
PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 1 of 110 April 2014

System Extensions for the 41CL
Revision – M

User’s Manual and QRG.

Written and Programmed by Ángel M. Martin

April 2014

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 2 of 110 April 2014

This compilation revision 4.W.7.7

Copyright © 2012 -2014 Ángel Martin

Published under the GNU software licence agreement.

Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

CLWRITE Source Code written by Raymond Wiker.

Cover and inside graphic from Personal Brain 7.1, see http://www.thebrain.com/
Inside photos © Geoff Quickfall; Jürgen Keller, 2011

Acknowledgments.- This manual and the POWERCL module would obviously not exist without the
41CL. Many thanks to Monte Dalrymple for the development of the amazing CL board.

Everlasting thanks to the original developers of the HEPAX and CCD Modules – real landmark and
seminal references for the serious MCODER and the 41 system overall. With their products they
pushed the design limits beyond the conventionally accepted, making many other contributions pale
by comparison.

http://www.hp41.org/
http://www.thebrain.com/

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 3 of 110 April 2014

Table of Contents.

1. Introduction

1.1. Preamble: Fatter than FAT! 5
1.2. Introduction. 6
1.3. Page#4 Library and Bank-Switching 6
1.4. The PowerCL Overlay 7
1.5. Plugging the POWER_CL module 8
1.6. The Functions at a glance 9

2. The functions in detail

2.1 Function Launchers 15
2.2 Plugging and Unplugging 17
2.3 The “Last Function” 19
2.4 Extended XEQ 21
2.5 Sub-function Groups and FATs 23
2.6 Catalogues and CATalogs 25
2.7 Buffer Catalog 26
2.8 Interrogating the MMU 28
2.9 Page Catalog 29
2.10 A wealth of a Library 30

3. HEPAX and Security

3.1. Configuring the HEPAX system 33
3.2. HEPAX chain alteration 36
3.3. Page-Plug Functions 37
3.4. Using Page Signatures as input 39
3.5. Security Functions 41
3.6. Encrypting RAM contents 42

4. Advanced Territory

4.1. Leftover YFNS functions 43
4.2. Image Database functions 45
4.3. Y-Input and Y-Reset 46
4.4. Using Page #4 47
4.5. Editing RAM areas with RAMED 48
4.6. Editing ROM areas with ROMED 49
4.7. Quick & Dirty sRAM Editor 51
4.8. Moving and Swapping MMU entries 52
4.9. Calculator Flash backup 53

4.10. Downloading ROM images 55

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 4 of 110 April 2014

5. I/O Bus and Page#

5.1 The system as a whole 57
5.2 The pages within 60

6. Strings and Alpha Extensions

6.1 String Manipulation functions 61
6.2. Alpha and Display Utilities 62

7. System Extensions

7.1. X-Memory Utilities 67
7.2. Second Sets of Main and X-Memory 70
7.3. Buffer Handling Utilities 72
7.4. Key Assignment Utilities 74
7.5. Page Functions revisited 75
7.6. XRAY: how big is your lollypop? 76
7.7. Flag handling functions 79
7.8. Other Miscellaneous Utilities 80
7.9. Extra Functions – Con’t. 84

8. Unit Management System

8.1. Constants Library 86
8.2. Unit Conversion Catalog 89
8.3. Unit Conversion Comparison 91
8.4. Farewell. 93

9. Appendixes.

9.1. Summary of ΣCL functionality 95
9.2. Detailed CL ROM id# table 97
9.3. FOCAL Program Listing 102
9.4. MCODE Highlights 103
9.5. Serial Transfers CLWRITE / CLREAD 106
9.6. Checking ROM Configurations 111
9.7. Re-allocating MMU Entries 113
9.8. Breaking the FAT barrier 114
9.9. Dr. Jekyll and Mr. Hyde 117

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 5 of 110 April 2014

Extension Functions for the 41CL

0. Preambles: Fatter that FAT!

This manual covers revision “M” of the PowerCL_4X4 module, an extended implementation with a full
four banks configuration on just a 4k footprint. There are 234 functions and numerous advanced
capabilities packed in this module, ranging from strictly CL-related to practically every other aspect of
the 41 system. This manual should provide utilization instructions for the functions, but not an
exhaustive treatment of the subjects involved. A thorough documentation of every single one would
easily take hundreds of pages and require much more in-depth treatment of the topics.

To access all this many functions they have been structured into sub-function groups, each of them
with an auxiliary FAT. These “hidden” FATs are cleverly interconnected by launchers located in the
main page, real gateways into the bank-switched pages – true parallel dimensions of the module.

All functions are programmable using a non-merged approach, and thus can be called individually –
using their index within the group as a second line parameter for the function launcher. All this
happens automagically when typing the sub-function name, and its complexity is totally transparent
to the user – a beauty to behold.

The programmers of the HEPAX module (real MCODE grand-masters) developed this impressive
technique to overcome the 64-functions limit in the FAT. The same implementation has been used
here, adding further capabilities to the functionality that build upon the original design - making it
easier to use and a little more powerful still.

Broadly speaking this is the breakdown of their contents:

a. The contents of the Main FAT (also known as FAT-0) are essentially the same as in previous
versions of the module, covering the CL-specific functions and some of the most relevant
system extensions – notably the Unit Management System plus a Constants Library.
Prompting functions are also located here. In addition to that, there are three launcher
functions to access the other sub-function groups, both by name and by index within their
FAT. There are a total of 64 functions in FAT-0.

b. The first sub-function group (also known as FAT-1) includes those Y-functions that were

removed from the YFNS module to make room for the new Image Database functions.
Effectively this means you don’t need to choose between the YFNS or the YFNP
configurations, and can have all at once. Also included in this page is a set of extra functions,
many taken from the ToolBox module - general utilities and mixed topics that will be covered
later in the manual. There are a total of 84 functions in FAT-1.

c. The second sub-function group (also known as FAT-2) includes many of the functions from

the Rampage and Alpha modules. By functional area, there are all the buffer management,
Extended Memory enhancements, and of course the Alpha functions group. Also the HEPAXA
function group from the HEPAX module is included – in recognition of the original
masterpiece. There are a total of 86 functions in FAT-2.

It comes without saying that the real challenge lies not in stuffing all that functionality into the banks,
but for it to be useful there must be capable navigation techniques and usability features. Here’s
where the function launchers (XXEQ, XQ1, XQ2, and XFAT) as well as the new FCAT sub-function
catalogues fulfilled the expectation; in their role of master of ceremonies and organizers of the
module - more about this later on.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 6 of 110 April 2014

1. Introduction.

Without a doubt the 41CL can be considered in many accounts to be the pinnacle of the HP-41
system. It comes with a well thought-out function set to manage its capabilities, from the basic to the
more adventurous – which has inspired the writing of yet further extensions to that capable toolset.

This module is designed to enhance and complement the YFNP function set, providing easier access
to the many powerful capabilities of the 41CL platform. Some are function launchers, grouping several
functions by their area of functionality into a single, prompt-driven one – like it’s the case for the
Plug/Unplug functions, the BAUD rate, TURBO and MMU settings functions. A “launcher of
launchers” sits atop these, providing quick access to 75 YFNP and other functions from a single key
assignment.

Some others extend the functionality by providing new features and more convenient alternative to
manual tasks. Examples of these are:

- A fully-featured ROM library catalog system, allowing direct plugging into the port of choice
- The Page plug functions (alternative to the Port ones), including routines to handle page #4.
- HEPAX configuration and set-up, making the HEPAX integration a simple and reliable affair.
- Security functions to password-protect your machine from prying eyes.
- Two powerful RAM and ROM editors, a hacker’s real delight.
- An extended implementation of the Unit Management System, with Electrical units support

and featuring an all-new Constants Library.
- Full Buffer management and Extended Memory enhancements
- And many more!

Other housekeeping functions roundup the set, making for a total of 220 functions tightly packed into
a bank-switched 16k ROM. This was a design criterion, as the small footprint of the module (just one
page, or effectively 4k) makes it ideal to combine with other utility packs, most notoriously the CCD
OS/X (or its alter-ego AMC OS/X) for the ultimate control - so save some honorable exceptions there
is no duplication between the two.

Page#4 Library and Bank-Switching.

The first thing to say about the POWER_CL module is that - being based on the CL_UTILS revision 4H
- it extensively uses routines and functions from the Page#4 Library. Make sure the Library#4 revision
“L” (or higher) is installed on your system or things can go south. Refer to the Page#4 Library
documentation to properly configure the Library#4 before you start using it.

Plugging the Library#4 on the CL is done using YPOKE to directly write its image location in the MMU
register for page#4. Assuming the library image is loaded at location 0x83F in sRAM, the syntax is:

enter “804040-883F” in ALPHA, then execute YPOKE.

This module is, to the author’s knowledge, one of the very few ones using bank switching. The idea of
using an auxiliary bank originated from the usage of the very long ROM image internal table required
by CLLIB and ROMLIB. Even after completing the page#4-aware version of CL_UTILS, it was clear
that a bank-switching version would be the ultimate solution, which has also enabled an enhanced
implementation of the Unit Management System (UMS) to be included.

Version 4B doubled the number of banks (expanding from 2 to 4), and added the sub-functions
launchers, FAT catalogs, and many other functions to the list – touching a large variety of functional
areas: Buffer management, Extended Memory enhancements, Alpha functions, HEPAX functions, and
last but certainly not least all those Y-functions removed from the YFNP module.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 7 of 110 April 2014

The main launcher ΣCL has been tweaked to also connect with the FAT groups via the dedicated sub-
function catalogs and launchers: XQ1, XQ2, XXEQ and XFAT – enough to make your head spin but
yet easy to grasp. We can say this is the all-wheel drive version, 4x4 – with the four banks using the
Library#4. Bank switching is managed behind the scenes by the launchers. Each function is
responsible for returning to Bank-1 upon completion. The user needs not be concerned with all this
power and simply use it seamlessly.

The PowerCL Overlay.

To facilitate usage of the functions their launchers have been arranged taking the first letter of the
name as the designated key to invoke and execute them. This is easier to remember than other
approaches; even if those hot keys are not grouped together in contiguous locations (like say, the two
top keys). An overlay is therefore just an additional convenience more than a necessity - but here it is,
in case you fancy those over the prompting cues.- The overlay shows all functions available at the
ΣCL prompt – with only one key assignment required.

• Function names on dark grey background (keys with red circle around them) represent the

main launchers. Each of them will present further options in its prompt, as will be described
later in the manual.

• Function names on standard black background are available as individual options due to their
frequent need (for a power user). Some of them are also included in the launcher prompts for
additional convenience.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 8 of 110 April 2014

Plugging the POWER_CL module.

Being a bank-switched module, there are four 4k-blocks involved: all four banks need to be loaded
using the “-16K” control string in the PLUGxx function input in ALPHA, Whether you use a copy in
sRAM or it’s already burned in FLASH, make sure that the four banks occupy contiguous blocks, or the
PLUGxx command will not work properly.

For example, assume the banks are copied into locations 0x840 to 0x843 on the V3 CL board (any
other group of contiguous addresses will also work, even in V2 systems). Then this will be the syntax
required to plug it in page #9:

Enter “840-16K” in ALPHA, then execute PLUG1U

You can also use PLUGH or PLUGP on V3/V4 CL boards, (obviously without a Printer or the HP-IL
connected) as the module is designed to be completely compatible with those system locations.

Using the new Image Database functions.

To create a new entry in the IMDB for POWERCL you can use function IBDMINS, once the four
banks are loaded in sRAM. You’ll need to provide an address and mnemonic, making sure you specify
the “–16k” type. Refer to the CL manual for instructions and the proper syntax.

Version V4 of the CL board comes with the POWERCL module burned in flash, thus can be plugged in
simply by using its mnemonic “PWCL” in ALPHA and the PLUGxx function. Note that this will NOT
take care of the Library#4 dependency, which you’ll have to do manually as well.

WARNING: Be aware of the dependency with the Library#4, which requires it to also be configured
for the proper operation of the functions. Failure to do this will cause surely unexpected and likely

unpleasant results. Refer to the Library#4 documentation for details.

WARNING: POWER_CL is designed to work best paired with YFNP. If the IMDB functions are not
required, then the XROM #15 version of YFNZ will also work for the most part.

A word of caution.

As wise men remind us, “with power comes responsibility”. Indiscriminate usage of some of these
functions can have unpleasant consequences, ranging from unexpected results and easy-to-recover
machine lock-ups to more serious ones, losing HEPAX data. Functions have some built-in protection to
ensure that they’re used properly, but they are not absolutely foolproof in that such protection can
always be circumvented. So beware, and as general rule “if you don’t understand something, simply
don’t use it”.

To assist you with this, the more dangerous functions are marked with WARNING signs all
throughout this manual. Avoid them if you’re not absolutely sure that you know what they are for, and
fully understand their operation. Note that the flash back-up functions are back in. They were
available in the CL_UTILS module but were removed in a previous version of the PowerCL_BS. Notice
that the hard-coded addresses used now are incompatible with V1/V2 revisions of the CL board - They
may be too risky for casual users; so be forewarned! And always follow the “better safe than sorry”
rule.

It had to be said – so now that we got it out of the way we’re ready to dive into the POWERCL
description and usage example. May you have a nice ride!

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 9 of 110 April 2014

Function index t a glance.

Without further ado, here are all POWERCL functions, in the three FATs.

Function Description Inputs Output

1 ΣCL _ Main CL Global Launcher Prompts "B:C:H:I:M:P:T:U" Launches selected Launcher
2 ADRID ROM id# from address Flash addr in Alpha ROM ID in Alpha
3 BAUD _ Baud functions launcher Prompts "1:2:4:9:I:M:X" Launches selected function
4 CLLIB _ ROM Library Alphabetical Prompts "A‐Z" Starts listing at selected letter
5 DLD48 Download at 4800 baud Destination address ROM downloaded from PC
6 HEPINI _"_ HEPAX FileSys Init Prompts for values Iinitializes HEPAX File System
7 HEPAX _ HEPAX Launcher Prompts "4:8:6:I:D" Launches selected function
8 HPX4 _ HEPAX Config 4k ‐ CL Prompts for page# Configures 4k HEPAX on CL
9 HPX8 _ HEPAX Config 8k ‐ CL Prompts for page range Configures 8k HEPAX on CL
10 HPX16 _ HEPAX Config 16k ‐ CL Prompts for page range Configures 16k HEPAX on CL
11 IMDB _ IMDB Launcher Prompts "A:C:I:F:R:U:?" Launches selected function
12 MMU _ MMU functions launcher Prompts "C:D:E:G:T:?" Launches selected function
13 MMUCAT MMU Catalog None Sequential list of MMU Entries
14 PLUG _ PLUG functions launcher Prompts for location ROM with ID in ALPHA is plugged
15 PLUGG _ Plug Page Prompts for page Plugs ROM in page
16 PLUGG? _ Page Location MMU Prompts for page Content of MMU entry for page
17 PPG#4 _ Page#4 Plug Prompts "F:L:S" Selected ROM plugged
18 ROMLIB _ ROM Library by type Prompts "E:F:G:M:U:X" Sequential list of ROMs by type
19 SECURE Enable password lock None Sets SECURE mode ON
20 TURBO _ TURBO functions launcher Prompts "X:2:5:1:0:,:?" Launches selected function
21 UNLOCK disable password lock Asks for password Sets Secure mode OFF
22 UPPG4 Clears MMU entry for page #4 None MMU entry cleared
23 UPLGG _ UPLUG page Prompts for page "6‐F" Unplugged if present
24 UPLUG _ UPLUG functions Launcher Prompts for location Location is removed from MMU
25 UPLUGA UPLUG by Alpha Page Revision in Alpha Unplugged if present
26 XCAT _ Xtended CATalogs Prompts: "B:F:H:K:L:M:U" Launches selected function
27 XPASS change password Asks old/new passwords Password is changed
28 YBUF _ Ybuffer Launcher Prompts "B:O:E:D:I:T:?" Launches selected Launcher
29 YCRYPT En/Decrypts RAM content Prompts in program RAM contents scrambled/restored
30 YEDIT _ CL sRAM Editor Prompts for start address reviews & edits word values
31 FOG En/Decrypts Page adr in X (NNN), Pwd in ALPHA En/Decrypts pg content
32 YINPT _ Y Input Prompts for characters HEX entry plus control chrs
33 YMOVE Moves MMU Entry FROM: in Y, TO: in X Moves the MMU to TO: page
34 YSWAP Swaps MMU Entries FROM: in Y, TO: in X Swaps the MMU between pages
35 YRALL Y‐Read‐ALL None Reads Calculator/MMU from Flash
36 YWALL Y‐Write‐ALL None Writes Calculator/MMU to Flash

37 ‐SYS/EXT Section Header / DTOA Text in Display Writes text to ALPHA

38 A<>RG _ _ Swap ALPHA and Registers Register in prompt Data swapped
39 ASG _ Multi‐byte ASN Prompts for mnemonic Assignment is made
40 BFCAT Buffer Catalog None Shows present buffers
41 CPYPG _ _ Copy Page FROM: in X, TO: in prompt Copies page from/ to
42 FDATA _ Function Data Prompts for FNAME Fnc. Data in Alpha
43 HEXKB _ HEX Keyboard Prompts for entry Codes NNN in X, string in Alpha
44 IOBUS I/O Bus Launcher prompts "B:F:U:O:R:?" Launches selected function
45 PGSIG _ _ Gets Signature for page Prompts for page, 1‐14 data string in Alpha
46 PLNG _ Program Length Prompts for P. Name Program length in X and Alpha
47 RAMED _ RAM Editor Address in X Memory edited as per inputs
48 ROM? ROM Information Prompts for XROM id# Header in Alpha, pg# in X, #FNC In Y

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 10 of 110 April 2014

Function Description Inputs Output

49 ROMCAT _ _ ROM id# CAT Prompts ROM id#, 1‐32 Stats CAT‐2 at this point
50 ROMED _ _ _ _ ROM Editor Prompts for address ROM edited as per inputs
51 SIGPG? Gets page# of matching sig Signature in Alpha Page# in X
52 STR$ String Manipulation launcher Prompts "L:M:R;S:U:W" Launches selected function
53 T>BS _ _ Base Ten to Base number in X, base in prompt Converted number in ALPHA
54 XQ1 _ FAT1 eXEQute prompts for FNAME Launches function
55 XQ2 _ FAT2 & FAT1 eXEQute prompts for FNAME Launches function
56 XFAT _ _/_ _ FAT Function# Launcher prompts for FAT# , FNC# Launches function
57 XROM _ _,_ _ ROM function Launcher prompts for XROM#, FNC# Launches function
58 XXEQ _ XEQ Launcher prompts "0:1:2:F:M" Launches selected function

59 ‐SI Direct Unit conversion value in X, string in Alpha Converted unit in X

60 KLIB _ Constants Library 4 displays of 5x each, SST Constant value to X, unit to Alpha
61 SI‐ Reverse Unit conversion value in X, string in Alpha Converted unit in X
62 ST<>RG _ _ Stack and Alpha swap Stack and Regs. contents Contents exchanged

63 UCAT _ Unit Catalog section in prompt (1‐5) Lists units starting at section#

0 ‐YFNZ SRL Section Header n/a n/a

1 Y1SEC 1 Second delay None Pauses for 1 second
2 YBPNT Sets Y‐buffer Pointer Pointer to addr in ALPHA see 41CL manual
3 YBPNT? Recalls Y‐buffer current pointer None see 41CL manual
4 YBSP ALPHA back Space String in ALPHA Deletes rightmost character
5 YBUILD Builds byte in buffer See 41CL manual see 41CL manual
6 YCL> Clears string from ">" String in ALPHA Clears from ">" char to the right
7 YEXP Y Export Export addr range in Alpha see 41CL manual
8 YFNZ? Location of YFNS ROM Alternate YFNS? Disables MMU if not found
9 YGETLB Y‐buf get Lower Byte see 41CL manual see 41CL manual
10 YGETUB Y‐bug get Upper byte see 41CL manual see 41CL manual
11 YIMP Y Import Import addr range in Alpha see 41CL manual
12 YPEEK Y Peek byte Word addr in ALPHA see 41CL manual

13 YPOKE Y Poke Byte Word addr and value in ALPHA see 41CL manual
14 YPUTLB Y‐buf put Lower Byte see 41CL manual see 41CL manual
15 YPUTUB Y‐buf Put Upper Byte see 41CL manual see 41CL manual
16 YRESET Resets the MMU None Disables the MMU
17 YSWP> swaps both sides of ">" string in ALPHA Alpha swapped around ">"
18 ?MMU Is MMU enabled? none Yes/No, skips if False

