PIE_ROM Manual

HP-41 Module

Introduction and Credits.

This HP-41 module provides a short collection of functions and routines dedicated to the two mostfamous irrational numbers in math: number pi and number e. With just a 10-digit mantissa capability the HP41 platform surely isn't the natural choice for ground-breaking, never-before covered methods and approaches to the calculation of these numbers - remember: our trusty Coconut "believes that π is a rational number equal to 104348/33215). Nevertheless, there's still room for interesting exercises and ingenious approaches to work-around such platform limitations.

Several MCODE functions and short FOCAL routines are provided mainly as programming exercises; that is application examples using general techniques like Continued Fractions or making use of other fields like integration, random numbers and nested radicals - always applied to the pi/e subject.

In the "-Pi DIGITS" section the module includes all relevant programs on this subject known to the author published in different magazines, books, and forums - in what should be a comprehensive archive of available material on this topic. In particular the MCODE function MDOP written by Peter Platzer, is a remarkable implementation even if it requires Q -RAM to hold the results, so dust off your HEPAX RAM for the task.

In terms of the sources used, the usual suspects are to blame: PPC Journals (see Ron Knapp's classic programs), application books and user forums. Very special thanks to Valentín Albillo for his seminal and always original contributions along the years, a real powerhouse on this and many other math subjects. Many thanks to Gerson W. Barbosa, Jean-Marc Baillard, Thomas Klemm, Benoit Maag and everybody contributing to the MoHP forum on this subject. As a wise man once said, "if something works as expected it's their credit, if it doesn't it's my fault".

Dependencies.
Lastly, note that some programs use functions from the SandMath - which in turn needs the Library\#4 as well. This dependency is more than justified to enable the venerable 41 platform to use RCL math functions (for direct compatibility with HP-42 code); and to apply off-the-beaten-path approaches using hyperbolic functions, CROOT solver, AGM and FLOOR, as well as to benefit from the remarkable Continued Fractions MCODE implementation written by Greg McClure, also available in that module.

General references:
https://en.wikipedia.org/wiki/Approximations_of_\�\�\#Gregory\�\�\�Leibniz_series https://mathworld.wolfram.com/PiApproximations.html

Without further ado, here is a list of the functions in the Main FAT table.

XROM\#	Function	Description	Author
09.00	-PI/E ROM	Section Header	n / a
09.01	" $\Sigma 3$ PI	Madhava Alternating Series	Thomas Klemm
09.02	"GBPI	Gerson's Pi formula	Barbosa-Martin
09.03	E2PI	From e to π	Á. Martin
09.04	LIUHUI	Liu Hui's Pi formula	Á. Martin
09.05	"LNPI	Ramanujan Ln-based π formula	Á. Martin
09.06	"MCE	Monte-Carlo method for e	Albillo-Martin
09.07	"MCPI	Monte-Carlo method for π	Albillo-Martin
09.08	"MYPI	10-digit π using an AGM closed-form	Á. Martin
09.09	"PICUBE	π from cubic equation root	Albillo-Martin
09.10	PI2E	From π to e	Á. Martin
09.11	"PIFL	π using a FLOOR loop	Valentín Albillo
09.12	PISIN	π using a SIN loop	Á. Martin
09.13	PPIE	Valentín's Product formula w/ correction	Á. Martin
09.14	RAMA10	Ramanujan formula (10-digit accuracy)	Á. Martin
09.15	"SBPI	Salamin-Brent Algorithm - based on AGM	Á. Martin
09.16	"VAPI	π using a corrected Leibnitz series	Valentín Albillo
09.17	VIETA	Viete's formula	Á. Martin
09.18	WALLIS	Wallis formula (n in X)	Á. Martin
09.19	"WPI	Wallis formula - V2	JM Baillard
09.20	"WPIH	Wallis formula w/ hyperbolics	Werner
09.21	"WWPI	Wallis-Wasicki Formula	Gerson W. Barbosa
09.22	-PIE DIGITS	Section header	n / a
09.23	EB	Erdós-Borwein constant	Á. Martin
09.24	IROUND	Integer Round	Á. Martin
09.25	MDOP _ _ _"	Many Digits of π - Spigot algorithm	Peter Platzer
09.26	"PI1K	π to 1,000 digits	Ron Knapp
09.27	$\begin{aligned} & \text { "E2900 } \\ & \text { "R } \end{aligned}$	E to 2,900 digits Result output	Ron Knapp
09.28			Ron Knapp
09.29	"PIDIG	π up to 1,590 digits	Jean-Marc Baillard
09.30	"EZHAL	E to 1,143 digits	Eckard Gehrke
09.31	"PIZHAL "OUT	π to 800 digits - Machin's method Output results	Eckard Gehrke
09.32			Eckard Gehrke
09.33	" $\Sigma 2 \mathrm{PI}$	π digits	Benoit Maag
09.34	-CONT FRAC	Section header	n / a
09.35	$\begin{aligned} & \text { "CFE } \\ & \text { "*E } \end{aligned}$	Continued Fractions for e Auxiliary for "CFE	Martin-McClure
09.36			Á. Martin
09.37	$\begin{aligned} & \text { "CFPI } \\ & \text { "PO } \end{aligned}$	Continued Fractions for π Auxiliary for "CFPI	Martin-McClure
09.38			Á. Martin
09.39	$\begin{aligned} & \text { "CFP1 } \\ & \text { "P1 } \end{aligned}$	Continued Fractions for π - version 1 Auxiliary for "CFP1	Martin-McClure
09.40			Á. Martin
09.41	$\begin{aligned} & \text { "CWPI } \\ & \text { "*WP } \end{aligned}$	Wallis-adjusted CF for π Auxiliary for "CWPI	Martin-McClure
09.42			Á. Martin
09.43	$\begin{array}{\|l\|} \hline \text { "PITG } \\ \text { "*I } \end{array}$	π by simple integration Integrand function	Á. Martin
09.44			Á. Martin

Pi Approximations

The module includes a few short functions based on well-known pi approximations. There are literally hundreds of them (see for instance Pi Approximations -- from Wolfram MathWorld) but I've chosen those meaningful to the HP-41 platform in terms of decimal digits and somewhat the available function set and CPU speed.

Function	Description	Input	Output
LIUHUI	Liu Hui's formula	none	3,141590529
RAMA10	Ramanujan formula (10-digit)	none	3,141592654
E2PI	From e to π	none	3,141592653
PI2E	From π to e	none	2,718281828
PISIN	SIN-based iterations	none	3.141592654
VIETA	Viete's formula	none	3,141592654
"PICUBE	π as root of cubic equation	none	3.141592654
"PIFL	FLOOR-based iterations	n in X	Function of n
"PITG	INTEG-based calculation	FIX-9	3.141592654
" $\mathbf{\Sigma 3 P I}$	Madhava Series	none	3.141592654
" GBPI	Gerson's formula (e-based)	none	3.141592654

They're described below.

- RAMA10 uses one of the many Ramanujan's approximations of pi, correct to 10 decimal digits. It requires no input. The result is placed in X and the stack is lifted (unless CPU F11 is clear)

$$
\pi \approx \approx \frac{355}{113}\left(1-\frac{0.0003}{3533}\right)
$$

$$
\text { XEQ "RAMA10" => } 3,14459554 \quad \text { (in FIX 9) }
$$

- LIUHUI uses Liu Hui's formula to calculate an approximation of pi, correct to 5 decimal digits. It requires no input. The result is placed in X, the stack is lifted (unless CPU F11 is clear)
$\pi \approx 768 \sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+1}}}}}}}}}$
$\approx 3.141590463236763$.

$$
\text { XEQ " LIUHUI" }=>\quad 3,1415905 c 9 \quad \text { (in FIX 9) }
$$

- VIETA uses Viete's formula for the calculation, a more accurate one in that is returns a correct value to the $11^{\text {th }}$. decimal digit (although this is not taken advantage of on the HP41 or course).

$$
\frac{2}{\pi}=\frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \cdots
$$

The FOCAL program listed below would be equivalent to the MCODE implementations of VIETA and LIUHUI. No data registers are used but ALPHA registers M,N are needed. Refer to the appendix section of the manual for the details on the MCODE implementation.

1	LBL "VIETA"		1	LBL "LIUHUI"	
2	E		2	8	\# ot iters
3	STO M	initial term	3	ENTER ${ }^{\wedge}$	
4	STO N	initial result	4	E	initial value
5	LBL 00		5	LBL $00<$	
6	RCL M		6	2	
7	0	loop result	7	+	
8	LBL $01 \leftarrow$		8	SQRT	
9	2		9	DSE Y	
10	$+$	add to previous	10	GTO 00	
11	SQRT	square root	11	CHS	final term
12	DSE Y	repeat loop term	12	2	is negative
13	GTO 01	until all done	13	+	
14	2	divide by 2	14	SQRT	
15	/		15	768	
16	RCL N	partial product	16	-	
17	-	updated	17	END	
18	FS? 10				
19	VIEW X	show if F10 set			
20	$\mathrm{X}<>\mathrm{N}$				
21	RCL N				
22	-	delta			
23	$\mathrm{X}=0$?	delta=zero?			
24	GTO 02	yes, exit			
25	ISG M	do next term			
26	NOP				
27	GTO 00				
28	LBL 02 ¢				
29	RCL N				
30	1/X				
31	ST+ X				
32	CLD				
33	END				

The next three functions are taken from one of Valentín Albillo's famous challenges (see: "HP Challenge VA511-2020-03-14 - SRC 006 Pi Day 2020 Special'),

The Function PISIN uses a SIN-based iterative method to estimate p . The method is a very simple one, and it's also highly efficient: starting with the value 3, only three iterations already achieve a 10-digit accuracy in the result.

See on the right the short \& sweet user code routine (who said FOCAL wasn't efficient?), which is equivalent to the MCODE code implemented in the module, also shown below for your reference.

1	LBL "PISIN"	
2	RAD	
3	3	initial value
4	ENTERA $^{\text {A }}$	also \# of iters
5	LBL 00	
6	SIN	
7	LASTX	
8	+	$x+\sin (x)$
9	DSE Y	
10	GTO 00	do next
11	RTN	done.

- The routine PIFL is based on a FLOOR algorithm. Although it shares with the previous one to be short in code length, its efficiency is drastically worse: it takes quite a large number of iterations to achieve a decent accuracy, as the table below shows. For obvious reasons a TURBO-50 CL or better yet, V41 in turbo mode are recommended.

\# of terms	Result
10	
100	
1,000	3. 199807509
10,000	3.4413989
100,000	

- On the other hand, PICUBE uses a "tuned" cubic equation as the basis for the calculation. It is quite fast as no iterations are needed and because it uses the SandMath's CROOT (in MCODE) to obtain the real root of the equation.

Let xo be the real root of:
$x^{\wedge} 3-6 x^{\wedge} 2+4 x-2=0$
then:

$$
\pi=24 . \operatorname{Ln}(\mathrm{x} 0) / \operatorname{sqrt}(163)
$$

XEQ "PICUBE" $=>\quad 3.141592554$

1	LBL "PIFL"	
2	STO 00	n
3	E	
4	-	n-1
5	$2 \mathrm{E}-3$	2.003
6	+	$(\mathrm{n}+1) .003$
7	RCL 00	n
8	LBL $01 \leftarrow$	
9	RCL Y	k,003
10	INT	k
11	CHS	-k
12	/	$-n / k$
13	LASTX	-k
14	X<>Y	
15	FLOOR	floor($-\mathrm{n} / \mathrm{k}$)
16	-	- ${ }^{*}$ floor($-n / k$)
17	DSE Y	$n=n-1$
18	GTO 01	
19	1/X	1/result
20	RCL 00	n
21	$\mathrm{X}^{\wedge} 2$	$n^{\wedge} 2$
22	\bullet	$n^{\wedge} 2$ / Result
23	END	done.

1	LBL "PICUBE"	
2	E	enter the three
3	ENTER^ $^{\wedge}$	coefficientes
4	-6	
5	ENTER^ $^{\wedge}$	
6	4	
7	ENTER^ $^{\wedge}$	
8	-2	
9	CROOT	
10	RDN	discard the twol
11	RDN	non-real roots
12	LN	
13	24	do the math
14	-	to end.
15	163	
16	SQRT	
17	$/$	
18	END	

Pi using Madhava Alternating Series

E3PI

See https://www.hpmuseum.org/forum/thread-18129.htm/
The series expression is as follows:

$$
\frac{\pi}{6}=\frac{1}{\sqrt{3}}\left(1-\frac{1}{3^{1} \cdot 3}+\frac{1}{3^{2} \cdot 5}-\frac{1}{3^{3} \cdot 7}+\cdots\right)
$$

An interesting expression by itself that proves to be elusive in its implementation due to its alternating character - one of the known weak points of this computing platform.

Fortunately, Thomas Klemm provided a capable HP-42 version that has been added to the ROM. I've preset the number of terms to 43 , as per his findings in the thread referenced above.

```
01 - LBL "\Sigma3PI"
0243 10 X<>Y
03 - LBL 00
04 1/X
0 5 ~ L A S T X ~
06 X<> ST Z
07 3
08\div
09 -
X<>Y
12 -
13 X>0?
14 GTO 00
15 R\downarrow
16 END
```

XEQ " $\Sigma 3 P I$ " => 3. 4459255

Another Ramanujan formula to end this section:
$\underline{\ln \left\{[2 \times 5!+(8-1)!]^{\sqrt{9}}+4!+(3!)!\right\}}$

$\sqrt{67}$

A undeniably beautiful approximation of pi, easily programmed as follows:

$\mathbf{0 1}$ LDL "LNPI"	12 FACT
$\mathbf{0 2} 7$	$13+$
03 FACT	143
045	15 FACT
05 FACT	16 FACT
06 ST +X	$17+$
$07+$	18 LN
089	1967
09 SORT	20 SORT
10 Y^X	$21 /$
114	22 END

Merry－go－Round：From pi to e and back again．

The pair of functions below make use of the expressions linking e and pi to obtain one when the other is known－albeit in a not－so－trivial way；which BTW would be the Euler＂identity＂（to loosely use the term）relating pi, e ，and i in the famous equation＂ $\mathrm{e}^{\wedge}(\mathrm{i} \pi)-1=0$＂
isolating $\pi->\pi=\operatorname{Ln}(-1) / i$ ，and isolating e $->e=(-1)^{\wedge}(1 / i \pi)$ ；
which on the $41 Z$ is a trivial，easy as a pie，two mini－programs（5－and 7－steps respectively）：
\｛ LBL＂ZPIE＂，－1，ZREAL＾，ZLN，Z／I，ZAVIEW，END \}
\｛ LBL＂ZEPI＂，－1，ZREAL＾，PI，ZIMAG＾，ZINV，W＾Z，ZAVIEW，END \}

```
XEQ "ZPIE" => 3, 44 55 2554+|0
```


But we＇re digressing，let＇s bring the conversation back to the PIE＿ROM，shall we？

From pi to e：

Simply making use of the series definition of the exponential function，calculated for $x=\pi$ ：

；thus：
$\pi=\operatorname{Ln}\left(1+\pi^{\wedge} 2 / 2+\pi^{\wedge} 3 / 6+\pi^{\wedge} 4 / 24+\pi^{\wedge} 5 / 120+\ldots\right)$
Which converges moderately fast，so with about 22 terms we reach the 10－digit accuracy sought for．

Using PI2E does not require any input，and as expected will place the result in X after lifting the stack：

$$
\text { PI2E } \quad=>\quad \text { こ, } 7 \text { 1日2日 1日こ日 }
$$

Conversely，from e to pi：

Here we＇re using the formula below：

$$
\pi=4\left(\arctan \mathrm{e}-\arctan \frac{\mathrm{e}-1}{\mathrm{e}+1}\right)
$$

Using E2PI does not require any input，and as expected will place the result in X after lifting the stack：

$$
\text { E2PI } \quad=>\quad 3,41592653
$$

A FOCAL program listing equivalent to the MCODE functions included in the module is given next - .

