
 

  
  

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 1 OF 59 

  

     HP- PIE MODULE QRG 

PIE_ROM Manual 

HP-41 Module 

 
 

Introduction and Credits.  

This HP-41 module provides a short collection of functions and routines dedicated to the two most-

famous irrational numbers in math: number pi and number e. With just a 10-digit mantissa 

capability the HP41 platform surely isn’t the natural choice for ground-breaking, never-before 

covered methods and approaches to the calculation of these numbers – remember: our trusty 

Coconut “believes that  is a rational number equal to 104348/33215). Nevertheless, there’s still 

room for interesting exercises and ingenious approaches to work-around such platform limitations. 

Several MCODE functions and short FOCAL routines are provided mainly as programming exercises; 

that is application examples using general techniques like Continued Fractions or making use of 

other fields like integration, random numbers and nested radicals – always applied to the pi/e 

subject. 

In the “-Pi DIGITS” section the module includes all relevant programs on this subject known to the 

author published in different magazines, books, and forums – in what should be a comprehensive 

archive of available material on this topic. In particular the MCODE function MDOP written by Peter 

Platzer, is a remarkable implementation even if it requires Q-RAM to hold the results, so dust off 

your HEPAX RAM for the task. 

In terms of the sources used, the usual suspects are to blame: PPC Journals (see Ron Knapp’s 

classic programs), application books and user forums. Very special thanks to Valentín Albillo  for his 

seminal and always original contributions along the years, a real powerhouse on this and many 

other math subjects. Many thanks to Gerson W. Barbosa, Jean-Marc Baillard, Thomas Klemm, 

Benoit Maag and everybody contributing to the MoHP forum on this subject. As a wise man once 

said, “if something works as expected it’s their credit, if it doesn’t it’s my fault”. 

 

Dependencies. 

Lastly, note that some programs use functions from the SandMath – which in turn needs the 

Library#4 as well. This dependency is more than justified to enable the venerable 41 platform to 

use RCL math functions (for direct compatibility with HP-42 code); and to apply off-the-beaten-path 

approaches using hyperbolic functions, CROOT solver, AGM and FLOOR, as well as to benefit from 

the remarkable Continued Fractions MCODE implementation written by Greg McClure, also available 

in that module. 

 

 

General references: 

https://en.wikipedia.org/wiki/Approximations_of_%CF%80#Gregory%E2%80%93Leibniz_series 

https://mathworld.wolfram.com/PiApproximations.html 

  

https://en.wikipedia.org/wiki/Approximations_of_%CF%80#Gregory%E2%80%93Leibniz_series
https://mathworld.wolfram.com/PiApproximations.html
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Without further ado, here is a list of the functions in the Main FAT table. 

XROM# Function Description Author 

09.00 -PI/E ROM  Section Header n/a 

09.01 “3PI Madhava Alternating Series Thomas Klemm 

09.02 “GBPI Gerson’s Pi formula Barbosa-Martin 

09.03  E2PI From e to  Á. Martin 

09.04  LIUHUI Liu Hui’s Pi formula Á. Martin 

09.05 “LNPI Ramanujan Ln-based  formula Á. Martin 

09.06 “MCE Monte-Carlo method for e Albillo-Martin 

09.07 “MCPI Monte-Carlo method for  Albillo-Martin 

09.08 “MYPI 10-digit  using an AGM closed-form Á. Martin 

09.09 “PICUBE  from cubic equation root Albillo-Martin 

09.10  PI2E From  to e Á. Martin 

09.11 “PIFL  using a FLOOR loop Valentín Albillo 

09.12  PISIN  using a SIN loop Á. Martin 

09.13  PPIE Valentín’s Product formula w/ correction Á. Martin 

09.14  RAMA10 Ramanujan formula (10-digit accuracy) Á. Martin 

09.15 “SBPI Salamin-Brent Algorithm – based on AGM Á. Martin 

09.16 “VAPI  using a corrected Leibnitz series Valentín Albillo 

09.17  VIETA Viete’s formula Á. Martin 

09.18  WALLIS Wallis formula  (n in X) Á. Martin 

09.19 “WPI Wallis formula – V2 JM Baillard 

09.20 “WPIH Wallis formula w/ hyperbolics Werner 

09.21 “WWPI Wallis-Wasicki Formula   Gerson W. Barbosa 

09.22 -PIE DIGITS Section header n/a 

09.23  EB Erdós-Borwein constant Á. Martin 

09.24  IROUND Integer Round Á. Martin 

09.25  MDOP _ _ _”_ Many Digits of  – Spigot algorithm Peter Platzer 

09.26 “PI1K  to 1,000 digits Ron Knapp 

09.27 "E2900 E to 2,900 digits Ron Knapp 

09.28 “R Result output Ron Knapp 

09.29 “PIDIG  up to 1,590 digits Jean-Marc Baillard 

09.30 “EZHAL E to 1,143 digits Eckard Gehrke 

09.31 “PIZHAL  to 800 digits – Machin’s method Eckard Gehrke 

09.32 “OUT Output results Eckard Gehrke 

09.33 “2PI  digits Benoit Maag 

09.34 -CONT FRAC Section header n/a 

09.35 “CFE Continued Fractions for e Martin-McClure 

09.36 “*E Auxiliary for “CFE Á. Martin 

09.37 “CFPI Continued Fractions for  Martin-McClure 

09.38 “P0 Auxiliary for “CFPI Á. Martin 

09.39 “CFP1 Continued Fractions for  – version 1 Martin-McClure 

09.40 “P1 Auxiliary for “CFP1 Á. Martin 

09.41 “CWPI Wallis-adjusted CF for  Martin-McClure 

09.42 

 

“*WP Auxiliary for “CWPI Á. Martin 

09.43 “PITG  by simple integration Á. Martin 

09.44 “*I Integrand function Á. Martin 
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Pi Approximations 

The module includes a few short functions based on well-known pi approximations. There are 

literally hundreds of them (see for instance  Pi Approximations -- from Wolfram MathWorld ) but 

I’ve chosen those meaningful to the HP-41 platform in terms of decimal digits and somewhat the 

available function set and CPU speed.   
 

Function Description Input Output 

LIUHUI Liu Hui’s formula none 3,141590529 

RAMA10 Ramanujan formula (10-digit) none 3,141592654 

E2PI From e to  none 3,141592653 

PI2E From  to e none 2,718281828 

PISIN SIN-based iterations none 3.141592654 

VIETA Viete’s formula none 3,141592654 

“PICUBE  as root of cubic equation none 3.141592654 

“PIFL FLOOR-based iterations n in X Function of n 

“PITG INTEG-based calculation FIX-9 3.141592654 

“3PI Madhava Series none 3.141592654 

“ GBPI Gerson’s formula (e-based) none 3.141592654 

 

They’re described below. 
 

•  RAMA10   uses one of the many Ramanujan’s approximations of pi, correct to 10 decimal 

digits. It requires no input. The result is placed in X and the stack is lifted (unless CPU F11 

is clear) 

 

 

 XEQ “RAMA10”  => (in FIX 9) 

 

 

•  LIUHUI  uses Liu Hui’s formula to calculate an approximation of pi, correct to 5 decimal 

digits. It requires no input. The result is placed in X, the stack is lifted (unless CPU F11 is 

clear) 

 

 

 

XEQ “ LIUHUI”  =>     (in FIX 9) 

 

https://mathworld.wolfram.com/PiApproximations.html
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•  VIETA   uses Viete’s formula for the calculation, a more accurate one in that is returns a 

correct value to the 11th. decimal digit (although this is not taken advantage of on the HP-

41 or course). 

 

 

The FOCAL program listed below would be equivalent to the MCODE implementations of VIETA and 

LIUHUI. No data registers are used but ALPHA registers M,N are needed. Refer to the appendix 

section of the manual for the details on the MCODE implementation.  
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The next three functions are taken from one of Valentín Albillo’s famous challenges (see: “HP 

Challenge VA511 - 2020-03-14 - SRC 006 Pi Day 2020 Special”), 

 

The Function  PISIN   uses a SIN-based iterative method to 

estimate p.  The method is a very simple one, and it’s also highly 

efficient: starting with the value 3, only three iterations already 

achieve a 10-digit accuracy in the result.  

 

See on the right the short & sweet user code routine (who said 

FOCAL wasn’t efficient?), which is equivalent to the MCODE code 

implemented in the module, also shown below for your 

reference. 

XEQ “PISIN”   -> 
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• The routine  PIFL  is based on a FLOOR 

algorithm. Although it shares with the previous 

one to be short in code length, its efficiency is 

drastically worse: it takes quite a large number 

of iterations to achieve a decent accuracy, as 

the table below shows. For obvious reasons a 

TURBO-50 CL or better yet, V41 in turbo mode 

are recommended. 

 

# of terms Result 

10 

100 

1,000 

10,000 

100,000 

 

 

 

 

• On the other hand,  PICUBE  uses a “tuned” 

cubic equation as the basis for the calculation. 

It is quite fast as no iterations are needed and 

because it uses the SandMath’s CROOT (in 

MCODE) to obtain the real root of the equation. 

Let xo be the real root of: 

   

x^3 - 6x^2 + 4x – 2 = 0 
 

then: 

  = 24. Ln(x0) / sqrt(163) 

 

XEQ “PICUBE”  =>  
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Pi using Madhava Alternating Series   -   3PI I      

See https://www.hpmuseum.org/forum/thread-18129.html 

The series expression is as follows: 

 

An interesting expression by itself that proves to be elusive in its implementation due to its 

alternating character – one of the known weak points of this computing platform. 

Fortunately, Thomas Klemm provided a capable HP-42 version that has been added to the ROM. 

I’ve pre-set the number of terms to 43, as per his findings in the thread referenced above. 
 

01▸LBL “3PI” 

02   43 

03 ▸LBL 00 

04   1/X 

05   LASTX 

06   X<> ST Z 

07   3 

08   ÷ 

09   - 

10   X<>Y 

11   2 

12   - 

13   X>0? 

14   GTO 00 

15   R↓ 

16   END 

 

XEQ “3PI”   =>  

 
 
Another Ramanujan formula to end this section: 

 

 
 
A undeniably beautiful approximation of pi, easily programmed as follows: 

 
01  LBL “LNPI”   

02  7   

03  FACT   
04  5   

05  FACT    
06  ST+ X   

07  +   
08  9   

09  SQRT   

10  Y^X   
11  4   

12  FACT   

13  +  

14  3   
15  FACT   

16  FACT   
17  +   

18  LN   
19  67   

20  SQRT   

21  /   
22  END 

https://www.hpmuseum.org/forum/thread-18129.html
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Merry-go-Round: From pi to e and back again. 
 

The pair of functions below make use of the expressions linking e and pi to obtain one when the 

other is known – albeit in a not-so-trivial way; which BTW would be the Euler “identity” (to loosely 

use the term) relating pi, e, and i in the famous equation “e^(i)-1=0” 

isolating   ->   = Ln(-1) / i,    and isolating e  -> e = (-1)^(1/i) ;  

which on the 41Z is a trivial, easy as a pie, two mini-programs (5- and 7-steps respectively): 

{ LBL “ZPIE”, -1, ZREAL^, ZLN, Z/I, ZAVIEW, END } 

{ LBL “ZEPI”, -1, ZREAL^, PI, ZIMAG^, ZINV, W^Z, ZAVIEW, END } 

XEQ “ZPIE” =>  

XEQ “ZEPI”  =>  

But we’re digressing, let’s bring the conversation back to the PIE_ROM, shall we? 