19 ‐PAGE FNS Section Header n/a n/a

20 BANKED Lists banked pages in I/O Bus none string in Alpha
21 BANKS? number of banks in page page# in X number in X
22 BFREE Lists free pages in I/O Bus none string in Alpha
23 BLANK? Tests whether page is blank page# in X Yes/No, skips line if false
24 BUSED Lists used pages in I/O Bus none string in Alpha
25 CDE Code HexCode in ALPHA NNN in X
26 CHKSYS Check ROM Configuration none OK/BAD message
27 CLBL Clear Block "bbbbeeee" in X as NNN Clears block content (sRAM only)
28 DCD Decode NNN in X HexCode in Alpha
29 FOG En/Decrypts Page adr in X (NNN), Pwd in ALPHA En/Decrypts pg content
30 OSREV Shows revision of OS ROMS none string in Alpha
31 PG? Page information Pg# in X Header in Alpha, XROM,# funct. In X
32 PGROOM Counts zero‐words within page Pg# in X (decimal) Number in X, stack lifted
33 PGSUM Page Sum Page# in X
34 READPG Reads page from HPIL disk page# in X, FName in Alpha Page read from disk
35 ROMCHKX Checks ROM XROM# in x Verifies checksum
36 ROMLST Shows all XROMs plugged none Strintg in Alpha

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 11 of 110 April 2014

Function Description Inputs Output

37 SUMPG _ Sums Page Prompts for pg# sums page and writes value
38 WRTPG Writes page to HPIL disk page# in X, FName in Alpha Page copied to Disk
39 XQ>XR Changes XEQ into XROM Program Name in Alpha XEQ changed to XROM

40 ‐XTRA FNS Section Header n/a n/a

41 ΣDGT Mantissa digits sum number in X, base in prompt sum of digits in X
42 ΣRG? SREG location finder none location in X
43 CFX Xtended CF flag# in X Flag is cleared.
44 COMPILE Compiles User Program Prgm Name in Alpha Program compiled
45 CRTN? Curtain location finder none location in X
46 CSST Continuous SST PC in current program lists steps in sequence
47 CVIEW Continuous View Text in Alpha Shows text , non stop
48 DREG? Number of Data Registers none current SIZE in X
49 FC?S Flag clear and set test flag# in X tests flag and sets it
50 FREG? Free registers Finder none # of available REGS in X
51 FS?S Flag Set and Set test flag# in X tests flag and sets it
52 FSIZE Drive File Size File Name in Alpha File Size in X
53 GETPC Gets current PC in x none PC value in X as NNN
54 GTEND Go to .END> none Sets PC to the .END.
55 LASTP Go to Last Program none Sets PC to last program in memory
56 PC<>RTN Exchanges PC and RTN PC location in X Data exchanged
57 PUTPC Puts PC PC in for in X as NNN PC is reset
58 READF Read Data File XFNAME,DRVFName file copied to Drive
59 READXM Reads all XMEM contents Drive File Name in ALPHA XMEM read
60 RTN? Is a RTN pending? none Yes/No, Skip if false
61 SFX Xtended SF flag# in X Flag is set
62 SPEED Recalls CPU cycles data none CPU cycles/sec in X
63 ST<>Σ Swaps Stack and Σreg none reg contents exchanged
64 TOGF Toggle Flag Flag# in X Flg status toggled
65 TGPRV Toggle Private Status Prgm Name in Alpha PRV status toggled
66 WRTDF Write Data File "XMFile,DRFile" in Alpha File is written to Drive
67 WRTXM Write all X‐Memory FileName in Alpha XM Contents written to Drive
68 X<I>Y Indirect X<>Y reg# in X and Y Reg contents exchanged
69 XQ>GO Deletes one return address none RTN ADR deleted
70 ZOUT Outputs Complex number Im in Y, Re in X "Z=Re +/‐ jIm" in Alpha

71 ‐56 BITS Section Header n/a n/a

72 1CMP One's complement number in X result in X, stack drops
73 2CMP Two's complement number in X result in X, stack drops
74 BRXL Byte Rotate X Left number in X, #bytes in Y result in X, stack drops

75 NOTX Not X number in X result in X, stack drops
76 RXL Rotate X Left number in X result in X, stack drops
77 RXR Rotate X Right number in X result in X, stack drops
78 WSIZE? Word Size Finder none word size in X
79 XANDY X and Y numbers in X and Y result in X, stack drops
80 XORY X or Y numbers in X and Y result in X, stack drops
81 X+Y X+Y numbers in X and Y result in X, stack drops
82 Y‐X Y‐X numbers in X and Y result in X, stack drops

83 FCAT(1) FAT Catalog none Lists sub‐functions

1 ‐POWERCL 3X Section Header n/a n/a

2 BFLNG Buffer Length Buf id# in X Buffer length in X
3 BFLST Buffer List none shows string with buffers present
4 BFVIEW View Buffer Content Buf id# in X shows all buffer registers
5 BUFHD Buffer Header Buf id# in X Header reg location in X

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 12 of 110 April 2014

Function Description Inputs Output

6 CLEM Clear Extended memory none Main EM directory deleted
7 CLMM Clears complete RAM none Clears all Main and X‐Memory
8 CRBUF Create Buffer Buf#,size in X Buffer created
9 DELBUF Delete Buffer Buf id# in X Buffer Deleted
10 FLHD File Header FileName in Alpha Register location in X
11 FLTYPE Gets File Type FileName in Alpha Filetype in X
12 GETBF Get Buffer FileName in Alpha Buffer is read from XMEM
13 GETKA Get Keys FileName in Alpha KA Read from XMEM
14 GETST Get Status Registers FileName in Alpha Status registers restored
15 GETZS Get Complex Stack FileName in Alpha Complex Buffer Restored
16 HEXIN Hex Input Prompts for Hex chars text in Alpha and Display
17 KACLR Clear Keys and Buffers "OK/OKALL" in Alpha Clears KA and Buffers
18 KALNG KA Length none KA length in X
19 KAPCK Pack KA registers none KA registers packed
20 LKAOFF Suspends Local Keys none Local Keys suspended
21 LKAON Activates Local Keys none Local keays activated
22 MRGKA Merges Keys FileName in Alpha Merges KA from XM File
23 PEEKR Peek Register Register# in X in decimal Register content in X as NNN
24 POKER Poke Register Reg# in X, Content in Y Replaces register content
25 REIDBF Re‐issue Buffer id# oldid#,newid# in X buffer id# is changed
26 RENMFL Rename File "OldName,NewName" in Alpha File Name is changed
27 RESZBF Resize Buffer id#,size in X buffer size changed
28 RETPFL Re‐types File FileName in Alpha, Type# in X File type is changed
29 RSTCHK Reset Checksum FileName in Alpha Checksum byte is refreshed
30 SAVEBF Save Buffer buf id# in X, FileName in Alpha Buffer is written to XM File
31 SAVEKA Save Key assignments FileName in Alpha KA regs written to XM File
32 SAVEST Save Status registers FileName in Alpha Status registers saved in XM
33 SAVEZS Save Complex Stack FileName in Alpha Complex Buffer saved in XM
34 WORKFL Appends Workfile Name none FileName appended to Alpha
35 XQXM XEQ Program File FileName in Alpha Execution transferred to file

36 ‐ALPHA/DSP Section Header n/a n/a

37 AINT ARCL Integar part x in X int(X) appended to Alpha
38 ALEFTJ Alpha Justify Left Text in Alpha Justified left
39 ANUMDL ANUM w/ Deletion String in Alpha number from string to X
40 APPEND _ Appends text to Alpha text in prompt text appended to Alpha
41 ARCLCHR ARCl Character FileName in Alpha ARCLs chr# at current pointer
42 AREV Alpha Reverse Text in Alpha Reversed text in Alpha
43 ASCII ASCII value of Char Text in Alpha Value in X, leftmost chr#
44 ASUB Alpha Substitute chr chr# in Y, chr# value in X char is replaced
45 ASWAP Alpha Swap around "," A,B in Alpha B,A in Alpha
46 CHRSET Character Set none lists all character set
47 CLA? Is Alpha Empty? Text in Alpha Yex/No, skips line if false
48 DSP Sets Display digits # of digits in X display settings changed
49 DSP? Finds Display digits none number of decimal digits in X
50 DTOA Display to ALPHA Display contents Text in Alpha
51 DTST Display Test none Shows display all lit up
52 LADEL Left Alpha Delete Text in Alpha leftmost char deleted
53 LEFT$ Left Alpha String Text in Alpha, length in X sub‐string text in Alpha
54 LOW$ Lower Case Text Text in Alpha text changed to lower case chars
55 MID$ Middle Alpha String Text in Alpha, length in X, start in Y sub‐string text in Alpha
56 POSTSP Post‐space string Text in Alpha removes all before space char
57 PRESP pre‐space string Text in Alpha removes all after space char
58 RADEL Right Alpha Delete Text in Alpha rightmost character deleted

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 13 of 110 April 2014

Function Description Inputs Output

59 RATOX Right Alpha to X Text in Alpha rightmost character deleted
60 RIGHT$ Right Alpha string Text in Alpha, length in X sub‐string text in Alpha
61 ST<>A Stack and Alpha swap Stack and Alpha contents Contents exchanged
62 UPR$ Upper Case text Text in Alpha Converted Text in Alpha
63 USWAP Unit Swap "TXT1‐TXT2" string in Alpha string swapped around "‐"
64 VIEWA View Alpha text in Alpha Shows text, doesn't stop
65 VMANT View Mantissa number in X Shows mantissa
66 XTOAL char to left Alpha chr value in X prefix Alpha w/ chr

67 ‐HEPAXA2 Section Header n/a n/a

68 AND X and Y numbers in X and Y result in X, stack drops
69 PGCAT Block Catalog none Lists block contents
70 CLRAM Clears Page page# in X Page contents cleared
71 CODE Codes Hex string String in Alpha NNN in X
72 COPYROM Copies Pages Pg# in Y (from) and X(to) FROM Page copied to TO page
73 DECODE Decodes NNN NNN in X decodes string in Alpha
74 DECODYX Decodes a number of nibbles NNN in X, #nibbles in Y decoded string in Alpha
75 HEPCHN Sets HEPAX Ram Chain pages as string in Alpha chain re‐set
76 HEPCHN? Shows current HEPRAM chain none shows string in Alpha
77 NOT Not X number in X result in X
78 OR X or Y numbers in X and Y result in X, stack drops
79 RLSRAM Release RAM pag# in X releases page from HepRAM
80 ROTXY Rotates Y register X bits number in Y, #bits in X result in X, stack drops
81 SHIFTYX Shifts Y register X bits number in Y, #bits in X result in X, stack drops
82 XOR Logical X exclusive‐or Y number in X result in X, stack drops
83 X+Y Bitwise addition numbers in X and Y result in X, stack drops
84 X‐$ Converts X to Alpha string number in X result in X
85 Y‐X Bit‐wise subtraction numbers in X and Y result in X, stack drops

86 FCAT(2) FAT Catalog none Lists sub‐functions

 (*) Orange background denotes Launcher functions.
(**) Pink background: Gateways to bank-switched FATs
(***) Blue background denote new or improved in Revisions H to J.

Deserving special attention, the function launchers will be discussed later on with the appropriate level
of detail. A short write-up article on the Sub-function groups and the multiple FATs is posted in the HP
Museum forum, at the following location:

http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=1195

Note: Make sure that revision “L” (or higher) of the Library#4 is installed.

http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=1195

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 14 of 110 April 2014

Photo courtesy of Geoff Quickfall. © 2011

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 15 of 110 April 2014

2. The functions in detail.

The following sections of this document describe the usage and utilization of the functions included in
the POWER_CL module. While some are very intuitive to use, others require a little elaboration as to
their input parameters or control options, which should be covered here.

2.0 Function Launchers.

The table below lists the launchers by function groups:

Index Function Warnings Description
1 BAUD None Calls BAUD12, BAUD24, BAUD48, or BAUD96
2 MMU Light Calls MMUDIS, MMUEN, or MMU?
3 TURBO None Calls the corresponding TURBOxx function
4 (U)PLUG Light Prompts for port location. Enter L/U first (when needed)
5 IMDB Medium Calls the corresponding IMDB function
6 HEPX Medium Configuration loading for HEPAX set-ups
7 XCAT None Extended CATalogs: Buffers, Blocks, CLLIB, etc.
8 YBUF Light Calls the corresponding Y-Buffer function
9 XXEQ None Extended Execution Launcher – for all FATs
10 IOBUS None I/O Bus info and control. Has two pages
11 SRT$ None String and ALPHA Manipulation – Has two pages
12 ΣCL None Launcher of Launchers -> invokes any of the above

Once you assign ΣCL to any key, that alone will give you access to more than 135 functions (!) from
that single key – an effective way to make it compatible with other existing key-assignments, saving
memory (KA registers) and time. So go ahead and get comfortable with that arrangement as your
standard baseline.

Note that the ΣCL function is designed to work best when assigned to the Σ+ key.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 16 of 110 April 2014

Launchers IOBUS and STR$ were added in revision “J”. Each of them has two pages; you can use
the [SHIFT] key to toggle between them. STR$ is triggered by the A key, whereas IOBUS is
triggered by the [SHIFT] key – use those hot keys to access them from any other launcher prompt.

Prompting functions use a technique called partial key entry, dividing the data entry in two (or more)
steps. The keyboard is also re-defined, in that only those keys corresponding to the appropriate
options are active. The cues in the prompt will offer you indication of which keys are active on the
keyboard, and typically are intuitive enough to figure out in each case.

See below a few examples of the prompts, where the choices are to a large extent self-explanatory:

The TURBO options are as follows: none, 2x, 5x, 10x, 20x, 50x, and ?. Use “0” for 20x and the [T]
key for “50” - as 2 and 5 are already taken for 2x and 5x speeds.

In general all launchers behave in a similar manner:

- The Back Arrow key will either cancel out entirely or remove partial entries;
- Non-active keys will blink the display and maintain the prompt
- The [A] key from the main prompt will trigger the STR$ launcher
- The [A] key from a secondary launcher will revert back to the main launcher, ΣCL,
- The [ALPHA] key will trigger the XQ2 function, to execute a sub-function by name
- The [USER] key will trigger the XFAT function, to execute a sub-function by index
- The [SHIFT] key will trigger the IOBUS launcher, or will toggle the “pages” within multi-page

launchers
- Holding down the last key briefly shows the invoked function name – visual feedback.
- This will be followed by “NULL” if kept depressed long enough – last chance to bail out.
- Launchers are not programmable per-se – but they can be used in PRGM mode to enter the

called-upon function in a program line.

Many of the functions called by the prompts are from the YFNP module, but many others are form the
POWERCL itself as well. The list is long and somehow warps around itself, as launchers are inter-
connected in a (more or less) logical way.

There are two other “hidden” launchers, not shown in the prompt. They are for the Sub-function
Catalogs, FCAT (1) and (2) – accessed by pressing ENTER^ directly from the ΣCL and from the
XXEQ launchers respectively -. More about these two later on as well.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 17 of 110 April 2014

Plugging and Unplugging Modules.

The PLUG / UPLUG launchers don’t offer any cues in their prompts – and therefore deserve special
consideration; starting with a review of the internal and external ports and pages on the 41 – as seen
in the picture below:

Valid entries for the prompt are:

[SHIFT] toggles between PLUG and UPLUG launchers
[L] flags a LOWER half-port condition, to be followed by the port number
[U] flags an UPPER half-port condition, to be followed by the port number
[1] for port 1 – comprising pages 8 and 9
[2] for port 2 – comprising pages A and B
[3] for port 3 – comprising pages C and C
[4] for port 4 / comprising pages E and F

For the (U)PLUG cases the prompt completes either when the number 1-4 or the letter {A,G,P,H} is
entered, and the corresponding function is launched.

For half-port (or 4k) modules use the L/U keys first in the (un)plugging prompts, then the port
number. These keys act as toggles when pressed sequentially, replacing each other in the display
upon repeat usage. Also during these events pressing BackArrow removes the half-port condition and
returns to the main prompt.

Remember that plugging a module into the “wrong” port location can create minor issues (or major
havoc) if you’re overwriting some/part of the machine’s configuration. A good example is overwriting
YFNS itself, or a HEPAX RAM block. Always make sure the destination is safe – using PGCAT, the
standard CAT2 or better yet the CCD CAT’2.

Also other valid entries are :

[H] for page #7 – the HP-IL reserved page
[P] for page #6 -- the Printer reserved page
[G] for page prompt 6-F – effectively calling the (U)PLUGG functions
[A] to invoke functions PLUGG? and UPLUGA – see later description.

Remarks.- Both PLUG/UPLUG offer all the 14 available choices in YFNS, including (U)PLUGP and
(U)PLUGH. Exercise extra caution with those two locations, as they may be used by system
extensions like Printer or HP-IL. Page #6 in particular has more strict demands on the ROM layout
that makes it non-suitable for the majority of ROMS.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 18 of 110 April 2014

Note that pages #6 and #7 on V2 version of the CL board don’t support bank switching; thus they
unfortunately aren’t a good place for the HEPAX ROM for V2 systems – but makes it the ideal location
for V3 boards that removed said restriction.

Note: PLUGG will also allow “4” as valid input, which invokes the PGG#4 function settings. More
about this one will follow later.

The graphics below summarize the PLUG / UNPLUG functionality – note also the relationships with
the other “sibling” launchers (on the right), its “parent” main launcher, and the related functions (on
the left).

and the corresponding to the Unplugging group:

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 19 of 110 April 2014

LASTF: The “Last Function” – at last!

The latest release of the PowerCL module includes support for the “LASTF” functionality. This is a
handy choice for repeat executions of the same function (i.e. to execute again the last-executed
function), without having to type its name or navigate the different launchers to access it.

The implementation is not universal – it only covers functions invoked using the dedicated launchers,
but not those called using the mainframe XEQ function. It does however support two scenarios:

a. functions in the module main FATs, as well as
b. sub-functions from the auxiliary FATs.

Because functions from the latter group cannot be assigned to a key in the user keyboard, the LASTF
solution is especially useful in this case.

The following table summarizes the launchers that have this feature:

Module Launchers LASTF Method
PowerCL_4BS
revision “K”

ΣCL, XCAT, TURBO, BAUD, MMU,
IMDB, HEPX, YBUF, XXEQ, PLUG

Captures (sub)fnc id#

 IOBUS, IOPG#, STR$, ALP$ Captures (sub)fnc id#
 XQ1 _ , XQ2 _ Captures (sub)fnc NAME
 XFAT _ _:_ _ Captures (sub)fnc id#

For consistency sake, all prompts connect to the Alphabetical sub-function launcher XQ2 using the
ALPHA key, and with the index sub-function launcher XFAT using the USER key.

Note as well that the Alphabetical launchers XQ1, XQ2, will switch to ALPHA mode automatically. (i.e.
there’s no need to press ALPHA to start spelling the function name).

Spelling the function name is terminated pressing ALPHA, which will either execute the function (in
RUN mode) or enter it using two program steps in PRGM mode by means of the XQ1/2 plus the
corresponding index (using the so-called non-merged approach). This conversion is made
automatically – refer to next chapter for more information.

Another new enhancement is the displaying of the sub-function names when invoked via the index-
based launcher XFAT - which provides visual feedback that the chosen function is the intended one
(or not). This feature is active in RUN mode, when entering it into a program, and when single-
stepping the program execution – but obviously not so during the automated run.

LASTF Operating Instructions

There is no LASTF function - the Last Function feature is triggered by pressing the radix key (decimal
point - the same key used by LastX) at the launcher prompts. This is consistently implemented across
all launchers supporting the functionality in the three modules – they all work the same way.

When this feature is invoked, it first shows “LASTF” briefly in the display, quickly followed by the last-
function name. Keeping the key depressed for a while shows “NULL” and cancels the action. In RUN
mode the function is executed, and in PRGM mode it’s added as a program step if programmable, or
directly executed if not programmable.

The functionality works in RUN and PRGM modes – entering the last function (or sub-function) as a
program line in PRG mode.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 20 of 110 April 2014

Error Handling.

If no last-function information yet exists, the warning message “NO LASTF” is shown. If the buffer #9
is not present, the error message is “NO BUF” instead.

LASTF Implementation details.

The functionality is a two-step process: a first one unattended to capture the function id# when it is
executed, and a second one triggered by the user’s action that retrieves it, shows the function name,
and finally parses it for re-execution. All launchers in the PowerCL and other modules have been
enhanced to store the appropriate function information (either index codes or full names) in registers
within a dedicated buffer (with id# = 9).