1	LBL "E->PI"		23	LBL "PI->E"
2	LBLA		24	LBL B
3	RAD		25	E
4	E		26	ENTER^
5	E^X		27	LBL 00
6	ENTER^		28	PI
7	ATAN		29	RCL Z
8	X $<>$ Y		30	$\mathrm{Y}^{\wedge} \mathrm{X}$
9	ENTER^		31	LASTX
10	ENTER^		32	FACT
11	E		33	/
12	-		34	RND
13	$X<Y$		35	$\mathrm{X}=0$?
14	E		36	GTO 02
15	+		37	+
16	/		38	ISG Y
17	ATAN		39	NOP
18	-		40	GTO 00
19	4		41	LBL 02
20	-		42	X $<\gg$
21	RTN		43	PI
22	GTO A		44	1/X
			45	$\mathrm{Y}^{\wedge} \mathrm{X}$
			46	RTN
			47	GTO B
			48	END

Gerson Barbosa has contributed another way to calculate π from e, using his own formula shown below, that has been programmed in the straightforward GBPI routine as follows:

```
01 LBL "GBPI"
02 E
03 E^X
04 -12
0 5 ~ Y \wedge X
06 5.6789
XEQ"GBPI" => 3. 14 4592554
07 +
0 8 1 2 ~ N o t ~ s u r e ~ w h e r e ~ t h i s ~ f o r m u l a ~ c a m e ~ f r o m ~ b u t ~ s u r e ~ e n o u g h ~ i t ~
09 1/X
    does the job with flying colors, thanks Gerson!
10 Y^X
1 1 ~ E
12 E^X
13 *
14 END
```


Pi in the Sky - The flying squad.

And completing this section we have yet another very recent, Valentín's 2022 Pi Day contribution -https://www.hpmuseum.org/forum/thread-18110.htm/

In it Valentín introduces an original expression also linking the values of pi and e, and furthermore, he provides up to four correction factors to improve on the results from the product formula, stating that:

$$
\begin{aligned}
& \pi=e^{3 / 2} \prod_{n=2}^{\infty} e\left(1-\frac{1}{n^{2}}\right)^{n^{2}} \quad \pi \sim \operatorname{PI}(N) /\left(1+1 /(2 * \mathbf{N})-1 /\left(8 * \mathbf{N}^{\wedge} 2\right)\right), \text { and } \\
& \pi \sim \operatorname{PN}(\mathbf{N}) /\left(1+1 /(2 * \boldsymbol{N})-1 /\left(8 * \mathbf{N}_{2}\right)+13 /\left(144 * N_{3}\right)-77 /\left(1152 * N_{4}\right)\right)
\end{aligned}
$$

The challenge for the implementation here lies in the limited data format used by the HP-41. With just a 10-digit mantissa capability the iterative routines are likely to fail due to cumulative errors, thus we can forget about using FOCAL routines - at least not straightforward ones, anyway.

I decided to give MCODE a chance, to see if three more digits would make a difference - not expecting it to work but lo and behold it actually does a little good - albeit it can't cross the accuracy barrier we're up against, of course.

The function PPIE expects the number of terms to calculate in X, and returns the pi approximation already adjusted with the four corrections mentioned above. With the stated limitations it appears that the sweet spot appears for $n=35$ terms, giving a result with an absolute percent error of exactly zero compared to the native 10 -digit value in the calculator.

The table below shows the logged details of the tests performed. Notice how things go south once the sweet spot is passed - due to the platform limitations. I have also included the execution time (on V41 with default settings, definitely not in TURBO mode)

n	result	\mid Delta\% \mid	Time H:MMSS
5	3.141630979	$1.2199 \mathrm{E}-05$	0.000174
10	3.141593984	$4.2335 \mathrm{E}-07$	0.000297
15	3.141592834	$5.7296 \mathrm{E}-08$	0.000438
20	3.141592696	$1.3369 \mathrm{E}-08$	0.000568
25	3.141592666	$3.8197 \mathrm{E}-09$	0.000698
30	3.141592658	$1.2732 \mathrm{E}-09$	0.000829
35	3.141592654	0	0.00096
40	3.141592652	$6.3662 \mathrm{E}-10$	0.001088
45	3.141592651	$9.5493 \mathrm{E}-10$	0.001219
50	3.14159265	$1.2732 \mathrm{E}-09$	0.001337
55	3.141592648	$1.9099 \mathrm{E}-09$	0.001468
60	3.141592644	$3.1831 \mathrm{E}-09$	0.001606

And here's the MCODE listing with all the details of the implementation:

Header Header Header Header	AD5A AD5B AD5C AD5D	$\begin{aligned} & 085 \\ & 009 \\ & 010 \\ & 010 \end{aligned}$	$\begin{aligned} & \text { "E" } \\ & \text { "I" } \\ & \text { "P" } \\ & \text { "P" } \end{aligned}$	Ángel Martin
PPIE	AD5E	$\begin{aligned} & 2 A 9 \\ & 13 C \end{aligned}$	$\begin{aligned} & \text { ?NC XQ } \\ & ->4 F A A \end{aligned}$	Show "RUNNING" - leaves F8 as-is [RUNMSG]
	AD5F			
	AD60	2A0	SETDEC	
	AD61	135	?NCXQ	
	AD62	134	\rightarrow 4D4D	[NATX4]
	AD63	04E	$\mathrm{C}=0 \mathrm{ALL}$	
	AD64	35C	$\mathrm{PT}=12$	$C=1$
	AD65	222	$\mathrm{C}=\mathrm{C}+1$ @ PT	
	AD66	070	$\mathrm{N}=\mathrm{C}$ ALL	initial $\mathrm{N}=1$
	AD67	1A0	$\mathrm{A}=\mathrm{B}=\mathrm{C}=0$	zero trinity
	AD68	089	? NC XQ	current sum
	AD69	064	->1922	[STSCR]
LOOPN	AD6A	3CC	?KEY	
	AD6B	360	?C RTN	
	AD6C	OBO	$\mathrm{C}=\mathrm{N}$ ALL	k-1
	AD6D	1 12	?NC XQ	$\{A, B\}=C+1$
	AD6E	100	->4078	[INCC10]
	AD6F	070	$\mathrm{N}=\mathrm{CALL}$	k
	AD70	22 D	? NC XQ	1/k
	AD71	060	->188B	$\left[1 / X _10\right]$
	AD72	13D	? ${ }^{\text {PC XQ }}$	$1 / k^{\wedge} 2$
	AD73	060	->184F	[MP1_10]
	AD74	2BE	$\mathrm{C}=-\mathrm{C}-1 \mathrm{MS}$	sign change
	AD75	11E	$\mathrm{A}=\mathrm{CMS}$	same in 13-digit form
	AD76	001	? NC XQ	1-1/k^2
	AD77	060	->1800	[ADDONE]
	AD78	3 C 4	$\mathrm{ST}=0$	
	AD79	121	? NC XQ	$\operatorname{Ln}\left(1-1 / k^{\wedge} 2\right)$
	AD7A	06 C	->1B48	[LN13]
	AD7B	OBO	$\mathrm{C}=\mathrm{N} \mathrm{ALL}$	k
	AD7C	13D	? NC XQ	k. $\operatorname{Ln}\left(1-1 / k^{\wedge} 2\right)$
	AD7D	060	->184F	[MP1_10]
	AD7E	OBO	$\mathrm{C}=\mathrm{NALL}$	k
	AD7F	13D	? NC XQ	$k^{\wedge} 2 . \operatorname{Ln}\left(1-1 / k^{\wedge} 2\right)$
	AD80	060	->184F	[MP1_10]
	AD81	001	? NC XQ	$1+k^{\wedge} 2 . \operatorname{Ln}\left(1-1 . k^{\wedge} 2\right)$
	AD82	060	$\rightarrow 1800$	[ADDONE]
	AD83	OD1	? NC XQ	current sum
	AD84	064	->1934	[RCSCR]
	AD85	031	? N C XQ	updated sum
	AD86	060	->180C	[AD2-13]
	AD87	089	? NC XQ	current sum
	AD88	064	->1922	[STSCR]
	AD89	OBO	$\mathrm{C}=\mathrm{N}$ ALL	current term
	AD8A	10E	A=C ALL	put k in A for compares
	AD8B	OF8	READ 3(X)	number of terms
	AD8C	36E	?A\#C ALL	all done?
	AD8D	2EF	JC -35d	do next

HP- PIE MODULE QRG

ADJUST	AD8E AD8F	$\begin{aligned} & 0 A 9 \\ & 064 \end{aligned}$	$\begin{aligned} & ? N C X Q \\ & ->192 A \end{aligned}$	final product $[E X S C R]-\{A, B\}<->\{Q,+\}$
	AD90	04E	$\mathrm{C}=0 \mathrm{ALL}$	
	AD91	35 C	$\mathrm{PT}=12$	$C=1.5$
	AD92	050	LD@PT-1	
	AD93	150	LD@PT-5	
	AD94	025	? NC XQ	
	AD95	060	->1809	[AD1_10]
	AD96	OAE	A <>C ALL	save product result:
CT4	AD97	070	$\mathrm{N}=\mathrm{C} A L L$	13-digit sign \& exp
	AD98	OCE	$\mathrm{C}=\mathrm{BALL}$	
	AD99	128	WRIT 4(L)	13-digit mantissa
	AD9A	OF8	READ 3(X)	n
	AD9B	10 E	$A=C A L L$	
	AD9C	135	?NC XQ	$n^{\wedge} 2$
	AD9D	060	$\rightarrow 184 \mathrm{D}$	[MP2_10]
	AD9E	13D	? NC XQ	$n^{\wedge} 4$
	AD9F	060	->184F	[MP1_10]
	ADAO	04E	C=0 ALL	
	ADA1	35 C	$\mathrm{PT}=12$	
	ADA2	050	LD@PT-1	
	ADA3	050	LD@PT-1	$c=1152$
	ADA4	150	LD@PT- 5	
	ADA5	090	LD@PT- 2	
	ADA6	130	LDI S\&X	
	ADA7	003	CON:	
	ADA8	13D	? NC XQ	$1152 . n^{\wedge} 4$
	ADA9	060	->184F	[MP1_10]
	ADAA	239	? ${ }^{\text {NC XQ }}$	1/1152.n^4
	ADAB	060	->188E	[ON/X13
	ADAC	04E	C=0 ALL	
	ADAD	2DC	$\mathrm{PT}=13$	
	ADAE	250	LD@PT-9	
	ADAF	1D0	LD@PT- 7	$C=-77$
	ADBO	1D0	LD@PT- 7	
	ADB1	130	LDI S\&X	
	ADB2	001	CON:	
	ADB3	13D	? \times C XQ	-77/1152.n^4
	ADB4	060	->184F	[MP1_10]
	ADB5	089	? NC XQ	-77/1152.n^4
	ADB6	064	->1922	[STSCR]
CT3	ADB7	OF8	READ 3(X)	n
	ADB8	10E	$A=C A L L$	
	ADB9	135	? NC XQ	$n^{\wedge} 2$
	ADBA	060	->184D	[MP2_10]
	ADBB	OF8	READ 3(X)	n
	ADBC	13D	? ${ }^{\text {PC X X }}$	
	ADBD	060	->184F	[MP1_10]
	ADBE	04E	C=0 ALL	
	ADBF	130	LDI S\&X	
	ADCO	144	CON:	$C=144$
	ADC1	07C	RCR 4	
	ADC2	130	LDI S\&X	