 

From pi to e: 

Simply making use of the series definition of the exponential function, calculated for x= : 

;  thus: 

 = Ln (1+ ^2 /2 + ^3 /6 + ^4 /24 + ^5 / 120 + . . . ) 

Which converges moderately fast, so with about 22 terms we reach the 10-digit accuracy sought 

for. 

Using PI2E does not require any input, and as expected will place the result in X after lifting the 

stack: 

 PI2E    =>  

 

Conversely, from e to pi: 

Here we’re using the formula below: 

 

Using E2PI does not require any input, and as expected will place the result in X after lifting the 

stack: 

 E2PI    => 
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A FOCAL program listing equivalent to the MCODE functions included in the module is given next –. 

 

 

Gerson Barbosa has contributed another way to calculate  from e, using his own formula shown 

below, that has been programmed in the straightforward GBPI routine as follows: 

01   LBL “GBPI” 

02   E 
03   E^X 
04   -12 
05   Y^X 
06   5.6789    XEQ “GBPI”  =>  
07   + 
08   12   Not sure where this formula came from but sure enough it 
09   1/X   does the job with flying colors, thanks Gerson!  
10   Y^X 
11   E 
12   E^X 
13   * 
14   END 
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Pi in the Sky – The flying squad. 

 

And completing this section we have yet another very recent, Valentín’s 2022 Pi Day contribution – 

https://www.hpmuseum.org/forum/thread-18110.html 

In it Valentín introduces an original expression also linking the values of pi and e, and furthermore, 

he provides up to four correction factors to improve on the results from the product formula, stating 

that: 

     π ~ PI(N) / ( 1 + 1/(2*N)  - 1/(8*N^2) ), and 

  π ~ PN(N) / ( 1 + 1/(2 * N) - 1/(8 * N2) + 13/(144 * N3) - 77/(1152 * N4) ) 

 

The challenge for the implementation here lies in the limited data format used by the HP-41. With 

just a 10-digit mantissa capability the iterative routines are likely to fail due to cumulative errors, 

thus we can forget about using FOCAL routines – at least not straightforward ones, anyway. 

I decided to give MCODE a chance, to see if three more digits would make a difference – not 

expecting it to work but lo and behold it actually does a little good – albeit it can’t cross the 

accuracy barrier we’re up against, of course. 

The function PPIE expects the number of terms to calculate in X, and returns the pi approximation 

already adjusted with the four corrections mentioned above. With the stated limitations it appears 

that the sweet spot appears for n=35 terms, giving a result with an absolute percent error of 

exactly zero  compared to the native 10-digit value in the calculator. 

The table below shows the logged details of the tests performed. Notice how things go south once 

the sweet spot is passed – due to the platform limitations. I have also included the execution time 

(on V41 with default settings, definitely not in TURBO mode)  

 

n result |Delta%| Time H:MMSS 

5 3.141630979 1.2199E-05 0.000174 

10 3.141593984 4.2335E-07 0.000297 

15 3.141592834 5.7296E-08 0.000438 

20 3.141592696 1.3369E-08 0.000568 

25 3.141592666 3.8197E-09 0.000698 

30 3.141592658 1.2732E-09 0.000829 

35 3.141592654 0 0.00096 

40 3.141592652 6.3662E-10 0.001088 

45 3.141592651 9.5493E-10 0.001219 

50 3.14159265 1.2732E-09 0.001337 

55 3.141592648 1.9099E-09 0.001468 

60 3.141592644 3.1831E-09 0.001606 

 

And here’s the MCODE listing with all the details of the implementation: 

https://www.hpmuseum.org/forum/thread-18110.html
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Header AD5A 085 "E"   
Header AD5B 009 "I"   
Header AD5C 010 "P"   
Header AD5D 010 "P" Ángel Martin  
PPIE AD5E 2A9 ?NC XQ Show "RUNNING" - leaves F8 as-is  

 AD5F 13C ->4FAA [RUNMSG]   

 AD60 2A0 SETDEC   

 AD61 135 ?NC XQ naturalize the input  

 AD62 134 ->4D4D [NATX4]  

 AD63 04E C=0 ALL    

 AD64 35C PT= 12 C = 1  

 AD65 222 C=C+1 @PT    

 AD66 070 N=C ALL initial N=1  

 AD67 1A0 A=B=C=0 zero trinity  

 AD68 089 ?NC XQ current sum  

 AD69 064 ->1922 [STSCR]  
LOOPN AD6A 3CC ?KEY 

   

 AD6B 360 ?C RTN   

 AD6C 0B0 C=N ALL k-1  

 AD6D 1E1 ?NC XQ {A,B} = C+1  

 AD6E 100 ->4078 [INCC10]  

 AD6F 070 N=C ALL k  

 AD70 22D ?NC XQ 1/k  

 AD71 060 ->188B [1/X_10]  

 AD72 13D ?NC XQ   1/k^2  

 AD73 060 ->184F [MP1_10]  

 AD74 2BE C=-C-1 MS sign change  

 AD75 11E A=C MS same in 13-digit form  

 AD76 001 ?NC XQ 1-1/k^2  

 AD77 060 ->1800 [ADDONE]  

 AD78 3C4 ST=0   

 AD79 121 ?NC XQ  Ln(1-1/k^2)  

 AD7A 06C ->1B48 [LN13]  

 AD7B 0B0 C=N ALL k  

 AD7C 13D ?NC XQ   k.Ln(1-1/k^2)  

 AD7D 060 ->184F [MP1_10]  

 AD7E 0B0 C=N ALL k  

 AD7F 13D ?NC XQ   k^2.Ln(1-1/k^2)  

 AD80 060 ->184F [MP1_10]  

 AD81 001 ?NC XQ 1+k^2.Ln(1-1.k^2)  

 AD82 060 ->1800 [ADDONE]  

 AD83 0D1 ?NC XQ current sum  

 AD84 064 ->1934 [RCSCR]  

 AD85 031 ?NC XQ updated sum  

 AD86 060 ->180C [AD2-13]   

 AD87 089 ?NC XQ current sum  

 AD88 064 ->1922 [STSCR]  

 AD89 0B0 C=N ALL current term  

 AD8A 10E A=C ALL put k in  A for compares  

 AD8B 0F8 READ 3(X) number of terms  

 AD8C 36E ?A#C ALL all done?  

 AD8D 2EF JC  -35d do next                  

file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!RUNMSG
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!STSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!RCSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!AD2_13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!STSCR
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 AD8E 0A9 ?NC XQ final product  

 AD8F 064 ->192A [EXSCR]  -  {A,B} <-> {Q,+}  

 AD90 04E C=0 ALL    

 AD91 35C PT= 12 C = 1.5  

 AD92 050 LD@PT- 1    

 AD93 150 LD@PT- 5    

 AD94 025 ?NC XQ      

 AD95 060 ->1809 [AD1_10]  
ADJUST AD96 0AE A<>C ALL save product result:  

 AD97 070 N=C ALL 13-digit sign & exp  

 AD98 0CE C=B ALL    

 AD99 128 WRIT 4(L)  13-digit mantissa  

CT4 AD9A 0F8 READ 3(X) n  

 AD9B 10E A=C ALL    

 AD9C 135 ?NC XQ n^2  

 AD9D 060 ->184D [MP2_10]  

 AD9E 13D ?NC XQ   n^4  

 AD9F 060 ->184F [MP1_10]  

 ADA0 04E C=0 ALL    

 ADA1 35C PT= 12    

 ADA2 050 LD@PT- 1    

 ADA3 050 LD@PT- 1 c = 1152  

 ADA4 150 LD@PT- 5    

 ADA5 090 LD@PT- 2    

 ADA6 130 LDI S&X    

 ADA7 003 CON:    

 ADA8 13D ?NC XQ   1152.n^4  

 ADA9 060 ->184F [MP1_10]  

 ADAA 239 ?NC XQ 1/1152.n^4  

 ADAB 060 ->188E [ON/X13  

 ADAC 04E C=0 ALL    

 ADAD 2DC PT= 13    

 ADAE 250 LD@PT- 9    

 ADAF 1D0 LD@PT- 7 C = -77  

 ADB0 1D0 LD@PT- 7    

 ADB1 130 LDI S&X    

 ADB2 001 CON:    

 ADB3 13D ?NC XQ   -77/1152.n^4  

 ADB4 060 ->184F [MP1_10]  

 ADB5 089 ?NC XQ -77/1152.n^4  

 ADB6 064 ->1922 [STSCR]  
CT3 ADB7 0F8 READ 3(X) n  

 ADB8 10E A=C ALL    

 ADB9 135 ?NC XQ n^2  

 ADBA 060 ->184D [MP2_10]  

 ADBB 0F8 READ 3(X) n  

 ADBC 13D ?NC XQ   n^3  

 ADBD 060 ->184F [MP1_10]  

 ADBE 04E C=0 ALL    

 ADBF 130 LDI S&X    

 ADC0 144 CON: C = 144  

 ADC1 07C RCR 4    

 ADC2 130 LDI S&X    

file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!ONX13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!STSCR
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 ADC3 002 CON:    

 ADC4 13D ?NC XQ   144.n^3  

 ADC5 060 ->184F [MP1_10]  

 ADC6 239 ?NC XQ 1/144.n^3  

 ADC7 060 ->188E [ON/X13  

 ADC8 04E C=0 ALL    

 ADC9 35C PT= 12    

 ADCA 050 LD@PT- 1 C = 13  

 ADCB 0D0 LD@PT- 3    

 ADCC 130 LDI S&X    

 ADCD 001 CON:    

 ADCE 13D ?NC XQ   13/144.n^3  

 ADCF 060 ->184F [MP1_10]  

 ADD0 0D1 ?NC XQ -77/1152.n^4  

 ADD1 064 ->1934 [RCSCR]  

 ADD2 031 ?NC XQ 13/144.n^3 -77/1152.n^4  

 ADD3 060 ->180C [AD2-13]   

 ADD4 089 ?NC XQ 13/144.n^3 -77/1152.n^4  

 ADD5 064 ->1922 [STSCR]  

CT2 ADD6 0F8 READ 3(X) π ~ PN(N) / ( 1 + 1/(2*N) - 1/(8*N2) ) 

 ADD7 10E A=C ALL    

 ADD8 135 ?NC XQ n^2  

 ADD9 060 ->184D [MP2_10]  

 ADDA 04E C=0 ALL    

 ADDB 130 LDI S&X c = -8  

 ADDC 098 CON:    

 ADDD 23C RCR 2     

 ADDE 13D ?NC XQ   -8.n^2  

 ADDF 060 ->184F [MP1_10]  

 ADE0 239 ?NC XQ -1/8.n^2  

 ADE1 060 ->188E [ON/X13  

 ADE2 0D1 ?NC XQ 13/144.n^3 -77/1152.n^4  

 ADE3 064 ->1934 [RCSCR]  

 ADE4 031 ?NC XQ -1/8.n^2+13/144.n^3 -77/1152.n^4  

 ADE5 060 ->180C [AD2-13]   

 ADE6 089 ?NC XQ -1/8.n^2+13/144.n^3 -77/1152.n^4  

 ADE7 064 ->1922 [STSCR]  
CT1 ADE8 0F8 READ 3(X) n  

 ADE9 10E A=C ALL   

 ADEA 01D ?NC XQ 2n  

 ADEB 060  ->1807 [AD2_10]  

 ADEC 239 ?NC XQ 1/2n  

 ADED 060 ->188E [ON/X13  

 ADEE 0D1 ?NC XQ -1/8.n^2+13/144.n^3 -77/1152.n^4  

 ADEF 064 ->1934 [RCSCR]  

 ADF0 031 ?NC XQ 
1/2n -1/8.n^2+13/144.n^3 -
77/1152.n^4  

 ADF1 060 ->180C [AD2-13]   

 ADF2 001 ?NC XQ 
1+1/2n -1/8.n^2+13/144.n^3 -
77/1152.n^4  

 ADF3 060 ->1800 [ADDONE]   

 ADF4 121 ?NC XQ     

 ADF5 06C ->1B48 [LN13]  

 ADF6 2BE C=-C-1 MS sign change  

file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!ONX13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!RCSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!AD2_13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!STSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!ONX13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!RCSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!AD2_13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!STSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!ONX13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!RCSCR
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!AD2_13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!ADDONE
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 ADF7 11E A=C MS ditto for 13-digit form  

 ADF8 0B0 C=N ALL recover product result:  

 ADF9 158 M=C ALL 13-digit sign & exp  

 ADFA 138 READ 4(L) 13-digit mantissa  

 ADFB 031 ?NC XQ Ln(PN(N))  

 ADFC 060 ->180C [AD2-13]   

 ADFD 035 ?NC XQ PN(N)  

 ADFE 068 ->1A0D [EXP13]  

 ADFF 331 ?NC GO Overflow, DropST, FillXL & Exit  
  AE00 002 ->00CC [NFRX]  

 

So here you have it, quite a long code but conceptually not a complicated one – such is the nature 

of the MCODE game sometimes. 