The buffer is maintained automatically by the module (created if not present when the calculator is
‘switched ON), and its contents are preserved while it is turned off (during “deep sleep”). No user
interaction is required.

This buffer has one register reserved for each of the modules featuring this functionality (PowerCL,
SandMath, and SandMatrix) – plus the buffer header register also stores the 41Z last-function (which
is always in the main FAT). Therefore up to four last-functions can be simultaneously available. A total
of five registers are used, as follows:

Register Used for
b4 SandMatrix fcn id#
b3 SandMath fcn id#
b2 PowerCL fcn id#
b1 Time-based Seed (RND)
b0 Buffer Header – w/41z fcn id#

The stored format of the function id# can be either a string of alpha characters (stored in reversed
order) representing the function name, or a three-digit hex value representing the sub-function index.
In the latter case the [MS] field is marked with an “F” to tell the cases apart.

When the LASTF action is triggered pressing the Radix key, the code seeks for the function data in
the relevant buffer register, depending on the module carrying the action. When found, it displays the
sub-function name (either by mirror-imaging the id# or by looking it up in the corresponding auxiliary
FAT. Finally it’s parsed to the corresponding section responsible for the execution of the sub-functions.

The LASTF and function name displaying facility together immensely facilitates dealing with sub-
functions, almost as if there were standard functions from the main FAT. Go ahead and try it - it’s
quite something to behold!

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 21 of 110 April 2014

2.1 Extended Execution.

Pressing [XEQ] at the main ΣCL prompt (even if not shown in the cue) will connect with this
launcher, introduced in revision 4B of the PowerCL. It gathers all relevant functions to access any of
the sub-functions, as well as a few other tricks for advanced applications.

The functions included in the XXEQ launcher are as follows:

Key Function Warnings Description
0 XEQ None Invokes the native XEQ function
1 XQ1 None Calls XQ1, for FAT-1 sub-functions calling by NAME
2 XQ2 None Calls XQ2, for ANY sub-function calling by NAME
F XFAT None Calls XFAT, for ANY sub-function calling by index
R XROM None Calls XROM, to execute any ROM function (if present)
M XQXM None Calls XQXM, to execute a program File

Without question this is one of the most intriguing parts of the POWERCL. Perhaps a quick refresher
on the theory of operation of sub-functions is appropriate, so let’s get on with it:-

- Sub-functions can be called by their name (using an ALPHA prompt) or by their FAT index
(using a numerical prompt). So in principle two main functions are needed per each FAT and
since there are two of these FAT groups, it’d be logical to assume that four functions would
be needed in total, one per each type times two FATs.

- To reduce the requirements on the main FAT, the two numeric launchers have been

consolidated into a single function (XFAT _ _: _ _) with two prompt fields: use the first for
the FAT, and the second for the index.

- Furthermore, having two different Alpha launchers may be confusing; since the user would
need to remember the group any of the sub-functions belongs to. To avoid this, either
function is capable of searching for any sub-function, and not only for those in its own FAT.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 22 of 110 April 2014

- But that’s not all – after a while the user won’t necessarily remember whether a given

function of the module is either in the main FAT-0, or in any of the two sub-function groups.
To avoid this issue the XQ1 and XQ2 launchers are also capable of searching in the main
FAT, and will do so if the name hasn’t been found in FAT-1 and in FAT-2.

In fact they will also search in all main FATs present in the system (which may have more
modules plugged in), and not only the POWERCL one. So XQ1 and XQ2 are universal
XROM function caller – by name.

Note however that they won’t find the mainframe OS functions (like BEEP, SIN, etc.). If that’s
what you’re after you can also use the option “0” provided in the XXEQ launcher to invoke
the native XEQ – in all its glory: ALPHA, numeric, INDirect, etc.

The above considerations would suggest that having two launchers with the same capabilities is
somehow redundant, and sure you’d wonder why not removing one of them, freeing up one more
entry in the main FAT for other purposes. There is however an important reason to have it there: it is
needed to have the programming capability for the sub-functions in each FAT, let’s explain.

When XQ1/2 are used in program mode to call a sub-function by its name, it will create two program
lines. The first will be either XQ2 or XQ1, depending on which FAT the sub-function belongs to. The
second will be the index within the FAT.-

Therefore “XQ1_nn” is different from “XQ2_nn”, even for the same “nn” – and this is exactly the
reason why XQ1 and XQ2 both need to be present. But even if both must be there, the user really
only needs to use one – as the conversion from the spelled-out names will occur automatically on a
need-to basis!

Let’s see an example. Say we want to execute function GETBF to recover a buffer from an
Extended Memory file. This can be done either by its name or by its index. In the first case we’d type:

XQ1 (or XQ2), [ALPHA], G,E,T,B,F, [ALPHA]

If the numeric launcher is to be used instead, the key entry sequence will be:

XFAT 02, 11, or also: XXEQ, [F], 01, 11

Either way this creates the same two program lines in PRGM mode:

 changes to:

Note as well how the sub-function NAME is briefly displayed during this process – providing visual
feedback on the selected function - even if the name wasn’t used to enter it.

Let’s now see how to execute function YIMP, which (in addition to being in the YFNS module) is also
a sub-function within FAT-1. If done by name the user could press –now using the XXEQ launcher
from the scratch

XXEQ, 1, [ALPHA], Y,I,M,P, [ALPHA] or
XXEQ, 2, [ALPHA], Y,I,M,P, [ALPHA] indistinctly.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 23 of 110 April 2014

And if the numeric launcher were to be used instead, the entry sequence would be:

XFAT 01, 11, or also: XXEQ, F, 01, 11

Any of these three options creates the same two program lines in PRGM mode:

 changes to:

XFAT is clever enough to know that the only valid inputs for the first prompt are 0,1, or 2. Should you
enter any other number the calculator will politely ignore the input and continue to display the prompt
– much more user friendly than allowing the entry and then coming back with a “DATA ERROR”
message.

And speaking of this, the function called for entry value of zero is XROM – a jewel of a routine
originally written by Clifford Stern – which in turn prompts for the XROM id# and the function number
for a function from any ROM. All in programmable splendor and ready to execute!

The remaining functions XROM and XQXM are both covered in a later section of the manual. They
are included in the XXEQ launcher for additional convenience. Nothing short of amazing if you ask me
– a great implementation made even better with the addition of the FAT Catalogs, described below.-

Sub-function CATalogs

One of the missing features in the original HEPAX implementation of the Multi-function groups
(XFA/XFA and HEPAX/HEPAXA) was the lack of a sub-function catalog. Having such enumeration
option would certainly be convenient, and very useful if it also had the capability to directly launch the
function which name is being displayed.

But not so anymore! - Meet FCAT, the sub-function CATALOG facility that will allow you do exactly
that. To invoke it you can use its name in the XQ1 or XQ2 ALPHA prompts, of its index in the XFAT
01,_ _ or XFAT 02,_ _ numeric prompts.

No doubt you surely have noticed (or are about to) that the sub-functions are arranged in alphabetical
order, all except FCAT which is placed at the bottom of each list. Besides, the first function (the
section header) can also be used to trigger FCAT – so that you don’t really need to know their
respective indices – (which happen to be 82 in FAT-1 and 85 in FAT-2); and can use 00 in both cases
as an enhanced usability shortcut.

The following hot keys are available:

- [R/S] to stop/resume the sequential enumeration;
- [SST]/[BST] to single-step forward or backwards while in manual mode;
- [ENTER^] to jump to the next/previous section within the catalog;
- [XEQ] to execute the function being displayed;
- [SHIFT] to flag the forwards/backwards direction;
- [<-] Back arrow will terminate the enumeration; and
- [ON] to power the calculator OFF.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 24 of 110 April 2014

This is identical in form and feature to the CCD approach for the system CATalogs – all except the [A]
hot-key for the assignment. – It should be noted that sub-functions cannot be assigned to a key on
the keyboard, and therefore the absence of such an option.

Note also that the enumeration will be output to a printer when NORM/TRACE is selected, and a
forwards enumeration is performed - for a hard-copy record of the listing.

Sections within the two sub-FATs

Each multi-function group has a lot of sub-functions. Navigating the catalogs could be very tedious
without the existence of sub-sections within them, and the capability to jump from section to section.

The sections underneath the sub-FATs are listed below:

For FAT-1

-YFNZ SRL including the replaced YFNS function in YFNP (and some dups)
-PAGE FNS including all page-related and I/O Bus function
-XTRA FNS with a long list of utilities and MCODE-related functions
-56 BITS with digital functions (on the complete register size).

For FAT-2

-XM/F XFS with the Buffer and Extended Memory enhancements
-ALPHA/DSP for the ALPHA and Display functions, and
-HEPAXA2 including the functions from the HEPAX group, plus some more.

Hotkey [ENTER^] will toggle between the sections or the individual functions listing, exactly the
same as it works in the CCD –style catalogs. This makes it very easy to navigate your way in such
long lists, considering that FAT-1 has 69 functions and FAT-2 86 and otherwise waiting for your target
sub-function to appear in the enumeration could be a relatively long wait.

Note: The following shortcuts are the most-convenient ways to access the sub-CATalogs:

• Pressing ENTER^ at the ΣCL prompt will invoke the sub-function Catalog for FAT-1,
• Pressing ENTER^ at the XXEQ prompt will invoke the sub-function Catalog for FAT-2.

A new feature in revision “K” allows an even easier approach – by means of the XCAT function
described in the next section:

• XCAT, “1” will invoke the sub-function Catalog for FAT-1,
• XCAT, “2” will invoke the sub-function Catalog for FAT-2,

Several ways to perform the same task – but all of them intuitively accessible form the expected
location to provide choices to power users.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 25 of 110 April 2014

2.2. CATalogs and Catalogues…

The additional CATalogs are accessed by XCAT, and include the following:

key Function Warnings Description
G PGCAT None Borrowed from the HEPAX ROM – shows the 4k-blocks contents.
B BFCAT Light Lists those elusive buffers present in the system.
M MMUCAT None Lists the MMU mappings into each block.
H HEPDIR None Calls the HEPAX’ HEPDIR function
K KLIB _ None Constants Library Selections
L CLLIB _ Light CL ROM Image Library - alphabetical or by type.
U UCAT _ None Lists all available units for UMS conversion.
X XXEQ None Another entry for the Extended XEQ launcher
1 FCAT(1) None Easiest way to access functions in FAT-1
2 FCAT(2) None Easiest way to access functions in FAT-2

If you’re like me you’ll like to have good visibility into your machine’s configuration. With its ROM
Library and MMU settings the CL adds a few dimensions to the already rich 41CX system – and the
goal is to have equivalent catalogue functions to review the status and options available.

Each CATalog has its own idiosyncrasies, but in general they feature single-step modes, and have “hot
keys” to allow for specific actions – like deletion of buffers, navigation shortcuts, and direct plugging
of ROMs into a port. This makes chores like searching for the correct syntax and plugging a module
from the library a trivial task.

Some (PGCAT, BFCAT, KLIB, UCAT) are not strictly related to the CL, and will also work on a
standard 41. Obviously MMUCAT is only meaningful for a CL machine, and will return zeroes if the CL
board is not installed.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 26 of 110 April 2014

CATalog functions are notoriously complex and take up a significant amount of space – yet you’d
hopefully agree with me that the usability enhancements they provide make them worthwhile the
admission price.

2.2.1. Buffer CATALOG

BFCAT Buffer CATalog Hot keys: R/S, SST, SHIFT, D, H

[D] Deletes Buffer In manual mode Asks Y/N?
[H] Decodes Header register In manual mode

This function is very close to my heart, both because it was a bear to put together and because the
final result is very useful and informative. It doesn’t require any input parameter, and runs
sequentially through all buffers present in the calculator, providing information with buffer id# and
size.

41 buffers are an elusive construct that is mainly used for I/O purposes. Some modules reserve a
memory area right above the KA registers for their own use, not part of the data registers or program
memory either. The OS will recognize those buffers and allow them to exist and be managed by the
“owner” module – which is responsible to claim for it every time the calculator is switched on.

Each buffer has an id# number, ranging from 1 to 14. Only one buffer of a given id# can exist, thus
the maximum number present at a given time is 14 buffers – assuming such hoarding modules would
exit – which thankfully they don’t.

For instance, plug the AOSX module into any available port. Then type PI, SEED, followed by BFCAT
to see that a 2-register buffer now exists in the HP-41 I/O area – created by the SEED function.

 id#=5, buffer at address 194, size=2, properly allocated.

Suppose you also change the default word size to 12 bits, by typing: 12, WSIZE. This has the effect
of increasing the buffer size in one more register, thus repeating BFCAT will show:

 id#=5, buffer at address 194, size=3, properly allocated.

Say now that you also plug the 41Z module into a full port of your CL. Just doing that won’t create the
buffer, but switching the calculator OFF and ON will – or alternatively execute the -HP 41Z function.
After doing that execute BFCAT again, then immediately hit R/S to stop the listing of the buffers and
move your way up and down the list using SST and BST. You should also see the line for the 41Z
buffer, as follows:

 id#=8, buffer at address 197, size=12, properly allocated.

If the module is not present during the CALC_ON event (that’s to say it won’t re-brand the buffer id#)
the 41 OS will mark the buffer space as “reclaimable”, which will occur at the moment that PACKING
or PACK is performed. So it’s possible to have temporary “orphan” buffers, which will show a question
mark next to the id# in the display. This is a rather strange occurrence, so most likely won’t be shown
– but it’s there just in case.

Perhaps the best example is the Time module, which uses a dedicated buffer to store the alarms data.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 27 of 110 April 2014

The table below lists the well-known buffers that can be found on the system:

Buffer id# Module / EPROM Reason
1 David Assembler MCODE Labels already existing
2 David Assembler MCODE Labels referred to
3 Eramco RSU-1B ASCII data pointers
4 Eramco RSU-1A Data File pointers
5 CCD Module, Advantage Seed, Word Size, Matrix Name
6 Extended IL (Skwid) Accessory ID of current device
7 Extended IL (Skwid) Printing column number & Width
8 41Z Module Complex Stack and Mode
9 SandMath, PowerCL Time Seed; Last Function data
10 Time Module Alarms Information
11 Plotter Module Data and Barcode parameters
12 IL-Development; CMT-200 IL Buffer and Monitoring
13 CMT-300 Status Info
14 Advantage, SandMath INTEG & SOLVE scratch
15 Mainframe Key Assignments

BFCAT has a few hot keys to perform the following actions in manual mode:

[R/S] stops the automated listing and toggles with the manual mode upon repeat pressings.
[D] for instant buffer deletion – there’s no way back, so handle with care!
[H] decodes the buffer header register. Its structure contains the buffer ID#, as well as

some other relevant information in the specific fields - all buffer dependent.
[V] Views the contents of the buffer, sequentially showing its registers in the display
[SHIFT] flags the listing to go backwards – both in manual and auto modes.
[SST]/[BST] moves the listing in manual mode, until the end/beginning is reached
[<-] Back Arrow to cancel out the process and return to the OS.

Like it’s the case with the standard Catalogues, the buffer listing in Auto mode will terminate
automatically when the last buffer (or first if running backwards) has been shown. In manual mode
the last/first entry will remain shown until you press BackArrow or R/S.

Should buffers not be present, the message ”NO BUFFERS” will be shown and the catalog will
terminate. Note also that the catalogue will be printed if in NORM/TRACE mode, producing a record of
all buffers present in the system!

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 28 of 110 April 2014

2.2.2. Interrogating the MMU.

MMUCAT MMU CATalogue No inputs
ADRID Gives ROM id# from ADR Expects string in Alpha
FYNZ? FYNS Location Finder No inputs
PLUGG? ROM id# in page by X Prompts for page# Valid inputs are 4, 6-F

MMUCAT is really a FOCAL program that drives the function ADRID, the real engine behind it – not
to be confused with the capital city of a country I know quite well. ADRID is obviously
programmable. The idea is simple: produce a list of the MMU mappings into the different pages,
showing either the ROM id# or the address (Flash or SRAM) currently mapped to the port.

A loop is executed starting on page #3, and up until page #F. Each iteration retrieves (pokes more
appropriately) the address written into the corresponding MMU register, then searches it against the
internal ROM id# table written in bank-2 of the POWER_CL module. More about this later.

Note that full-port modules will return the ROM id# attached to the lower half, and the Flash address
mapped to the upper half. sRAM MMU entries will return the corresponding sRAM address.

While similar to the CAT2 concept, this really has an MMU-oriented perspective of things, and thus is
purely a 41 CL feature – it’ll render all entries zero if used on a “regular” HP-41. The program listing
is rather simple – as ADRID does all the weight lifting under the hood:

A related function is YFNZ?, which returns the page number the YFNS is currently plugged in. This
can come very handy in your programs to avoid overwriting it with other modules – as we’ll see in the
HEPAX configuration routines. Note that YFNZ? is located in Bank-3, thus requires XQ2 to launch.

Another related function is PLUGG? - It interrogates the MMU to find out which module is plugged
into a given page – entered in the prompt. Note that it is programmable, and that in program mode it
will take the page# from the X registers. This is all page-driven, and not based on the port number.
There is no restriction in the input to the page number, however the returned values for pages
0,1,2,3, and 5 don’t quite have the same meaning.

PLUGG? Also uses ADRID to decode the string returned by YPEEK – which reads the MMU address
mapping the corresponding page. In the YFNZ? case there’s no need to look up in the ROM id# table
since we know what we’re looking for – just need to check all pages looking for that specific string.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 29 of 110 April 2014

2.2.3. Page CATALOG

PGCAT Page Catalog VM Electronics Source: HEPAX Module

PGCAT is taken from the HEPAX Module (called BCAT there, within
the HEPAX sub-functions group) - and written by Steen Petersen.
PGCAT enumerates the first function of each page, starting with
page 3. The enumeration can be stalled pressing any key other than
R/S or ON, but the individual functions won’t be listed.

PGCAT Lists the first function of every ROM block (i.e. Page), starting with Page 3 in the 41 CX or
Page 5 in the other models (C/CV). The listing will be printed if a printer is connected and user flag 15
is enabled.

- Non-empty pages will show the first function in the FAT, or “NO FAT” if such is the case
- Empty pages will show the “NO ROM” message next to their number.
- Blank RAM pages will also show “NO FAT”, indicating their RAM-in-ROM character.

No input values are necessary. This function doesn’t have a “manual mode” (using [R/S]) but the
displaying sequence will be halted while any key (other than [R/S] or [ON]) is being depressed,
resuming its normal speed when it’s released again.

See below the printout outputs from both BFCAT and PGCAT using J-F Garnier’s PIL-Box and the
ILPER PC program, showing a nice traceability of the pressed keys:

We’ll encounter this function again as part of the IOBUS / IOPG# function launchers later in the
manual.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 30 of 110 April 2014

2.2.4. A wealth of a Library – with two access modes.

ROMLIB _ ROM Library by type Prompts for type: E:F:G:M;S:U;X Has Hotkeys
CLLIB _ CL Library by name Prompts for A-Z Has Hotkeys

[P] Invokes PLUG _
[A] Copies id# shown to Alpha

One of the most notable features of the CL is its extensive ROM image library, allowing you to plug
almost any conceivable module ever made (of which I have contributed a few) into your 41CL just by
using one of the PLUGxx functions. The input syntax requires that the correct ROM ID string be
placed in Alpha, and certainly there are a few of those to remember – and rather similar to each other
since the string is only 4 characters long.

These two functions come to the rescue – providing listings of all available module mnemonics, either
alphabetically or by their type - so you can review them, and –eventually – plug the ROM directly from
the catalogue for convenience sake.

ROMLIB prompts for a ROM type, whereas CLLIB prompts for an alphabetical section, A to Z.
Pressing [SHIFT] at this point toggles between both modes, alphabetical or by type. Both catalogues
can run in auto mode of can be stopped using R/S, and then the listing can proceed in manual mode
using SST and BST as you can expect.

It is in manual mode where you can use the other shortcuts or “hot keys”, as follows:

- [ENTER^] skips to the next section (or previous if running backwards)
- [A] to copy the id# shown to Alpha
- [P] to exit the catalog and invoke the PLUG_ function launcher
- [SHIFT] changes the direction of the listing, backwards <-> forwards
- [<-] Back Arrow will cancel out the catalog.

The enumeration terminates in auto mode when the last ROM id# (or first one if running backwards)
has been reached. Also keeping any key depressed in RUN mode will halt the sequence displaying
until it’s released again, so it’s easier to keep tabs with the enumeration.