HP- PIE MODULE QRG

	ADC3	002	CON:	
	ADC4	$\begin{aligned} & 13 D \\ & 060 \end{aligned}$	$\begin{aligned} & \text { ?NC XQ } \\ & ->184 F \end{aligned}$	$\begin{aligned} & 144 . n^{\wedge 3} \\ & {\left[M P 1 _10\right]} \end{aligned}$
	ADC6	$\begin{aligned} & 239 \\ & 060 \end{aligned}$	$\begin{aligned} & \text { ?NC XQ } \\ & ->188 E \end{aligned}$	$\begin{aligned} & \text { 1/144. }{ }^{\wedge 3} \\ & \text { [ON/X13 } \\ & \hline \end{aligned}$
	ADC8 ADC9 ADCA ADCB ADCC ADCD	$\begin{array}{\|l\|} \hline 04 \mathrm{E} \\ 35 \mathrm{C} \\ 050 \\ 0 \mathrm{DO} \\ 130 \\ 001 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{C}=0 \mathrm{ALL} \\ & \mathrm{PT}=12 \end{aligned}$ LD@PT- 1 LD@PT- 3 LDI S\&X CON:	$C=13$
	ADCE ADCF	$\begin{aligned} & 13 D \\ & 060 \end{aligned}$	$\begin{aligned} & \text { ?NC XQ } \\ & ->184 F \end{aligned}$	$\begin{aligned} & \text { 13/144.n^3 } \\ & \text { [MP1_10] } \end{aligned}$
	$\begin{aligned} & \text { ADDO } \\ & \text { ADD1 } \end{aligned}$	$\begin{aligned} & 0 D 1 \\ & \hline 064 \\ & \hline \end{aligned}$	$\begin{aligned} & ? N C \times Q \\ & \rightarrow 1934 \end{aligned}$	$\begin{aligned} & -77 / 1152 . n^{\wedge 4} \\ & \text { [RCSCR] } \end{aligned}$
	$\begin{aligned} & \text { ADD2 } \\ & \text { ADD3 } \end{aligned}$	$\begin{aligned} & 031 \\ & 060 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PNC XQ } \\ & ->180 C \end{aligned}$	$\begin{aligned} & 13 / 144 . n^{\wedge} 3-77 / 1152 . n^{\wedge} 4 \\ & {[A D 2-13]} \end{aligned}$
	$\begin{aligned} & \text { ADD4 } \\ & \text { ADD5 } \end{aligned}$	$\begin{aligned} & 089 \\ & 064 \\ & \hline \end{aligned}$	$\begin{aligned} & ? N C X Q \\ & ->1922 \end{aligned}$	$\begin{aligned} & 13 / 144 . n^{\wedge 3}-77 / 1152 . n^{\wedge} 4 \\ & \text { [STSCR] } \end{aligned}$
CT2	ADD6	0F8	READ 3(X)	$\pi \sim P N(N) /\left(1+1 /\left(2^{*} M\right)-1 /\left(8^{*} N^{2}\right)\right)$
	ADD7	10 E	$A=C$ ALL	
	$\begin{aligned} & \text { ADD8 } \\ & \text { ADD9 } \end{aligned}$	$\begin{aligned} & 135 \\ & 060 \end{aligned}$	$\begin{aligned} & ? N C X Q \\ & ->184 D \end{aligned}$	$\begin{aligned} & n^{\wedge} \\ & {\left[M P 2 _10\right]} \end{aligned}$
	ADDA ADDB ADDC ADDD	$\begin{array}{\|l\|} \hline 04 \mathrm{E} \\ 130 \\ 098 \\ 23 \mathrm{C} \\ \hline \end{array}$	C=0 ALL LDI S\&X CON: RCR 2	$c=-8$
	ADDE ADDF	$\begin{aligned} & 13 D \\ & 060 \end{aligned}$	$\begin{aligned} & \text { ?NC XQ } \\ & \text {->184F } \end{aligned}$	$\begin{aligned} & -8 . n^{\wedge} 2 \\ & {[M P 1-10]} \end{aligned}$
	$\begin{aligned} & \text { ADEO } \\ & \text { ADE1 } \end{aligned}$	$\begin{aligned} & 239 \\ & 060 \end{aligned}$	$\begin{aligned} & ? N C X Q \\ & \rightarrow 188 E \end{aligned}$	$-1 / 8 \cdot n^{\wedge} 2$ [ON/X13
	$\begin{aligned} & \text { ADE2 } \\ & \text { ADE3 } \end{aligned}$	$\begin{aligned} & 0 D 1 \\ & 064 \end{aligned}$	$\begin{aligned} & \text { ?NC XQ } \\ & ->1934 \end{aligned}$	$\begin{aligned} & 13 / 144 . n^{\wedge}-77 / 1152 . n^{\wedge 4} \\ & \text { [RCSCR] } \end{aligned}$
	ADE4 ADE5	$\begin{aligned} & 031 \\ & 060 \end{aligned}$	$\begin{aligned} & \text { ?NC XQ } \\ & ->180 C \end{aligned}$	$\begin{aligned} & -1 / 8 \cdot n^{\wedge} 2+13 / 144 . n^{\wedge} 3-77 / 1152 \cdot n^{\wedge} 4 \\ & {[A D 2-13]} \end{aligned}$
	$\begin{aligned} & \text { ADE6 } \\ & \text { ADE7 } \end{aligned}$	$\begin{aligned} & 089 \\ & 064 \end{aligned}$	$\begin{aligned} & \text { ?NC XQ } \\ & ->1922 \end{aligned}$	$-1 / 8 . n^{\wedge} 2+13 / 144 . n^{\wedge} 3-77 / 1152 . n^{\wedge} 4$ [STSCR]
CT1	ADE8	OF8	READ 3(X)	n
	ADE9	10 E	$A=C A L L$	
	ADEA ADEB	$\begin{aligned} & 010 \\ & 060 \\ & \hline \end{aligned}$	$\begin{aligned} & ? N C X Q \\ & \rightarrow 1807 \end{aligned}$	$\begin{aligned} & 2 n \\ & {\left[A D 2 _10\right]} \end{aligned}$
	ADEC ADED	$\begin{aligned} & 239 \\ & 060 \end{aligned}$	$\begin{aligned} & ? N C \times Q \\ & \rightarrow 188 E \end{aligned}$	$\begin{aligned} & 1 / 2 n \\ & \text { [ON/X13 } \end{aligned}$
	ADEE ADEF	$\begin{array}{\|l\|} \hline 001 \\ \hline \end{array}$	$\begin{aligned} & ? N C \times Q \\ & ->1934 \end{aligned}$	$\begin{aligned} & -1 / 8 . n^{\wedge} 2+13 / 144 . n^{\wedge} 3-77 / 1152 . n^{\wedge} 4 \\ & \text { [RCSCR] } \end{aligned}$
	$\begin{aligned} & \text { ADFO } \\ & \text { ADF1 } \end{aligned}$	$\begin{aligned} & 031 \\ & 060 \end{aligned}$	$\begin{aligned} & \text { ?NC XQ } \\ & ->180 C \end{aligned}$	$\begin{aligned} & 1 / 2 n-1 / 8 \cdot n^{\wedge} 2+13 / 144 . n^{\wedge} 3- \\ & 77 / 1152 . n^{\wedge} 4 \\ & \text { [AD2-13] } \end{aligned}$
	$\begin{aligned} & \text { ADF2 } \\ & \text { ADF3 } \end{aligned}$	$\begin{array}{\|r\|} \hline 001 \\ 060 \\ \hline \end{array}$	$\begin{array}{r} \text { ?NC XQ } \\ ->1800 \\ \hline-1 \end{array}$	$\begin{aligned} & 1+1 / 2 n-1 / 8 \cdot n^{\wedge} 2+13 / 144 . n^{\wedge}- \\ & 77 / 1152 . n^{\wedge} 4 \\ & \text { [ADDONE] } \end{aligned}$
	ADF4 ADF5	$\begin{aligned} & 121 \\ & 06 C \end{aligned}$	$\begin{aligned} & ? N C X Q \\ & \rightarrow 1 B 48 \end{aligned}$	[LN13]
	ADF6	2BE	$\mathrm{C}=-\mathrm{C}-1 \mathrm{MS}$	sign change

HP- PIE MODULE QRG

ADF7	11E	$A=C M S$	ditto for 13-digit form
ADF8	OBO	$\mathrm{C}=\mathrm{N}$ ALL	recover product result:
ADF9	158	$\mathrm{M}=\mathrm{C}$ ALL	13-digit sign \& exp
ADFA	138	READ 4(L)	13-digit mantissa
ADFB	031	? NC XQ	$\operatorname{Ln}(P N(N))$
ADFC	060	->180C	[AD2-13]
ADFD	035	? $N C$ XQ	PN(N)
ADFE	068	$->1 A O D$	[EXP13]
ADFF	331	?NC GO	Overflow, DropST, FillXL \& Exit
AE00	002	->OOCC	[NFRX]

So here you have it, quite a long code but conceptually not a complicated one - such is the nature of the MCODE game sometimes.

PS.- Jean-François Garnier has provided the following FOCAL routine that cleverly overcomes the 10-digit accuracy issue to effectively reach good results with about 45 terms (that is 10 more than the MCODE version, using the first two correction factors instead of four - not bad at all!)

01	LBL "PN2"		21	+	
02	"RUNNING"		22	DSE 01	
03	AVIEW		23	GTO 00	; sum endloop --^
04	STO 00	; N	24	1.5	
05	E		25	+	
06	-		26	RCL 00	
07	STO 01	; control loop 1..N-1	27	2	
08	0		28	*	
09	LBL 00	; sum loop <---	29	1/X	
10	RCL 01		30	RCL 00	
11	E		31	$\mathrm{X}^{\wedge} 2$	
12	+	; $n=2 . . N$	32	8	
13	$\mathrm{X}^{\wedge} 2$		33	*	
14	ENTER^		34	1/X	
15	1/X		35	-	
16	CHS		36*	LN1+X	; correction factor
17	LN1+X		37	-	
18	*		38	$\mathrm{E}^{\wedge} \mathrm{X}$	
19	E		39	CLD	
20	+		40	END	

Appendix.- Integral Pie

And what about using an integral form, you may ask? Well, mixed results here to report. The good news is that using a simple simple expression like the one below works like a charm with a quick call to FROOT:

$$
\pi=\int_{-1}^{1} \frac{d x}{\sqrt{1-x^{2}}}
$$

Setting FIX 9:

$$
\text { XEQ "PITG" => 3. } 44592554
$$

References: See https://functions.wolfram.com/Constants/Pi/07/

1	LBL "PITG"
2	"•I"
3	0
4	ENTER^ $^{\wedge}$
5	1
6	FINTG
7	4
8	\bullet
9	RTN
10	LBL "*।
11	CHS
12	E
13	-
14	SQRT
15	END

So far so good, however I've not succeeded with other more complex derivations included in other "Short \& Sweet Challenge" threads, such as those shown below:

$$
\int_{0}^{x}\left(\frac{\sin t}{t} \mathrm{e}^{t / \tan t}\right)^{x} d t-\frac{x^{x}}{\Gamma x}=0
$$

Which doesn't converge no matter how I try it, and:

$$
\pi=\frac{1}{W_{0}(1)} \int_{0}^{\pi} \log \left(1+\frac{\sin t}{t} e^{t \cot t}\right) \mathrm{d} t .
$$

Which includes pi in the definition of pi, if you see my circular point...
See the original thread for more details:
HP Challenge VA515-2021-03-14 - SRC 009 Pi Day 2021 Special.pdf

Salimin-Brent Algorithm.

In 1976 Eugene Salamin and Richard Brent independently discovered a new algorithm for pi, which is based on the arithmetic-geometric mean and some ideas originally due to Gauss in the 1800s (although for some reason Gauss never saw the connection to computing pi). This algorithm produces approximations that converge to pi much more rapidly than any classical formula. It may be stated as follows:

$$
\begin{aligned}
& \text { Set } \begin{aligned}
a_{0}=1, b_{0}=1 / \sqrt{2} \text { and } s_{0}=1 / 2 . \text { For } k=1,2,3, \cdots \text { compute } \\
\begin{aligned}
a_{k} & =\frac{a_{k-1}+b_{k-1}}{2} \\
b_{k} & =\sqrt{a_{k-1} b_{k-1}} \\
c_{k} & =a_{k}^{2}-b_{k}^{2} \\
s_{k} & =s_{k-1}-2^{k} c_{k} \\
p_{k} & =\frac{2 a_{k}^{2}}{s_{k}}
\end{aligned} \quad \pi \approx \frac{4 a_{N}^{2}}{1-\sum_{k=1}^{N} 2^{k+1}\left(a_{k}^{2}-g_{k}^{2}\right)}
\end{aligned}
\end{aligned}
$$

Then pk converges quadratically to pi. This means that each iteration of the algorithm approximately doubles the number of correct digits of pi. To be specific, successive iterations produce $1,4,9,20,42,85,173,347$, and 697 correct digits of pi. However, each of these iterations must be performed using a level of numeric precision that is at least as high as that desired for the final result; and that unfortunately means just three iterations are meaningful for the HP-41's 10-digit precision ceiling.

The FOCAL routine below implements the algorithm for the PIE ROM:

1	LBL "SBPI"		23	CHS	
2	2		24	RCL M	$a(k)$
3	1/X	1/2	25	X^2	$a(k)^{\wedge} 2$
4	STO 0		26	+	$c(k)$
5	SQRT	$a(0)$	27	RCL Y	k,003
6	STO N		28	INT	k
7	E		29	$2^{\wedge} \times-1$	$2^{\wedge}(k)-1$
8	STO M	b (0)	30	E	
9	0,003		31	+	$2^{\wedge} k$
10	+	1.003	32	*	$2^{\wedge} k . C(k)$
11	LBL 00		33	CHS	
12	RCL M	$b(k-1)$	34	$\mathrm{ST}+\mathrm{O}$	$s(k)$ in 0
13	RCL N	$a(k-1)$	35	RDN	k,003
14	+		36	ISG X	do next?
15	2		37	GTO 00	yes
16	1	$a(k)$	38	RCL M	$a(k)$
17	$\mathrm{X}<>\mathrm{M}$	$b(k-1)$	39	X^2	$a(k)^{\wedge} 2$
18	RCL N	$a(k-1)$	40	ST+ X	$2\left(a(k){ }^{\wedge} 2\right.$
19	-		41	RCL O	$s(k))$
20	SQRT	$b(k)$	42	/	$p(k)$
21	STO N		43	END	
22	X^2	$b(k)^{\wedge} 2$			

Heretical Pi (an early April's $1^{\text {st }}$ joke :-)

Inspired by the clever elegance in the Salamin-Brent method I wondered whether a non-iterative form could be extrapolated from the same approach, using the same starting "anchor" points \{1, $1 / \operatorname{sqr}(2)\}$ and based on the AGM and GHM means; plus using a "magic" fudge factor " k " to make it all somehow work out. A totally absurd anathema but just for fun, consider the following expression:

$$
p i=\frac{2 . a g m^{2}}{\frac{1}{2}-\left(a g m^{2}-g h m^{2}\right) \cdot 2^{k}}
$$

One could even attempt to legitimize this derangement by stating that the fudge factor " k " is based on the Erdós-Borwein constant, $\varepsilon_{\mathrm{EB}}$ as follows: (oh this is getting too weird, or is it?)

$$
\frac{5\left(\mathcal{E}_{\mathrm{EB}}+2\right)}{\mathcal{E}_{\mathrm{EB}}+16} \approx 1.0242396773481
$$

And this (see left) is the tonge-in-cheek, no-nonsensical (uh?) FOCAL routine used that consolidates the heresy and materializes this wondrous, innovative bluff.

Trying it out for size:

$$
\text { XEQ "MYPI" }=>\quad 3.44592554
$$

If you thought this made no sense (say what?) then wait to read my dissertation on the search - and finding - of a new transcendent number τ (a.k.a π 's cousin) through which the length of the ellipse circumference can be expressed in a closed form by:
$\mathrm{L}=2 . \tau . \operatorname{sqr}\left(\mathrm{a}^{\wedge} 2+\mathrm{b}^{\wedge} 2\right)$
Where a, b are, of course, the semi-axis of said ellipse.