 

PS.- Jean-François Garnier has provided the following FOCAL routine that cleverly overcomes the 

10-digit accuracy issue to effectively reach good results with about 45 terms (that is 10 more than 

the MCODE version, using the first two correction factors instead of four - not bad at all!) 

 

01 LBL "PN2"   21 +   
02 "RUNNING"   22 DSE 01   
03 AVIEW   23 GTO 00  ; sum endloop --^ 

04 STO 00 ; N  24 1.5   
05 E   25 +   
06 -   26 RCL 00   
07 STO 01  ; control loop 1..N-1 27 2   
08 0   28 *   
09 LBL 00  ; sum loop <--- 29 1/X   
10 RCL 01   30 RCL 00   
11 E   31 X^2   
12 + ;n=2..N  32 8   
13 X^2   33 *   
14 ENTER^   34 1/X   
15 1/X   35 -   
16 CHS   36* LN1+X  ; correction factor 

17 LN1+X   37 -   
18 *   38 E^X   
19 E   39 CLD   
20 +   40 END   

 

 

  

file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!AD2_13
file:///C:/HP-41/MATH%20APPS/PIE%20ROM/PIE_ROM.xls%23RANGE!EXP13
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Appendix.- Integral Pie 

And what about using an integral form, you may ask? Well, mixed results 

here to report. The good news is that using a simple simple expression  

like the one below works like a charm with a quick call to FROOT: 

  

Setting FIX 9: 

XEQ “PITG” =>   

 

References: See https://functions.wolfram.com/Constants/Pi/07/ 

 

 

So far so good, however I’ve not succeeded with other more complex derivations included in other 

“Short & Sweet Challenge” threads, such as those shown below: 

 

Which doesn’t converge no matter how I try it, and: 

 

 

Which includes pi in the definition of pi, if you see my circular point… 

See the original thread for more details: 

HP Challenge VA515 - 2021-03-14 - SRC 009 Pi Day 2021 Special.pdf 
 

 

  

https://functions.wolfram.com/Constants/Pi/07/
https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA515%20-%202021-03-14%20-%20SRC%20009%20Pi%20Day%202021%20Special.pdf
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Salimin-Brent Algorithm. 

In 1976 Eugene Salamin and Richard Brent independently discovered a new algorithm for pi, which 

is based on the arithmetic-geometric mean and some ideas originally due to Gauss in the 1800s 

(although for some reason Gauss never saw the connection to computing pi). This algorithm 

produces approximations that converge to pi much more rapidly than any classical formula. It may 

be stated as follows: 

 

Then pk converges quadratically to pi. This means that each iteration of the algorithm 

approximately doubles the number of correct digits of pi. To be specific, successive iterations 

produce 1, 4, 9, 20, 42, 85, 173, 347, and 697 correct digits of pi. However, each of these 

iterations must be performed using a level of numeric precision that is at least as high as that 

desired for the final result; and that unfortunately means just three iterations are meaningful for 

the HP-41’s 10-digit precision ceiling. 

The  FOCAL routine below implements the algorithm for the PIE ROM: 
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Heretical Pi  (an early April’s 1st joke :-) 

 

Inspired by the clever elegance in the Salamin-Brent method I wondered whether a non-iterative 

form could be extrapolated from the same approach, using the same starting “anchor” points { 1, 

1/sqr(2) } and based on the AGM and GHM means; plus using a “magic” fudge factor  “k” to make 

it all somehow work out. A totally absurd anathema but just for fun, consider the following 

expression:  

𝑝𝑖 =
2. 𝑎𝑔𝑚2

1
2 − (𝑎𝑔𝑚2 − 𝑔ℎ𝑚2). 2𝑘

 

 

One could even attempt to legitimize this derangement by stating that the fudge factor “k” is based 

on the Erdós-Borwein constant, EB as follows: (oh this is getting too weird, or is it?) 

 

And this (see left) is the tonge-in-cheek, no-nonsensical (uh?) 

FOCAL routine used that consolidates the heresy and 

materializes this wondrous, innovative bluff. 

Trying it out for size: 

XEQ “MYPI”    =>  

 

If you thought this made no sense (say what?) then wait to 

read my dissertation on the search - and finding - of a new 

transcendent number  (a.k.a ’s cousin) through which the 

length of the ellipse circumference can be expressed in a 

closed form by: 

L = 2.  sqr(a^2+b^2) 

Where a,b are, of course, the semi-axis of said ellipse. 

 

Not convinced yet? Well, perhaps you may want to check my 

string-theory-based quick proof of the Riemann hypothesis  in 

the next section of the manual… 

 

Note: see here for another rant on the subject, it’s worth 

reading – but keep your mind open! 

 

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Borwein_constant
https://www.theverge.com/tldr/2018/3/14/17119388/pi-day-pie-math-tau-circle-constant-mathematics-circumference-diameter-radius-holiday-truth
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Extra bonus: speaking of Erdós-Borwein, here’s a nice MCODE Utility and corresponding FOCAL 

routine side by side to calculate this constant – using the definition series: 

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Borwein_constant 

 

 

01   LBL “EBC” 

02   0 
03   E 
04   LBL 00 
05   2^X-1 
06   LASTX 
07   X<>Y 
08   1/X 
09   ST+ Z 
10   FS? 10 
11   VIEW Z 
12   X=0? 
13   GTO 02 
14   RDN 
15   ISG X 
16   NOP 
17   GTO 00 
18   LBL 02 
19   X<> Z 
20   CLD 
21   END 
 

 

 

https://en.wikipedia.org/wiki/Erd%C5%91s%E2%80%93Borwein_constant


 

  
  

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 19 OF 59 

  

     HP- PIE MODULE QRG 

  

Wallis-based Approximations 

Also included in the module are a handful of routines based on the infamous Wallis product 

expression for the approximation It’s well known that said expression requires a very large number 

of terms to get a decent accuracy in the result, hence its usage is limited from a practical point of 

view. However, there are ways to go around that deficiency using “correction” factors or other 

modifications on top of the basic one. 

Function Description Input Author 

WALLIS Wallis formula  (n in X) n in X Ángel Martin 

“WP42 Wallis product Formula n in X Gerson W. Barbosa 

“WPI Wallis product Formula n in X Jean-Marc Baillard 

“WPIH Wallis Formula w/ Hyperbolics n in X Werner 

“CFWP Conti. Fractions correction n in X Martin-Barbosa 

“WWPI Wallis-Wasicki Formula n in X Gerson W. Barbosa 

 

 

•  WALLIS   is the MCODE implementation of the infamous Walls product. It requires a 

number of terms input in X and returns the estimation of pi to the stack X register.  

 

 

The table below shows  (left column) the results for different number of terms; note how the values 

get closer to the actual pi value when the Wallis formula is combined with a correction factor (right 

column), as we’ll see next: 

# of terms Wallis Result Wallis-Wasicki Result 

10  

100  

1,000  

10,000  

100,000  n/a 

 

example: 

10,000 , XEQ “WALLIS”   =>    

Not much to write home about, to say the least, so let’s see other more efficient approaches (read: 

fewer number of terms) while still based on the basic Wallis formula. 
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The two programs below are different versions contributed by forum members to compute the 

Wallis product (without correction factors). On the left using data registers and the RCL math 

(taken from an HP-42 solution); on the righ two more concise routines using only the stack. 
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Wallis-Wasicki formula. 

See: https://www.hpmuseum.org/forum/post-139434.html#pid139434 

See also: https://www.hpmuseum.org/forum/post-9194.html#pid9194 

Gerson W. Barbosa has proposed a correction factor on top of the Wallis product for slightly more 

accurate results and definitely better efficiency. The correction factor is the finite continued fraction 

shown below, with a constant B(n) term pattern reflecting the number of terms used in the Wallis 

part of the combined formula. 

 

So right off the shoe we could use the Continued Fractions engine to calculate the correction factor, 

which should definitely converge relatively quick given the large values for both A(n) and B(n). This 

is what the routine CWPI does, listed below: 

 

 

 

 

https://www.hpmuseum.org/forum/post-139434.html#pid139434
https://www.hpmuseum.org/forum/post-9194.html%23pid9194
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The other approach is obviously to combine both the Wallis product and the correction factor at the 

same time, during the execution of the main body code segment. This is done in routine WWPI 

listed below: 

 

 

Table of results/- 

Uncorrected Wallis: 

N WP42 WPI WPIH 

10   

100   

1,000   

10,000   

100,000   

 

The three versions are totally identical for any number of iterations. 

 

Corrected Wallis: 

n WWPI CWPI 

10  

100  

1,000  

10,000  

 

The sweet spot appears to be n=1,000 for both, no doubt the workings of the finite continued 

functions term. 
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Pi/e using Continued Fractions 

There are many different expressions related to pi and e using continued fractions, both with and 

without a clear pattern to the coefficients. As usual, some of them converge very slowly and aren’t 

practical for the calculations - thus only have an academic value.  

Amongst those useful for our purposes, we find these two for pi: 

Routine name: CFPI    Routine name: CFP1 

                

With the following recurrent pattern parameters on each case being: 

B(0) = 0     B(0)=3 

A(1) = 4  ;  B(1) = 1   A(n) = (2n-1)^2   ;    B(n)= 6 

A(n) = (n-1)^2  ;  B(n) = 2n-1 

 

And this one for e, beautifully simple and even more efficient for the calculation: 

with the following recurrent parameters: 

B(0)=2   ;  

A(1) = 1  ;   B(1)= 1 

A(n)=(n-1) ; B(n)=n 

 

 

XEQ “CFE”   =>      ; with just 5 terms needed 

XEQ “CFPI”  =>      ; with 420 terms needed. 

XEQ “CFP1”  =>     ; with 14 terms needed 

As always, you can set flag 10 to see the progress of the convergence in the display. 