The same considerations made about plugging modules apply here – be careful not to inadvertently
overwrite anything you’re using with a new ROM image (specially important for YFNS), as there’s no
check whether the target location is already used or not – with the only exception being function
PLUGG

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 31 of 110 April 2014

As you can guess there is a lot of code sharing between ADRID and these two ROM library catalogue
functions. Fundamentally they all use a ROM id# table within bank-2 of the POWER_CL ROM to look
up for the string, and fetch the address in Flash of the corresponding image. This table is quite long,
occupying more than 1k in the ROM – yet worth every byte.

The prompt in ROMLIB suggests the different ROM types as follows:

- [E] Engineering-related modules in all the main branches: EE, ME, etc.
- [F] Finance-related modules – you gotta love those too…
- [G] Games and entertainment related modules;
- [M] Math-related modules, the heart of the machine for some;
- [S] Applied Science-related modules, excluding Engineering;
- [U] the Utilities group, all those nice packs adding extra tools to the system;
- [X] system-Extensions group, all what makes the 41 much more than just a calculator.
-

As you can see these groupings are somewhat loosely defined, yet it’s simple and intuitive enough to
have a good handle on the categories – which is the main objective for the searches. Also there’s no
distinction between HP-made or 3rd. Party modules in this scheme.

The “A-Z” prompt entry in CLLIB is a refinement of the same idea: it provides a handy shortcut to
start your search in the appropriate section, so there’s no need to review all the preceding ones –
which can be very lengthy considering the sheer number of them, even if you used ENTER^ to skip
sections. The implementation is quite nice, even if it’s the author who says it – have a look at the
POWERCL_Blueprint if you’re curious about the MCODE implementation details.

If the section doesn’t have any ROM id# starting with such letter (which currently only occurs with the
[W] letter) the message “NO MATCH” will be shown. Non-alphabetical keys are not valid entries for
CLLIB, and will cause the display to just blink and maintain the prompt. Lastly, selecting [X] will list
the general-purpose placeholders; refer to the CL manual for details on those.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 32 of 110 April 2014

The enumeration output includes three pieces of information, as follows:

(1) The ROM ID name (entry used by the CL in the PLUGxx functions),

 explained above.

ke it was the case for BFCAT, these two functions fully support the printer TRACE/NORM modes

(2) Its size (either single or multi-page modules), and
(3) The type it belongs to according to the classification

Li ,

t any given time the automatic enumeration can be stopped using [R/S], and continued manually in

generating a complete printout record of the ROM enumeration for your convenience. See appendixes
for a complete listing of the module database, and the example below listing just the Finance and
Games modules, taken as a direct cut & paste from the output using the USB-41 module:

A
single-step mode using SST, either forwards or backwards controlled by the [SHIFT] key – yet the
entry will only be printed going forwards, to eliminate redundancy. Finally, the hotkeys [A] and [P]
will copy just the ROM CL_ID text into Alpha, without the size/type details so it’s ready to be used by
any PLUGxx function.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 33 of 110 April 2014

2.3.1. Configuring the HEPAX system.

HPX4 4k RAM HEPAX Setup Prompts for HRAM Page# ROM into previous
HPX8 8k RAM HEPAX Setup Prompts for HRAM page range ROM into previous
HPX16 16k RAM HEPAX Setup Prompts for HRAM page range ROM into previous

These three functions will prepare the CL to hold a properly configured HEPAX file system, starting
from the scratch. The process can be divided into four distinct parts:

1. First copying the HEPAX RAM template from Flash into the appropriate number of SRAM
blocks, as many times as needed depending on the choice.

2. Followed by mapping those SRAM blocks to the 41 ports using the MMU,
3. Configuring the Hepax FileSystem using HEPINI - so that they are enabled for the HEPAX

ROM to use.
4. Besides that, the functions will also map the HEPX ROM image to the page preceding the first

HRAM block, as shown in the table on next page.

They will first present a confirmation prompt - as a precaution to avoid overwriting existing HRAM
blocks. Only Y/N input is allowed at this point. If “Yes”, they’ll prompt for the first page to locate the
HRAM blocks; in hexadecimal format. Allowed entries for each case are shown in the prompt. Inputs
other than those will simply be ignored and the prompt will be maintained.

 “Y”:
or:

 or:

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 34 of 110 April 2014

You must be fully aware that the previous MMU mapping to those ports will be overwritten. The
exception being the YFNS ROM itself – as the functions will check whether it is currently mapped
to any page within the affected range – aborting if that’s the case. A nice built-in protection that
avoids getting in trouble.

WARNING: Obviously these functions are not to be used frequently, since each execution will
wipe off the existing content of the HRAM pages, overwritten with blank FLASH templates (!).
Therefore the “medium” warning sign, proceed with caution. Before the page prompt, a conformation
will be requested for safety, showing the message “OK? Y/N” – you know what to do.

See the appendix 2 for a listing of the FOCAL programs that implement this functionality.

WARNING: because the page# is used for the XROM id#, some conflicts *will* occur when using
pages C or F – clashing with YFNS and POWERCLXROM id#’s. Make sure you EDIT those manually.

Re-Initializing the Pages control fields.

HEPX HEPAX Fns. Launcher Prompts “4:8:6:H:I:D” Accessible from ΣCLF
HEPINI Initializes File System Prompts for values Author: Howard Owen

HEPINI is used to initialize the HEPAX File System on the CL. This is needed on the CL because this
feature is disabled in the HEPAX ROM image included in the CL Library, thus the addition here. It also
allows for dynamic configuration changes, modifying the number and location of HRAM pages set up.

In manual mode, the function takes two parameters: the number of HEPAX RAM pages to
configure and the address of the first one. Note that even if the first prompt is a DECIMAL entry,
the double quotes will remind you that the second one is in HEX, with valid inputs being 8,9, and A-F.

HEPINI is also programmable. In PRGM mode it takes the number of HRAM pages from Y, and the
first page address from X – both in DECIMAL format.

The procedure consists of writing a few control words into strategic locations within each HRAM page,
so that the HEPAX will recognize them as being part of its File System. Those locations and byte
values are shown in the table below:

Address Byte value Comment
x000 ROM id# => equal to the page# Always done
xFE7 Previous HRAM page id# (zero if first) Always done
xFE8 Next HRAM page id# (zero if last) Always done
xFE9 Fixed value = 091 Won’t be overwritten if not zero
xFED Fixed value = 090 Done always
xFEF Fixed value = 091 Won’t be overwritten if not zero
xFF1 Fixed value = 0E5 Done always
xFF2 Fixed value = 00F Done always
XFF3 Fixed value = 200 (or 100) Done always

Two of the byte values shown in the table above located at addresses 0xpFE9 and 0xpFEFhave a
different treatment: they will be branded only if the previous content is zero. They denote the initial

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 35 of 110 April 2014

address in the page where the next file or program will be written using HSAVEP, HCRFLAS and
HCRFLD. Their values will vary as more programs or content is written to the HRAM page, thus
should not be overwritten by HEPINI – or else the HEPAX FileSys catalog will become corrupt.

This explains why HEPINI won’t disturb the actual contents of the HRAM FileSystem, so it can be
used at any time provided that the entries used are compatible with the HRAM arrangement. It is also
possible to use them to configure only a subset of the available HRAM, as long as such subset uses
the lower pages. An example will clarify this.

The maximum number of HRAM pages accepted by the function is 7, but typical HEPAX configurations
have TWO pages (Standard HEPAX, 8k) or FOUR (Advanced HEPAX, 16k). The ROM id#’s are
assigned using the same value as the page number – be aware that this may conflict with other ROMS
currently plugged in your CL, notably POWERCL uses ROM id# “C”, and YFNS uses “F” so those
two pages will have to be their id# manually re-issued to avoid any issues (!). You can use ROMED
or HEXEDIT for that.

HEPINI will check the validity of the entry for first page, which is obviously related to the number of
pages (n) chosen in the first prompt. The first page must be greater than 8 and lower than (17-n).
Should that not be the case, one of the following error messages will be produced:

Even if there is a considerable amount of error protection built-in, nothing will prevent you from using
this function over non-HEPRAM pages, including YFNS itself! – Therefore exercise caution as always.

Example:- Say you have used HPX16 described above to configure 16k of HRAM, that is pages C to
F contain copies of the HEPAX RAM template. You may want to use some pages for the FileSys, and
others to hold other ROM images, and this done in a dynamic way.

Then the following options are available to configure the HEPAX File System with HEPINI:

N PG# Result Comment
1 C Page C Can extend upwards to {C,D}, {C,D,E}, or {C,D,E,F}
1 D Page D Can extend upwards to {D,E}; or {D,E,F}
1 E Page E Can extend upwards to {E,F}
1 F Page F
2 C Pages C,D Can extend upwards to {C,D,E}; or {C,D,E,F}
2 D Pages D,E Can extend upwards to {D,E,F}
2 E Pages E,F
3 C Pages C,D,E Can extend upwards to {C,D,E,F}
3 D Pages D,E,F
4 C Pages C,D,E,F

Notice that the configuration can always be extended to include other pages located at upper
addresses, but not the other way around. This is because the HEPAX code searches for the blocks
sequentially to determine whether they belong to its FileSystem, starting at page 8. So once they are
configured, changing the location of the first page to a lowered-number block will create a conflict.

Obviously for all this to work the target pages must be mapped to sRAM – or otherwise the byte
values could obviously not be changed. So it is expected that the appropriate number of HRAM pages
are configured, which is the subject of the functions describe in the next section.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 36 of 110 April 2014

2.3.2 HEPAX Chain Alteration.

HEPCHN? Recalls current CHAIN Placed in ALPHA and Display Sebastian Toelg
HEPCHN Sets CHAIN Data in ALPHA Sebastian Toelg
RLSRAM Releases RAM page Pg# in X (decimal) Sebastian Toelg

These functions provide yet additional options to configure the HEPAX chain after the first
initialization, allowing for non-contiguous allocation of pages, as well as individual page removal
without disrupting the complete HEPAX FileSystem. They are taken from the NEXT ROM, recently
published by Sebastian Toelg (so great to see the trade is not lost!).

Note that they’re located in the FAT-2 group, thus you need to use XQ2 to execute them. For a more
convenient arrangement, HEPCHN? is also accessible form the HEPAX main launcher, using the “?”
hot-key character.

 and “?”:

• HEPCHN? Returns a string to ALPHA showing the pages used by the HEPAX chain, with zeros
as prefix and postfix to indicate the chain ends. The information is also shown in the display if
executed in run mode. For instance, the screen below denotes pages C and D are in the
HPRAM chain.

,

• HEPCHN re-configures the HEPAX chain as per the information provided in the string in
ALPHA. This must always start and end with zero characters, even if there’s only one page
configured. Obviously all pages must be mapped as sRAM in the CL.

• RLSRAM releases a given RAM page (which value is in the X-register), removing it from the
HEPAX chain – and closing the chain accordingly to avoid any ruptures. In RUN mode the
new chain (after page removal) will be displayed for feedback information.

Comments:-

You can use HEPCHN to restore pages removed previously with RLSRAM. Executing HEPCHN right
after HEPCHN? makes no modification to the HEPRAM chain.

Notice that HEPCHN will not take a three-zeros string as valid HRAM chain – attempting to do so will
return the error message “NULL”. Note however that you could come to that situation by releasing the
last page in the chain using RLSRAM.

Dedicated error conditions will report the absence of a configured chain (“NO START”), a broken chain
condition (“CHAIN BROKEN”), or the incorrect choices for released pages. Be careful not to remove
pages or reconfigure the chain if they already contain data and are part of the FileSystem.

Note: Using the prompt [D] in the HEPX function launcher will invoke the HEPDIR function from the
HEPAX ROM – which obviously is expected to be mapped to the MMU (or physically plugged to the CL)
for this to work.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 37 of 110 April 2014

2.3.3 Page-Plug functions.

PLUGG _ PLUG page by prompt Prompts for page: “6-F” 4k ROMS only
PLGG#4 PLUG page #4 Prompts for ROM: “F:L:S” Take-Over ROMS
PLUGG? _ Get plugged ID# Prompts for page: “6-F”
UPLGG Unplugs page Prompts for page: “6-F” 4k ROMS only
UPLUGA Unplugs ROM by Alpha ROM Signature in ALPHA

As mentioned before, the HEPAX configuration functions also take care of plugging the HEPAX ROM
into the appropriate page. This is accomplished by a single function, using a parameter to define the
page address. This function is PLUGG, or “Plug Page”.

The unplugging action is performed by the reverse function, UPLGG . Both functions expect the
page# in the X register when used in PRGM mode. In manual (RUN) mode it presents a prompt to
input the destination page. As before, pressing [SHIFT] will toggle between PLUGG and UPLGG – all
interconnected for quick changes and convenience sake.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 38 of 110 April 2014

Contrary to the port-based convention of the “native” CL functions we’re now referring to a page-
based one, whereby the arguments of the function are the ROM id# in Alpha (same as usual) and the
page# in X – removing the hard-coded dependency of the location used by the PLUGLxx and
PLUGUxx functions.

The picture below (taken from the HEPAX manual) provides the relationship between ports and pages,
also showing the physical addresses in the bus and those reserved for special uses (like OS, Timer,
Printer, HP-IL, etc). Note that some pages (also called 4k-blocks or simply “blocks”) are bank-
switched. As always, a picture is worth 1,024 words:

Note that PLUGG and PLUGG? are mutually complementary functions, as they both operate on page
id# and will take or return the corresponding ROM id# from/to Alpha. You could use PLUGG? to
interrogate the MMU about page#4, and you can use PLUGG to plug take-over ROMS to page#4 – by
directly invoking the dedicated function PLGG#4, which will be covered in section 2.4 of the manual
later on.

The following error conditions can occur:

- Because of dealing with pages and not full ports, PLUGG will only accept 4k ROMS, or
otherwise “TYPE ERR” will be shown. Note however that UPLGG will always work, removing
the MMU mapping to the selected page - so be careful not to half-remove 8k-ROMS (!)

- Main valid page# inputs are within to the 6-F range. Letters other than A-F will be inactive
during the prompt, but all numeric keys will be allowed - yet values less than 6 will also be
rejected, resulting in an “OS AREA” error message.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 39 of 110 April 2014

- Also a valid special input is “4”, which accesses the page#4 functions – but it requires the
string “OK” placed in ALPHA to accept it. Any other value will trigger a “NOT OK” error
message.

- Attempting to plug a ROM to the page currently used by YFNS will also trigger an error code,
to prevent accidental overwrite. The display will show “PG=YFNS” and no action will occur. If
you want to relocate it you need to use one of the CL “standard” PLUG functions instead.

- If the string in Alpha is not a valid ROM id# you’ll get “BAD ID” or “NO ENTRY”– as expected.

- If the YFNS ROM is not present (not mapped to the MMU or running on a standard 41 without
the CL board) you’ll get “NONEXISTENT” error.

Using Page Signatures for Unplugging.

Function UPLUGA introduces a new aspect to the ROM plug/unplug chapter in that it uses the text
ALPHA as input, and not page or port information – which may not be known to the user at the
moment of the unplugging action.

The string in Alpha is expected to be the Page Signature, a four-letter string written at the end of
each 4k-page comprising the module, just before the checksum word at the very bottom of the page.
Notice that despite being a similar concept, the page signature is not the same as the ROM ID
mnemonic used by the CL’s PLUGxx functions – and listed by ROMLIB or CLLIB.

Typically the page signature is not known to the normal user, but power-users are of course a
different kind. There is a couple of ways to find out the signature for any page:

1. Using the function PGSIG; which prompts for the page number in Hexadecimal format (from
0 to F), returning the signature string to ALPHA and the display. Note that it’s also
programmable, and than in PRGM mode the page# is taken from the X register instead.

2. Using MMUCAT; now also adding the signature to the information shown in the display. This

enhances the output and provides more details as to the type of mapping for each page,
which may be for a module in Flash (showing its ROM CL_ID and the page Signature), or a
module in sRAM (showing the address and the Signature), or not part of the MMU (showing
zeros and signature), or even a blank page with nothing plugged in – virtually or physically -
(showing zeros and the “@@@@” string). All in all, a better characterization of the system
configuration, which will also be printed if the NORM/TRACE mode is set.

At this point an example should clarify. The screenshot below shows the output of MMUCAT for a
system with the USB-41 module, and a couple of MMU-plugged modules. Note that the Page#4
Library is included in the USB-41 itself, and thus the MMU address for it is zero - as it corresponds to
any “real” module (i.e. not virtual).

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 40 of 110 April 2014

Note also that in pages #8 and #9 the sRAM addresses are listed (as opposed to CL_ID’ s) since I’m
not using the Flash versions of the CLLIB or YFNS modules. Lastly, note as well the “all empty” nature
of page #F in the left-side picture.

Plugging the HEPAX module from Flash to page #F changes the last line as seen on the right-side
picture, showing both the CL_ID and the page signature side-by-side.

 © Photo by Geoff Quickfall, 2011

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 41 of 110 April 2014

2.3.4. Security functions.

The following group of functions are a small detour, in that they aren’t directly related to the CL but
they come to full fruition when used on this platform.

SECURE Activate Security Author: Nick Harmer Source: Data File
UNLOCK Deactivate Security Author: Angel Martin
XPASS Change Password Author: Nick Harmer Source: Data Fie

Here we have a nice practical application of advanced system control. Use these functions to manage
a password-protection scheme for your CL – so nobody without authorized access can use it.

They were published in Data File back in 198x by Nick Harmer, and implemented in Q-RAM devices
(a.k.a MLDL). Obvious caveat there was that removing the MLDL from the machine dismantled the
whole scheme – but the CL has made it possible as integral part of the core system now.

The protection works as follows:-

1. Function SECURE activates the security by setting the protection flag. The execution also
switches off the machine. This sets up a process executed on each CALC_ON event, causing
to prompt the user for the password during the start-up process.

2. Function UNLOCK deactivates the security by clearing the protection flag.
3. Function XPASS allows the user to change the password from the default one to his/her

favorite one. The length of the password is limited to six (6) characters.

 Enter code (up to 6 chrs. long) and end with [R/S]

Inputting the password is very simple but very unforgiving as well: at the prompt “PASSWORD=?” just
type the letters one by one until completing the word, and you’re done. If you make a mistake the
machine will switch itself off and it’ll be “groundhog day” all over gain – until you get it right.

Each keystroke will be acknowledged by a short tone, but no change to the display – so nothing like
“*****” as you type the word. If the wrong letter is entered a lower-pitch sound will be heard and the
calculator will go to sleep.

Be especially careful when entering a new password code – as there is no repeat input to confirm the
entry, so whatever key combination you type will be taken when ending the sequence with R/S. The
initial password (“factory default”, so to speak) is “CACA”.

 Enter code (up to 6 chrs. long) and end with [R/S]

Here again it comes without saying that this will only work when the CL-UTILS module is mapped to a
SRAM block in the MMU – or otherwise none of the ROM writing will work.

Note: this is how you’d get yourself out of trouble if somehow you forgot the right code: do a memory
lost to disable the MMU, then reload the POWERCL from flash – which has the protection flag cleared.
Map it to the right page and enable the MMU again – you’re back in charge.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 42 of 110 April 2014

2.3.5. Encrypting and Decrypting RAM contents.

YFOG Scrambles RAM See description below/ *WARNING*
YCRYPT Driver for FOG Follow program prompts *WARNING*

If you’re concerned about the security of the data and programs held in your RAM pages here is the
ultimate encryption facility to completely cover your tracks and protect the system to the paranoia
stage.

YFOG will scramble the RAM contents using a 6-characters long encryption key provided in ALPHA,
starting from the address in the S&X field of X (thus a NNN is expected), and until the bottom of that
page. Repeating the operation with the same encryption code will restore the contents to its original
state, so the operation is reversible – as long as you remember the key used to encrypt it in the first
place.

YCRYPT is a nice and easy driver program for YFOG that takes care of preparing the required inputs
for you. No additional “precautions” are added, so the “ADR _ _ _ _” input will accept any HEX
characters and not only valid addresses.

As these functions only operate in RAM the OS area is safe, even if you attempt to encrypt it. Ditto for
every page plugged to a module in Flash memory – but watch out for the RAM-plugged pages (like
HEPAX RAM, or any other module you have residing in sRAM). That’s why the confirmation message
“OK? Y/N” will also be prompted when calling this function – even in a program.

Needless to say things can get hairy pretty quickly if you mess with critical areas, like the polling
points. YFOG will not modify the contents of locations 0xpFF4 and above within the page, but that
doesn’t guarantee a trouble-free result – because if polling points are active who knows what will be
there where they’re pointing at AFTER the encryption!