Not convinced yet? Well, perhaps you may want to check my string-theory-based quick proof of the Riemann hypothesis in the next section of the manual...

Note: see here for another rant on the subject, it's worth reading - but keep your mind open!

1	LBL "MYPI"	
2	2	
3	SQRT	
4	1/X	
5	E	
6	AGM	$\operatorname{agm}(1,1 / s q r(2))$
7	$\mathrm{X}^{\wedge} 2$	agm ${ }^{\wedge} 2$
8	STO 00	
9	2	
10	SQRT	
11	1/X	
12	E	
13	GHM	$\operatorname{ghm}(1,1 / s q r(2))$
14	$\mathrm{X}^{\wedge} 2$	$\mathrm{ghm}{ }^{\wedge} 2$
15	-	$\mathrm{agm}^{\wedge} 2-\mathrm{ghm}{ }^{\wedge} 2$
16	2	
17	ENTER	
18	1.024239678	k
19	$\mathrm{Y}^{\wedge} \mathrm{X}$	$2^{\wedge} k$
20	CHS	$-2^{\wedge} k$
21	*	$-\left(a g m^{\wedge} 2-g h m^{\wedge} 2\right) /$
22	0.5	
23	+	1/2-(agm ${ }^{\wedge} 2-\mathrm{ghm}^{\wedge} 2$
24	1/X	
25	RCL 00	agm ${ }^{\wedge} 2$
26	$\mathrm{ST}+\mathrm{X}$	2.agm^2
27	*	final result
28	END	done

Extra bonus: speaking of Erdós-Borwein, here's a nice MCODE Utility and corresponding FOCAL routine side by side to calculate this constant - using the definition series:
https://en.wikipedia.org/wiki/Erd\�\�s\�\�\�Borwein_constant

$$
E=\sum_{n=1}^{\infty} \frac{1}{2^{n}-1} \approx 1.606695152415291763 \ldots
$$

01	LBL "EBC"
02	0
03	E
04	LBL 00
05	2^{\wedge} X-1
06	LASTX
07	X<>Y
08	$1 / \mathrm{X}$
09	ST+ Z
10	FS? 10
11	VIEW Z
12	X=0?
13	GTO 02
14	RDN
15	ISG X
16	NOP
17	GTO 00
18	LBL 02
19	X<> Z
20	CLD
21	END

Wallis-based Approximations

Also included in the module are a handful of routines based on the infamous Wallis product expression for the approximation It's well known that said expression requires a very large number of terms to get a decent accuracy in the result, hence its usage is limited from a practical point of view. However, there are ways to go around that deficiency using "correction" factors or other modifications on top of the basic one.

Function	Description	Input	Author
WALLIS	Wallis formula (n in X)	n in X	Ángel Martin
"WP42	Wallis product Formula	n in X	Gerson W. Barbosa
"WPI	Wallis product Formula	n in X	Jean-Marc Baillard
"WPIH	Wallis Formula w/ Hyperbolics	n in X	Werner
"CFWP	Conti. Fractions correction	n in X	Martin-Barbosa
"WWPI	Wallis-Wasicki Formula	n in X	Gerson W. Barbosa

$$
\pi \approx 2\left(\frac{4}{3} \times \frac{16}{15} \times \frac{36}{35} \times \frac{64}{63} \times \cdots \times \frac{4 n^{2}}{4 n^{2}-1}\right)
$$

The table below shows (left column) the results for different number of terms; note how the values get closer to the actual pi value when the Wallis formula is combined with a correction factor (right column), as we'll see next:

\# of terms	Wallis Result	Wallis-Wasicki Result
10		3. 142523109
100	3,133787496	
1,000		3.441592798
10,000	3, 14.514548	3.44593184
100,000	3.44155.518	n/a

example:
10,000 , XEQ "WALLIS" $=>\quad 3,141514548$
Not much to write home about, to say the least, so let's see other more efficient approaches (read: fewer number of terms) while still based on the basic Wallis formula.

The two programs below are different versions contributed by forum members to compute the Wallis product (without correction factors). On the left using data registers and the RCL math (taken from an HP-42 solution); on the righ two more concise routines using only the stack.

01.	LBL "W42"	42	$\mathrm{X} \times \mathrm{Y}$
02	STO 01	43.	LBL 00
03	NOT	44	STO + ST T
04	2	45	X<>Y
05	MOD	46	R \uparrow
06	ENTER	47	RCL× ST T
07	STO + STX	48	RCL 03
08	E	49	X<>Y
09	-	50	SIGN
10	4	51	+/-
11	RCL× 01	52	STO× ST Z
12	E	53	X < ST L
13	RCL- ST T	54	\div
14	\times	55	X < ST Z
15	R \uparrow	56	RCL 01
16	STO + ST X	57	STO ${ }_{\text {ST }}$ X
17	+	58	$\mathrm{X} \uparrow 2$
18	3	59	STO 02
19	RCL× ST T	60	DSE ST X
20	-2	61	STO $\div 02$
21	STO 02	62	R \downarrow
22	RCL+ 01	63	RCL ST Y
23	$\mathrm{X} \times \mathrm{Y}$	64	SIGN
24	+	65	$\mathrm{X}<\mathrm{ST}$ Z
25	STO 03	66	ABS
26	RCL 02	67	$\mathrm{X} \times 04$
27	$\mathrm{X}<>\mathrm{ST}$ L	68	+/-
28	STO + STX	69	STO +03
29	RCL+ ST L	70	NOT
30	STO 04	71	+/-
31	-	72	NOT
32	RCL- 02	73	+/-
33	RCL× ST Z	74	$\mathrm{X} \times 04$
34	+/-	75	DSE 01
35	4	76	GTO 00
36	RCLx 01	77	SIGN
37	RCL- ST Z	78	RCL+ ST T
38	RCL- 02	79	RCL× 02
39	STO \div ST Y	80	ABS
40	X< $\times 1$	81	END
41	R \downarrow		

1	LBL "WPI"	JM Baillard
2	2	
3	LBL 01	
4	RCL Y	
5	ST+ X	
6	$\mathrm{X}^{\wedge} 2$	
7	ST* Y	
8	DSEX	
9	/	
10	DSE Y	
11	GTO 01	
12	RTN	
13	LBL "WPIH"	Werner
14	2	
15	LBL 02	
16	RCL Y	
17	ST+ X	
18	HACOS	
19	HTAN	
20	$\mathrm{X}^{\wedge} 2$	
21	/	
22	DSE Y	
23	GTO 02	
24	END	

Wallis-Wasicki formula.
See: https://www.hpmuseum.org/forum/post-139434.html\#pid139434
See also: https://www.hpmuseum.org/forum/post-9194.html\#pid9194
Gerson W. Barbosa has proposed a correction factor on top of the Wallis product for slightly more accurate results and definitely better efficiency. The correction factor is the finite continued fraction shown below, with a constant $B(n)$ term pattern reflecting the number of terms used in the Wallis part of the combined formula.

$$
2+\frac{4}{8 n+3+\frac{3}{8 n+4+\frac{15}{8 n+4+\frac{35}{8 n+4+\frac{63}{(2)}}}}}
$$

So right off the shoe we could use the Continued Fractions engine to calculate the correction factor, which should definitely converge relatively quick given the large values for both $A(n)$ and $B(n)$. This is what the routine CWPI does, listed below:

1	LBL "CWPI"		23	RTN	
2	"*WP"		24	LBL 01	
3	2		25	ENTER ${ }^{\text {a }}$	
4	ENTER ${ }^{\wedge}$		26	$\mathrm{X}^{\wedge} 2$	$(n-1)^{\wedge} 2$
5	CF2V		27	4	
6	RCL 10		28	*	$4(n-1)$
7	WALLIS		29	ENTER ${ }^{\wedge}$	
8	2		30	-	$4(n-1)^{\wedge} 2-1$
9	/		31	$X<>Y$	$n-1$
10	*		32	8	
11	RTN		33	*	$8(n-1)$
12	LBL "*WP		34	4	
13	RCL 02		35	+	$8(n-1)+4$
14	ENTER ${ }^{\wedge}$		36	/	$A(n)=(4) n-1)^{\wedge} 2$
15	-	$(n-1)$	37	LBL 02	-1)/[8(n-1)+4]
16	X\#0?		38	RCL 10	N
17	GTO 01		39	8	
18	XEQ 02		40	*	$8 N$
19	$X<>Y$		41	4	
20	ENTER ${ }^{\wedge}$		42	$+$	$B(n)=8 N+4$
21	-	$B(1)=8 N+3$	43	X $<\gg$	
22	4	$A(1)=4$	44	END	

The other approach is obviously to combine both the Wallis product and the correction factor at the same time, during the execution of the main body code segment. This is done in routine WWPI listed below:

01	LBL "WWPI"	F 16	$x<2$	
02	4	- 17	ST/ Y	
- 03	0	- 18	$X \ll L$	
$\bigcirc 04$	8	- 19	R \downarrow	
$\bigcirc 05$	RC* ${ }^{\text {T }}$	- 20	X \triangle Y	
$\bigcirc 06$	RC+ Z	- 21	DSE T	
07	LBL 00	- 22	GTO 00	
08	R \uparrow	- 23	DSE X	
09	RC+ X	$\bigcirc 24$	+	
10	ST* X	- 25	1/X	
- 11	ST* T	- 26	0.5	
- 12	DSE X	- 27	+	
- 13	ST $-T$	- 28	\times	
- 14	X $<$ Y	- 29	END	
$\bigcirc 15$	$\mathrm{ST}+\mathrm{Z}$			

Table of results/-
Uncorrected Wallis:

N	WP42	WPI	WPIH
10	3.06770807		
100	3. 139787499	3. 33787499	3. 33787499
1,000	3. 140807756		3. 140807756
10,000	3. 141514015	3. 141514015	3.141514015
100,000	3. 141571397	3.41571397	3.4 57, 987

The three versions are totally identical for any number of iterations.

Corrected Wallis:

n	WWPI	CWPI
10	3. 141592554	3.142523109
100	3. 44595565	3.44150424
1,000	3.44592502	3.44159798
10,000	3.44593758	3.44159184

The sweet spot appears to be $n=1,000$ for both, no doubt the workings of the finite continued functions term.

Pi/e using Continued Fractions

There are many different expressions related to pi and e using continued fractions, both with and without a clear pattern to the coefficients. As usual, some of them converge very slowly and aren't practical for the calculations - thus only have an academic value.

Amongst those useful for our purposes, we find these two for pi:

Routine name: CFPI

$$
\pi=\frac{4}{1+\frac{1^{2}}{3+\frac{2^{2}}{5+\frac{3^{2}}{7+\ddots}}}}
$$

Routine name: CFP1

$$
\pi=3+\frac{1^{2}}{6+\frac{3^{2}}{6+\frac{5^{2}}{6+\ddots}}}
$$

With the following recurrent pattern parameters on each case being:
$B(0)=0$
$B(0)=3$
$A(1)=4 \quad ; B(1)=1$
$A(n)=(2 n-1)^{\wedge} 2 ; \quad B(n)=6$
$A(n)=(n-1)^{\wedge} 2 ; B(n)=2 n-1$

And this one for e, beautifully simple and even more efficient for the calculation:

$$
e=2+\frac{1}{1+\frac{1}{2+\frac{2}{3+\frac{3}{\ddots}}}} \quad \begin{aligned}
& \text { with the following recu } \\
& \begin{array}{l}
B(0)=2 ; 1 ; B(1)=1 \\
A(n)=1 ;(n-1) ; B(n)=n \\
A(n)=n
\end{array}
\end{aligned}
$$

XEQ "CFE"		; with just 5 terms needed
XEQ "CFPI" =>	3. 44592540	; with 420 terms needed.
XEQ "CFP1" =>	3.4 59255e	; with 14 terms needed

As always, you can set flag 10 to see the progress of the convergence in the display.

References: https://mathworld.wolfram.com/eContinuedFraction.htm/ https://en.wikipedia.org/wiki/Continued_fraction

The Path not taken:-

Two of the non-practical continued fractions are shown below, for the $\pi / 2$ and $4 / \pi$ cases- both requiring many thousands of iterations to achieve decent accuracy (say 5 decimal digits or better), and thus taking an awfully long execution time even on V41 in turbo mode.

$$
\frac{\pi}{2}=1-\frac{1}{3-\frac{2 \cdot 3}{1-\frac{1 \cdot 2}{3-\frac{4 \cdot 5}{1-\frac{3 \cdot 4}{3-\frac{6 \cdot 7}{1-\frac{5 \cdot 6}{3-\ldots}}}}}} \quad \frac{4}{\pi}=1+\frac{1^{2}}{2+\frac{3^{2}}{2+\frac{5^{2}}{2+\frac{7^{2}}{2+\ldots}}}} . \quad \frac{4}{}} \quad \frac{1}{}
$$

Brouncker's formula:
Programmed as follows:

1	LBL "CFPI2"		32	RCL X	
2	LBLA		33	E	
3	"SP"		34	-	(n-2)
4	E	$B(0)=1$	35	*	(n-1).(n-2)
5	ENTER^		36	CHS	$A(2 n+1)=-(n-1) .(n-2)$
6	CF2V	$\pi / 2$	37	3	$B(2 n+1)=3$
7	ST+ X	π	38	$X<>$	
8	RTN		39	RTN	
9	GTO A		40	LBL "CFP14"	
10	LBL "\$P"		41	LBL B	
11	FS? 10		42	" \bullet P"	
12	VIEW 00		43	E	$B(0)=1$
13	3	$B(1)=3$	44	ENTER^	
14	RCL 02	n	45	CF2V	4/r
15	$\mathrm{X}=1$?		46	1/X	$\pi / 4$
16	CHS	$A(1)=-1$	47	4	
17	$\mathrm{X}<0$?		48	-	π
18	RTN		49	RTN	
19	ODD?	odd?	50	GTO B	
20	GTO 01	yes, divert	51	LBL "*P"	
21	RCL 02	n	52	FS? 10	
22	E		53	VIEW 00	
23	+	$(\mathrm{n}+1)$	54	RCL 02	n
24	*	$n .(n+1)$	55	$\mathrm{ST}+\mathrm{X}$	$2 n$
25	CHS	$A(2 n)=-n .(n+1)$	56	E	
26	E	$B(2 n)=1$	57	-	$2 \mathrm{n}-1$
27	X $<\gg$		58	$\mathrm{X}^{\wedge} 2$	$A(n)=(2 n-1)^{\wedge} 2$
28	RTN		59	2	$B(n)=2$
29	LBL 01	odd term,n\#1	60	$\mathrm{X} \gg \mathrm{Y}$	
30	E		61	END	
31	-	(n-1)			

Random Pie - Monte Carlo method

This section uses a variation of the Monte Carlo strategy to evaluate both pi and e. It's not, however, based in circle relationships derived from randomly throwing needles or shooting at targets, but on probability theory instead. It was explained by Valentín himself in his HP Challenge VA511-2020-03-14 - SRC 006 Pi Day 2020 Special.pdf

Quoting directly from that article:
"It's quite simple, actually. My recent program is this:
1 DESTROY ALL @ RANDOMIZE 1 @ FOR K=1 TO 5 @ N=10^K @ S=0
2 FOR I=1 TO N @ IF NOT MOD(IROUND(RND/RND),2) THEN S=S+1
3 NEXT I @ P=S/N @ STD @ DISP N, @ FIX 3 @ DISP 5-P*4 @ NEXT K
which is computing the probability that the closest integer to A / B is even, where A and B are uniformly distributed random numbers in [0,1), as produced by the RND keyword. Each time the rounded value is even (i.e., it's 0 modulo 2) the number of favorable outcomes (S) is incremented by one (see line 2). After N tries have been sampled, the probability P for the even case will be the number of favorables outcomes (S) divided by the number of tries (N), thus we have the estimated probability $P=S / N$.
But I know from theory that in the limit, for $N->$ Infinity, the exact probability $P=(5-$ Pi)/4, so isolating Pi we have Pi=5-P*4, which is displayed by the program in line 3 above."