 

References:  https://mathworld.wolfram.com/eContinuedFraction.html 

   https://en.wikipedia.org/wiki/Continued_fraction 

  

https://en.wikipedia.org/wiki/Continued_fraction
https://mathworld.wolfram.com/eContinuedFraction.html
https://mathworld.wolfram.com/eContinuedFraction.html
https://en.wikipedia.org/wiki/Continued_fraction
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The Path not taken:-  

Two of the non-practical continued fractions are shown below, for the /2 and 4/ cases– both 

requiring many thousands of iterations to achieve decent accuracy (say 5 decimal digits or better), 

and thus taking an awfully long execution time even on V41 in turbo mode. 

       

   Brouncker's formula: 

Programmed as follows: 

http://en.wikipedia.org/wiki/William_Brouncker,_2nd_Viscount_Brouncker
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Random Pie – Monte Carlo method 

This section uses a variation of the Monte Carlo strategy to evaluate both pi and e. It’s not, 

however, based in circle relationships derived from randomly throwing needles or shooting at 

targets, but on probability theory instead. It was explained by Valentín himself in his  HP Challenge 

VA511 - 2020-03-14 - SRC 006 Pi Day 2020 Special.pdf 

 

Quoting directly from that article: 

 

“It's quite simple, actually. My recent program is this: 
 

1  DESTROY ALL @ RANDOMIZE 1 @ FOR K=1 TO 5 @ N=10^K @ S=0 
2  FOR I=1 TO N @ IF NOT MOD(IROUND(RND/RND),2) THEN S=S+1 
3  NEXT I @ P=S/N @ STD @ DISP N, @ FIX 3 @ DISP 5-P*4 @ NEXT K 

 

which is computing the probability that the closest integer to A/B is even, where A and B 

are uniformly distributed random numbers in [0,1), as produced by the RND keyword. 

Each time the rounded value is even (i.e., it's 0 modulo 2) the number of favorable 

outcomes (S) is incremented by one (see line 2). After N tries have been sampled, the 

probability P for the even case will be the number of favorables outcomes (S) divided by the 

number of tries (N), thus we have the estimated probability P = S/N. 

But I know from theory that in the limit, for N -> Infinity, the exact probability P = (5-

Pi)/4, so isolating Pi we have Pi = 5-P*4, which is displayed by the program in line 3 

above.” 
 

Note that he goes on to include yet another possible approach, which results in an even shorter 

BASIC program. Here’s the explanation: 

“Now, my earlier program, the one-liner, namely: 
 

10 INPUT K @ N=0 @ FOR I=1 TO K @ N=N-MOD(IROUND(RND/RND),2) @ NEXT I @ DISP 1-

4*N/K 
 

is computing the probability that the closest integer to A/B is odd, where A and B are 

uniformly distributed random numbers in [0,1), as produced by the RND keyword. Each 

time the rounded value is odd (i.e., isn't 0 modulo 2) the number of favorable outcomes (N) 

is decremented by one, and after K tries have been sampled, the probability for the odd 

case will be the number of favorable outcomes (-N) divided by the number of tries (K), thus 

we have the estimated probability P = -N/K. 
 

As the probability of the rounded division being either even or odd is 1 (certainty), the probability 

for the odd case is 1 minus the probability for the even case, thus it's P = 1-(5-Pi)/4 = (Pi-1)/4, so 

isolating Pi we have Pi = 1+4*P = 1+4*(-N/K) = 1-4*N/K, which is then displayed by the one-line 

program.” 
      

https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA511%20-%202020-03-14%20-%20SRC%20006%20Pi%20Day%202020%20Special.pdf
https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA511%20-%202020-03-14%20-%20SRC%20006%20Pi%20Day%202020%20Special.pdf
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I chose to use the first approach in this module, partially because it also requires the IROUND 

function, and I was intrigued by it. I ended up writing a short MCODE utility for that purpose, which 
facilitates the porting of the BASIC code to HP-41 FOCAL, shown in next page.  

 
 

With regard to the e calculation, the source has also been Valentín’s HP Challenge VA030 - Short 

Sweet Math Challenge 25 San Valentin Special - Weird Math.pdf. In that thread there’s one section 

(the first “concoction”) about calculating a “weird limit” that can be used for the calculation of e 

(making the sum--to-exceed s=1). 

“The limit average count for the sum of a series of [0,1) uniformly distributed random numbers to 

exceed 1 is exactly e = 2.71828182845904523536+, the base of the natural logarithms, which is 

pretty "weird" and can be considered an analog of Buffon's Needle experiment to estimate the value 

of Pi. Here we don't throw needles on a grid but merrily add up random numbers keeping count and 

we get e instead.” 

“This is the general formula to numerically compute the theoretically exact value  and my simple 1-

line, 53-byte HP-71B program to instantly compute them given the sum to exceed: “  

 

1 DESTROY ALL @ INPUT X @ S=0 @ FOR K=0 TO IP(X) @ S=S+(K-X)^K/FACT(K)*EXP(X-K) @    

NEXT K @ DISP S 

 

For the porting we’ll certainly need the new IROUND utility and obviously capable random number 

capabilities, which shouldn’t be much of a problem using the SandMath’s functions SEEDT and 

RNDM. E’ll use a time-generated initial seed (input zero for SEEDT), and RNDM will do the work 
using the well-known RNG recurrence:  

 

r(k+1) = FRC [ r(k) * 9,821 + 0.211327 ] 
 

A few results are given in the table below: 
 
Iterations MCE MCPI 

10  

100  

1,000  

10,000  

100,000  

1,000,000  

 

 
As you can see from the table results both routines require a very large number of iterations to get 

to a reasonably accurate result, which of course was expected as “it ‘comes with the territory” 
when resorting to this type of approaches. See below for the actual program code. 

 

https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA030%20-%20Short%20Sweet%20Math%20Challenge%2025%20San%20Valentin%20Special%20-%20Weird%20Math.pdf
https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA030%20-%20Short%20Sweet%20Math%20Challenge%2025%20San%20Valentin%20Special%20-%20Weird%20Math.pdf
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Note:- The poor-man version of IROUND would consist of setting FIX 0 before the LBL 11 loop, 

and adding an INT instruction after the division of both random numbers (i.e. replacing IROUND 

with INT). That’s almost equivalent but doesn’t handle the EVEN condition for the result, i.e. 
IROUND(5.5)=5 whereas INT(4.5) in FIX 0 is equal to 4 instead. Not a show-stopper though, 

considering how unlikely it is to find such an occurrence amongst the hundreds of random points 
used by the routine. 
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Humble Pie – Series Correction, “Speed it up!” 

Yet another wonderful contribution by Mr. Albillo’s at the top of his game - taken from the 

challenge thread HP Challenge VA125 - 2006-07-12 - HP-15C Mini-challenge Speeding it up.pdf 

Here’s the direct description from that thread, read on and enjoy ! 
 

“As stated in the challenge's description, the task is to find a way to use the well-known 

Gregory-Leibnitz series to compute Pi to 10 correct places while keeping program size and 

running time small. 
 

 
 

A direct approach seems doomed to failure as this series converges so incredibly slowly 

that millions of terms must be added up to get no more than 6 or 7 correct digits, let alone 

10. To clearly demonstrate it, this simple 15- step HP-15C program, which will serve as the 

basis for my solutions, will add up any specified even number of terms from the series: 
  

01*LBL A  06 0   11 STO 0 
02 STO I  07*LBL 0  12 RCL/I 
03 STO+I  08 DSE I  13 + 
04 4   09 RCL 0  14 DSE I 
05 STO O  10 CHS  15 GTO 0 
 

To improve accuracy, the program begins adding up the smallest terms and goes 

backwards until it reaches the largest term, 1. Upon running it, you'll see 

that, as expected, the convergence is awfully slow. Let's try to add 4 terms, then 44, then 

444: 

 
4 , GSB A -> 2.895238096 (barely one correct digit) 
44 , GSB A -> 3.118868314 (barely three correct digits) 
444, GSB A -> 3.139340404 (barely four correct digits) 

 

This last result took almost 7 minutes, yet we've got no more than four not-so-correct digits, 

so the situation seems hopeless. At this point, it seems we can do no better than try some 

relatively complicated techniques, such as the Euler-McLaurin formula or extrapolation 

mechanisms for summation of infinite, alternating series such as this one. This would incur 

in a serious penalty in vastly increased complexity and program size, as seen in several 

working 

programs posted by contributors. 

 

A bit of sleuthing: 

 

However, math is full of surprises and serendipitous findings are bound to happen when 

and where you least expect them, as we'll immediately see. 

https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA125%20-%202006-07-12%20-%20HP-15C%20Mini-challenge%20Speeding%20it%20up.pdf
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Let's use our basic program to add up exactly 50 terms: 

 
50, GSB A -> 3.121594653 

 

Now, this has a fairly large error, as we're getting 3.12+ instead of 3.14+, so that the 3rd 

digit is already 2 units off. But, don't you notice something truly eerie ? Yes, we get a "2" 

where a "4" should be. But the following three digits (159) are correct ! Then we get 

another wrong digit, a "4" which should be a "2", but then the next three digits (653) are 

once again correct !! 

 

Let's align our value and the correct Pi value and carefully examine the differences: 

 
Sum -> 3.121594653 
PI  -> 3.141592653 (58979...) 

---------------------- 
+2 -2 

 

which, in absolute values means: 
 

+0.02 -0.000002 

 

Let's see if this is just a weird coincidence, or else it also happens for other numbers of 

terms being added up. Let's try 100 terms, for instance: 

 
100, GSB A -> 3.131592904 

 3.141592654 
 ------------------ 
   +1  -25 
+0.01  -0.00000025 

 

and we see that our initial impression does hold, because after one wrong digit, the 

subsequent four digits (1592) are indeed correct, then another a couple of wrong digits, 

and once again another correct digit follows. 

 

Let's call these two corrections' C1 and C2 (i.e: +0.02 and -0.000002 for 50 terms, +0.01 

and -0.00000025 for 100 terms, respectively) and see how they relate to the number of 

terms being used. A little insight or a little data-fitting will allow us to issue the following 

plausible, tentative hypothesis, where N is the number of terms: 

 
C1 = 1/N 
C2 = -0.25/N3 = -1/4N3 

 

which do indeed work for N = 50 and N = 100 terms. Now we'll put our hypothesis to the 

test, by using it to predict the values of C1 and C2 for N=200 terms: 

 
Prediction for N = 200 -> C1 = 1/200 = 0.005 
C2 = -1/(4*2003) = -0.000000031 
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and we'll now check if they agree with actual results, by running our basic program with 

200 as the input value: 

 
200, GSB A -> 3.136592685 

 3.141592654 
 ----------------- 
    +5   -31 

 

which indeed do exactly agree with our predicted corrections, +0.005 and -0.000000031. 