YCRYPT is a trivial-looking program that just manages to
prepare things for YFOG. The listing is shown on the right, note
the usage of the undocumented function “–SYS EXT” that
prompts for the target address and places it in the S&X field of
status register Q(9).

1 LBL "YCRYPT"
2 ‐SYS EXT
3 RCL Q
4
5 PMTA
6 ASTO L
7 ALENG
8 6
9 X#Y?
10 GTO 01
11 RCL Z
12 FOG
13 TONE 7
14 LBL 02
15 CLA
16 ARCL L
17 GTEND
18 LBL 01
19 TONE 0
20
21 AVIEW
22 GTO 02
23 END

YCRYPT uses a couple of functions from the AMCOS/X module,
which obviously should also be plugged in the MMU.

GTEND is also available in FAT1, so you could use XQ1
“GTEND” instead. Or even just stop there (STOP, RTN) but it’s
safer to leave the scene after the job is done (or the error
encountered).

A piece of trivia: YFOG must be located in the main FAT in order
to be callable from within the YCRYPT code: this is a limitation
that won’t affect your programs located in RAM – or even located
in other plug-in modules - as long as they are not plugged in the
same PORT as the POWER_CL.

The original FOG function was written by Derek Amos, and
published in PPCCJ, V12N5 p3.

"PWD="

"#PWD<>6"

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 43 of 110 April 2014

2.4.1. YFNS Left-over functions Reloaded.

To make room for the IMDB functions, a few of the Y-Buffer and serial functions were removed from
the YFNS module, but Monte’s graciously granted permission to add them to the POWERCL - so that
the entire Y-Functions set can be available on-line without the need to switch back and forth between
the YFNS and the YFNP modules.

The intent here has been to include the most frequently accessed in the launcher, together with a
couple of favorite ones: YEDIT (see below) and YINPT - described somewhere else in this manual.

YEDIT sRAM mini-Editor Input ADR, then Y/N WARNING
YBPNT Sets Y-buffer pointer Data in ALPHA
YBPNT? Recalls Y-buffer pointer Returns string in ALPHA
YBUILD Copies data to Y-Buffer Data in ALPHA
YINPT Universal Y-input Prompts for characters WARNING
YPOKE Writes Data to RAM Data in ALPHA WARNING
YPEEK Reads Data from RAM Data in ALPHA
YRESET Resets (Disables) the MMU Use it when YFNS is “lost”
?MMU Tests if MMU is enabled Yes/No, skips line if false

Note that for these functions to work the YFNP-1C module must be plugged in the calculator/. The
function check for the checksum word to match the hard-coded value “185”, so YFNS (or other ROM
with the same id#=15 won’t be used. The following error message will be displayed if that’s not the
case:

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 44 of 110 April 2014

Inputting Y-Control strings with YINPT.

The reason why characters “-“ and “>” are so relevant is the formatting required by many of the
functions, like YPEEK, YPOKE, PLUGxx, etc. To that effect a most useful function within this group
is YINPT, which redefines the keyboard as a hex entry {0-9, A-F}, plus a few special control
characters, as follows:

- [J] adds the control character “>” to the display
- [Q] adds the control character “-“ to the display
- [K] adds the string “16K” to the display
- [L] adds the string “DBL” to the display
- [M] adds the string “RAM” to the display
- [SST] adds the string “MAX” to the display
- [ENTER^] adds three zeroes to the display
- [<-] BA removes the last character (or groups above), or cancel out if Empty
- [R/S] terminates the entry process, and copies the display content to ALPHA.

Using this function expedites the construction of the Alpha strings required by all other Y-Functions,
make sure you have it assigned to a handy key as it’s likely to be used quite frequently – or
alternatively use it directly from the YBUF launcher, option “I”.

When used in PROGRAM mode, the prompt “Y:” will be replaced by the text in ALPHA – so you can
have your custom prompts.

Notice that because it uses the display as repository (ALPHA is not altered until the end), the valid
length accepted by YINPT is limited to 11 characters (not counting the prompt). This is sufficient for
all parameter input purposes within YFNS functions, but remember: if you exceed this limit characters
will be “lost” from the left. YINPT is used in other FOCAL programs in the PowerCL module, such as
YEDIT and DLD48.

Resetting the MMU.

• YFNZ? is completely equivalent to YFNS?, in fact is just a code stub that invokes the latter.
It must be in the POWERCL module for subroutine purposes. Incidentally, this is how
PLUGGX checks for YFNS being currently mapped to the target page, and discards the
request if so.

[Note: there’s an ulterior motive for having this function included in the POWERCL module,
and such is as a back-door recovery method from a “lost YFNS” contingency. This may occur
when the YFNS is overwritten with another module image by the MMU, typically as result of
inadvertently using PLUGxx on the same location. That being the case, YFNZ? will
automatically disable the MMU so you can take charge again and rebuild the MMU to correct
the issue - with no need to resort to ML or removing the batteries anymore]. Upon completion
the following message is displayed:

• YRESET is a new addition in revision “J”. It provides a more purposed approach to the same
task, effectively disabling the MMU (resetting it) if the “OK/OKALL” is in ALPHA – to avoid
accidental disabling.

• Lastly ?MMU is the same as MMU? In the YFNS module - plus also writing either 1/0 in X
depending on the result. The stack contents are lifted

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 45 of 110 April 2014

2.4.2. The new kid on the block.

The latest addition to the CL’s bag of tricks has been a set of functions to manage the ROM Image
database. It’s not in the scope of this manual to describe them, you’d have to read the CL manual for
that; but this launcher is available to group all of them under a single function in the POWERCL. Be
very careful not to use the options by mistake – correcting errors in the IMDB is time consuming!

IMDBCPY Copy IMDB to RAM Makes a copy in 0x805 WARNING
IMDBUPD Update IMDB from RAM Flashes the entire sector! WARNING
IMDBF Activates IMDB in Flash Uses copy in Flash
IMDBR Activated IMDB in RAM Uses copy in sRAM
IMDBINS Inserts new IMDB entry Data in ALPHA WARNING
IMDB? IMDB Entry Data Data in Alpha
IMDBF? Checks if IMDB in Flash Yes/No

The IMDB is the only reference used by all PLUGxx and UPLUGxx function, be that the “native” port-
related ones in the YFNS, or their page-related counterparts in the POWERCL. It’s therefore not to be
confused with the internal database within the POWERCL, used by functions ADRID, CLLIB and
ROMLIB – which purely perform an informational role for enhanced usability.

IMDB? has similarities with ADRID in that both retrieve details on the ROM specified in the
argument. For ADRID such is its flash or RAM address (returning the ROM ID in Alpha), whereas
IMDB? uses the string in ALPHA – either ROM ID or address are valid inputs.

Obviously the CL is a must requirement, so don’t try this on your favorite emulator or “plain” machine,
where you’ll get the friendly reminder (courtesy of the YFNP module):

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 46 of 110 April 2014

Differences between the IMDB and the PowerCL ROM Library.

The PowerCL has its own image Library included in bank-2. This local library (currently occupying
about 1,280 bytes) is the source of information for functions CLLIB and ROMLIB, covered earlier in
the manual. The entries are arranged alphabetically, and they have field descriptors for the module
size and type – used by those functions, as you already know.

There are 211 entries in the ROM table. Each entry takes up 6 bytes as follows: 4 for the mnemonic,
one for the address in flash, and the last one for the size/type information combined. Besides, a table
header and footer (of 6 bytes each) are also needed for the search algorithms.

000 <Table Boundary>
000 <Table Boundary>
000 <Table Boundary>
000 <Table Boundary>
000 <Table Boundary>
000 <Table Boundary>
001 "A" Advantage Pac
034 "4" HP
031 "1" 12k
210 "P"
20D size / type

10D size / type

Size in XS digit
008 address
001 "A" Advantage Applications
001 "A" J‐F Garnier
004 "D" 4k
216 "V"

08D address

Arguably there is redundancy in maintaining a duplicate of the IMDB, and a potential source of errors
if there is divergence between both. In the ideal scenario this should not be required; however it was
coded very early in the days of the beta version of the CL board, before the IMDB was implemented.
It is also integral part of functions ADRID, MMUCAT, and PLUGG? – which makes it rather difficult
to eliminate now after its pivotal character.

An obvious limitation is that the PowerCL knows nothing about new IMDB entries made after its
release, or those you may have added to it in your own CL system.

It will also get out of sync if you re-locate ROM images within the IMDB – although this is quite a
corner case, not likely to occur with the 99.9% of users.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 47 of 110 April 2014

2.5.1. Using Page#4

As mentioned previously page#4 is a special case that requires its own dedicated (un)plugging
functions, not covered by PLUGG or the native (U)PLUG ones either.

PPG#4 Plugs ROM in page#4 Prompts F:L:S WARNING
UPGG4 Unplugs ROM from p4

The 41 OS reserves Page #4 as a special location. There are frequent checks done during strategic
moments to specific locations that can be used to take control on the system, even over the OS itself
if that was required – as it happens with the diagnostics executed from the different SERVICE ROMS.

Because of that, only “take-over” ROMS can be plugged in page#4. They have been written
specifically for it and will either take complete control of the system (like the FORTH and service
modules), or drive it from their own directive (like the LAITRAM module).

Function PPG#4 prompts for the ROM to plug into the page, options being just those three
mentioned above: FORTH, LAITRAM, or SERVICE modules – by their initials: “F:L:S”. Once the
selection is made the function transfers the execution to a hidden FOCAL program that writes the
appropriate entries into the MMU registers, so that the mapping is correct. Refer to the CL manual for
details on this.

WARNING: Be aware that once the order is complete you’ll be at the mercy of the plugged module.
Going back to the “normal” OS may not be as simple as you think, especially with the Service ROM
plugged – which requires removing the batteries, then clearing the MMU entry with the MMU disabled
after you switch it back on.

For the other instances it is possible to “exit” back to the OS, and thus you could execute UPGG4 to
unplug the module from the page. Obviously no inputs are needed in this case.

Note that because of the name not directly key-able using XEQ (an intentional measure) you’ll have
to use another approach to invoke PPG#4. It’s a trivial task with the CCD-style CAT’2, either during
the catalog run or through a previous assignment to any USER key. Of course as a CL owner you’re
only one YPOKE away from a permanent solution if POWERCL resides in sRAM ☺.

And what about the Library#4?

The Library#4 is not one of the choices offered by PPG#4 because it’s assumed to be already
installed for the POWERCL module to work. This configuration must be done manually. This is an
important point, so make sure to always have the Library#4 plugged in order to use the POWER_CL
module. The library contains routines used by many functions in the module, thus it must be present
for proper execution. Failure to do so will create unexpected issues ranging from unpleasant to
harmful events!

WARNING: Be aware that just plugging/unplugging the Library#4 (once you have it burned in Flash
or copied in sRAM) will not check for its presence. It is therefore strongly recommended to power-
cycle the machine in order to perform the Library#4 existence check. As always, refer to the
Library#4 documentation for additional details.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 48 of 110 April 2014

2.5.2. RAM and ROM Editors

Placing the ROM image library on bank 2 freed up a large amount of space for additional functions to
be included in the POWER-CL module, as can be seen by looking at its full-FAT list. The choice of
functions added over previous CL_UTILS incarnations was clearly meant to have a comprehensive and
self-contained function set that included some the best examples ever written for the HP-41 system.
RAM and ROM editors are no doubt amongst these, and as such are available in the POWER-CL.

RAMED RAM Editor Uses GETKEY [KEYFNC] WARNING
ROMED ROM Editor Uses Partial Data Entry WARNING
YEDIT CL sRAM Editor Uses AMC_OS/X Module

Editing RAM memory with RAMED.

Written by Håkan Thörngren, this powerful RAM editor rivals with (and exceeds it in several aspects)
the ZENROM implementation. It was first published in PPCJ V13 N4 p26.-, you’re encouraged to check
his original contribution for a complete description of the functionality and usage.

The starting address is taken from the X register in RUN mode (as decimal value between 0 and 999),
or from the program pointer in PRGM mode. The display shows two distinct fields, with the nybble &
byte section shown on the left side and the actual register content shown on the right – as a 7-digit
scrollable field controlled by the USER and PRGM keys – very much like the CX’s ASCII file editor ED.

Nybble D (the 13th within the register) is selected upon start-up, with the cursor centered in the
middle of the field and its value blinking on the display. At this point you can use the control
characters to move between both areas and within the fields, or the digit keys plus A-F to input the
nybble HEX values being edited. Scrolling includes a tone to signal the wrap-around condition within
the register, as the nybble being edited is updated in the address field on the left. Without a doubt, a
real tour-de-force and a masterful implementation.

The screens below show a couple of examples, editing the leftmost nybble of the Y register (address:
D002) and the rightmost digit of the X register (address 0003). The screenshots don’t capture its
magic; you really need to use it to appreciate its simple and powerful functionality.

The control keys for RAMED are as follows:

[USER]: moves down to the previous nybble or position within the field
[PRGM]: moves up to the next nybble or position within the field
[+]: moves up to the next register
[-]: moves down to the previous register
[.]: the Radix key moves between both fields, used to change the register address
[1]-[9],[A]-[F] the nybble value being edited
[<-] back-arrow cancels out and exits the editing
[ON]: turns the calculator OFF

RAMED is completely located in bank-2, with only the function name and a small code snippet in the
first bank to transfer the execution. I have only minimally altered the source code to take advantage
of the CX- and Library#4 routines.

RAMED uses a key-detection technique more power-demanding than the Partial Key Sequence, thus
will drain on the battery life if used extensively. Do not leave it run idle for a prolonged time.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 49 of 110 April 2014

Editing ROM areas with ROMED.

Written by W. Doug Wilder, another MCODE master - this ROM editor has all the basic functionality
required for the most common needs; perhaps just a couple of notches below the tremendous
HEPAX’s HEXEDIT – but in a much more concise foot-print implementation and not exempt of
wonders on its own.

The initial prompt requests the address to edit, ranging from 0x0000 to 0xFFFF as you would expect.
Once entered, the display is identical to that one in HEXEDIT, with three distinct fields showing the
address being edited, the current value, and three underscore characters where the new value will be
written as the input progresses.

Usual rules of the game apply: the first character can only be 0,1,2,3; and obviously there must be a
MLDL-RAM block for the input to be actually written in. A nice touch (lacking in HEXEDIT) is a “ROM”
message shown when the destination is read-only.

The control keys for ROMEDIT are as follows:

[SST] : moves up one word
[BST], [TAN] moves down one word
[1]-[9],[A]-[F] the nybble value being edited
[ENTER^]: inputs three zeroes as word value
[<-]: first back-arrow prompts for a new address, second exits the editing
[ON] turns the calculator OFF

ROMED is completely located in bank-1. Besides the changes “of rigueur” to use the Library#4
routines, I have made a couple of enhancements to the original implementation, adding the
underscores for the edited field and the [ENTER^] control key for a closer resemblance to the HEPAX
implementation in HEXEDIT.

ROMED can only edit the first bank, so the only missing functionality is perhaps this; no access to the
other banks in bank-switched modules (like the HEPAX, Advantage, Timer, or POWER_CL itself).
Certainly not a big deal in the 90% of the cases; and sure enough well worth the admission price.

[Note: The other missing functionality is the ability to do live-editing of polling points and other OS-
controlled hot addresses, which the HEPAX manages by preventing the calculator from going into light
sleep – definitely hardly used in the 99,9% of the cases.]

The screenshots below show editing of the Library#4 contents on-the-fly – a real godsend for
MCODERS to quickly test small code changes without having to re-compile / rebuild the ROM images.

ROMED uses the partial-key entry technique, more gentle on the battery drain requirements – and
incidentally also the reason why it cannot be located on bank-2, as a technical detail.

Final remark.- The original ROMED is available in the DISASM module, under the name WROM,
and RAMED is also included in the RAMPAGE module, named RAMEDIT there. Thanks to its
gigantic module image library there’s certainly no shortage of modules to use on the CL, but having all
these functions included in a lean 4k-footprint ROM is very advantageous from the usability and
compatibility standpoints, eliminating the need to alter the system configuration to access another
module containing the desired function.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 50 of 110 April 2014

RAMED and ROMED Overlays.

The figures below show two possible overlays for the Ram and ROM Editor functions, RAMED and
ROMED. For comparison purposes, I have also prepared similar virtual-overlays for the more capable
versions of the same functions included in the ZENROM and the HEPAX. Interestingly, the overlay for
ROMED could be simply a subset of the HEXEDIT overlay – so it’d appear killing two birds with the
same stone.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 51 of 110 April 2014

2.5.3.- YEDIT- Quick & Dirty sRAM Editors.

RAMED and ROMED are capable of editing the complete content of the RAM and ROM plugged to
the CL via the MMU settings, but obviously cannot be used to edit the content of the sRAM on the CL
board. YEDIT closes that gap, in a minimalist approach that provides a simple but elegant way to
drive YPEEK and YPOKE instructions automatically, so that the sRAM words can be edited.

The execution starts by asking for the starting sRAM or Flash address, as a six-digit hex format. It
then gets into a loop reviewing every word in a sequential manner, using [R/S] or [Y] for each
consecutive word. Use [N] to get into the editing screen, input the new values (4-digits are required)
and follow with [R/S]. It comes without saying that YEDIT isn’t able to edit the data in Flash sectors,
although you can use it to review its contents.

Note that some functions from the AMC_OS/X module are used, thus you’ll need to have it plugged as
well – one more reason to *always* have it on-line.

Listed below are a couple of small FOCAL programs that illustrate the functionality present in YEDIT..
The first one only reviews the contents (useful to check whether the block contains the expected
information), and the second also allows actual changes to it. Like the final program in the POWERCL
module, these example programs also use functions WSIZE and ARCLH, from the AMC_OS/X
module. The final version of YEDIT also uses PMTA, instead of APPEND.

The simple version on the right allows moving to a different address without re-starting the program,
simply add (or subtract) the offset from the current one, entering it in X (in decimal) then pressing
[+] (or [-]) just before R/S. For YEDIT+ on the left you’ll need to re-start the program and input
the new address.

The screenshot above shows the data at address 0x83F000, first word in the last sRAM block in the V2
CL systems – my customary location for the Page#4 Library.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 52 of 110 April 2014

2.5.4. Reallocating MMU entries.

YMOVE Moved MMU mapping FROM: in Y; TO: in X *WARNING*
YSWAP Swaps MMU mappings FROM: in Y; TO: in X *WARNING*

It is often the case that you’d like to have the MMU mappings changed, to either move a current entry
to a different page (freeing the original one), or even to exchange two entries. Granted this is doable
using the standard (U)PLUGxx Y-functions, but such an approach requires knowing the module ID’s,
and/or the sRAM addresses where they are physically located.

New additions to the POWERCL allow doing the changes just using their logical addresses, i.e. the
page numbers the MMU entries point to. This is much faster and simpler, yet also provides nice ways
to get you in trouble if not used carefully.

In revision “K” both YMOVE and YSWAP are proper MCODE functions. Because they are in the
PowerCL, the page where the PowerCL is located will be excluded – or otherwise the program pointer
would “get lost” in the middle of the execution – sort of removing the floor from their feet while
they’re in operation. Attempting to do so will show the “NO SELF” error message.

Obviously the OS pages must be avoided, as well as those system-reserved like the printer or HP-IL.
Finally, revision “L” added protection to the YFNS page in a MOVE action as well. Try it!

These functions are meant to be used with 4k-ROMS, since only the pages in the TO: and FROM:
inputs will get reallocated - regardless of which other logical connections may exist. And you’ll be
glad to know that they support bank-switched modules (i.e. HEPAX, OS/X3).

01 LBL "MMUSWP" The FOCAL program listed on the left shows an

alternative unrestricted version for YSWAP – use
it judiciously.

02 ,
03 WSIZE
04 RDN
05 XEQ 00 read the TO: page
06 ASTO T save in T
07 XEQ 00 read the FROM: page
08 ASTO L save in scratch
09 XEQ 02 write FROM: into TO:
10 R^
11 STO L save in scratch
12 RDN write TO: into FROM:
13 LBL 02
14 "804"
15 ARCLH
16
17 ARCL L
18 YPOKE
19 X<>Y
20 RTN
21 LBL 00
22
23 ARCLH
24
25 YPEEK
26 ASHF
27 X<>Y
28 END

Besides the restriction not to use it with the
PowerCL itself, other obvious limitations for the
FOCAL program (but not for the MCODE function!)
include not moving the YFNS and AMC_OS/X
modules either. It’s only valid for non-bank
switched modules

"|‐0"

"804"

"|‐0‐1111"

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 53 of 110 April 2014

2.5.5. Calculator Flash Backup & Restore.

YWALL Backs up to Flash “OK” or “OKALL” in Alpha *WARNING*
YRALL Restore from Flash “OK” or OKALL” in Alpha *WARNING*

The MMU content is preserved during a MEMORY LOST event, and the same is true with the sRAM on
the CL board. So using RAM for a complete calculator backup and restore is not a bad idea at all, and
it will allow you different setups or complete configurations to be swapped back and forth directly
from sRAM.