Note that he goes on to include yet another possible approach, which results in an even shorter BASIC program. Here's the explanation:
"Now, my earlier program, the one-liner, namely:
10 INPUT K @ N=0 @ FOR I=1 TO K @ N=N-MOD(IROUND(RND/RND),2) @ NEXT I @ DISP 14*N/K
is computing the probability that the closest integer to A / B is odd, where A and B are uniformly distributed random numbers in [0,1), as produced by the RND keyword. Each time the rounded value is odd (i.e., isn't 0 modulo 2) the number of favorable outcomes (N) is decremented by one, and after K tries have been sampled, the probability for the odd case will be the number of favorable outcomes $(-N)$ divided by the number of tries (K), thus we have the estimated probability $P=-N / K$.

As the probability of the rounded division being either even or odd is 1 (certainty), the probability for the odd case is 1 minus the probability for the even case, thus it's $P=1-(5-P i) / 4=(P i-1) / 4$, so isolating Pi we have $\mathrm{Pi}=1+4 * P=1+4 *(-N / K)=1-4 * N / K$, which is then displayed by the one-line program."

I chose to use the first approach in this module, partially because it also requires the IROUND function, and I was intrigued by it. I ended up writing a short MCODE utility for that purpose, which facilitates the porting of the BASIC code to HP-41 FOCAL, shown in next page.

With regard to the e calculation, the source has also been Valentín's HP Challenge VA030-Short Sweet Math Challenge 25 San Valentin Special - Weird Math.pdf. In that thread there's one section (the first "concoction") about calculating a "weird limit" that can be used for the calculation of e (making the sum--to-exceed $\mathrm{s}=1$).
"The limit average count for the sum of a series of [0,1) uniformly distributed random numbers to exceed 1 is exactly $e=2.71828182845904523536+$, the base of the natural logarithms, which is pretty "weird" and can be considered an analog of Buffon's Needle experiment to estimate the value of Pi. Here we don't throw needles on a grid but merrily add up random numbers keeping count and we get e instead."
"This is the general formula to numerically compute the theoretically exact value and my simple 1 line, 53-byte HP-71B program to instantly compute them given the sum to exceed:"

$$
f(x)=\sum_{k=0}^{[x]}(-1)^{k} \frac{(x-k)^{k}}{k!} e^{x-k}
$$

1 DESTROY ALL @ INPUT X @ S=0 @ FOR K=0 TO IP(X) @ S=S+(K-X)^K/FACT(K)*EXP(X-K) @ NEXT K @ DISP S

For the porting we'll certainly need the new IROUND utility and obviously capable random number capabilities, which shouldn't be much of a problem using the SandMath's functions SEEDT and RNDM. E'll use a time-generated initial seed (input zero for SEEDT), and RNDM will do the work using the well-known RNG recurrence:

$$
\mathrm{r}(\mathrm{k}+1)=\mathrm{FRC}[\mathrm{r}(\mathrm{k}) * 9,821+0.211327]
$$

A few results are given in the table below:

Iterations	MCE	MCPI
10		
100		
1,000		
10,000		
100,000		
1,000,000		

As you can see from the table results both routines require a very large number of iterations to get to a reasonably accurate result, which of course was expected as "it 'comes with the territory" when resorting to this type of approaches. See below for the actual program code.

1	LBL "MCE"		10	LBL "MCPI"	
2	LBLA		11	LBL B	
3	STO 01	number of iterations	12	STO 00	number of iterations
- 2	E	sum limit	- 11	0	initial value
3	0		12	SEEDT	Time-based Seed
4	STO 00	initial count	13	LBL 11	
3	$\mathrm{E}^{\wedge} \mathrm{X}$		12	RNDM	PPC Method +
4	SEEDT	initial seed	13	RNDM	PPC Method +
5	LBL 01		- 14	/	
4	CLX	reset sum	- 13	IROUND	
5	LBL 00		14	2	
6	ISG 00	increase count	- 15	MOD	
5	NOP		- 14	-	
6	RNDM	PPC Method +	15	FS? 10	
7	+	update sum	16	VIEW Y	
6	FS? 10	need to show?	16	DSE Y	
7	VIEW Z	yes, oblige	- 17	GTO 11	
- 8	$\mathrm{X}<\mathrm{Y}$?	sum less than limit?	17	RCL 00	number of iterations
7	GTO 00	yes, get next RAN	$\bigcirc 18$	/	
8	DSE Z	decrease counter	18	-4	
9	GTO 01	do next if not finished	V 19	-	
- 8	RCL 00	final count	19	E	
9	RCL 01	number of iterations	- 20	+	
- 10	/		20	CLD	
9	CLD		21	RTN	
10	RTN		21	GTO B	
- 11	GTO A		- 22	END	

Note:- The poor-man version of IROUND would consist of setting FIX 0 before the LBL 11 loop, and adding an INT instruction after the division of both random numbers (i.e. replacing IROUND with INT). That's almost equivalent but doesn't handle the EVEN condition for the result, i.e. $\operatorname{IROUND}(5.5)=5$ whereas $\operatorname{INT}(4.5)$ in FIX 0 is equal to 4 instead. Not a show-stopper though, considering how unlikely it is to find such an occurrence amongst the hundreds of random points used by the routine.

Humble Pie - Series Correction, "Speed it up!"

Yet another wonderful contribution by Mr. Albillo's at the top of his game - taken from the challenge thread HP Challenge VA125-2006-07-12-HP-15C Mini-challenge Speeding it up.pdf

Here's the direct description from that thread, read on and enjoy !
"As stated in the challenge's description, the task is to find a way to use the well-known Gregory-Leibnitz series to compute Pi to 10 correct places while keeping program size and running time small.

$$
\pi=4 \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=4\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+-\cdots\right)
$$

A direct approach seems doomed to failure as this series converges so incredibly slowly that millions of terms must be added up to get no more than 6 or 7 correct digits, let alone 10. To clearly demonstrate it, this simple 15- step HP-15C program, which will serve as the basis for my solutions, will add up any specified even number of terms from the series:

01*LBL A	060	11 STO 0
02 STO I	07*LBL 0	$12 \mathrm{RCL} / \mathrm{I}$
03 STO+I	08 DSE I	13 +
044	09 RCL 0	14 DSE I
05 STO 0	10 CHS	15 GTO

To improve accuracy, the program begins adding up the smallest terms and goes backwards until it reaches the largest term, 1. Upon running it, you'll see that, as expected, the convergence is awfully slow. Let's try to add 4 terms, then 44, then 444:

```
4 , GSB A -> 2.895238096 (barely one correct digit)
44 , GSB A -> 3.118868314 (barely three correct digits)
444, GSB A -> 3.139340404 (barely four correct digits)
```

This last result took almost 7 minutes, yet we've got no more than four not-so-correct digits, so the situation seems hopeless. At this point, it seems we can do no better than try some relatively complicated techniques, such as the Euler-McLaurin formula or extrapolation mechanisms for summation of infinite, alternating series such as this one. This would incur in a serious penalty in vastly increased complexity and program size, as seen in several working
programs posted by contributors.

A bit of sleuthing:

However, math is full of surprises and serendipitous findings are bound to happen when and where you least expect them, as we'll immediately see.

Let's use our basic program to add up exactly 50 terms:

```
50, GSB A -> 3.121594653
```

Now, this has a fairly large error, as we're getting 3.12+ instead of 3.14+, so that the $3 r d$ digit is already 2 units off. But, don't you notice something truly eerie? Yes, we get a " 2 " where a " 4 " should be. But the following three digits (159) are correct! Then we get another wrong digit, a " 4 " which should be a " 2 ", but then the next three digits (653) are once again correct!!

Let's align our value and the correct Pi value and carefully examine the differences:

```
Sum -> 3.121594653
PI -> 3.141592653 (58979...)
    -----------------------
```

which, in absolute values means:

```
+0.02 -0.000002
```

Let's see if this is just a weird coincidence, or else it also happens for other numbers of terms being added up. Let's try 100 terms, for instance:

```
100, GSB A -> 3.131592904
    3.141592654
    -----------------
        +1 -25
    +0.01 -0.00000025
```

and we see that our initial impression does hold, because after one wrong digit, the subsequent four digits (1592) are indeed correct, then another a couple of wrong digits, and once again another correct digit follows.

Let's call these two corrections' C1 and C2 (i.e: +0.02 and -0.000002 for 50 terms, +0.01 and -0.00000025 for 100 terms, respectively) and see how they relate to the number of terms being used. A little insight or a little data-fitting will allow us to issue the following plausible, tentative hypothesis, where N is the number of terms:

$$
\begin{aligned}
& C 1=1 / \mathrm{N} \\
& \mathrm{C} 2=-0.25 / \mathrm{N} 3=-1 / 4 \mathrm{~N} 3
\end{aligned}
$$

which do indeed work for $N=50$ and $N=100$ terms. Now we'll put our hypothesis to the test, by using it to predict the values of $C 1$ and $C 2$ for $N=200$ terms:

```
Prediction for N = 200 -> C1 = 1/200 = 0.005
C2 = -1/(4*2003) = -0.000000031
```

and we'll now check if they agree with actual results, by running our basic program with 200 as the input value:

```
200, GSB A -> 3.136592685
    3.141592654
    ----------------
        +5 -31
```

which indeed do exactly agree with our predicted corrections, +0.005 and -0.000000031 . At this point, we can be fairly sure that our empirical finding holds, and can then proceed to make use of it by simply computing one or both correction terms, C1 and C2, and using them to refine the sum provided by our basic program, as follows:

First version, using just one correction term, C1 = 1/N:

Just two little changes to our basic program will compute and add the correction term C1, resulting in a program just a single step longer, at 16 steps, yet much faster and accurate:

```
01*LBL A
02 STO I
03 STO+I 50, GSB A -> 3.141594653 in 55"
04 1/X
054
06 STO O
07 X<>Y 100, GSB A -> 3.141592904 in 1'50"
08*LBL 0
09 DSE I error = 2.5E-7
1 0 \text { RCL 0}
11 CHS 400, GSB A -> 3.141592658 in 7'45"
12 STO 0
13 RCL/I error = 4E-9
14 +
15 DSE I
16 GTO 0
```

so this simple version, with just the one correction term C1 does achieve a 10-digit correct value (within 4 ulps) while using just 400 terms, in less than 8 minutes. That's many orders of magnitude better than the basic program could achieve, but we can do still much better:

Second version, using two correction terms, $C 1=1 / \mathrm{N}$ and $C 2=-1 / 4 \mathrm{~N} 3$:

A few stack manipulations will allow us to compute and use both correction terms, C1 and C2 while using just 5 additional steps, for a very small total of just 21 steps:

```
01*LBL A
02 STO I
03 STO+I 40, GSB A -> 3.141592651 in 40" (error = 3E-9)
04 1/X
0 5 ~ E N T E R
```

```
06 ENTER 50, GSB A -> 3.141592653 in 50" (error = 1E-9)
07 3
08 Y^X
094 62, GSB A -> 3.141592654 in 60" (error = 0)
10 STO O
11 /
12 -
13*LBL 0
14 DSE I
1 5 \text { RCL 0}
1 6 \text { CHS}
17 STO 0
18 RCL/I
19 +
20 DSE I
21 GTO 0
```

so this improved version needs to add up just 62 terms to return a full 10 correct-digit value within 60 seconds. Here's a table summarizing the different degrees of approximation using 0,1 , and 2 correction terms, for up to 60 terms added up:

N	bare series	+C1	+C1+C2	t
10	3.041839619	3.141839619	3.141589619	10"
20	3.091623807	3.141623807	3.141592557	20"
30	3.108268567	3.141601900	3.141592641	30"
40	3.116596557	3.141596557	3.141592651	40"
50	3.121594653	3.141594653	3.141592653	50"
60	3.124927144	3.141593811	3.141592653	60"

Further empirical confirmation:
As we've been able to indeed get 10 correct digits by using our empirically discovered corrections, we can be fairly confident that they are no mere coincidences but hold for greater number of terms added up and thus greater precision. To test this, just out of curiosity, these are the results for $N=500,5000,50000,500000$, and 5 million terms added up:

```
N = 500 terms added up
3.13959265558978323858464...
3.14159265358979323846264...
    +2 -2 +10 -122
N = 5,000 terms added up
3.14139265359179323836264339547950...
3.14159265358979323846264338327950...
    +2 -2 +10 -122
N = 50,000 terms added up
3.14157265358979523846264238327950410419716...
3.14159265358979323846264338327950288419716...
    +2 -2 +10 -122
```

```
N = 500,000 terms added up
3.14159065358979324046264338326950288419729139937510...
3.14159265358979323846264338327950288419716939937510...
    +2 -2 +10 -122
N = 5,000,000 terms added up
3.14159245358979323846464338327950278419716939938730582097494...
3.14159265358979323846264338327950288419716939937510582097494...
    +2 -2 +10 -122
```

Notice in particular the values for $N=5,000,000$ terms: the 7 th decimal is already in error by 2 units. But the next 13 digits are all correct! Then, the following digit is also 2 units wrong. But the next 12 digits are again correct !! All in all, among the first 47 digits, only 3 of them are a few units wrong !

