?NC GO	Normal Function Return
	A8AA	002	->00F0	[NFRPU]

6. Erdós-Borwein constant.

Header	A6E4	082	"B"	Erdós-Borwein constant
Header	A6E5	005	"E"	Ángel Martin
EB	A6E6	391	PORT DEP:	shows "RUNNING" and init vars
	A6E7	08C	XQ	1 in {A,B}, 0 in N
	A6E8	070	->A870	[INIT] - lifts stack, sets DEC
LOOP	A6E9	3CC	?KEY <	converges in 30 iterations
	A6EA	360	?C RTN	
	A6EB	089	?NC XQ	current sum
	A6EC	064	->1922	[STSCR]
	A6ED	0B0	C=N ALL	n-1
	A6EE	1E1	?NC XQ	$\{A,B\} = C+1$
	A6EF	100	->4078	[INCC10]
	A6F0	070	N=C ALL	n
	A6F1	04E	C=0 ALL	
	A6F2	35C	PT=12	builds "2" in C
	A6F3	090	LD@PT- 2	
	A6F4	084	CLRF 5	Natural Ln
	A6F5	115	?NC XQ	
	A6F6	06C	->1B45	[LN10]
	A6F7	0B0	C=N ALL	
	A6F8	13D	?NC XQ	n.Ln(2)
	A6F9	060	->184F	[MP1_10]
	A6FA	048	SETF 4	substract one: e^x-1
	A6FB	035	?NC XQ	13-digit precision here
	A6FC	068	->1A0D	[EXP13]
	A6FD	239	?NC XQ	1/(2^x-1)
	A6FE	060	->188E	[<u>ON/X13</u>
	A6FF	0E8	WRIT 3(X)	n-th. term
	A700	351	?NC XQ	Check error tolerance
	A701	128	>4AD4	[TOLER4]
	A702	2FE	?C#0 MS	negative? (passes tolerance)
	A703	03F	JC +07	yes, exit loop
	A704	0A9	?NC XQ	
	A705	064	->192A	[EXSCR] - {A,B} <-> {Q,+}
	A706	0F8	READ 3(X)	
	A707	025	?NC XQ	new result(k)
	A708	060	->1809	[AD1_10]
	A709	303	JNC -32d	do next
EXIT	A70A	0A9	?NC XQ <	
	A70B	064	->192A	[EXSCR] - {A,B} <-> {Q,+}
	A70C	OAE	A<>C ALL	Mant sign and exponent
	A70D	0DA	C=B M	Mantissa value
	A70E	0E8	WRIT 3(X)	
	A70F	3C1	?NC GO	Normal Function Return
	A710	002	->00F0	[NFRPU]