At this point, we can be fairly sure that our empirical finding holds, and can then proceed 

to make use of it by simply computing one or both correction terms, C1 and C2, and using 

them to refine the sum provided by our basic program, as follows: 
 

First version, using just one correction term, C1 = 1/N: 

 

Just two little changes to our basic program will compute and add the correction term C1, 

resulting in a program just a single step longer, at 16 steps, yet much faster and accurate: 
 

01*LBL A 
02 STO I 
03 STO+I  50,  GSB A -> 3.141594653 in 55" 
04 1/X 
05 4   error = 2E-6, actually all digits are correct except the "4" 
06 STO O 
07 X<>Y  100, GSB A -> 3.141592904 in 1'50" 
08*LBL 0 
09 DSE I  error = 2.5E-7 

10 RCL 0 

11 CHS  400, GSB A -> 3.141592658 in 7'45" 

12 STO 0 

13 RCL/I  error = 4E-9 

14 + 

15 DSE I 

16 GTO 0 

so this simple version, with just the one correction term C1 does achieve a 10-digit correct 

value (within 4 ulps) while using just 400 terms, in less than 8 minutes. That's many orders 

of magnitude better than the basic program could achieve, but we can do still much better: 
 

Second version, using two correction terms, C1=1/N and C2=-1/4N3: 

 

A few stack manipulations will allow us to compute and use both correction terms, C1 and 

C2 while using just 5 additional steps, for a very small total of just 21 steps: 
 

01*LBL A 
02 STO I 
03 STO+I  40, GSB A -> 3.141592651 in 40" (error = 3E-9) 
04 1/X 
05 ENTER 
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06 ENTER  50, GSB A -> 3.141592653 in 50" (error = 1E-9) 
07 3 
08 Y^X 
09 4   62, GSB A -> 3.141592654 in 60" (error = 0) 
10 STO O 
11 / 
12 - 
13*LBL 0 
14 DSE I 
15 RCL 0 
16 CHS 
17 STO 0 
18 RCL/I 
19 + 
20 DSE I 
21 GTO 0 

  

so this improved version needs to add up just 62 terms to return a full 10 correct-digit value 

within 60 seconds. Here's a table summarizing the different degrees of approximation using 

0, 1, and 2 correction terms, for up to 60 terms added up: 

 
N  bare series  +C1   +C1+C2  t 
------------------------------------------------------ 
10  3.041839619  3.141839619  3.141589619  10" 
20  3.091623807 3.141623807  3.141592557  20" 
30  3.108268567  3.141601900  3.141592641  30" 
40  3.116596557  3.141596557  3.141592651  40" 
50  3.121594653  3.141594653  3.141592653  50" 
60  3.124927144  3.141593811  3.141592653  60" 

 

 

Further empirical confirmation: 

 

As we've been able to indeed get 10 correct digits by using our empirically discovered 

corrections, we can be fairly confident that they are no mere coincidences but hold for 

greater number of terms added up and thus greater precision. To test this, just out of 

curiosity, these are the results for N = 500, 5000, 50000, 500000, and 5 million terms 

added up: 
 

N = 500 terms added up 
3.13959265558978323858464... 
3.14159265358979323846264... 
   +2    -2   +10  -122 

 
N = 5,000 terms added up 
3.14139265359179323836264339547950... 
3.14159265358979323846264338327950... 
    +2      -2     +10    -122 

 
N = 50,000 terms added up 
3.14157265358979523846264238327950410419716... 
3.14159265358979323846264338327950288419716... 
     +2        -2       +10      -122 
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N = 500,000 terms added up 
3.14159065358979324046264338326950288419729139937510... 
3.14159265358979323846264338327950288419716939937510... 
      +2          -2         +10        -122 

 
N = 5,000,000 terms added up 
3.14159245358979323846464338327950278419716939938730582097494... 
3.14159265358979323846264338327950288419716939937510582097494... 
       +2            -2           +10          -122 

 

Notice in particular the values for N = 5,000,000 terms: the 7th decimal is already in error 

by 2 units. But the next 13 digits are all correct ! Then, the following digit is also 2 units 

wrong. But the next 12 digits are again correct !! All in all, among the first 47 digits, only 3 

of them are a few units wrong ! 

 

In other words, the original series converges incredibly slowly, granted, but the errors 

when you stop at N terms are extremely predictable and easy to compute, so you can 

increase your accuracy 3-fold or 5-fold by using just one or two easily derived correction 

terms. 

 

Final notes 

 

This empirical discovery, once made, can be substantiated by theory, and a nifty expression 

is arrived at which results in an asymptotic approximation to Pi based on the sum of the 

original series truncated to N terms plus a 'correction' series (the asymptotic component) in 

negative powers of N (1/N, 1/N3, etc) where the so-called Euler numbers are the 

coefficients. 

 

Similar phenomena occur for constants other than Pi, for example similarly truncating the 

series: 

 
Ln(2) = 1 - 1/2 + 1/3 - 1/4 + 1/5 - ... 

 

results in: 
 

Sum =   0.69314708055995530941723212125817656807551613436025525... 
Ln(2) = 0.69314718055994530941723212145817656807550013436025525... 

                1     -1             2           -16 

 

and another asymptotic series can be theoretically substantiated, the required coefficients 

being now the so called "tangent numbers" instead: 1, -1, 2, -16, ... 

 

Thanks for your interest and many excellent posted contributions, hope you enjoyed 

yourselves while working them out.” 
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And here’s how all this is applied to the HP-41 in this module, a deceptively simple code that 

however encompasses the devilish wizardry so well explained in the previous pages: 
 

The routine is deservedly labeled “VAPI”, I’m sure you’ll understand why. 
 

The table of results is shown below. Note the small 

number of iterations needed for a good accuracy, proof 

of the very efficient algorithm used. 
 

N in X Result 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

 
 

 
 

 

 
 
 
 
 

 
 

 
This concludes the first part of the manual. In the next section you’ll find a short description of the 

MCODE and FOCAL programs to calculate many digits of pi and e. 
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Many Digits of Pi.      (by Peter Platzer, MoHPC Forum) 

https://www.hpmuseum.org/cgi-sys/cgiwrap...587#147587 

 

The module includes the remarkable and impressive MCODE implementation of the Spigot 

algorithm by Peter Platzer, published in the Museum of HP Calculators forum. His description is 

available in the appendix, but here are the highlights: 

 

The code asks for three inputs: The page where the MLDL ram starts to use, the number of digits 

and the base b to use (max = 5 for 5 digits at a time). One can set Flag 0 and the calc will stop 

at each group of digits and wait for a key to be pressed, otherwise it just keeps calculating … 

 

Setting Flag 1 will store the found digits in the same compressed format – each group of up to 5 

digits is stored in 2 words, with the right nibble converted to hex. They are stored in reversed 

order though 

 

In manual execution the function prompts for the number of digits to calculate (limited to 1999 

by the prompt) and the destination page where to store them. This needs to be a q-RAM page to 

allow writes into it. The maximum number of digits is 4095 – which will fill up the page in its 

entirety. 

 

The screens below show an example to calculate 1,046 digits to be stored in page B: 

 

      ….  

 

In an unmodified HP-41 it delivers 1,160 digits in about 9 hours  3,600 digits in about 4 days , 

and 4,915 digits in about 8 days. The chart below shows a comparison with the previous record-

holding approaches described in the article. 

 

 
 

https://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/archv019.cgi?read=147587#147587
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; Many Digits of PI 

; Spigot algorithm from Pi-book 

; uses base b <= 5 to show 5 digits at a time 

;Flag0 - wait for key press after each group is shown 

;Flag1 - store result digits in reverse order from end (iStart) 

 

;Input: 

; Z : p - page number of start of MLDL ram to use 

; Y : n - number of digits wanted 

; X : base b in powers of 10 

;-------------- 

; All Stack and Alpha is used for temp storage 

; 3(X): i in dec, 1step 5(M): orig iStart in hex and 2 step 

; 2(Y): tmp 6(N): last addr in hex and 2 step 

; 1(Z): iBits in dec, 1 step 7(O): iBits in hex, 2 step 

; 4(L): iStart in dec, 1 step 8(P): b|iStart in hex and 2 step 

; 9(Q): q - remainder 0(T): page number in hex in C:[0] 

;------------- 

; All numbers are integers without exponent starting at C[0] 

; User-Flag 0 -> wait for key press after each numbers shown. Stored in M-Flag 9  
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Extended precision: Pi to 1,000 places.  (by Ron Knapp, PPCCJ V8N6 p69) 

 

“Compute the first 1,000 decimal digits of Pi in less than 11 hours, 30 minutes”. That was the 

friendly challenge put out by the PPC ‘Journal”, especially to members of the TI Personal 

Calculator Club, approximately a year ago. This challenge was repeated in the “Calcu-letter” of 

Popular Science Magazine, July 1981. 

 

Up to the present time, I have heard of no serious attempts to eclipse this record. So,-- I decided 

to improve my own program. The program listed below computes Pi to 1,000 decimal places in 

just 8 hours, 30 minutes. 

 

Ed. note: with 2x machines, and some will run Faster, (fastest reported so far was Emett Ingram 

(17) at 2.8x) a 4 hour, 1,000 digit Pi program is the state of the PPC art. How long will it be before 

someone places 100,000 digits of Pi on a cassette? A printer on the HP-IL would take nearly 45 

minutes to print it on 70 feet of paper at 20 digits per line, 2 lines per second. 

 

 

 

The first 1.000 decimal places of Pi contains 93 0s, 116 1s, 103 2s, 102 3s, 93 4s, 97 5s, 94 6s, 95 

7s, 101 8s, and 106 9s. Below is "3 dot" followed by the first 1,000 decimals of Pi. 

 

3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7 5 1 0 5 8 2 

0 9 7 4 9 4 4 5 9 2 3 0 7 8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6 2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7 9 8 2 1 4 8 0 8 6 

5 1 3 2 8 2 3 0 6 6 4 7 0 9 3 8 4 4 6 0 9 5 5 0 5 8 2 2 3 1 7 2 5 3 5 9 4 0 8 1 2 8 4 8 1 1 1 7 4 5 0 2 8 4 1 

0 2 7 0 1 9 3 8 5 2 1 1 0 5 5 5 9 6 4 4 6 2 2 9 4 8 9 5 4 9 3 0 3 8 1 9 6 4 4 2 8 8 1 0 9 7 5 6 6 5 9 3 3 4 4 

6 1 2 8 4 7 5 6 4 8 2 3 3 7 8 6 7 8 3 1 6 5 2 7 1 2 0 1 9 0 9 1 4 5 6 4 8 5 6 6 9 2 3 4 6 0 3 4 8 6 1 0 4 5 4 

3 2 6 6 4 8 2 1 3 3 9 3 6 0 7 2 6 0 2 4 9 1 4 1 2 7 3 7 2 4 5 8 7 0 0 6 6 0 6 3 1 5 5 8 8 1 7 4 8 8 1 5 2 0 9 

2 0 9 6 2 8 2 9 2 5 4 0 9 1 7 1 5 3 6 4 3 6 7 8 9 2 5 9 0 3 6 0 0 1 1 3 3 0 5 3 0 5 4 8 8 2 0 4 6 6 5 2 1 3 8 

4 1 4 6 9 5 1 9 4 1 5 1 1 6 0 9 4 3 3 0 5 7 2 7 0 3 6 5 7 5 9 5 9 1 9 5 3 0 9 2 1 8 6 1 1 7 3 8 1 9 3 2 6 1 1 

7 9 3 1 0 5 1 1 8 5 4 8 0 7 4 4 6 2 3 7 9 9 6 2 7 4 9 5 6 7 3 5 1 8 8 5 7 5 2 7 2 4 8 9 1 2 2 7 9 3 8 1 8 3 0 

1 1 9 4 9 1 2 9 8 3 3 6 7 3 3 6 2 4 4 0 6 5 6 6 4 3 0 8 6 0 2 1 3 9 4 9 4 6 3 9 5 2 2 4 7 3 7 1 9 0 7 0 2 1 7 

9 8 6 0 9 4 3 7 0 2 7 7 0 5 3 9 2 1 7 1 7 6 2 9 3 1 7 6 7 5 2 3 8 4 6 7 4 8 1 8 4 6 7 6 6 9 4 0 5 1 3 2 0 0 0 

5 6 8 1 2 7 1 4 5 2 6 3 5 6 0 8 2 7 7 8 5 7 7 1 3 4 2 7 5 7 7 8 9 6 0 9 1 7 3 6 3 7 1 7 8 7 2 1 4 6 8 4 4 0 9 