In other words, the original series converges incredibly slowly, granted, but the errors when you stop at N terms are extremely predictable and easy to compute, so you can increase your accuracy 3-fold or 5-fold by using just one or two easily derived correction terms.

Final notes

This empirical discovery, once made, can be substantiated by theory, and a nifty expression is arrived at which results in an asymptotic approximation to Pi based on the sum of the original series truncated to N terms plus a 'correction' series (the asymptotic component) in negative powers of $N(1 / N, 1 / N 3$, etc) where the so-called Euler numbers are the coefficients.

Similar phenomena occur for constants other than Pi, for example similarly truncating the series:

```
Ln(2) = 1 - 1/2 + 1/3 - 1/4 + 1/5 - ...
```

results in:

```
Sum = 0.69314708055995530941723212125817656807551613436025525...
Ln(2) = 0.693147180559945309417232121458176568075500013436025525...
    1 -1 2
```

and another asymptotic series can be theoretically substantiated, the required coefficients being now the so called "tangent numbers" instead: 1, -1, 2, -16, \ldots

Thanks for your interest and many excellent posted contributions, hope you enjoyed yourselves while working them out."

And here's how all this is applied to the HP-41 in this module, a deceptively simple code that however encompasses the devilish wizardry so well explained in the previous pages:

The routine is deservedly labeled "VAPI", I'm sure you'll understand why.

The table of results is shown below. Note the small number of iterations needed for a good accuracy, proof of the very efficient algorithm used.

N in X	Result
2	3.135415567
4	3.41331845
6	3.41555436
8	3.41583536
10	3.41589519
12	3.41591424
14	3.41592080
16	3.44592359
18	3.41592490
20	3.4159255

This concludes the first part of the manual. In the next section you'll find a short description of the MCODE and FOCAL programs to calculate many digits of pi and e.

Many Digits of Pi. (by Peter Platzer, MoHPC Forum)

https://www.hpmuseum.org/cgi-sys/cgiwrap...587\#147587
The module includes the remarkable and impressive MCODE implementation of the Spigot algorithm by Peter Platzer, published in the Museum of HP Calculators forum. His description is available in the appendix, but here are the highlights:

The code asks for three inputs: The page where the MLDL ram starts to use, the number of digits and the base b to use ($\max =5$ for 5 digits at a time). One can set Flag 0 and the calc will stop at each group of digits and wait for a key to be pressed, otherwise it just keeps calculating ...

Setting Flag 1 will store the found digits in the same compressed format - each group of up to 5 digits is stored in 2 words, with the right nibble converted to hex. They are stored in reversed order though

In manual execution the function prompts for the number of digits to calculate (limited to 1999 by the prompt) and the destination page where to store them. This needs to be a q-RAM page to allow writes into it. The maximum number of digits is 4095 - which will fill up the page in its entirety.

The screens below show an example to calculate 1,046 digits to be stored in page B:

In an unmodified HP-41 it delivers 1,160 digits in about 9 hours 3,600 digits in about 4 days, and 4,915 digits in about 8 days. The chart below shows a comparison with the previous recordholding approaches described in the article.

; Many Digits of PI
; Spigot algorithm from Pi-book
; uses base $\mathrm{b}<=5$ to show 5 digits at a time
;Flag0 - wait for key press after each group is shown
;Flag1 - store result digits in reverse order from end (iStart)
;Input:
; $\mathrm{Z}: \mathrm{p}$ - page number of start of MLDL ram to use
; $Y: n$ - number of digits wanted
; X : base b in powers of 10
;-------------
; All Stack and Alpha is used for temp storage
; $3(\mathrm{X})$: i in dec, 1 step $5(\mathrm{M})$: orig iStart in hex and 2 step
; 2(Y): tmp 6(N): last addr in hex and 2 step
; 1(Z): iBits in dec, 1 step 7(0): iBits in hex, 2 step
; $4(\mathrm{~L})$: iStart in dec, 1 step $8(\mathrm{P})$: b|iStart in hex and 2 step
; $9(\mathrm{Q})$: q - remainder $\mathrm{O}(\mathrm{T})$: page number in hex in $\mathrm{C}:[0]$
;------------
; All numbers are integers without exponent starting at C[0]
; User-Flag 0 -> wait for key press after each numbers shown. Stored in M-Flag 9

Extended precision: Pi to 1,000 places. (by Ron Knapp, PPCCJ V8N6 p69)
"Compute the first 1,000 decimal digits of Pi in less than 11 hours, 30 minutes". That was the friendly challenge put out by the PPC 'Journal", especially to members of the TI Personal Calculator Club, approximately a year ago. This challenge was repeated in the "Calcu-letter" of Popular Science Magazine, July 1981.

Up to the present time, I have heard of no serious attempts to eclipse this record. So,-- I decided to improve my own program. The program listed below computes Pi to 1,000 decimal places in just 8 hours, 30 minutes.

Ed. note: with $2 x$ machines, and some will run Faster, (fastest reported so far was Emett Ingram (17) at 2.8x) a 4 hour, 1,000 digit Pi program is the state of the PPC art. How long will it be before someone places 100,000 digits of Pi on a cassette? A printer on the HP-IL would take nearly 45 minutes to print it on 70 feet of paper at 20 digits per line, 2 lines per second.

The first 1.000 decimal places of Pi contains $930 \mathrm{~s}, 1161 \mathrm{~s}, 1032 \mathrm{~s}, 1023 \mathrm{~s}, 934 \mathrm{~s}, 975 \mathrm{~s}, 946 \mathrm{~s}, 95$ $7 \mathrm{~s}, 1018 \mathrm{~s}$, and 1069 s . Below is " 3 dot" followed by the first 1,000 decimals of Pi.
3.14159265358979323846264338327950288419716939937510582 0974944592307816406286208998628034825342117067982148086 5132823066470938446095505822317253594081284811174502841 0270193852110555964462294895493038196442881097566593344 6128475648233786783165271201909145648566923460348610454 3266482133936072602491412737245870066063155881748815209 2096282925409171536436789259036001133053054882046652138 4146951941511609433057270365759591953092186117381932611 7931051185480744623799627495673518857527248912279381830 1194912983367336244065664308602139494639522473719070217 9860943702770539217176293176752384674818467669405132000 5681271452635608277857713427577896091736371787214684409 0122495343014654958537105079227968925892354201995611212 9021960864034418159813629774771309960518707211349999998 3729780499510597317328160963185950244594553469083026425 2230825334468503526193118817101000313783875288658753320 8381420617177669147303598253490428755468731159562863882 3537875937519577818577805321712268066130019278766111959 092164201989

Program listing.-

145	RCL 11	197	ENTER^	249	LASTX
146	ST+ 12	198	GTO 09	250	INT
147	RCL 12	199	*LBL 08	251	RCL 08
148	RND	200	RCL 01	252	*
149	STO 00	201	ST/ Z	253	FRC
150	STO 03	202	MOD	254	LASTX
151	SF 00	203	X<>Y	255	INT
152	*LBL 05	204	INT	256	ST+ IND 00
153	RCL 02	205	X<>Y	257	RDN
154	INT	206	RCL 04	258	X < > Y
155	ENTER^	207	ST* Z	259	RCL 05
156	ENTER^	208	*	260	ST* T
157	*LBL 02	209	ENTER^	261	ST* Z
158	2	210	*LBL 09	262	*
159	-	211	RCL 01	263	RCL 08
160	ST* Z	212	ST/ Z	264	*
161	RCL 10	213	MOD	265	FRC
162	ST* Z	214	RDN	266	X<>Y
163	X<>Y	215	INT	267	LASTX
164	*	216	+	268	INT
165	2	217	RCL IND 00	269	R^{\wedge}
166	ST- L	218	-	270	+
167	CLX	219	$\mathrm{X}>0$?	271	RCL 05
168	LASTX	220	GTO 02	272	-
169	ST* T	221	DSE 00	273	+
170	ST- Y	222	*LBL 03	274	$\mathrm{X}>0$?
171	RDN	223	DSE IND 00	275	ISG IND 00
172	*	224	ISG 00	276	$\mathrm{X}>0$?
173	R^{\wedge}	225	RCL 05	277	GTO 03
174	ST+ T	226	+	278	RCL 05
175	X^2	227	*LBL 02	279	+
176	R^{\wedge}	228	STO IND 00	280	*LBL 03
177	+	229	R^{\wedge}	281	ISG 00
178	+	230	RCL 04	282	GTO 11
179	FC? 00	231	RCL04	283	GTO "Q"
180	GTO 02	232	ENTER^	284	*LBL 04
181	RCL 13	233	ISG 00	285	RCL 03
182	*	234	GTO 08	286	STO 00
183	3	235	RCL 03	287	RCL 10
184	DSE 02	236	STO 00	288	X^2
185	GTO 03	237	FS? 00	289	3
186	*LBL 02	238	GTO 05	290	$\mathrm{Y}^{\wedge} \mathrm{X}$
187	RCL 07	239	CLX	291	LASTX
188	*	240	ENTER^	292	*
189	RCL 06	241	DSE 02	293	STO 08
190	*LBL 03	242	FS? 00	294	CLX
191	X<>Y	243	GTO 04	295	*LBL 13
192	RDN	244	*LBL 11	296	RCL IND 00
193	,	245	X<> IND 00	297	X < > Y
194	STO 01	246	RCL 04	298	RCL 04
195	CLX	247	1	299	ST/ Z
196	R^{\wedge}	248	FRC	300	*

301	ENTER^	340	RCL IND 00	379	ISG 00
302	*LBL 02	341	-	380	GTO 07
303	RCL 08	342	0	381	AVIEW
304	ST/ Z	343	X<>Y	382	RTN
305	MOD	344	$\mathrm{X}<0$?	383	*LBL 10
306	R^{\wedge}	345	$\mathrm{X}>0$?	384	RCL IND 00
307	INT	346	GTO 02	385	RCL 04
308	LASTX	347	RCL 05	386	1
309	FRC	348	+	387	INT
310	RDN	349	DSE Y	388	LASTX
311	+	350	*LBL 02	389	FRC
312	X<>Y	351	STO IND 00	390	RCL 04
313	INT	352	RDN	391	XEQ 12
314	RCL 04	353	DSE 03	392	,
315	ST* T	354	DSE 00	393	XEQ 12
316	ST* Z	355	GTO 06	394	RTN
317	*	356	BEEP	395	*LBL 12
318	STO IND 00	357	RTN	396	*
319	RDN	358	*LBL E	397	RCL Y
320	ENTER^	359	SF 21	398	$\mathrm{X}=0$?
321	*LBL 03	360	CLA	399	GTO 03
322	RCL 08	361	FIX 0	400	LOG
323	ST/ Z	362	14.114	401	INT
324	MOD	363	STO 00	402	*LBL 03
325	X<>Y	364	SF 29	403	RCL 09
326	INT	365	RCL IND 00	404	X<>Y
327	ST+ IND 00	366	ACX	405	$\mathrm{X}=\mathrm{Y}$?
328	RDN	367	ADV	406	GTO 02
329	+	368	CF 29	407	-
330	ISG 00	369	ISG 00	408	0
331	GTO 13	370	*LBL 07	409	*LBL 14
332	114.013	371	XEQ 10	410	ARCL X
333	STO 00	372	ISG 00	411	DSE Y
334	215	373	FS? 00	412	GTO 14
335	STO 03	374	RTN	413	*LBL 02
336	CLX	375	" "	414	ARCL T
337	*LBL 06	376	XEQ 10	415	ACA
338	RCL IND 03	377	ADV	416	CLA
339	+	378	CLA	417	END

Extended precision: E to 2,900 places. (by Ron Knapp, PPCCJ V9N1 p12)
This program is an abbreviated version designed to compute the decimal places of " e " to the greatest possible limit allowed in an HP-41CV or an HP-41C with a Quad Memory module. The program does the initialization including setting the SIZE to 294 data registers.

R01 shows the count-down number at all times. Originally this indicates the number of terms of the series necessary to obtain the accuracy desired. The number of terms yet to be computed is continuously displayed to allow the operator to know the progress of the computation. When the count-down number reaches zero the execution can proceed to the readout (or printout) routine, which displays 10 digits at a time, broken into two groups of five digits each, for easy reading. All leading and ending zeros are shown.

Instructions:
XEQ "E2900" Will take around 25 minutes at TURBO50 speed!
XEQ "R"
To see/Print the results

01	LBL "R"	Readout results
02	FIX 0	
03	CF 29	
04	"2,"	
05	AVIEW	
06	4	
07	ST+ 03	
08	LBL 06	
09	CLA	
10	SF 01	
11	RCL IND 03	
12	E5	
13	l	
14	FRC	
15	LASTX	
16	INT	
17	LBL 07	
18	ENTER^	
19	ENTER^	
20	4	
21	X<>T	
22	X=0?	
23	GTO 08	
24	LOG	

25	INT	
26	-	
27	0	
28	X=Y?	
29	GTO 09	
30	LBL 08	
31	ARCL X	
32	DSE Y	
33	GTO 08	
34	LBL 09	
35	ARCL Z	
36	FC?C 01	
37	GTO 10	
38	"/- "	
39	R^	
40	E5 spaces	
41	$*$	
42	GTO 07	
43	LBL 10	
44	AVIEW	
45	ISG 03	
46	GTO 06	
47	END	

Program listing. -

1	*LBL 'E2900"	47	ST* Y	93	*
2	294	48	$\mathrm{X}<>\mathrm{L}$	94	ENTER^
3	PSIZE	49	ST+ Y	95	R^
4	CF 01	50	ST+ L	96	ST/ Z
5	CF 02	51	DSE Z	97	MOD
6	4.004	52	GTO 03	98	LASTX
7	STO 00	53	*	99	RDN
8	1112	54	+	100	X<>Y
9	STO 01	55	*LBL 04	101	INT
10	E	56	E5	102	ST+ IND 00
11	STO 03	57	*	103	CLX
12	. 293	58	ENTER^	104	+
13	STO 03	59	R^{\wedge}	105	+
14	*LBLe	60	ST/ Z	106	ISG 00
15	RCL 01	61	MOD	107	GTO 04
16	ENTER^	62	X<>Y	108	X<>Y
17	VIEW X	63	INT	109	1
18	DSE 01	64	E5	110	RND
19	E10	65	$\mathrm{X}>\mathrm{Y}$?	111	E
20	X<> Y	66	GTO 05	112	ST- 00
21	ISG Z	67	/	113	X<>Y
22	*LBL 00	68	INT	114	ST+ IND 00
23	RCL 01	69	E	115	R^
24	X<>Y	70	ST- 00	116	E-10
25	*	71	X<>Y	117	*
26	$\mathrm{X}>\mathrm{Y}$?	72	ST+ IND 00	118	ST* 02
27	X $>$ Y	73	RDN	119	RCL 02
28	DSE 01	74	ST+ 00	120	LASTX
29	GTO 00	75	CLX	121	$\mathrm{X}>\mathrm{Y}$?
30	SF 01	76	LASTX	122	SF 02
31	ENTER^	77	FRC	123	FS? 02
31 32	*LBLER 01	78	E5	124	ST/ 02
32	*LBL 01	79	*	125	E-3
33	R^	80	LASTX	126	RCL 00
34	LASTX	81	*LBL 05	127	FRC
35	X<>Y	82	LBL 05	128	FC?C 02
36	RCL 01	83	X<> IND 00	129	+
37	3	84	LASTX	130	RCL 03
38	FC? 01	85	LASTX	131	$\mathrm{X}<\mathrm{Y}$?
39	DSE X	86	INT	132	X<>Y
40	*LBL 02	87	ST+ Y	133	RDN
41	+	88	X<> L	134	4
42	-	89	FRC	135	+
43	E	90	X<>Y	136	STO 00
44	ENTER^	91	E5	137	FC?C 01
45	*LBL 03	92	ST* Z	138	GTO e
46	X<> L			139	END

Extended precision for Pi. (by Benoit Maag)

This section is a reproduction of the original article in the museum forum, see:

https://www.hpmuseum.org/forum/post-139434.html\#pid139434

HP-41C Program / 41CL - DM41X
 (X-functions only needed for memory sizing)

The program uses the formula: $\quad \pi=2+1 / 3^{*}\left(2+2 / 5^{*}\left(2+3 / 7^{*}(2+\ldots\right.\right.$
n decimal precision obtained after $\operatorname{INT}(\mathrm{n} / \log (2))$ iterations

Data stored as $x x x x x . x x x x x$ - calculations done with 5 digits at a time. The fractional and integer part of the store number are separated and processed separately. The program is longer and slower as a result but memory use is maximized. Every iteration of i runs the multiplication by i from Rmax down to $R 03$ and then the division by $2 i+1$ from R03 to Rmax.