However sRAM contents will be lost if the batteries are removed from the calculator for a certain
period of time – longer than what it takes to reset a small glitch, but shorter than it used to be for the
standard 41, - due to the increased power demands from the CL board.

Early CL beta user Geoff Quickfall prepared a few FOCAL programs to commit the calculator contents
to FLASH, so that even without the batteries it’ll be preserved for a restore at any later time. It’s a
powerful concept, but it doesn’t come free from pitfalls if you’re not careful.

• The first consideration is related to the Flash write function and you should read and
understand all about it in the CL manual. Specifically pay strong attention to the
recommendations about the fresh battery state before performing any flash-write operation.

• The second one is that YWALL will pick certain hard-coded FLASH locations as destination for

the backup, so both 4k blocks 0x1FE and 0x1FF will be ERASED by YFERASE. Note
that earlier versions of CLUTILS used sector 0x0D8-0x0DF instead. This was moved to the
current location to avoid erasing other ROMs, added to that sector with V3 revision of the CL
board. Therefore revisions V3/V4 of the CL board are required.

• Then there’s the question about having to run the programs from RAM for the flash-

write/read to work. One could assume that YFNP is already there but it’s much better to
make sure that’s the case by making a copy on the fly and plugging it to the MMU under
program control. Such copy goes to RAM block 0x805, the Y-Buffer area – overwriting
anything you may have in there previously. This is especially relevant when using the
RAM copy of the IMDB, so make sure that’s not the case.

• Note that POWERCL module may reside in Flash during the process, even if the FOCAL

program calls upon YFWR – as the “from-RAM-only” restriction only applies to YFNS.

• Finally, after the backup copy is made YWALL resets the MMU settings plugging the flash
copy of YFNP back in. Note that these functions make no assumption on which page YFNP is
initially plugged in, and will restore it to the same page after completion. This means it’s
compatible with any MMU port setting for YFNS – at least one thing not to worry about.

The FOCAL code used by the function is shown in next page – There is also a check done in MCODE
looking for the strings “OK” or “OKALL” to be present in Alpha. If neither is there the execution will
end with “NOT OK” – as a protection against accidental usage. “OK” will get the Calculator content
backed up, whilst “OKALL” will also include the MMU entries into Flash. Note that only the
corresponding 4k blocks will be erased, but not the whole 32k sector.

Should any of those default settings clash with your system setup I’d suggest you change it to match
them as the easiest way to go around the incompatibilities. Even if it’s possible, re-writing the
program in 41-RAM is strongly not recommended.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 54 of 110 April 2014

1 LBL "YWALL"
2 IMDBF? is the IMDB in flash?
3 GTO 01 yes, go on
4 GTO 02 no, skip to end
5 LBL 01
6 "00F>805"

"805‐RAM"

"1FE000"

"800>1FE"

"1FF00"

"804>1FF"

"YFNP"

"1FE>800"

"1FF>804"

"DONE"

prepare copy
7 AVIEW show settings
8 YMCPY copy YFNS to RAM
9 prepare mapping
10 YFNS? get current YFNS location
11 SF 25 protection override
12 PLUGG plug RAM there
13 prepare erasing
14 AVIEW show settings
15 FC? 49 battery ok?
16 YFERASE erase BLOCK (!!!!)
17 prepare copy
18 AVIEW show settings
19 YFWR write calculator to flash
20 FC? 01 was MMU also selected?
21 GTO 00 no, skip to end
22 prepare address
23 AVIEW show settings
24 FC? 49 battery ok?
25 YFERASE erase MMU block
26 prepare copy
27 AVIEW show settings
28 YFWR write MMU to flash
29 LBL 00
30 prepare restore
31 YFNS? get YFNS location
32 SF 25 protection override
33 PLUGG plug it there
34 GTO 02 go to end section
35 LBL "YRALL"
36 prepare copy
37 AVIEW show settings
38 YMCPY restore backup to RAM
39 prepare copy
40 FS? 01 was MMU also selected?
41 YMCPY restore MMU to RAM
42 LBL 02
43 show final message
44 AVIEW and end.
45 END

Backing up MMU entries may be seen as superfluous, yet think about the issues arising from restoring
MMU configurations that don’t include the POWERCL module – which is where the program is being
run from: welcome to CL-limbo! - Surely something to be avoided.

Similar issues will occur if in the restored configuration the YFNS and POWERCL modules are plugged
in a different ports than the ones the restore process is being executed from – the program pointer
will get confused and the calculator may hang up.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 55 of 110 April 2014

2.5.6. Downloading ROM images from PC files.

The serial link is a very practical alternative to download and upload ROM images to the PC. Definitely
worth the set-up and configuration price, even if initially it may look a bit intimidating.

The program below is a nice and short application to automate the downloading or ROM images from
the PC, using the serial link. The core of the routine is the function YIMP, with the other few lines
just setting the stage to make sure nothing is forgotten – typical when done manually. So it’s nothing
to write home about, but since I use it so frequently I opted for adding it to the module on a
permanent basis (got tired of entering the program in RAM every time).

It uses a 4800-baud setting, which happens to be a good compromise between reliability and
performance – at least for my own systems. It’s very minimalist due to the tightness of space left in
the module, but it does its job quite nicely.

01 LBL "DLD48"
02 SERINI
03 BAUD48
04 LBL 00
05 "ADR: _"
06 YINPT
07 "|‐000‐0FFF"
08 TURBO50
09 YIMP
10 STOP
11 GTO 00
02 END

Refer to the YFNS manual for details on the serial link function. Also to appendix 6 for a listing of the
CLWRITER and CLREADER, the PC programs running on the other end of the serial link.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 56 of 110 April 2014

CL-to-CL Connectivity.-

Version 4 of the CL board has the capability to use the serial link without the assistance of a PC
connected to it to power the serial bus. This opens the possibility to use a modified cable to link two
CL machines together, with the V4 board installed at least in one of them - for the purposes of data
and program transferring from one another.

While transferring complete blocks of ram is little more than a trivial exercise (using YEXP and YIMP
on each machine), dedicated software needs to be written to deal with 41 programs or other choices
from the actual calculator memory areas. To be continued...

The photo below shows initial experimenting done on this very new capability.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 57 of 110 April 2014

3.1. The system as a whole.

This set of functions provides useful information on the contents of the I/O bus of the calculator –
used by the system extensions like plug-in modules, HP-IL, etc. Typically the complete bus is
scanned, showing those hits that meet definition asked, such as free or used pages, banked ports, or
system configuration checks.

Even if there isn’t a dedicated letter for it, the IOBUS launcher can be accessed by pressing [SHIFT]
at any of the launchers prompts (including the main ΣCL). IOBUS it’s a two-page launcher, with the
second part dedicated to Page functions. Use the [SHIFT] key to toggle between both:

 Å---Æ

As always, press ΣCL to return to the main launcher – the real anchor in the UI. The table below lists
the functions available at the first page – three of them brand new in revision “J” of the PowerCL:

BANKED Lists Bank-switched pages New
BFREE Lists Unused pages New
BUSED List pages used New
OSREV Shows OS ROM revisions Nelson F. Crowle
ROMLST Lists all ROM id# plugged
CHKSYS Checks for ROM id# conflicts

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 58 of 110 April 2014

• BANKED presents a colon-separated string of numbers (in hex) corresponding to those pages
with a bank-switched configuration, as defined in the ROM signature characters. The official
convention is not strictly followed by the (very few) authors of the few bank-switched ROMs,
but the number of banks should be marked in characters 2/3/4 of the ROM signature.

An example with both the PowerCL and the SandMath_2x2 plugged returns the following:-
Can you explain the presence of the “5”? Hurry, time’s ticking out!

,

• BFREE and BUSED will present colon-separated strings of hex numbers corresponding to
those free or used pages in the calculator. Obviously the OS will always be listed by BUSED,
which is a nice clue to quickly tell which particular string you’re looking at. See for instance
the examples bellow showing a pretty decent configuration:

 for the free pages, and

 for the used pages.

The strings are compiled using the display, and transferred to ALPHA upon completion. For
full-house configurations the list of used pages will take up more characters than those
allowed in the display – and the string will be scrolled to the left, dropping the first three
pages in the worst case. Since those hold the OS (always there) there’s no real information
loss.

The strings can have “holes”, as this is totally dependent on the modules plugged. Some of
them use the upper part of the port (like the Zenrom), or just simply due to the physical
locations used.

• CHKSYS is a very useful routine to check for incompatibilities in the system configuration, as
may occur when two ROMs with the same XROM id# are plugged. The function will scan all
the ROM blocks looking for repeat values, showing a confirmation or a warning message
depending on the case.

It will also report all and every offending id# in case of conflicts, as many as there may exist.
Use it as frequently as you need, it’s the best way to ensure that things are fine after plugging
any of the many modules available on the CL library – a match made in heaven.

 or

 plus:

• ROMLST has somewhat of a similar purpose: it will produce a list in Alpha with the XROM
id#’s of the plugged modules on the system, so you can check for dups. Because of the 24-
char limit in the Alpha string, only the last 8 modules will be shown – sufficient in the majority
of cases, specially considering that pages 3, 4, and 5 are most likely unique because of being
dedicated to the X-Functions, the Library#4, and the Time Module.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 59 of 110 April 2014

 Example: winning Lotto combination or ROM list?

• Lastly, OSREV shows the revisions for the three first pages, containing the core Operating
System code (in ROMS 1/2/3) / which for an unmodified CL are as follows:

3.2 The Pages within.

Even if these functions aren’t strictly new, they have been improved to make them more usable and
work in combination with one another within this launcher.

PGCAT Page Catalog No Input VM Electronics
PGSIG _ Retrieves ROM signature Page# in prompt/X Ángel Martin
SIGPG? Finds page# if plugged Signature in ALPHA Ángel Martin
SUMPG _ Sums Page checksum Page# in prompt/X George Ioannou
PG? _ Page vital constants Page# in prompt/X W&W GmbH
ROM? _ _ Rom vital constants XROM id# in X W&W GmbH

• PG? returns miscellaneous information corresponding to the page number input in the prompt

in RUN mode, or in X as decimal value if run in a program. The information is as follows:
o Header function name in ALPHA, and:
o [XROM id#] ; [# of functions] in X. (in integer and fractional parts)

Note that when used on the POWERCL page it’ll return the vital constants for bank-3 (where
its code resides), which strangely enough are 56,86 in X (as it was explained at the beginning
of the manual)

Considerable trickery has been used modifying this function in revision “J” to be prompting –
despite being located in a secondary bank. This makes for a more consistent and usable user

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 60 of 110 April 2014

interface, common with other page functions. If there’s nothing plugged in the page the
message “NO ROM” will be shown.

,
Input prompt Page is not used (Free).

• ROM? is also a prompting function. It returns the ROM vital constants for the XROM id#
value input in the prompt, as follows:

o Page# where is plugged in X, and
o number of functions in Y.

The ROM header (first function name) is also displayed (but not saved in Alpha). Note that
this is very similar to PG?, only that the input is not the page number but the XROM id#
instead. If the ROM is not found the display will simply show “NO” – indicating that this
functions doubles as a test function as well, and therefore it’ll skip one line in a program in
this case.

• PGSIG will retrieve the signature string of the ROM plugged in the page entered at the
prompt (in Hex format) – or in the X register (in Decimal) if used in a program. If no ROM is
plugged it’ll return four “@” characters.

input prompt represents a “blank” signature value.

• SIGPG? Is the inverse function: it’ll return the page# where the ROM with signature input in

ALPHA is plugged – returning “NO MATCH” if no matching string is found.

• SUMPG prompts for the page number in Hex in a fancy manner, with alternating texts as
shown below (that alone covered its admission price). Its mission is to calculate the Checksum
byte and to write it in the last word of the page – and that it’ll do very nicely.

• PGCAT was described before in the CATALOGS section. See below the printout output using
JF Garnier’s PIL-Box and the ILPER PC program, showing a nice traceability of the pressed
keys:

ΣCL / XCAT
PGCAT
3:-EXT FCN 2D
4:-LIBRARY#4
5:-TIME 2C
6:-PRINTER 2E
8:-YFNP'1C

9:-TOOLBOX 4
A:-SNDMTH 2X2
B:-HL MATH+
C: NO ROM
D:-AMC"OS/X
E:-POWERCL 3X
F: NO ROM

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 61 of 110 April 2014

String Manipulation and Alpha/Display functions.

The sub-function groups implemented in auxiliary FATs is a great concept, short from being perfect in
all but one component: they cannot be assigned, and thus a full function spelling must be done to
invoke them. This can become a nuisance for those sub-functions used frequently, and having them
available in a dedicated launcher can be a blessing.

This is exactly the situation with the STR$ / ALP$ launchers, conveniently accessible simply pressing
the A key at the main launcher prompt. This can be seen in the diagram below, note the related
items on the left side:

and the associated doppelganger:

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 62 of 110 April 2014

Think of them as ALPHA-Launchers, governed with the [A] key. Pressing A again will toggle to the
execution of the main ΣCL prompt

4.1. The ALPHA Functions section.

This is now a much-extended set of functions compared to previous revisions. Some are clearly
related with one another, and a few of them are symmetrical complements to existing functions in the
native set. Let’s see them individually with the detail they deserve:-

A<>RG_ _ _ Swap Alpha and Regs. 1st. RG# in prompt Ken Emery (original)
AINT Append Integer part Takes absolute value Frits Ferwerda
ALEFTJ Alpha Left Justify Moves test to end Doug Wilder
ANUMDL ANUM with Deletion Gets number to X HP Co.
APPEND Append Text Turns ALPHA input on Doug Wilder
AREV Alpha Reverse Mirror image of text Frans de Vries
ASWAP Alpha Swap Around the “,” char Ángel Martin
CHRSET Character Set Shows the complete set Chris L. Dennis
CLA? Is Alpha Empty? YES/NO test function Doug Wilder
DTST Display Test Source: PPCJ V18 N8 p14 Chris L. Dennis
DTOA Display to Alpha Opposite to AVIEW Ángel Martin

• AINT appends the integer part of the number in X to ALPHA. Perfect to append indexes and
counter values without having to change the display settings (FIX 0, CF 29).

• ALEFTJ left-justifies ALPHA – by writing as many space characters as required until the total
length is 24.

• ANUMDEL works like ANUM, but also deletes the number found and placed in X.

• APPEND is equivalent to using the “append” functionality manually, i.e. pressing [ALPHA],
and “|-“ keys. More interestingly, in a program it will prompt the existing ALPHA contents for
the user to continue entering more. Similar to PMTA, but the initial string will remain.

• AREV will reverse the string in ALPHA, turning it into its mirror-image. For instance:

 Æ

• ASWAP swaps the strings at the left and right of the comma character. Very handy for X-
Functions data input. Does nothing if comma is not there. For example:

 Æ

• CHRSET will show all characters included in the character set of the machine. There are 128

characters in total, scrolled from right to left in groups of 12. Pressing any key will speed-up
the process but the execution won’t stop until they’re all shown. The screen below shows the
enumeration mid-stream:

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 63 of 110 April 2014

• CLA? Is a test function that returns YES/NO depending on whether ALPHA is empty or not –

or in other words, the test is true if ALENG is not zero. As usual, in program mode a line is
skipped if the test is FALSE.

• DTOA captures the display content and writes it into ALPHA. This is an elusive concept, as
there are no standard ways to just write text in the display not using ALPHA or other RAM
registers – but it’s used frequently in MCODE to transfer the display contents to ALPHA.

• DTST Simultaneously lights up all LCD segments and indicators of the calculator display, pre-
ceded by all the comma characters (which BTW will be totally unnoticed if your CL is running
at 50x Turbo!). Use it to check and diagnose whether your display is fully functional. No input
parameters are required.

, and

aVIEW Lower Case AVIEW No conversion occurs Ángel Martin
LOW$ Lower Case convert Conversion of chars. Ángel Martin
UPR$ Upper case convert Conversion of chars. Mark Power

• aVIEW shows the ALPHA contents displayed all with lower-case characters. Note that there’s

no conversion to the text in ALPHA, only the displayed characters. Note also that full-nut
machines (like those CL donors all are) cannot display most of them, so it’s a little academic
at this point. On a half-nut machine (or V41) it makes more sense, for instance:

 Æ

• LOW$ does the actual character conversion to lower-case type, thus changing the contents
of ALPHA. For the example below, the string is as shown for both the full-nut and half-nut
models. This functionality is useful for the printer (which has a complete lower case character
set) and when typing ASCII files using lower case characters: just type it “normal”, then
convert them down in block.

 Å>

• UPR$ does the reverse conversion, getting the text back to upper case characters – perfectly
compatible with the machine character set, and thus legible in ALPHA.

ASCII ASCII value Does not remove char Melbourne ROM
LADEL Left Alpha Delete Removes leftmost char Ross Cooling
RADEL Right Alpha Delete Removes rightmost char Ross Cooling
RATOX Right Alpha to X Symmetric to ATOX Ross Cooling
XTOAL X to Alpha Left Symmetric to XTOA Håkan Thörgren

• ASCII is similar to ATOX but it does NOT remove the (leftmost) character from Alpha. Use it
to read its value into X, but leaving it alone (preserved in ALPHA). The following relationship
shall help understand the similarities: ATOX = ASCII + LADEL

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 64 of 110 April 2014

• XTOAL appends to the Left of the Alpha text the character which ASCII value is in the X

register. This is the symmetrical counterpart to XTOA, which appends the character to the
right of Alpha. Strictly speaking XTOA should be called “XTOAR”, and in fact that’s how the
functions were relabeled in the Extended-IO module.

• RATOX removes the rightmost character from Alpha and places its ASCII value in X, also
lifting the stack. It is therefore the symmetrical operation performed by ATOX, which strictly
speaking could be called “LATOX”

• RADEL deletes the rightmost character from alpha but doesn’t place its ASCII code in X, so
it’s a “diminished RATOX” if you will, in that it only does the first half of it.

• LADEL is similar to ATOX but not quite the same: Like ATOX it will delete the leftmost
character from ALPHA, but contrary to ATOX, its ASCII value will NOT be placed in X. ATOX
is a combination of both ASCII plus LADEL used consecutively; if this comparison helps.

Some of these functions are mutually inverses, one undoing what the other does. The figure
below shows these associations more clearly:

POSTSP Post-space string Deletes all before SPC Doug Wilder
PRESP Pre-space string Deletes all after SPC Doug Wilder
ASUB Alpha Substitute Replaces character ZENROM Manual
LEFT$ Left Substring Gets left substring Ross Cooling
MID$ Middle Substring Gets Middle substring Ross Cooling
RIGHT$ Right Substring Gets Right substring Ross Cooling

• LEFT$ is a sub-string function. They follow the BASIC model, using the number in the X

register to define the length of the sub-string. In this case the substring will be taken from the
left, truncating it from the rest. For instance with 5 in X:

 Æ

• RIGHT$ has the equivalent functionality but taking the substring from the right. The
following example should document it, assumes 9 is in X:

 Æ

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 65 of 110 April 2014

• MID$ takes the substring from the middle of the text, thus it requires two parameters to
define it: the number of characters to remove from the left is expected in Y, and the substring
length is expected in X. For example, type: 2, ENTER^, 4, XQ2 “MID$”

 Æ

• PRESP and POSTSP remove the alpha characters to the right or to the left of the first blank

space found, leaving just what was before (PRE) or after it (POST).