0 1 2 2 4 9 5 3 4 3 0 1 4 6 5 4 9 5 8 5 3 7 1 0 5 0 7 9 2 2 7 9 6 8 9 2 5 8 9 2 3 5 4 2 0 1 9 9 5 6 1 1 2 1 2 

9 0 2 1 9 6 0 8 6 4 0 3 4 4 1 8 1 5 9 8 1 3 6 2 9 7 7 4 7 7 1 3 0 9 9 6 0 5 1 8 7 0 7 2 1 1 3 4 9 9 9 9 9 9 8 

3 7 2 9 7 8 0 4 9 9 5 1 0 5 9 7 3 1 7 3 2 8 1 6 0 9 6 3 1 8 5 9 5 0 2 4 4 5 9 4 5 5 3 4 6 9 0 8 3 0 2 6 4 2 5 

2 2 3 0 8 2 5 3 3 4 4 6 8 5 0 3 5 2 6 1 9 3 1 1 8 8 1 7 1 0 1 0 0 0 3 1 3 7 8 3 8 7 5 2 8 8 6 5 8 7 5 3 3 2 0 

8 3 8 1 4 2 0 6 1 7 1 7 7 6 6 9 1 4 7 3 0 3 5 9 8 2 5 3 4 9 0 4 2 8 7 5 5 4 6 8 7 3 1 1 5 9 5 6 2 8 6 3 8 8 2 

3 5 3 7 8 7 5 9 3 7 5 1 9 5 7 7 8 1 8 5 7 7 8 0 5 3 2 1 7 1 2 2 6 8 0 6 6 1 3 0 0 1 9 2 7 8 7 6 6 1 1 1 9 5 9 

0 9 2 1 6 4 2 0 1 9 8 9 
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Program listing.- 

 

 *LBL "PI1K" 1 
 *LBL A 2 

  " PI -?-" 3 
  AVIEW 4 
  CLRG 5 
  FIX 3 6 
  4 7 
  STO 09 8 
   E5 9 
  ST/ Y 10 
  STO 04 11 
  X^2 12 
  STO 05 13 
  X<>Y 14 
  427 15 
  + 16 
  STO 02 17 
  239 18 
  X^2 19 
  STO 07 20 
  LASTX 21 
   E2 22 
  * 23 
  STO 13 24 
  RDN 25 
  X^2 26 
  STO 08 27 
  94 E-5 28 
  STO 11 29 
  14.0139 30 
  STO 12 31 
  25 32 
  STO 10 33 
 *LBL 00 34 

  RCL 11 35 
  ST+ 12 36 
  RCL 12 37 
  RND 38 
  STO 00 39 
  RCL 07 40 
  RCL 02 41 
  INT 42 
  ENTER^ 43 
  ST* Z 44 
  2 45 
  - 46 
  ST- Z 47 

  * 48 

  RCL 10 49 
  * 50 
  STO 06 51 
  CLX 52 
  STO 01 53 
  X<>Y 54 
  RCL 13 55 
  * 56 
  ENTER^ 57 
  GTO 02 58 
 *LBL 01 59 

  RCL 06 60 
  ST/ Z 61 
  MOD 62 
  X<>Y 63 
  INT 64 
  X<>Y 65 
  RCL 04 66 
  ST* Z 67 
  * 68 
  ENTER^ 69 
 *LBL 02 70 

  RCL 06 71 
  ST/ Z 72 
  MOD 73 
  STO 03 74 
  RDN 75 
  INT 76 
  + 77 
  RCL 05 78 
  ST- Y 79 
  X<>Y 80 
  RCL IND 00 81 
  + 82 
  X>0? 83 
  ISG 01 84 
 *LBL 03 85 

  X<0? 86 
  + 87 
  RCL 01 88 
  RCL 04 89 
  ST/ Z 90 
  * 91 
  ENTER^ 92 
 *LBL 02 93 

  RCL 08 94 
  ST/ Z 95 
  MOD 96 

  R^ 97 
  INT 98 

  LASTX 99 
 FRC 100 
 RDN 101 
 + 102 
 X<>Y 103 
 INT 104 
 RCL 04 105 
 ST* T 106 
 ST* Z 107 
 * 108 
 STO IND 00 109 
 RDN 110 
 ENTER^ 111 
*LBL 03 112 

 RCL 08 113 
 ST/ Z 114 
 MOD 115 
 X<>Y 116 
 INT 117 
 ST+ IND 00 118 
 RDN 119 
 + 120 
 STO 01 121 
 RCL 03 122 
 RCL 04 123 
 * 124 
 ENTER^ 125 
 ISG 00 126 
 GTO 01 127 
 DSE 02 128 
 GTO 00 129 
 4096 E-7 130 
 STO 08 131 
 1439.00006 132 
 STO 02 133 
 837 E-6 134 
 STO 11 135 
 115.115 136 
 STO 12 137 
 80 138 
 STO 13 139 
 5 E6 140 
 STO 07 141 
 .75 142 
 STO 06 143 

*LBL “Q” 144 
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 RCL 11 145 
 ST+ 12 146 
 RCL 12 147 
 RND 148 
 STO 00 149 
 STO 03 150 
 SF 00 151 
*LBL 05 152 

 RCL 02 153 
 INT 154 
 ENTER^ 155 
 ENTER^ 156 
*LBL 02 157 

 2 158 
 - 159 
 ST* Z 160 
 RCL 10 161 
 ST* Z 162 
 X<>Y 163 
 * 164 
 2 165 
 ST- L 166 
 CLX 167 
 LASTX 168 
 ST* T 169 
 ST- Y 170 
 RDN 171 
 * 172 
 R^ 173 
 ST+ T 174 
 X^2 175 
 R^ 176 
 + 177 
 + 178 
 FC? 00 179 
 GTO 02 180 
 RCL 13 181 
 * 182 
 3 183 
 DSE 02 184 
 GTO 03 185 
*LBL 02 186 

 RCL 07 187 
 * 188 
 RCL 06 189 
*LBL 03 190 
 X<>Y 191 
 RDN 192 
 / 193 
 STO 01 194 
 CLX 195 
 R^ 196 

 ENTER^ 197 
 GTO 09 198 
*LBL 08 199 

 RCL 01 200 
 ST/ Z 201 
 MOD 202 
 X<>Y 203 
 INT 204 
 X<>Y 205 
 RCL 04 206 
 ST* Z 207 
 * 208 
 ENTER^ 209 
*LBL 09 210 

 RCL 01 211 
 ST/ Z 212 
 MOD 213 
 RDN 214 
 INT 215 
 + 216 
 RCL IND 00 217 
 - 218 
 X>0? 219 
 GTO 02 220 
 DSE 00 221 
*LBL 03 222 

 DSE IND 00 223 
 ISG 00 224 
 RCL 05 225 
 + 226 
*LBL 02 227 

 STO IND 00 228 
 R^ 229 
 RCL 04 230 
 * 231 
 ENTER^ 232 
 ISG 00 233 
 GTO 08 234 
 RCL 03 235 
 STO 00 236 
 FS?C 00 237 
 GTO 05 238 
 CLX 239 
 ENTER^ 240 
 DSE 02 241 
 FS? 00 242 
 GTO 04 243 
*LBL 11 244 

 X<> IND 00 245 
 RCL 04 246 
 / 247 
 FRC 248 

 LASTX 249 
 INT 250 
 RCL 08 251 
 * 252 
 FRC 253 
 LASTX 254 
 INT 255 
 ST+ IND 00 256 
 RDN 257 
 X<>Y 258 
 RCL 05 259 
 ST* T 260 
 ST* Z 261 
 * 262 
 RCL 08 263 
 * 264 
 FRC 265 
 X<>Y 266 
 LASTX 267 
 INT 268 
 R^ 269 
 + 270 
 RCL 05 271 
 - 272 
 + 273 
 X>0? 274 
 ISG IND 00 275 
 X>0? 276 
 GTO 03 277 
 RCL 05 278 
 + 279 
*LBL 03 280 

 ISG 00 281 
 GTO 11 282 
 GTO “Q” 283 
*LBL 04 284 

 RCL 03 285 
 STO 00 286 
 RCL 10 287 
 X^2 288 
 3 289 
 Y^X 290 
 LASTX 291 
 * 292 
 STO 08 293 
 CLX 294 
*LBL 13 295 

 RCL IND 00 296 
 X<>Y 297 
 RCL 04 298 
 ST/ Z 299 
 * 300 
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 ENTER^ 301 
*LBL 02 302 

 RCL 08 303 
 ST/ Z 304 
 MOD 305 
 R^ 306 
 INT 307 
 LASTX 308 
 FRC 309 
 RDN 310 
 + 311 
 X<>Y 312 
 INT 313 
 RCL 04 314 
 ST* T 315 
 ST* Z 316 
 * 317 
 STO IND 00 318 
 RDN 319 
 ENTER^ 320 
*LBL 03 321 

 RCL 08 322 
 ST/ Z 323 
 MOD 324 
 X<>Y 325 
 INT 326 
 ST+ IND 00 327 
 RDN 328 
 + 329 
 ISG 00 330 
 GTO 13 331 
 114.013 332 
 STO 00 333 
 215 334 
 STO 03 335 
 CLX 336 
*LBL 06 337 

 RCL IND 03 338 
 + 339 

 RCL IND 00 340 
 - 341 
 0 342 
 X<>Y 343 
 X<0? 344 
 X>0? 345 
 GTO 02 346 
 RCL 05 347 
 + 348 
 DSE Y 349 
*LBL 02 350 

 STO IND 00 351 
 RDN 352 
 DSE 03 353 
 DSE 00 354 
 GTO 06 355 
 BEEP 356 
 RTN 357 

*LBL E 358 

 SF 21 359 
 CLA 360 
 FIX 0 361 
 14.114 362 
 STO 00 363 
 SF 29 364 
 RCL IND 00 365 
 ACX 366 
 ADV 367 
 CF 29 368 
 ISG 00 369 
*LBL 07 370 

 XEQ 10 371 
 ISG 00 372 
 FS? 00 373 
 RTN 374 
 " " 375 
 XEQ 10 376 
 ADV 377 
 CLA 378 

 ISG 00 379 
 GTO 07 380 
 AVIEW 381 
 RTN 382 
*LBL 10 383 

 RCL IND 00 384 
 RCL 04 385 
 / 386 
 INT 387 
 LASTX 388 
 FRC 389 
 RCL 04 390 
 XEQ 12 391 
 " " 392 
 XEQ 12 393 
 RTN 394 
*LBL 12 395 

 * 396 
 RCL Y 397 
 X=0? 398 
 GTO 03 399 
 LOG 400 
 INT 401 
*LBL 03 402 
 RCL 09 403 

 X<>Y 404 
 X=Y? 405 
 GTO 02 406 
 - 407 
 0 408 
*LBL 14 409 

 ARCL X 410 
 DSE Y 411 
 GTO 14 412 
*LBL 02 413 
 ARCL T 414 
 ACA 415 
 CLA 416 
 END 417 
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Extended precision: E to 2,900 places.  (by Ron Knapp, PPCCJ V9N1 p12) 

This program is an abbreviated version designed to compute the decimal places of “e” to the 

greatest possible limit allowed in an HP-41CV or an HP-41C with a Quad Memory module. The 

program does the initialization including setting the SIZE to 294 data registers. 