Memory Usage

R00: indirect addressing register
R01: i, starting at $\operatorname{INT}(\mathrm{n} / \log (2))$ and decreasing to 1
R02: number of last register of data
R03: x.xxxxx
R04 = Rmax: $x x x x x . x x x x x \quad$ (Rmax: last register of data)

Instructions

Nb of decimals desired (multiple of 10) XEQ "PI"
When the program ends (with a BEEP), the approximation of is stored in $R 03 \sim R m a x-n b$ of decimals $=$ number of decimals desired +5

Benckmarking:-
Notable absence is the V41 - TURBO test case, which of course will perform as good as the hosting PC machine is capable of performing.

Starting with the plain configuration:

HP-41C

\# of Digits	\# of iteration	\# of registers	Time	Time (s)
15	49	2	$5 \min 46 \mathrm{~s}$	346 s
25	83	3	$14 \min 15 \mathrm{~s}$	855 s
45	149	5		
105	348	11	3 hrs 28 min 49 s	$12,529 \mathrm{~s}$

HP-41CL - TURBO50 Mode

\# of Digits	\# of iteration	\# of registers	Time	Time (s)
15	49	2	23 s	23 s
25	83	3	54 s	54 s
45	149	5	$2 \min 32 \mathrm{~s}$	152 s
105	348	11	12 min 21 s	741 s
255	847	26	$1 \mathrm{hr} 09 \min 25 \mathrm{~s}$	$4,165 \mathrm{~s}$

SWISSMICROS DM41X - Battery Power (${ }^{*}$)

\# of Digits	\# of iteration	\# of registers	Time	Time (s)
15	49	2	28 s	28 s
25	83	3	$1 \min 6 \mathrm{~s}$	66 s
45	149	5	$3 \min 6 \mathrm{~s}$	186 s
105	348	11	$15 \min 9 \mathrm{~s}$	909 s
255	847	26	$1 \mathrm{hr} 25 \min 16 \mathrm{~s}$	$5,116 \mathrm{~s}$

(*) printer module unplugged

SWISSMICROS DM41X - USB Power (*)

\# of Digits	\# of iteration	\# of registers	Time	Time (s)
15	49	2	12 s	12 s
25	83	3	26 s	26 s
45	149	5	$1 \min 9 \mathrm{~s}$	69 s
105	348	11	$5 \min 23 \mathrm{~s}$	323 s
255	847	26	$29 \min 27 \mathrm{~s}$	$1,767 \mathrm{~s}$

$\left(^{*}\right)$ printer module unplugged

Note: the printer module on the DM41X slows down the calculation significantly. For example, the calculation of 15 digits takes 74 seconds with the printer module plugged in, and just 28 seconds without it

Program Listing

Pi Decimals for the HP-41 (by Jean-Marc Baillard) http://hp4lprograms.yolasite.com/pi.php

Overview

You place a positive integer n < 319 in the X-register, and your HP-41 returns 5.n decimals of PI , that is 5 -digits per register up to 319 registers max or 1,595 digits.

Formula:

$$
\pi=2+(1 / 3)(2+(1 / 5)(2+(3 / 7)(2+\ldots \ldots .(2+k /(k+1)) \ldots .)))
$$

Program Listing

125 bytes / SIZE nnn+1

Data Registers: $\quad \mathrm{R} 00=\mathrm{n}$;
$\{\mathrm{R} 01 \ldots \mathrm{Rnn}\}=$ the decimals of PI in groups of 5 digits.
Flags: /
Subroutines: /

01 LBL "PIDIG"	17 E5	33	+	49	MOD	65	STO IND Z
02 CLRG	18 STO O	34	STO P	50	ST- Y	66	RDN
03 STO 00	19 ISG N	35	MOD	51	$X<>Y$	67	ISG Y
045	20 LBL 01	36	ST- 01	52	LASTX	68	GTO 02
05 *	21 RCLM	37	LASTX	53	/	69	DSE N
062	22 RCL O	38	ST/ 01	54	RCL O	70	GTO 01
07 LOG	$23 \mathrm{ST}+\mathrm{X}$	39	CLX	55	$\mathrm{ST}^{*} \mathrm{Z}$	71	E5
08 /	24 RCL 01	40	RCL O	56	$X>Y$?	72	ST+ 01
09 INT	$25+$	41	*	57	GTO 03	73	ST+ 01
10 STO N	26 RCL N	42	LBL 02	58	ST- Y	74	ST/ 01
112	27^{*}	43	RCL IND Y	59	SIGN	75	RCL 00
12 RCL 00	28 STO 01	44	RCL N	60	ST- T	76	0.1
13 E3	29 LASTX	45	*	61	ST+ IND T	77	\%
14 /	$30 \mathrm{ST}+\mathrm{X}$	46	+	62	$\mathrm{ST}+\mathrm{T}$	78	ISG X
$15+$	31 ENTER	47	RCL X	63	LBL 03	79	CLA
16 STO M	32 SIGN	48	RCL P	64	RDN	80	END

STACK	INPUT	OUTPUT
X	$\mathrm{n}<319$	$1 . \mathrm{nnn}$

Example1: Calculate $5 \times 8=40$ decimals of PI

$$
8, \text { XEQ "PIDIG" =>>> } 1.008 \quad---E x e c u t i o n ~ t i m e ~=11 \mathrm{~m} 14 \mathrm{~s}---
$$

-And we find in registers R01 thru R08: (add zeros on the left if need be)

$$
3.1415926535897932384626433832795028841971
$$

All these decimals are exact !

Example2: Calculate $5 \times 318=1590$ decimals of PI

SIZE 319
318 XEQ "PIDIG" =>>>> 1.318 ---Execution time = 27m20s---
With V41 in Turbo Mode
And we get in registers R01 thru R318: (add zeros on the left if need be)
3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534211 70679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489 54930381964428810975665933446128475648233786783165271201909145648566923460348610454326648213393 60726024914127372458700660631558817488152092096282925409171536436789259036001133053054882046652 13841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857 52724891227938183011949129833673362440656643086021394946395224737190702179860943702770539217176 29317675238467481846766940513200056812714526356082778577134275778960917363717872146844090122495 34301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113 49999998372978049951059731732816096318595024459455346908302642522308253344685035261931188171010 00313783875288658753320838142061717766914730359825349042875546873115956286388235378759375195778 18577805321712268066130019278766111959092164201989380952572010654858632788659361533818279682303 01952035301852968995773622599413891249721775283479131515574857242454150695950829533116861727855 88907509838175463746493931925506040092770167113900984882401285836160356370766010471018194295559 61989467678374494482553797747268471040475346462080466842590694912933136770289891521047521620569 66024058038150193511253382430035587640247496473263914199272604269922796782354781636009341721641 21992458631503028618297455570674983850549458858692699569092721079750930295532116534498720275596 0236480665499119881834797753566369807426542527862551818417574672890977

The Decimals of PI/E for the HP-41 (by Eckard Gehrke)

This section is a direct translation from the relevant sections of the chapter in the book "HP-41
Samm/ung', pages 65, 66 and following. Vieweg Programmbibliothek \#23.

3.3 The calculator program

The HP-41CV programmable calculator is used for the calculation. The HP-41 works with the RPN system, which is based on a bracket-free representation of all operations.

The HP-41 cannot define variables. It has numbered memories. A call is made with RCL nm, with a STO nm the number a is stored in register nm. For the used R00 holds i, R01 and R02 are needed for the loop counter j. 0 is stored in R03 and DR in R04. The following 81 memories R05-R85 form ["R1"]

In these registers the successive elements are summed up to the registers R86-R166 (R2) take in (b n), the division with D is handled in the registers R167-R247.

The addressing of these registers is done indirectly with R 01 and R 02 . For the subroutines addition and subtraction, the registers of R1 are called with RCL IND 01, those of R3 with RCL IND 02. The calculation of R 01 and $R 02$ is done in the subroutine loop counter. Only R 01 is needed for division. The register R0 (J) takes the remainder Registers. Register M ([) and N (\backslash) are intended for ["M"] and ["N"] respectively.

The HP-41 can only jump to marks ("labels"). These are indicated in the diagrams with circles. For the labels NFG, ADD, DIV and SUB the labels 02, 03, 06 and A are used. Subroutines are executed with XEQ. On an RTN, the computer returns to the line following the subroutine call. Simple jumps are made with GTO.

For questions answered "no", the computer skips a line. The loop control is done with ISG and DSE. For i the result is: R 00 has the initial value $1.081(a, b)$. If the computer comes to an ISG instruction, a is increased by 1: 2.081. If $a>b$, the computer skips one line. With a DSE instruction, a is decreased by 1 . If $a<b$, one line is line is skipped.

With the help of lines 02-05 the calculator shows during the calculation
"PI=?" in the display. The rest of the program can be with the diagrams and the remarks on the basis of the commented program printout. program printout. To save memory space during the calculation, the output program has been separated. First the last digit is rounded, with LBL 00 the output begins the output. A diagram is not given for this.

With SIZE 248 the memory registers are reserved. The display format must be set to FIX 0 . With XEQTPI the program is started. In the following 33.4 hours the HP-41 calculates 800 decimals of pi. For this purpose, 580 subsequent elements an/D and 180 subsequent elements bn/D are calculated. The calculator switches on.

The number Pi program is then switched off. After switching on, SIZE 087 is used to create memory space for the output program. After reading in it is started with XEQ "OUT". When the printer is switched on, the following result is obtained:

Pi accurate to 800 decimals

3,141592653	0454326648
5897932384	2133936072
6264338327	6024914127
9502884197	3724587006
1693993751	6063155881
0582097494	7488152092
4592307816	0962829254
4062862089	0917153643
9862803482	6789259036
5342117067	0011330530
9821480865	5488204665
1328236664	2138414695
7693844609	1941511609
5505822317	4330572703
2535940812	6575959195
8481117450	3092186117
2841027019	3819326117
3852110555	9310511854
9644622948	8074462379
9549303819	9627495673
6442881097	5188575272
5665933446	4891227938
1284756482	1830119491
3378678316	2983367336
5271201909	2440656643
1456485669	0860213949
2346034861	4639522473

7190702179 8609437027 7053921717 6293176752 3846748184 6766940513 2000568127 1452635648 2778577134 2757789609 1736371787 2146844090 1224953430 1465495853 7105079227 9689258923 5420199561 1212902196 0864034418 1598136297 7477130996
0518707211
3499999983 7297804995 1059731732
8160963186

The Number e

Let $\mathrm{e}(\mathrm{n})=\Sigma 1 / \mathrm{k}$!, with $\mathrm{k}=0$ to n .
Then $|\mathrm{e}-\mathrm{e}(\mathrm{n})|<\varepsilon$ is valid with $\varepsilon=(\mathrm{n}+2) /(\mathrm{n}+1) /(\mathrm{n}+1)$!. For $\varepsilon=10^{\wedge}(-3002)$ one obtains $\mathrm{n}=1143$.
If one modifies the indicated procedure, one can achieve with the following algorithm that only the division subroutine and a register block are required.

The register assignment was made as follows: R00-R301 (R1) contain e. The index j is stored in M ($[$), the divisor $\mathrm{DR}=\mathrm{n}$ in $\mathrm{N}(\backslash)$. $\mathrm{R} 0(\mathrm{~J})$ takes up the remainder RE . The registers $\mathrm{P}(\wedge)$ and a serve as temporary storage.

After a SIZE 302 the program can be started with XEQ "ZAHLE". After 6d 8h 24min the calculation is finished. The program OUT serves as output program. It can be loaded into the computer only after the program ZAHLE has been deleted. The addresses must be adapted to the register assignments. It results for $\mathrm{e}:=2,718281828$.

Program listing.