• ASUB replaces the character located in the zero-based position entered in Y with the

character which code is in the X register. Only one character at a time will be replaced. For
example, with: 6, ENTER^, 85 , XQ2 “ASUB” will change the text from the left to the right
screens:

 Æ

CVIEW Non-stop VIEW Avoids the printer halt Frits Ferwerda
VIEWA Non-stopping AVIEW Avoids the printer halt Ken Emery
ST<>A Stack exchange w/ Alpha Register swapping Ángel Martin
USWAP Swaps around “-“ String swapped Ángel Martin
ASWP> Swaps around “>” String in ALPHA Angel Martin
YBSP Alpha back space Rightmost chr removed W&W GmbH
YCL> CLA from “>” String in ALPHA W&W GmbH
ZOUT Complex displaying Uses X:Y values Ángel Martin

• ZOUT is a complex number display routine. It uses the values in X and Y registers taken as

real and imaginary parts of the complex Z, which is presented in the display and ALPHA. The
imaginary unit is represented by “J”

,

Values are used with the current number of decimal places set (the number returned by
DSP?), thus the display will scroll if the total length exceeds 12 characters. If any of the parts
is zero it’ll be omitted from the representation:

 or:

• ST<>A and A<>RG are simple register exchange routines that swap the contents of the

Alpha registers (that is M, N, O, P) with the stack registers X, Y, Z, T o or with a register block
starting with the RG# input at the prompt respectively. This is handy to temporarily save the
stack in alpha for later reuse. Note however that register P is partially used by the OS as
scratch, so depending on what you do in between two executions of ST<>A the content of
the T register may have changed.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 66 of 110 April 2014

� ASWAP, YCL>, and YBSP are pretty much self-explanatory, performing partial Alpha

deletions and text swapping around the control characters “-“ and “>”. They are used by
some of the FOCAL programs included in the module. Because they were used in FOCAL
programs, these three functions were in the main FAT in previous revisions of the PowerCL
module, but have been moved to an auxiliary FAT after the program was modified.

This is probably a good moment to be reminded about the register map of the calculator, including
the buffer area (relatively small in comparison), the Status registers and the complete extended
memory – see figures below, taken from the CCD Manual and “MCODE for Beginners” book: (*)

(*) Correct addresses should be 201-2EF and 301-3EF for the first and second EM modules.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 67 of 110 April 2014

5.1. X-Memory Utilities.

The table below shows the advanced X-Memory utilities, complementing and enhancing the standard
capabilities of the native system. Usual suspects, you’ll surely recognize the names.

ARCLCHR ARCL Character from file FNAME in Alpha Håkan Thörngren
CLEM Clear Extended Memory No inputs Håkan Thörngren
CLRAM Clear all RAM No inputs R. del Tondo
FHD File Header FNAME in Alpha Ángel Martin
FLTYPE File Type FNAME in Alpha Ángel Martin
PEEKR Peek Register RG# address in X Ken Emery
POKER Poke Register RG# address in Y Ángel Martin
RENMFL Rename File OLDName , NEWName Ángel Martin
RETPFL Retype File NAME in Alpha, type in X Ángel Martin
RSTCHK Reset Checksum FNAME in Alpha Håkan Thörngren
XQXM Execute (Program) File FNAME in Alpha Ross Cooling
READXM Read X-Mem from Disk FNAME in Alpha Skwid
WRITXM Write X-Mem to Disk Disk FNAME in Alpha Skwid
GETST Get Status Registers FNAME in Alpha Ángel Martin
SAVEST Save Status Registers FNAME in Alpha Ángel Martin
WORKFILE Appends Workfile name none Sebastian Toelg

The following short descriptions summarize the most important points for each function:

• ARCLCHR appends the character at the current pointer position of the ASCII file which name

is in Alpha (or the current file if no name is provided). The Pointer is advanced one position,
ready to retrieve the next character if needed.

• CLEM is an expeditious Extended Memory eraser – all files will be gone, just by deleting the

content of the X-Mem main status register, at address 0x040. In RUN mode the function will
show the message “DIR EMPTY” for confirmation.

• CLRAM will go beyond the previous scope, also clearing the contents of Main memory:

Buffers, Key assignments and data registers – in sum, ALL RAM will be gone. Similar to
MEMORY LOST for all that counts, so use it at your own risk.

• FHD will return the absolute address (in decimal) for the Header register of the file named in

Alpha. This is useful as input for PEEKR and POKER, RAMED and other memory editing
functions.

• FLTYPE returns the type of the file which name is given in Alpha. Valid file types are shown
in the table below, note the five custom extensions supported by the AMC_OS/X module:

File PRGM DATA ASCII Matrix Buffer Keys “T” “Z” “Y” “X” “H”

Type 1 2 3 4 5 6 7 8 9 10 11

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 68 of 110 April 2014

• RENMFL is a handy utility that renames an X-Mem file. The syntax is the same used by
RENAME for the HPIL Disks, that is the string “OLDNAME,NEWNAME” must be in alpha. The
function will check that the OLDNAME file exists (“FL NOT FOUND” condition otherwise), and
that there isn’t any other filed named NEWNAME already (“DUP FL” error message).

• RETPFL is a bit of a hacker trick: it modifies the file type information for the file named in

Alpha, changing it to the value in X. This is actually useful in a number of circumstances, like
sorting a Matrix file using SORTFL (which only works for DATA files): just change the type to
“2”, sort its contents with SORTFL, and change it back to “4”. You can use any value from 1
to 14 in X, other values will cause “FL TYPE ERR” conditions

• RSTCHK is a rescue function that restores the checksum value for a PROGRAM file. Use it if

this byte gets corrupt or when you alter the program file manually (hacker beware!), so the
file will recover its “valid” status.

• XQXM is a PROGRAM File Execute - direct execution of the program. Note that all GOTO’s

must be pre-compiled, and no calls to other programs may exist within the file.

• WRTXM and READXM are used to write/read the complete contents of the X-Memory

to/from a disk drive over HPIL. These functions exercise the full capability of the system, and
provide a nice permanent back-up for your XMEM files. Note that only the non-zero content
will be copied, thus the resulting disk file size will not be larger than required - in other
words, it won’t always copy all XMEM even if zero, like other FOCAL implementations of the
same functionality can only do. These functions are taken from the Extended-IL ROM, written
by Ken Emery’s alter ego Skwid.

• WORKFL will append the name of the current workfile to ALPHA. Easy does it!

• SAVEST and GETST are special in a couple of ways. For starters because their subject is the
complete Status Registers, i.e. the “Chip0” of the system RAM. Use SAVEST to make backups
of the entire status registers area to XMEM, including the stack, flags, Alpha, and the other
control registers. Use GETST to restore the status registers back to the same state. For
obvious reasons the file size will always be 16. They’re also special because they use a file
type 7, which is properly recognized as type “T” by the CAT’4 implementation in the AMCOS/X
module:

A couple of observations are in order:

o The XMEM file name is expected in ALPHA, thus this imposes a little limitation on
things. You can however add a comma to the FileName and write additional text after
it – which will be ignored by the functions.

o Register 12(b) stores the program counter (PC). Executing GETST in a program will

overwrite the current PC, and the program execution will be “lost” – going to the
same place it was at when the status registers were saved. There are more tricky
issues using these in PRGM mode, like the question of the subroutine stack and the
program line. Suffice it to say it’s not really advisable – yet I resisted the idea to make
it non-programmable, but users beware!

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 69 of 110 April 2014

o Saving and restoring the Key Assignments involves two separate actions. GETST only
restores the key mappings in registers 10(|-) and 15(e), but it doesn’t have anything
to do with the actual KA registers in the I/O area. Make sure you use SAVEKA and
GETKA instead for this need, or the key assignments will be scrambled. See the KA
utilities section.

� SAVEZS and GETZS are really buffer functions in disguise – thus a good segue way to
the next section. Use them to store and recall the Complex stack to/from an Extended
Memory file. This includes the five complex registers Z, W, U, V, and LastZ; plus the
buffer header and control registers – thus the file size is always 12. (Refer to the 41Z
manual for details if interested).

The file type used is 8, which is recognized by the CAT’4 implementation in the AMCOS/X
as type “Z” (how could it be otherwise?):

Note: For the Z-Stack you can also use SAVEBF and GETBF with a buffer id#=8 input in X (see
next section), but the resulting XM-file will have a generic type “B”, as opposed to the specific for
the Complex Stack.

• Last in this section are well known amongst all HP41 users, PEEKR and POKER. PEEKR can
be compared to the RCL function, however it is now possible to read the contents of any
register, and without normalization, into the X register. This removed one of the main
problems of synthetic programming. The address of the register to be read is entered as
absolute address in to X. As when using RCL IND X, the stack registers are lifted. PEEKR
works for every existing register address from zero to 1,023. If we want to use relative data
register numbers with PEEKR, the absolute address of the data registers must be first
obtained.

• POKER writes over the absolute register, which address is specified in the Y register, with the
contents of the X register. POKER works for the entire existing register range of the
calculator. The stack registers remain unchanged, as long as they are not specified by the
absolute address in Y. Since POKER can change any register, this function should only be
employed if the calculator structure is well understood. Otherwise it may result in unwanted
changes in programs, data registers, status registers, etc. or even a MEMORY LOST condition.

Example: Creating second sets of Main and Extended Memory.

A nice utilization of these functions on the 41CL are the examples shown below to create backups of
your complete Main memory and Extended memory sets – located in RAM block 0x801 (that is,
above the standard calculator RAM space located at 0x800).

Because PEEKR and POKER accept input addresses higher than the standard calculator range,
they’re well suited for the task. Basically all we need to do is copy the contents of the
Main/Extended memory from its current addresses (refer to figure in page 66) to addresses located
1k above them. In fact, one can have an alternate set of memory and “swap” between both as
needed, duplicating so the calculator’s on-line capacity. An additional benefit is that the secondary
set will not be affected in case of a MEMORY LOST, thus you can use it as a safety backup as well.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 70 of 110 April 2014

Main memory is trickier than extended in that the status registers should also be included in the
backup to ensure a properly configured FOCAL chain and memory configuration. These must
include register 13(c), and ideally also 10(+), 14(d) & 15(e) for compatible flags and key
assignments definition (together with the KA registers in the I/O area).

Below are the programs to swap the sets of Main and Extended memory at your convenience,
MMSWAP and XMSWAP respectively:

The program below copies the main memory to the higher location for a backup, or to prepare the
destination for successive main memory swapping (needs to “prime the pump” to make sure the
second set is compatible with the OS).

Note: you could also do the initial step copying the complete 4k block using YMCPY, with the
following string in ALPHA: “800>801”. This would be faster than MMCOPY but will not discriminate
Main Memory from Extended one, so both will be backed up.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 71 of 110 April 2014

At the risk of stating the obvious, MMSWAP cannot be run from main memory! – or you’ll get nice
pyrotechnics and a guaranteed ML event. Make sure you run it from ROM (HEPAX or similar), or
even from X-Memory if you are up to those tricks.

As interesting as these examples are, don’t forget that being in sRAM the alternate sets of Main and
Extended memory will be lost when the calculator battery goes flat. For a permanent backup refer
to section 2.5.5 on page 53, describing the flash backup and restore programs YWALL and YRALL.

CL board: The soul in the machine.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 72 of 110 April 2014

5.2. Buffer Utilities

Fascinating things these Buffers, so challenging and elusive they are that prompted the development
of the BUFFERLAND Module. Many of its functions are incorporated in here as well, as follows:

BFLNG Buffer Length Buffer id# in X Ángel Martin
BFLST Lists Buffers Shows list in Alpha David Yerka
BFVIEW Views Buffer contents Displays all registers Ángel Martin
BUFHD Buffer Header Address to X Ángel Martin
CRBUF Creates Buffer ID#,SIZE in X Ángel Martin
DELBUF Deletes Buffer Buffer id# in X Ángel Martin
GETBF Gets Buffer from file FileName in Alpha, id in X Håkan Thörngren
GETZS Gets Z-Stack from file FileName in Alpha Ángel Martin
REIDBF Re-issue Buffer id# OLDID,NEWID in X Ángel Martin
RESZBF Resize Buffer ID#,SIZE in X Ángel Martin
SAVEBF Save Buffer to File FileName in Alpha, id in X Håkan Thörngren
SAVEZS Saves Z-Stack to File FileName in Alpha Ángel Martin

Not listed here is the “queen” buffer function, BFCAT – which was included in the “CATALOGS”
section covered before. A quick summary recap on “buffer theory” will help understand this section
better:-

1. Buffers reside in the I/O area of RAM, which starts at address 0x0C0 and extends up until the

.END. register is found. Typically they are located right above the Key Assignments registers,
the only exception being buffer-14, used by the Advantage Pac to hold the SOLVE and INTEG
data (expected to be in fixed addresses by the code). Note that this implies that the actual
location of a buffer will be dynamically changed when Key assignments are made or removed;
when timer alarms are set or run, and possibly also when other buffers are removed - either by
the OS housekeeping tasks or using the buffer functions.

2. Each buffer has a header register (at the bottom) that holds its control data. The structure of
the header varies slightly for each buffer, but all must have the buffer type (a digit between 1
and E) repeated twice in nybbles 13 and 12, as well as the buffer size in nybbles 11-10
(maximum 0xFF = 255 registers). The rest are buffer-dependent; for example the 41Z buffer
holds the data format (RECT or POLAR) in nybble 9. The HP-IL Devel buffer uses nybbles 9-7
to store the pointer value, and nybble 3 to hold the pointer increment type (MAN or AUTO).

T T S Z A D R
13 12 11 10 9 8 7 6 5 4 3 2 1 0

3. Some buffers write the address location in the [S&X] field (nybbles 2-0) but this is of relative

use at most, since the buffer can get re-allocated as mentioned above. In fact, BFCAT uses
that field to record the distance to the previous buffer in the I/O area, necessary to keep tabs
with the RAM structure in SST/BST operation mode.

4. When the calculator awakens from Deep Sleep the OS erases nybble 13 from all buffer headers
found. The execution is transferred to the Polling Points of those modules present, which
should re-write the buffer type in that nybble for those buffers directly under their
responsibility. At the end of this process (when all Modules have done their stuff) the OS
performs a packing of the I/O area, deleting all buffers not preserved” – i.e. with nybble 14 still
holding zero.

5. Under some rare circumstances a given buffer can exist in memory as a “left-over” not linked
to any module (i.e. nybble 13 in the Header register is cleared). The OS upon the next
PACKING operation will reclaim these orphan buffers, so their life span is very short – get what
you need from it before it’s gone!

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 73 of 110 April 2014

Note that to denote this contingency, BFCAT will add a question mark to the buffer id# in the display.
For example, see the screen below showing an “orphan” buffer id#5 on V41:

With these preambles made let’s delve into the description of buffer functions. The following general
remarks and individual comments apply:-

BFLST is a poor-man’s version of the buffer catalog, showing a short list in Alpha of the buffer
id#’s currently present in the system; (lean and compact, see example below):

When the function operates on a given buffer its id# is expected to be in the X register. This is the
case for BFLNG, BUFHD, BFVIEW. The X-MEM Save/Get functions SAVEBF and GETBF (seen in
next section) also expect the File Name in Alpha.

The input for CRBUF and RESZBUF is given in X as a combined
decimal number: ID#,SIZE The integer part represents the buffer
id# (must be between 1 and 14), and the decimal part its size
(must have three decimal places). Maximum size is 255 registers,
larger values (as well as zero) will trigger “DATA ERROR”
messages. This convention also applies to REIDBF, so the new
id# must be expressed with three significant digits:

9,010 ; XEQ “REIDBF” -> changes buffer #9 into buffer #10

Note that those buffers created with CRBUF are somehow
“extemporaneous” (i.e. not managed by dedicated modules) - thus
they’ll be short-lived by nature, because they won’t survive a
power-off cycle.

The operation of RESZBF is compatible with KA and multiple
buffers existence. Note however that while upsizing a buffer will be
smooth and will keep the previous buffer contents, downsizing it
will cause loss of the data contained in the removed section.

DELBUF will remove the buffer with id# in X. It works simply by
clearing the nybble 14 in the buffer header register, and then
calling the OS routine [PKIOAS] to reclaim the registers previously
used by it – so no “uncommitted” buffers are left behind. This function is equivalent to CLB,
available in the CCD Module and its derivatives (like the AMCOS/X). Also available in those ROMs is
function B?, to test the existence of a buffer.

b3 B3 Header

b2 B2 Header

b1 B1 Header

KA regs
0C0

B3

B2

B1

RAM

Saving and Getting buffers in/from Extended memory with SAVEBF and GETBF follows the same
convention used for other file types, with the buffer id# in X and the FileName in Alpha. Error
handling includes checking for duplicate buffer (“DUP BF”), buffer existence (“NO BUF”), as well as
previous File existence (“DUP FL”). It is possible to have multiple files with the contents of one
specific buffer id#, but only one buffer id# can exists in the I/O RAM area at a time.

GETBF, CRBUF and RESZBF will check for available memory, showing “NO ROOM” when there
isn’t enough room in main RAM to proceed.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 74 of 110 April 2014

5.3. Key Assignment Utilities

The table below shows the Key Assignments related functions. Typically no inputs are required
(no need to identify the “buffer type” in this case), with a few of exceptions:

ASG _ Multi-byte ASN Supports synthetics Frits Ferwerda
GETKA Gets KA from File FileName in Alpha Håkan Thörngren
KACLR Clears KA / Bufefrs OK/OKALL in Alpha Hajo David
KALNG KA Length No inputs Hajo David
KAPCK Packs KA Area No inputs Hajo David
LKAOFF Deactivates Local KA No inputs Gordon Pegue
LKAON Activates Local KA No inputs HP Co.
MRGKA Merge KA to File FileName in Alpha Håkan Thörngren
SAVEKA Save KA to File FileNAme in Alpha Håkan Thörngren

• ASG is another example of first-class MCODE programming: imagine being able to directly

input multi-byte functions (even with synthetics support) into the ASN prompt, so to assign
“LBL IND e”, or “RCL M” to a key - not using key codes or byte tables? Well no need to
imagine it, just use ASG instead. This function is taken from the MLROM, and it resides
completely in the Page#4 Library, with only the FAT entry in the POWERCL calling it. You’re
encouraged to refer to the MLROM documentation for further details.

• KACLR expects a confirmation string in Alpha. With “OK” only the KA will be erased, and with
“OKALL” the complete IO area will be purged (that is the KA registers and ALL buffers).

• Saving and getting KA in/from Extended Memory with SAVEKA, GETKA and MRGKA also
expects the FileName in Alpha. GETKA will completely replace the existing key assignments
with those contained in the file, whilst MRGKA will merge them – respecting the unused keys
so only the overlapping ones will be replaced. Same error handing is active to avoid file
duplication or overwrites. Like their Buffer counterparts they will check for available memory,
showing “NO ROOM” when there isn’t enough for the retrieval.

• LKOFF and LKON are meant to be used together, to temporarily suspend the local key

assignments (on keys A-J) so that it doesn’t interfere with local program labels. These
functions only modify the key mappings in status registers 10(”|-“) and 15(“e”), not altering
the actual KA registers.

• KAPCK will pack the KA registers, compacting the voids (blanks) left behind when un-

assigning individual function keys. The diagram below shows that each KA register can hold
up to four key assignments, two nybbles for the key code and two for the function id#. It also
shows that they always have 0xFF in nybbles 13 and 12 – which explains why 15 is not
available for buffer id#.

F F K Y C D K Y C D K Y C D
13 12 11 10 9 8 7 6 5 4 3 2 1 0

• KALNG returns the number of registers used in the I/O area for key assignments. So you
could use it before and after calling KAPCK to see the effect of the packing (if anything at all).
If no key assignments exist then the result will be zero.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 75 of 110 April 2014

5.4. Page Functions Revisited.

The following group deals with more page-related functions not covered in the IOPG# launcher
section. These are loosely defined as those functions operating on complete pages, or retrieving page-
related information. They are as follows:

BANKS? Gets # of banks Page# in X (decimal) Ángel Martin
BLANK? Checks page contents Page# in X, YES/NO Ángel Martin
CLBG Clear Block BBBEEE in X (as NNN) Frits Ferwerda
CPYPG _ _ Copy Page FROM: in X, TO: prompt Ángel Martin
PGROOM Counts zero words Page# in X (decimal) Ángel Martin
PGSUM Sums Page checksum Prompts for Page# Frits Ferwerda
READPG Reads page from HP-IL Page# and FileName R. del Tondo (?)
ROMCHKX Verifies ROM checksum XROM id# in X HP Co.
WRTPG Writes page to HP-IL Page# and FileName R. del Tondo (?)
DECODE NNN to HEX string NNN in X VM Electronics
CODE HEX string to NNN Hex string in Alpha VM Electronics
XQ>XR XEQ to XROM Converts instructions W&W GmbH

Note the color-code convention for function names: BLUE means located in the main FAT (use XEQ to
invoke them), BROWN means located in a secondary FAT (i.e. you need to use XQ1 or XQ2 to invoke
them). Of course you can always use XQ2 for any of them, as discussed before.