 

R01 shows the count-down number at all times. Originally this indicates the number of terms of 

the series necessary to obtain the accuracy desired. The number of terms yet to be computed is 

continuously displayed to allow the operator to know the progress of the computation. When the 

count-down number reaches zero the execution can proceed to the readout (or printout) 

routine, which displays 10 digits at a time, broken into two groups of five digits each, for easy 

reading. All leading and ending zeros are shown. 

 

Instructions: 

 

XEQ “E2900”   Will take around 25 minutes at TURBO50 speed ! 

XEQ “R”    To see/Print the results 

 

 

01 LBL “R” Readout results 

02 FIX 0 

03 CF 29 

04 “2,” 

05 AVIEW 

06 4 

07 ST+  03 

08 LBL 06 

09 CLA 

10 SF 01 

11 RCL IND 03 

12  E5 

13  / 

14 FRC 

15 LASTX 

16 INT 

17 LBL 07 

18 ENTER^ 

19 ENTER^ 

20 4 

21 X<>T 

22 X=0? 

23 GTO 08 

24 LOG 

25 INT 

26 – 

27 0 

28 X=Y? 

29 GTO 09 

30 LBL 08 

31 ARCL X 

32 DSE  Y 

33 GTO 08 

34 LBL 09 

35 ARCL  Z 

36 FC?C 01 

37 GTO 10 

38 “|-  “  ; two spaces 

39 R^ 

40  E5 

41 * 

42 GTO 07 

43 LBL 10 

44 AVIEW 

45 ISG 03 

46 GTO 06 

47 END 
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Program listing. - 

 

 *LBL "E2900" 1 

 294 2 
 PSIZE 3 
 CF 01 4 
 CF 02 5 
 4.004 6 
 STO 00 7 
 1112 8 
 STO 01 9 
  E 10 
 STO 03 11 
 .293 12 
 STO 03 13 

*LBL e 14 

  RCL 01 15 
  ENTER^ 16 
  VIEW X 17 
  DSE 01 18 
   E10 19 
  X<>Y 20 
  ISG Z 21 
 *LBL 00 22 

  RCL 01 23 
  X<>Y 24 
  * 25 
  X>Y? 26 
  GTO 01 27 
  DSE 01 28 
  GTO 00 29 
  SF 01 30 
  ENTER^ 31 
 *LBL 01 32 
  R^ 33 
  LASTX 34 
  X<>Y 35 
  RCL 01 36 
  3 37 
  FC? 01 38 
  DSE X 39 
 *LBL 02 40 

  + 41 
  - 42 
   E 43 
  ENTER^ 44 
 *LBL 03 45 

  X<> L 46 

  ST* Y 47 
  X<> L 48 
  ST+ Y 49 
  ST+ L 50 
  DSE Z 51 
  GTO 03 52 
  * 53 
  + 54 
 *LBL 04 55 
   E5 56 
  * 57 
  ENTER^ 58 
  R^ 59 
  ST/ Z 60 
  MOD 61 
  X<>Y 62 
  INT 63 
   E5 64 
  X>Y? 65 
  GTO 05 66 
  / 67 
  INT 68 
   E 69 
  ST- 00 70 
  X<>Y 71 
  ST+ IND 00 72 
  RDN 73 
  ST+ 00 74 
  CLX 75 
  LASTX 76 
  FRC 77 
   E5 78 
  * 79 
  LASTX 80 
 *LBL 05 81 

  * 82 
  X<> IND 00 83 
  LASTX 84 
  / 85 
  INT 86 
  ST+ Y 87 
  X<> L 88 
  FRC 89 
  X<>Y 90 
   E5 91 
  ST* Z 92 

  * 93 
  ENTER^ 94 
  R^ 95 
  ST/ Z 96 
  MOD 97 
  LASTX 98 
  RDN 99 
  X<>Y 100 
  INT 101 
  ST+ IND 00 102 
  CLX 103 
  + 104 
  + 105 
  ISG 00 106 
  GTO 04 107 
  X<>Y 108 
  / 109 
  RND 110 
   E 111 
 ST- 00 112 
 X<>Y 113 
 ST+ IND 00 114 
 R^ 115 
  E-10 116 
 * 117 
 ST* 02 118 
 RCL 02 119 
 LASTX 120 
 X>Y? 121 
 SF 02 122 
 FS? 02 123 
 ST/ 02 124 
  E-3 125 
 RCL 00 126 
 FRC 127 
 FC?C 02 128 
 + 129 
 RCL 03 130 
 X<Y? 131 
 X<>Y 132 
 RDN 133 
 4 134 
 + 135 
 STO 00 136 
 FC?C 01 137 
 GTO e 138 
 END 139 
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Extended precision for Pi.  (by Benoit Maag) 

This section is a reproduction of the original article in the museum forum, see: 

https://www.hpmuseum.org/forum/post-139434.html#pid139434 
 

HP-41C Program / 41CL – DM41X  

(X-functions only needed for memory sizing) 

 

The program uses the formula:     π = 2 + 1/3*(2 + 2/5*(2 + 3/7*(2 + …  

n decimal precision obtained after INT(n/log(2)) iterations  

 

Data stored as xxxxx.xxxxx – calculations done with 5 digits at a time. The fractional and integer 

part of the store number are separated and processed separately. The program is longer and slower 

as a result but memory use is maximized. Every iteration of i runs the multiplication by i from Rmax 

down to R03 and then the division by 2i+1 from R03 to Rmax.  

 

Memory Usage  

R00: indirect addressing register  

R01: i, starting at INT(n/log(2)) and decreasing to 1  

R02: number of last register of data  

R03: x.xxxxx  

R04 = Rmax: xxxxx.xxxxx   ( Rmax: last register of data ) 

 

Instructions  

Nb of decimals desired (multiple of 10)  XEQ “PI”  

When the program ends (with a BEEP), the approximation of is stored in R03 ~ Rmax – nb 

of decimals = number of decimals desired + 5 

 

Benckmarking:- 

Notable absence is the V41 – TURBO test case, which of course will perform as good as 

the hosting PC machine is capable of performing. 

 

Starting with the plain configuration:  

 

 

 

https://www.hpmuseum.org/forum/post-139434.html#pid139434


 

  
  

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 44 OF 59 

  

     HP- PIE MODULE QRG 

 

 
 

 

 
 

 

 
 

 

 
 

Note: the printer module on the DM41X slows down the calculation significantly. For example, 

the calculation of 15 digits takes 74 seconds with the printer module plugged in, and just 28 

seconds without it 
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Program Listing  

 

LBL “2PI”  1 

ENTER  2 

CLRG  3 

5  4 

+  5 

2  6 

STO 03  7 

LOG  8 

/  9 

INT  10 

STO 01  11 

RDN  12 

 E1  13 

/  14 

3  15 

+  16 

STO 00  17 

STO 02  18 

 E  19 

+  20 

PSIZE  21 

0  22 

LBL 00  23 

RCL IND 00  24 

FRC  25 

XEQ 01  26 

X<> IND 00  27 

INT  28 

 E5  29 

/  30 

XEQ 01  31 

 E5  32 

*  33 

ST+ IND 00  34 

RDN  35 

DSE 00  36 

RCL 00  37 

3  38 

X>Y?  39 

GTO 02  40 

RDN  41 

RDN  42 

GTO 00  43 

LBL 01  44 

RCL 01  45 

*  46 

X<>Y  47 

 E5  48 

 /  49 

 +  50 

 INT  51 

 LAST X  52 

 FRC  53 

 RTN  54 

 LBL 02  55 

 0  56 

 ISG 00  57 

 FIX 5  58 

 LBL 05  59 

  E5  60 

 *  61 

 RCL IND 00  62 

 INT  63 

 +  64 

 XEQ 03  65 

 X<> IND 00  66 

 FRC  67 

 +  68 

  E5  69 

 *  70 

 XEQ 03  71 

  E5  72 

 /  73 

 ST+ IND 00  74 

 RDN  75 

 ISG 00  76 

 FIX 5  77 

 RCL 00  78 

 RCL 02  79 

 X<Y?  80 

 GTO 04  81 

 RDN  82 

 RDN  83 

 GTO 05  84 

 LBL 03  85 

 ENTER  86 

 ENTER  87 

 RCL 01  88 

 ST+ X  89 

 ISG X  90 

 FIX 5  91 

 STO T  92 

 MOD  93 

 X<>Y  94 

 R^  95 

 /  96 

 INT  97 

 RTN  98 

 LBL 04  99 

0 2  100 

 ST+ 03  101 

 DSE 01  102 

 GTO 06  103 

 BEEP  104 

 RTN  105 

 LBL 06  106 

 VIEW 01  107 

 DSE 00  108 

 0  109 

 GTO 00  110 

 END 111 
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Pi Decimals for the HP-41  ( by Jean-Marc Baillard) 

http://hp41programs.yolasite.com/pi.php 

 

Overview  

 

You place a positive integer n < 319 in the X-register, and your HP-41 returns 5.n decimals 

of PI , that is 5-digits per register up to 319 registers max or 1,595 digits. 

 

Formula:  

 

     = 2 + (1/3) ( 2 + (1/5) ( 2 + (3/7) ( 2 + ......   ( 2 + k/(k+1) ) .... ) ) )  

 

Program Listing  

125 bytes / SIZE nnn+1 

 

Data Registers:     R00 = n  ;    

                                 {R01 ... Rnn} = the decimals of PI in groups of 5 digits.  

Flags: /  

Subroutines: / 

01 LBL "PIDIG"  
 02  CLRG  
 03  STO 00          
 04  5  
 05  *  
 06  2  
 07  LOG  
 08  /  
 09  INT  
 10  STO N  
 11  2  
 12  RCL 00   
 13   E3  
 14  /  
 15  +  
 16  STO M 

 17   E5  
 18  STO O   
 19  ISG N  
 20  LBL 01  
 21  RCL M  
 22  RCL O  
 23  ST+ X  
 24  RCL 01          
 25  +  
 26  RCL N  
 27  *  
 28  STO 01   
 29  LASTX  
 30  ST+ X  
 31  ENTER  
 32  SIGN 

 33   +  
 34   STO P  
 35   MOD  
 36   ST- 01  
 37   LASTX  
 38   ST/ 01  
 39   CLX  
 40   RCL O   
 41   *  
 42   LBL 02          
 43   RCL IND Y  
 44   RCL N  
 45   *  
 46   +  
 47   RCL X  
 48   RCL P 

 49   MOD  
 50   ST- Y  
 51   X<>Y  
 52   LASTX  
 53   /  
 54   RCL O   
 55   ST* Z  
 56   X>Y?  
 57   GTO 03   
 58   ST- Y  
 59   SIGN  
 60   ST- T  
 61   ST+ IND T  
 62   ST+ T  
 63   LBL 03          
 64   RDN 

 65   STO IND Z  
 66   RDN  
 67   ISG Y  
 68   GTO 02  
 69   DSE N  
 70   GTO 01  
 71     E5  
 72   ST+ 01  
 73   ST+ 01  
 74   ST/ 01  
 75   RCL 00          
 76   0.1  
 77   %  
 78   ISG X  
 79   CLA  
 80   END 

 

STACK INPUT OUTPUT 

X n < 319 1.nnn 
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Example1:   Calculate  5 x 8 = 40  decimals of PI  

    8 ,  XEQ "PIDIG"  =>>>   1.008                                ---Execution time = 11m14s---  

-And we find in registers  R01 thru R08:   ( add zeros on the left if need be )  

  3.14159  26535  89793  23846  26433  83279  50288  41971  

All these decimals are exact !  