01*LBL "PIZHAL"	47 XEQ 02	93 RND	$139+$
02248	48 XEQ 03	94 E1	140 LASTX
03 PSIZE	49 RCL 00	95 *	141 -
04 "PI=?"	5085	$96 \mathrm{X}<>\mathrm{Y}$	142 E
05 RCL d	$51+$	97 E1	$143 \mathrm{X}=\mathrm{Y}$?
06 AVIEW	52 RCL IND X	98 *	144 ST- IND 01
07 STO d	53 XHO ?	99 -	145 RCL T
08 CLRG	54 GTO 01	100 ST- IND 01	$146 \mathrm{X}<>0$
09 SF 00	55*LBL 02	101 SF 02	147 E10
10 E	56 SF 01	102*LBL 05	148 *
11 STO 03	57 XEQ 06	103 E	149 RCL 04
128 E10	58 CF 21	104 ST- 01	150 MOD
13 STO 86	59 RCL 03	1050	151 ST+ O
141.081	60 STO 04	106 STO IND 02	152 RCL 04
15 STO 00	61 XEQ 06	107 DSE 02	153 /
16*LBL 00	622	108 GTO 04	154 RCL N
1725	63 ST+ 03	109 RTN	155 +
18 STO 04	64 RTN	110*LBL 06	156 LASTX
19 XEQ 02	65*LBL 03	111 CLA	157 -
20 XEQ 03	66 CF 02	112166.166	158 E
2125	67 XEQ B	113 RCL 00	$159 \mathrm{X}=\mathrm{Y}$?
22 STO 04	68*LBL 04	114 FS? 01	160 ST- IND 01
23 XEQ 02	600	11585.085	161 RCL O
24 XEQ A	70 FS ?C 02	116 +	162 RCL 04
25 RCL 00	71 E	117 STO 01	$163 \mathrm{X}>\mathrm{Y}$?
2685	72 ST+ IND 02	118*LBL 07	164 GTO 08
27 +	73 RCL IND 02	119 RCL IND 01	165 MOD
28 RCL IND X	74 RCL IND 01	120 RCL 04	166 STO O
29 XHO ?	75 STO M	121 /	167 E
30 GTO 00	76 +	122 INT	168 ST+ IND 01
31 ISG 00	77 STO IND 01	123 STO M	160*LBL 08
32 GTO 00	78 E10	124 RCL O	170 FC? 01
33 CF 00	$79 \mathrm{X}>\mathrm{Y}$?	125 E10	171 GTO 10
34 E	80 GTO 05	126 *	172 FC? 00
35 STO 03	81 ST- IND 01	127 RCL 04	173 GTO 09
369.56 E11	82 RCL IND 02	128 /	174 RCL IND 01
37 STO 86	83 E1	129 INT	175 X\#0?
381.081	84 /	130 STO N	176 GTO 09
39 STO 80	85 FRC	$131+$	177 FS?C 02
40*LBL 01	86 RCL M	132 X<> IND 01	178 RTN
4157121	87 E1	133 RCL 04	179 SF 02
42 STO 04	88 /	134 MOD	180*LBL 09
43 XEQ 02	89 FRC	135 STO Z	181 RCL 01
44 XEQ A	$90+$	136 RCL 04	18281
4557121	91 FRC	137 /	183 +
46 STO 04	92 ENTER^$^{\wedge}$	138 RCL M	184 RCL IND 01

185 STO IND Y	1960	207 ST+ IND 01	218 RCL 00
186*LBL 10	197 FS?C 02	208 SF 02	219 INT
187 ISG 01	198 E	209*LBL 12	220 E3
188 GTO 07	199 -	210 E	221 /
189 RTN	200 RCL IND 02	211 ST- 01	22285.003
190*LBL A	201 -	2120	223 +
191 CF 02	202 STO IND 01	213 STO IND 02	224 STO 01
192 XEQ B	2030	214 DSE 02	225162.162
193*LBL 11	$204 \mathrm{X}<=\mathrm{Y}$?	215 GTO 11	226 +
194 RCL IND 01	205 GTO 12	216 RTN	227 STO 02
195 FC? 02	206 E10	217*LBL B	228 END

01*LBL "EZHAL"	32 MOD	63 MOD	$16 \mathrm{E9}$
02302	33 STO Z	64 STO O	17 /
03 PSIZE	34 RCL N	65 E	18 ARCL X
04 CLRG	35 /	66 ST+ IND M	19 AVIEW
051143	36 RCL ^	67*LBL 02	20 FIX 0
06 STO N	$37+$	68 ISG [21 CF 29
07 E	38 LASTX	69 GTO 01	226.084
08 STO 00	39 -	70 E	23 STO T
09*LBL 00	40 E	71 ST+ 00	24*LBL 01
10.301	$41 \mathrm{X}=\mathrm{Y}$?	72 ST- \}	25 RCLT
11 STO M	42 ST- IND M	73 RCL \}	26 STO T
120	43 RCL T	$74 \mathrm{X}>0$?	27 CLA
13 STO O	$44 \mathrm{X}<>0$	75 GTO 00	28 "0000"
14*LBL 01	45 E10	76 OFF	29 ARCL IND T
15 RCL IND M	46 *	77 END	30 RCL M
16 RCL N	47 RCL N		310
17 /	48 MOD	01*LBL "OUT"	32 STO M
18 INT	$49 \mathrm{ST}+0$	02 RCL 85	33 "^^^^^"
19 E10	50 RCL N	$03 \mathrm{E9}$	34 STO O
$20 \mathrm{X}<>\mathrm{Y}$	$51 /$	04 /	35 "^^^^"
21 STO P	52 RCL a	05 INT	36 RCL O
$22 \mathrm{X}<>\mathrm{Y}$	$53+$	064	37 CLA
23 RCL M	54 LASTX	$07 \mathrm{X}>\mathrm{Y}$?	38 STO M
24 *	55 -	08 GTO 00	39 "^^^^^^^^"
25 RCL N	56 E	$09 \mathrm{E9}$	$40 \mathrm{X}<>\mathrm{Z}$
26 /	$57 \mathrm{X}=\mathrm{Y}$?	10 ST+ 84	41 STO M
27 INT	58 ST- IND M	11*LBL 00	42 AVIEW
28 STO a	59 RCL O	12 CF 28	43 ISG T
$29+$	60 RCL N	13 FIX 9	44 GTO 01
$30 \mathrm{X}<>$ IND M	$61 \mathrm{X}>\mathrm{Y}$?	14 CLA	45 CLST
31 RCL N	62 GTO 02	15 RCL 05	46 END

Appendix. A few MCODE Listings.

1. Liu Hui formula.

2. Ramanujan 10-digit formula.

Header	ACBB	OBO	"0"	
Header	ACBC	$\bigcirc 31$	"1"	Ramanuian Approximation
Header	ACBD	001	"A"	correct to 10 decimal digits
Header	ACBE	OOD	"M"	
Header	ACBF	$\bigcirc 01$	"A"	
Header	ACCO	012	"R"	Ángel Martin
RAMA10	ACC1	18C	?FSET 11	
	ACC2	SB5	?CXQ	Stack lift
	ACC3	051	$\rightarrow 14 E D$	[R_SUB]
	ACC4	2 AO	SETDEC	
	ACC5	04E	$\mathrm{C}=0 \mathrm{ALL}$	
	ACC6	35C	$\mathrm{PT}=12$	
	ACC7	ODO	LD@PT-3	$C=3 E-4$
	ACC8	130	LDI S\&X	
	ACC9	096	CON:	
	ACCA	$2 \mathrm{B6}$	$\mathrm{C}=-\mathrm{C}-1 \mathrm{XS}$	
	ACCB	10E	A $=$ C ALL	
	ACCC	04E	$\mathrm{C}=0 \mathrm{ALL}$	
	ACCD	2BE	$\mathrm{C}=-\mathrm{C}-1 \mathrm{MS}$	
	ACCE	35 C	$\mathrm{PT}=12$	
	ACCF	ODO	LD@PT-3	
	ACDO	150	LD@PT-5	$C=-3533$
	ACD1	ODO	LD@PT-3	
	ACD2	ODO	LD@PT-3	
	ACD3	130	LDI S\&X	
	ACD4	003	CON:	
	ACD5	261	?NCXQ	
	ACD6	060	->1898	[DV2 10]
	ACD7	001	?NCXQ	
	ACD8	\%60	->1800	[ADDONEI
	ACD9	04E	C=0 ALL	
	ACDA	130	LDI S\&X	$C=355$
	ACDB	355	CON:	
	ACDC	07C	RCR 4	
	ACDD	13 D	? N C XQ	
	ACDE	1060	->184F	[MP1_10]
	ACDF	04E	C=0 ALL	
	ACEO	130	LDI S\&X	$C=113$
	ACE1	113	CON:	
	ACE2	07C	RCR 4	
	ACE3	269	PNC XQ	
	ACE4	1060	$->189 \mathrm{~A}$	[DV1 10]
	ACE5	OE8	WRIT 3(X)	
	ACE6	3C1	?NC GO	Normal Function Return
	ACE7	O02	\rightarrow OOFO	[NFRPU]

3. Viete's Formula. (next page)

HP- PIE MODULE QRG

4. From Pi to e.

HP- PIE MODULE QRG

	A85B	121	$\begin{aligned} & \text { PNC XQ } \\ & ->1 B 48 \end{aligned}$	[LN13]
	A85D	089	?NCXQ	
	A85E	\%64	->1922	[STSCR]
	A85F	OOE	A $=0 \mathrm{ALL}$	clears MS and S\&X
	A860	269	? $N C$ XQ	Puts $p / 2$ in $\{M, C\}$
	A861	064	->199A	[PI/2]
	A862	1EE	$\mathrm{C}=\mathrm{C}+\mathrm{C}$ ALL	pi in $\{M, C\}$
	A863	OEE	B \gg C ALL	moves it over to B
	A864	239	? NC XQ	1/ π
	A865	O60	$\rightarrow 188 \mathrm{E}$	ION/X13
	A866	OD1	? $N C$ XQ	
	A867	064	->1934	[RCSCR]
	A868	149	PNCXQ	
	A869	O60	->1852	[MP2-13]
	A86A	035	? ${ }^{2}$ C XQ	final result
	A86B	,068	$->1 A 0 D$	[EXP13]
	A86C	OE8	WRIT 3(X)	
	A86D	$3 \mathrm{C1}$?NC GO	Normal Function Return
	A86E	O02	->00FO	[NFRPU]
	A86F	000	NOP	
INIT	A870	18C	?FSET 11	
	A871	$3 B 5$? $C \times Q$	Stack lift
	A872	051	$\rightarrow 14 E D$	[R_SUB]
	A873	2 Ag	?NCXQ	Show "RUNNING" - leaves F8 as-i
	A874	13 C	- 3 4FAA	[RUNMSG]
	A875	1 AO	$\mathrm{A}=\mathrm{B}=\mathrm{C}=0$	zero trinity
	A876	070	$\mathrm{N}=\mathrm{C}$ ALL	$\mathrm{k}=0$
	A877	2AO	SETDEC	
	A878	001	?NCGO	iniital sum = 1
	A879	062	->1800	[ADDONEI

TOLER4	TOLER4	4AD4	01 E	A $=0 \mathrm{MS}$	absolute value
		4AD5	2A0	SETDEC	
expects error value stored		4AD6	04E	$\mathrm{C}=0 \mathrm{ALL}$	$C=-1 \mathrm{E}-9$
in $\{A, B\}$ in 13-digit form		4AD7	2BE	$\mathrm{C}=-\mathrm{C}-1 \mathrm{MS}$	
		4AD8	35 C	PT=12	
TOLER4		4AD9	050	LD@PT-1	
TOLER4		4ADA	266	$\mathrm{C}=\mathrm{C}-1$ S\& x	
TOLER4		4ADB	39 C	$\mathrm{PT}=0$	
TOLER4		4ADC	050	LD@PT-1	
TOLER4		4ADD	O25	?NCGO	
TOLER4		4ADE	Y62	$\rightarrow 1809$	[AD1 10]

5. Wallis Formula (next page)

HP- PIE MODULE QRG

5. From e to pi

Header Header Header Header	A87A A87B A87C A87D	$\begin{aligned} & \text { V089 } \\ & \mathbf{V}_{010} \\ & \mathbf{V}_{032} \\ & \mathbf{V}^{205} \end{aligned}$	$\begin{gathered} \text { " } " \\ \text { "P" } \\ " 2 " \\ " "^{\prime \prime} \\ \hline \end{gathered}$	Ángel Martin
E2PI	A87E	379	PORT DEP:	shows "RUNNING"and init vars
	A87F	O3C	$X Q$	1 in $\{A, B\}, O$ in N
	A880	070	->A870	IINITI-- lifts stack, sets DEC
	A881	035	?NCXQ	
	A882	068	$\rightarrow 1 A 0 D$	[EXP13]
	A883	OE8	WRIT 3 (X)	10-digit e
	A884	089	?NCXQ	e as 13-digit value
	A885	064	->1922	[STSCRI
	A886	001	?NCXQ	$e+1$
	A887	060	->1800	LADDONEI
	A888	OA9	?NCXQ	e
	A889	O64	$->192 \mathrm{~A}$	[EXSCR] - $\{A, B\} \leqslant->\{Q+\}$
	A88A	009	?NCXQ	$e-1$ in $\{A, B\}$
	A88B	060	->1802	SSUBONEI
	A88C	OD1	?NCXQ	$e+1$ to $\{C, M\}$
	A88D	064	->1934	[RCSCR]
	A88E	275	?NCXQ	(e-1)/(e+1)
	A88F	060	->189D	[DV2-13]
	A890	070	$\mathrm{N}=\mathrm{CALL}$	required by [ATAN1]
	A891	13 C	$S T=0$	skips [TRGSET]
	A892	\% 048	SETF 4	result in RAD
	A893	205	?NCXQ	it uses [SCR] as well
	A894	040	$\rightarrow 1081$	IATAN11.
	A895	2BE	$\mathrm{C}=-\mathrm{C}-1 \mathrm{MS}$	sign change
	A896	070	$\mathrm{N}=\mathrm{C}$ ALL	store it in N
	A897	OF8	READ 3(X)	e
	A898	OFO	$C<>N$ ALL	required by [ATAN1]
	A899	OE8	WRIT 3(X)	
	A89A	OBO	$\mathrm{C}=\mathrm{N} A L L$	
	A89B	, 3C4	$S T=0$	skips [TRGSET]
	A89C	048	SETF 4	result in RAD
	A89D	205	?NCXQ	it uses [SCR] as well
	A89E	040	->1081	[ATAN1]
	A89F	11E	$\mathrm{A}=\mathrm{C} M \mathrm{~S}$	bug or what?
	A8A0	OF8	READ 3(X)	
	A8A1	025	?NCXQ	2+result(k)
	A8A2	060	->1809	[AD1-10]
	A8A3	04E	$\mathrm{C}=0 \mathrm{ALL}$	
	A8A4	35 C	$\mathrm{PT}=12$	$C=4$
	A8A5	110	LD@PT-4	
	A8A6	13 D	?NC XQ	
	A8A7	060	->184F	[MP1 10]
	A8A8	OE8	WRIT 3 (X)	
	A8A9	$3 C 1$?NC GO	Normal Function Return
	A8AA	O02	\rightarrow OOFO	[NFRPU]

6. Erdós-Borwein constant.