   

Example2:   Calculate  5 x 318 = 1590  decimals of PI  

SIZE  319  

     318  XEQ "PIDIG"  =>>>>   1.318               ---Execution time = 27m20s---       

                                                                            With V41 in Turbo Mode  

And we get in registers R01 thru R318:   ( add zeros on the left if need be )  
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The Decimals of PI/E for the HP-41  ( by Eckard Gehrke) 

This section is a direct translation from the relevant sections of the chapter in the book “ HP-41 

Sammlung”, pages  65, 66 and following. Vieweg Programmbibliothek #23. 

 

3.3 The calculator program 

The HP-41CV programmable calculator is used for the calculation. The HP-41 works with the RPN 

system, which is based on a bracket-free representation of all operations. 

The HP-41 cannot define variables. It has numbered memories. A call is made with RCL nm, with a 

STO nm the number a is stored in register nm. For the used R00 holds i, R01 and R02 are needed 

for the loop counter j. 0 is stored in R03 and DR in R04. The following 81 memories R05 - R85 form 

[“R1”] 

In these registers the successive elements are summed up to the registers R86 - R166 (R2) take in 

(b n), the division with D is handled in the registers R167 - R247. 

The addressing of these registers is done indirectly with R 01 and R 02. For the subroutines 

addition and subtraction, the registers of R1 are called with RCL IND 01, those of R3 with RCL IND 

02. The calculation of R 01 and R 02 is done in the subroutine loop counter. Only R 01 is needed 

for division. The register R0 (J) takes the remainder Registers. Register M ( [ ) and N ( \ ) are 

intended for [“M”] and [“N”] respectively. 

The HP-41 can only jump to marks ("labels"). These are indicated in the diagrams with circles. For 

the labels NFG, ADD, DIV and SUB the labels 02, 03, 06 and A are used. Subroutines are executed 

with XEQ. On an RTN, the computer returns to the line following the subroutine call.  Simple jumps 

are made with GTO.  

For questions answered "no", the computer skips a line. The loop control is done with ISG and DSE. 

For i the result is: R 00 has the initial value 1.081 (a,b). If the computer comes to an ISG 

instruction, a is increased by 1: 2.081. If a>b, the computer skips one line. With a DSE instruction, 

a is decreased by 1. If a<b, one line is line is skipped. 

With the help of lines 02 - 05 the calculator shows during the calculation 

"PI=?" in the display. The rest of the program can be with the diagrams and the remarks on the 

basis of the commented program printout. program printout. To save memory space during the 

calculation, the output program has been separated. First the last digit is rounded, with LBL 00 the 

output begins the output. A diagram is not given for this. 

With SIZE 248 the memory registers are reserved. The display format must be set to FIX 0. With 

XEQTPI the program is started. In the following 33 .4 hours the HP-41 calculates 800 decimals of 

pi. For this purpose, 580 subsequent elements an/D and 180 subsequent elements bn/D are 

calculated. The calculator switches on. 

The number Pi program is then switched off. After switching on, SIZE 087 is used to create memory 

space for the output program. After reading in it is started with XEQ “OUT”. When the printer is 

switched on, the following result is obtained: 
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Pi accurate to 800 decimals 

 

 

 

The Number e 

Let e(n) =  1/k!, with k=0 to n.   

Then | e-e(n) |< is valid with  = (n+2)/(n+1)/(n+1)! . For =10^(-3002) one obtains n = 1143. 

If one modifies the indicated procedure, one can achieve with the following algorithm that only the 

division subroutine and a register block are required.  

The register assignment was made as follows: R00 - R301 (R1) contain e. The index j is stored in M 

([), the divisor DR = n in N (\). R0 (J) takes up the remainder RE. The registers P (^) and a serve 

as temporary storage.  

After a SIZE 302 the program can be started with XEQ “ZAHLE”. After 6d 8h 24min the calculation 

is finished. The program OUT serves as output program. It can be loaded into the computer only 

after the program ZAHLE has been deleted. The addresses must be adapted to the register 

assignments. It results for e: = 2,718281828 . 
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Program listing. 

01*LBL "PIZHAL" 
 02 248 
 03 PSIZE 
 04 "PI=?" 
 05 RCL d 
 06 AVIEW 
 07 STO d 
 08 CLRG 
 09 SF 00 
 10  E 
 11 STO 03 
 12 8 E10 
 13 STO 86 
 14 1.081 
 15 STO 00 
 16*LBL 00 
 17 25 
 18 STO 04 
 19 XEQ 02 
 20 XEQ 03 
 21 25 
 22 STO 04 
 23 XEQ 02 
 24 XEQ A 
 25 RCL 00 
 26 85 
 27 + 
 28 RCL IND X 
 29 X#0? 
 30 GTO 00 
 31 ISG 00 
 32 GTO 00 
 33 CF 00 
 34  E 
 35 STO 03 
 36 9.56 E11 
 37 STO 86 
 38 1.081 
 39 STO 80 
 40*LBL 01 
 41 57121 
 42 STO 04 
 43 XEQ 02 
 44 XEQ A 
 45 57121 
 46 STO 04 

 47 XEQ 02 
 48 XEQ 03 
 49 RCL 00 
 50 85 
 51 + 
 52 RCL IND X 
 53 X#0? 
 54 GTO 01 
 55*LBL 02 
 56 SF 01 
 57 XEQ 06 
 58 CF 21 
 59 RCL 03 
 60 STO 04 
 61 XEQ 06 
 62 2 
 63 ST+ 03 
 64 RTN 
 65*LBL 03 
 66 CF 02 
 67 XEQ B 
 68*LBL 04 
 60 0 
 70 FS?C 02 
 71  E 
 72 ST+ IND 02 
 73 RCL IND 02 
 74 RCL IND 01 
 75 STO M 
 76 + 
 77 STO IND 01 
 78  E10 
 79 X>Y? 
 80 GTO 05 
 81 ST- IND 01 
 82 RCL IND 02 
 83  E1 
 84 / 
 85 FRC 
 86 RCL M 
 87  E1 
 88 / 
 89 FRC 
 90 + 
 91 FRC 
 92 ENTER^ 

 93 RND 
 94  E1 
 95 * 
 96 X<>Y 
97  E1 
98 * 
99  - 
100 ST- IND 01 
101 SF 02 
102*LBL 05 
103  E 
104 ST- 01 
105 0 
106 STO IND 02 
107 DSE 02 
108 GTO 04 
109 RTN 
110*LBL 06 
111 CLA 
112 166.166 
113 RCL 00 
114 FS? 01 
115 85.085 
116 + 
117 STO 01 
118*LBL 07 
119 RCL IND 01 
120 RCL 04 
121 / 
122 INT 
123 STO M 
124 RCL O 
125  E10 
126 * 
127 RCL 04 
128 / 
129 INT 
130 STO N 
131 + 
132 X<> IND 01 
133 RCL 04 
134 MOD 
135 STO Z 
136 RCL 04 
137 / 
138 RCL M 

139 + 
140 LASTX 
141 - 
142  E 
143 X=Y? 
144 ST- IND 01 
145 RCL T 
146 X<> O 
147  E10 
148 * 
149 RCL 04 
150 MOD 
151 ST+ O 
152 RCL 04 
153 / 
154 RCL N 
155 + 
156 LASTX 
157 - 
158  E 
159 X=Y? 
160 ST- IND 01 
161 RCL O 
162 RCL 04 
163 X>Y? 
164 GTO 08 
165 MOD 
166 STO O 
167  E 
168 ST+ IND 01 
160*LBL 08 
170 FC? 01 
171 GTO 10 
172 FC? 00 
173 GTO 09 
174 RCL IND 01 
175 X#0? 
176 GTO 09 
177 FS?C 02 
178 RTN 
179 SF 02 
180*LBL 09 
181 RCL 01 
182 81 
183 + 
184 RCL IND 01 
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185 STO IND Y 
186*LBL 10 
187 ISG 01 
188 GTO 07 
189 RTN 
190*LBL A 
191 CF 02 
192 XEQ B 
193*LBL 11 
194 RCL IND 01 
195 FC? 02 

196 0 
197 FS?C 02 
198  E 
199 - 
200 RCL IND 02 
201 - 
202 STO IND 01 
203 0 
204 X<=Y? 
205 GTO 12 
206  E10 

207 ST+ IND 01 
208 SF 02 
209*LBL 12 
210  E 
211 ST- 01 
212 0 
213 STO IND 02 
214 DSE 02 
215 GTO 11 
216 RTN 
217*LBL B 

218 RCL 00 
219 INT 
220  E3 
221 / 
222 85.003 
223 + 
224 STO 01 
225 162.162 
226 + 
227 STO 02 
228 END  

 

 01*LBL "EZHAL" 
 02 302 
 03 PSIZE 
 04 CLRG 
 05 1143 
 06 STO N 
 07  E 
 08 STO 00 
 09*LBL 00 
 10 .301 
 11 STO M 
 12 0 
 13 STO O 
 14*LBL 01 
 15 RCL IND M 
 16 RCL N 
 17 / 
 18 INT 
 19  E10 
 20 X<>Y 
 21 STO P 
 22 X<>Y 
 23 RCL M 
 24 * 
 25 RCL N 
 26 / 
 27 INT 
 28 STO a 
 29 + 
 30 X<> IND M 
 31 RCL N 

 32 MOD 
 33 STO Z 
 34 RCL N 
 35 / 
 36 RCL ^ 
 37 + 
 38 LASTX 
 39 - 
 40  E 
 41 X=Y? 
 42 ST- IND M 
 43 RCL T 
 44 X<> O 
 45  E10 
 46 * 
 47 RCL N 
 48 MOD 
 49 ST+ O 
 50 RCL N 
 51 / 
 52 RCL a 
 53 + 
 54 LASTX 
 55 - 
 56  E 
 57 X=Y? 
 58 ST- IND M 
 59 RCL O 
 60 RCL N 
 61 X>Y? 
 62 GTO 02 

 63 MOD 
 64 STO O 
 65  E 
 66 ST+ IND M 
 67*LBL 02 
 68 ISG [ 
 69 GTO 01 
 70  E 
 71 ST+ 00 
 72 ST- \ 
 73 RCL \ 
 74 X>0? 
 75 GTO 00 
 76 OFF 
 77 END  
 
 01*LBL "OUT" 
 02 RCL 85 
 03  E9 
 04 / 
 05 INT 
 06 4 
 07 X>Y? 
 08 GTO 00 
 09  E9 
 10 ST+ 84 
 11*LBL 00 
 12 CF 28 
 13 FIX 9 
 14 CLA 
 15 RCL 05 

 16  E9 
 17 / 
 18 ARCL X 
 19 AVIEW 
 20 FIX 0 
 21 CF 29 
 22 6.084 
 23 STO T 
 24*LBL 01 
 25 RCL T 
 26 STO T 
 27 CLA 
 28 "0000" 
 29 ARCL IND T 
 30 RCL M 
 31 0 
 32 STO M 
 33 "`^^^^" 
 34 STO O 
 35 "`^^^" 
 36 RCL O 
 37 CLA 
 38 STO M 
 39 "`^^^^^^^" 
 40 X<> Z 
 41 STO M 
 42 AVIEW 
 43 ISG T 
 44 GTO 01 
 45 CLST 
 46 END  
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Appendix. A few MCODE Listings. 

 

1. Liu Hui formula. 
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2. Ramanujan 10-digit formula. 

 

 
 

3. Viete’s Formula.  (next page) 
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4. From Pi to e. 
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5. Wallis Formula (next page)  
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5 . From e to pi 
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6. Erdós-Borwein constant. 

 

 
 

 