BLANK?, BANKS?, and PGROOM are new functions in revision “J”

• BLANK? Is a test function that checks the contents of a full page, looking for non-zero
words, displaying YES/NO in RUN mode accordingly. If at least one word is not zero the result
is false and a program line is skipped when used in a program. Note that the word FFF is also
considered to be a blank; this is used by the CL and some other MLDL boxes for “empty”
Flash blocks.

• BANKS? returns the number of banks for a given page, which number in decimal is input in
X. The allowed range of results is of course 0-4: non bank-switched ROMS return a “1’, and
empty pages will return zero. This function reads the third nibble of the last three words in
the ROM signature, which is where the bank-switched configuration is supposed to be
recorded according to some undocumented criteria. This is loosely followed by the few
authors who released this type of modules, thus the result may be a little off. For example,
the convention used by Zengrange for the ZEPROMs is not exactly the same.

Not even HP followed this to the letter, or if they did I cannot figure out the Advantage’s
scheme. Another discrepancy occurs on the CL itself, where the time signature of the TIME
module has been altered – misleading BANKS to report 4 banks instead of just two.

• PGROOM counts the number of words with zero value in the page which number is in X.
Interesting to see the density of your favorite MCODE modules (use the OS as a ranking
benchmark), and to get an idea on how much room is still available in the page.

Application Example.- How big is your lollypop?

The short program below – XRAY – will calculate the complete number pf banks configured on-line in
the calculator at a given time. I have corrected the TIME Module glitch just by starting to scan the I/O
but at page 3, thus the extra banks reported for it would account for the OS pages 0-2.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 76 of 110 April 2014

The program first enumerates the banks found for each page (set it in TURBOX if you want to see
them), and then shows the total actual size, given in kilobytes - with 4k per page. Note that the listing
shows BANKS? and ARCLI for clarity, but they are in fact XQ2 and XQ1 functions with their
corresponding indexes in a second program line.

Examples. An MMU-disabled CL would return 24k for the CX OS plus another 4 for the YFNS/YFNP;
that is a minimum “baseline” of 28k. Obviously the PowerCL must be plugged in as well to run the
program, which adds another 16k to the sum you’re likely to see,

A full-house configuration like the one shown in the figure below can have up to 132 kB, quite an
impressive feat considering we’re talking about a hand-held calculator design from 1979 – which
although extended, expanded, and stretched to the limit really shows the versatility and solid
engineering of the design.

Port Page Addresses Primary Bank Secondary Bank Bank #3 Bank #4

FFFF
F000
EFFF
E000

DFFF
D000

CFFF
C000

BFFF
B000
AFFF
A000
9FFF
9000
8FFF
8000
7FFF
7000

6FFF
6000
5FFF
5000

4FFF
4000
3FFF
3000
2FFF
2000
1FFF
1000
0FFF
0000

CL Library

SandMath ‐ B1

POWERCL‐B1

Solve & Integ

AEC Solvers

SandMatrix ‐ B1

HL_Math ‐ B1

CX FNS ‐ Bank 2

AMCOSX4 ‐ B2

HL_Math ‐ B2

Vector Calc‐ B2

Hepax RAM

HEPAX_1D‐ b1 HEPAX_1D‐ b4HEPAX_1D‐ b3HEPAX_1D‐ b2

ADV Matrix ‐ B1

YFNP_1C

ADV Matrix ‐ B2

POWERCL‐B3 POWERCL‐B4POWERCL‐B2

SandMath ‐ B2

3 CX FNS‐ Bank 1

Library #4 4

9

5

7 AMCOSX‐4

PRINTER

TIMER

8

D

C

2

F

E
4

3

B

A

1

hpi l

0

6

AECPROG ‐ B3

OS ‐ ROM 0

2

1 OS ‐ ROM 1

OS ‐ ROM 2

IR Printer ‐ b2

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 77 of 110 April 2014

• CLBG will clear the block between addresses “bbbb|nnnn” given as a NNN placed in X, which

is used as input. If the input is just one digit it’ll delete the complete page. Obviously will only
work with RAM-mapped pages. Note that CLRAM in the “-HEPAXA2” section also clears the
complete page, and it takes a decimal input for the PG# in X. Both require the string “OK” in
Alpha, as a security measure to avoid accidental usage.

• CPYPG copies the contents from page number in X to the page entered in the prompt (in

decimal format). The destination page must also be RAM-mapped. No confirmation string is
required!

COPYROM in the “-HEPAXA2” section, pretty much does the same as CPYPG, but taking the
FROM: page input from Y and the TO: page input from the X register instead of the prompts.
The function name is somehow misleading, as it’s operating on PAGE numbers and not on
XROM id#’s – I left them unchanged as in the original HEPAX.

• PGSUM does the same as SUMPG (seen in the IOPG# launcher section) but using a

different approach for the input: PGSUM will take the page number from X. Its mission is to
calculate the Checksum byte and to write it in the last word of the page – and that it does
very nicely. And nothing better than using the next function to verify the result…

• ROMCHKX will check the ROM which XROM id# is in X for the correct checksum byte value.
The display shows information message while the test takes place, followed by a confirmation
or a warning depending on the case.

,

Incidentally it’s more than likely that if you run ROMCHKX on the POWERCL itself the result
is “BAD”. This is not because of an error; I just usually don’t bother to update the checksum
values, as the code is updated very frequently.

• READPG and WRTPG are the mandatory read/write entire blocks (a.k.a. pages) to the HP-IL
disk drive. Very much equivalent to the HEPAX’ READROM and WRTROM, where the
destination page is expected to be in X. It works on any page, RAM or ROM, and OS
included. Note: for bank-switched modules only the first bank is copied!

Their code is entirely contained in the Library#4, so this is another example of the “free-
riders” only needing the FAT entry and the calling stub footprint. They are taken from the
CCD OS/X, thus I attributed authorship to R. del Tondo – which to this date is unconfirmed.

• XQ>XR is without a doubt a powerful function. It converts the XEQ instructions included in a
FOCAL program (saved in Q-RAM) into the appropriate XROM equivalents, assuming that the
calls were made other programs residing in a plugged-in module. The need for this arises
when programs are loaded on Q-RAM devices, like the HEPAX RAM.

The net result is substantial byte savings, because any XROM instruction takes only two bytes,
regardless of the label length of the called program. XQ>XR is not strictly a “full-page”
function, but it only operates on RAM pages thus its inclusion here is justified.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 78 of 110 April 2014

 will be shown while the conversion occurs.

• Lastly CODE and DECODE are the ubiquitous NNN<>HEX functions present in every ROM

worth its name – in fact the PowerCL has two sets of them, ONE IN THE “-HEPAXA2”
SECTION and another as part of the “-PG FNS” section, aptly named (you’ll never guess) CDE
and DCD respectively. We can’t have enough of a good thing, or so it seems…

An example to impress your friends: decode the contents of the Status “c” register.

 Æ

 Switch on ALPHA to see the complete contents scroll.

 ©Photo By Jürgen Keller, 2011.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 79 of 110 April 2014

5.5. Flag Handling functions.-

Modest but still interesting – the functions below round up the flag handling capabilities.

XCF Extended CF Allows ANY flag# Michael Katz
XSF Extended SF Allows ANY flag# Michael Katz
TOGF Toggle Flag Allows ANY flag# Ken Emery
FC?S Is Flag Clear and Set it Allows ANY flag# Ken Emery
FS?S Is Flag Set and Set it Allows ANY flag# Ken Emery

• XCF and XSF are natural extensions to the mainframe standard Clear/Set Flag functions.
Unlike those, the input is expected in X as a decimal entry. Also unlike them they’ll accept
anyone of the 56 flags from 0 to 55. When used in a program enter the flag# in the preceding
program line.

• TOGF is a toggle function, inverting the status of the flag which number is in X. It’s
equivalent to IF, the Invert Flag routine in the PPC ROM. See the PPC ROM manual pages 217
and 218 for fun examples altering the status of the system reserved flags.

• FS?S and FS?C are the symmetric counterparts to the native FC?S and FC?C functions. They

extend the logic and provide shorter handling – sometimes not possible without them. They
also operate on the complete flag range, as you’d expect.

Probably not a bad moment for a quick flag recap, see the table below:

0-4 shown when set
5-8 general-purpose
9-10 matrix end of line/column

 11 auto execution
 12 print double width
 13 print lower case
 14 card reader allow overwrite
 15-16 HPIL printer mode:
 0) manual; 1) normal

2) trace; 3)trace w/stack print
 17 record incomplete
 18 IL interrupt enable
 19-20 General-Purpose

21 printer enabled
 22 numeric input available
 23 alpha input available
 24 ignore range errors
 25 ignore any errors & clear
 26 audio output is ignored
 27 user mode is active
 28 radix mark: 0). 1),
 29 digit groupings shown:

0) no; 1) yes

30 catalog set
31 date mode: 0)M.DY 1)D.MY
32 IL man I/O mode
33 can control IL
34 prevent IL auto address
35 disable auto start
36-39 number of digits, 0-15
40-41 display format: 0) sci; 1) eng

2) fix; 3) fix/eng mode)
42-43 angle mode: 0) deg; 1) rad
 2) grad; 3) rad
44 continuous on
45 system data entry
46 partial key sequence
47 shift key pressed
48 alpha keyboard active
49 low battery
50 set when message is displayed
51 single step mode
52 program mode
53 IL I/O request
54 set during pause

55 printer exists

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 80 of 110 April 2014

5.6. Other Miscellaneous utilities.

The following functions perform housekeeping tasks and are included in the POWERCL for added
convenience.

HEXIN _ HEX Input 1-9, and A-F Håkan Thörngren
HEXKB _ HEX Entry 1-9, and A-F Clifford Stern
ROMCAT _ _ ROM Catalog Starts CAT’2 at ROM id# J.D. Dodin
SPEED CPU cycles per second No input Doug Wilder
T>BS _ _ Base Ten to Base Prompts for Base Ken Emery
PLNG _ Program Length Program name in prompt W&W GmbH
RTN? Pending Returns? Tests for RTN stack Doug Wilder
XROM _ _ Rom function Launcher Prompts for values Clifford Stern
XQ>GO XEQ to GO Drops one RTN Address Håkan Thörngren
DCD NNN to HEX string NNN in X W&W GmbH
CDE HEX string to NNN Hex string in Alpha Ken Emery

Some brief comments pertaining to each function follow:

• HEXKB is the well-known HEXNTRY function published in Ken Emery’s book “MCODE for
beginners”, and originally written by Clifford Stern. For all purposes it supercedes CODE (or
CDE), which is available in the AMC_OS/X module anyway.

• HEXIN does basically the same thing, except that it uses the text in Alpha (if any) as prompt
(useful in programs). Use Back-Arrow to delete digits and R/S to terminate the data entry.

You may be wondering how come this is a prompting function, if it is located in a bank-
switched page – and the answer is that such is possible as long as the partial key entry
method is not employed. This is the case here, and also in SUMPG as well – both functions
use a key-pressed detection loop as alternative approach, more demanding on power
requirements as the CPU doesn’t get to Light Sleep - and therefore no switching back to bank-
1. The drawback of course is the higher battery consumption, not to be underestimated.

• XROM is a well-known function to directly call any function within a plug-in ROM, knowing its

ROM id# and function#. Written by Clifford Stern in the heydays of the 41 systems, with a
real inside knowledge of the internal OS routines [PARSE]. Both prompt inputs are to be
entered as DECIMAL values.

• ROMCAT was written by Jean-Daniel Dodin, well-known MCODE pioneer and HP-41 old hand.

It prompts for the XROM id# and starts CAT’2 from the position used by such ROM (if
present). The usual conventions apply, whereby only the ROM headers are listed unless the
catalog is stopped and ENTER^ is pressed in manual mode.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 81 of 110 April 2014

• SPEED is a curious gem, although I’m not completely sure I managed to transcribe it well.
It’s supposed to return the number of CPU cycles per second, so I thought it’d be ideal for the
CL given the different TURBO modes. Alas, it always returns the same value (1,126.316),
irrespective of the TURBO setting. This is about 6 times bigger than the normal HP-41 result,
(167,333) for what is worth. We have Doug Wilder to thank (again) for writing it, using the
Time module to keep pace with things.

• PLNG asks for the program name in the prompt and returns the program length in bytes.
This function is not programmable – and it’s extracted from the CCD ROM. Note that the
ALPHA mode is turned on automatically for you – no need to press it twice.

• XQ>GO is a nifty function that drops one RTN address from the subroutine RTN stack. This
can come very handy when you don’t want to return to the calling XEQ while running a
subroutine, for example depending on the partial results obtained.

• RTN? Is related to the same subject: it’s another test function that returns YES/NO
depending on whether there are pending returns in the subroutine RTN stack. In fact you
could use them combined, to cancel the return only if there’s a pending RTN to go back to.

• DCD and CDE are the classic NNN to/from Hex utilities, also used as subroutines throughout
the module and thus made available to the user as individual functions as well. Use them to
decode the output of PEEKR, or to encode the input for POKER (albeit HEXIN or HEXKB
provide a more interactive way to do the latter – see next section for details). Note that here
too functions CODE and DECODE in the “-HEPAX2” group basically do the same thing.

• T>BS (Ten to Base) is a prompting function for base conversions – where in RUN mode you
input the destination base. The result is show in the display and also left in ALPHA. Note that
the original argument (decimal value) is left in X unaltered, so you can use T>BS repeated
times changing the base to see the results in multiple bases without having to re-enter the
decimal value.

T>BS is programmable. In PRGM mode the prompt is ignored and the base is expected to be
in the Y register. Obviously using zero or one for the base will result in DATA ERROR. The
prompt can be filled using the two top keys as shortcuts, from 1 to 10 (A-J), or the numeric
keys 0-9. The maximum base allowed is 36 – and the “BASE>36” error message will be
shown it that’s exceeded (note that larger bases would require characters beyond “Z”).

The maximum decimal value to convert depends on the destination base, since besides the
math numeric factors; it’s also a function of the Alpha characters available (up to “Z”) and the
number of them (length) in the display (12). For b=16 the maximum is 9999 E9, or
0x91812D7D600. T>BS is an enhanced version of the original function included in Ken
Emery’s book “MCODE for Beginners”. The author added the PRGM-compatible prompting, as
well as some display trickery to eliminate the visual noise of the original implementation. Also
provision for the case x=0 was added, trivially returning the character “0” for any base.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 82 of 110 April 2014

5.7. Extra Functions – Miscellaneous Con’t.

Well yes, there is more! - The table below lists the remaining of miscellaneous functions in the
secondary FATs; still excluding the “-HEPAXA2” and “-56BITS” groups.

The underlying idea is to have the most complete function set always available within in those bank-
switched pages of the POWERCL – so that there’s no need to PLUG other modules, or at least to do it
as less frequently as possible. A careful selection of candidates should have screened the less-useful
functions, although of course that’s always a subjective view.

What follows are the brief descriptions of the functions, grouped them by functionality area - Starting
with the system information group.

CRTN? Curtain location No inputs Ken Emery
DREG? # of Data Registers Set No inputs Ken Emery
DSP? # of Decimal Digits Set No inputs Ángel Martin
FREG? # of Free Registers No inputs Ken Emery
ΣRG? Stat RGs location No inputs Ken Emery

• CRTN? Returns to X the absolute address of the curtain (i.e. separation between program

and data registers). No input value is required. The general equation is: Total Registers =
Data Regs + Program Regs; where: TotalRegs = 512 on the CV and CX models.

• DREG? Is another SIZE finder, slightly faster than the native version SIZE?

• FREG? Returns to X the number of available (free) program registers in Main Memory. No
input value is required.

• DSP? is used to return the number of decimal places currently selected in the display. This is

independent from the decimal mode, FIX / SCI / or ENG.

• ΣRG? Returns the current location of the Statistical Registers - i.e. those used by the
Statistical functions to accumulate the data pairs. Basically it’s identical to the CX function
ΣREG?.

READF Reads Data File from IL Disk FileName in ALPHA R. del Tondo
WRTDF Writes Data File to Disk Disk FileName in ALPHA R. del Tondo
FSIZE HP-IL Disk File Size Disk FileName in ALPHA Dutch PPC members
CVIEW Non-stop AVIEW Text in ALPHA Frits Ferwerda

• FSIZE Returns to X the length in registers of the (primary) mass storage file which name is
specified in Alpha. If no HP-IL is present on the system an error message will be shown.

• READF and WRTDF are used to read and write individual DATA files between the IL Drive
and XMEM. They are slightly more complicated to use than other file types (like GETAS and
SAVEAS do for ASCII file types), because the Data file must be previously created in the
destination. Remember also that READXM and WRTXM operate on the whole XMEM
contents, not on individual files. See their description paragraphs above.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 83 of 110 April 2014

ΣDGT Mantissa Digits sum Number in X Ángel Martin
VMANT Views Full mantissa Number in X Ken Emery
ST<>Σ Swaps Stack and StatRG No inputs Nelson C. Crowle
X<I>Y Swaps INDirect X<>Y No inputs Nelson C. Crowle

• ΣDGT is a divertimento utility that calculates the sum of all mantissa digits, returning it to the

X registers. You can use it a s a pseudo-random number generator, or just for the sake of it.

• VMANT shows the full mantissa of the value in X. The display will present it briefly, and then
will return to the standard display settings – unless you press and hold any key during the
initial displaying. Good eye-hand coordination is required :-)

• ST<>Σ exchanges the contents of the Statistical registers with the Stack. Combined with
ΣREG _ _ this can be useful to MOVE or SWAP blocks of registers in groups of five, using the
stack as intermediate conduit. For instance:

ΣREG_10, ST<>Σ, ΣREG_20, ST<>Σ will move R10-R15 to R20-R25. This is just 6 bytes
needed, as opposed to 11 if we were using the REGMOVE with its control word in X:
10,020005.

• X<I>Y is also about register swapping – this time using X and Y as indirect pointers, so it’s
equivalent to: RCL IND Y, RCL IND Y, STO IND T, RDN, STO IND Y.

GETPC Gets Program Counter No inputs W&W GmbH
PC<>RTN Exchanges PC and RTN No inputs W&W GmbH
PUTPC Puts Program Counter PC location in X W&W GmbH

• GETPC, PUTPC, and PC<>RTN are program-pointer manipulation functions. Use them to

recall the location of the current PC, to re-set to another position, or to exchange it with the
(last) subroutine return address. They are to be used with a solid understanding of their
capabilities (and possible consequences). These functions are not as user-friendly as the CCD
Module counterparts PC>X and X>PC, as proven by the fact that their input and output are
NNN. You can use DCD to decode the actual addresses.

COMPILE Compiles jump distances Global LBL in ALPHA Frits Ferwerda
TGPRV Toggle PRIVATE status Program Name in Alpha W&W GmbH
CSST Continuous SST PC position on program Phi Trinh
GTEND Goes To .END. No inputs Ken Emery
LASTP Go to Last Program No inputs ZENROM Manual

• TGPRV is the inevitable Set/Clear Private status functions – with a twist. To use it the

program name must be in ALPHA. This includes programs in RAM or in sRAM (seen as ROM
by the calculator). If Alpha is empty the program pointer must set to any line within the
program. TGPRV is programmable.

• GTEND Sends the program counter to the permanent .END. in program memory (the position
of the Curtain). Almost identical to it is LASTP, the difference being that the program pointer
is placed at the first line of the Last program in RAM, i.e. the one closest to the .END.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 84 of 110 April 2014

• COMPILE is a very powerful function that writes all the jump distances in the GOTO and XEQ
instructions within the program named in ALPHA. This is extremely useful when uploading a
program to a Q-RAM device, like the HEPAX RAM. Having all the jumping distances compiled
expedited the execution of the program (no need to search for the label), and also guarantees
that short-form GOTO’s are not used inappropriately.

o They are feedback messages shown during the execution, indicating which type of
instructions are being compiled: 2-Byte GOTO’s, and 3-Byte GOTO/XEQ’s.

,

o When the work is done, the message “READY” is shown to inform the user that the
execution is completed. Alternatively if a label is missing the execution stops with the
program pointer set at the GTO/XEQ statement, and a working message is shown:

• CSST Sequentially displays the program steps of the program pointed at by the Program

Counter (PC). It’s equivalent to using the SST key multiple times, and thus its name. The
delay between lines shown can be adjusted by pressing any keyboard key, see the original
article in PPCJV9N7 p49 for further details. To use it, position first the PC at the target
location (using GTO or similar). Note that it won’t list PRIVATE programs.

And last (and probably also least for many, not interested in computer science) let’s mention the
digital bit manipulation functions, as present in the “-56BIT” section of the auxiliary FAT. The table
below lists the functions, which operate on the complete 56-bit register as word size (no sophistication
here like in the CCD Module).

Function Description Author
1CMP Sets 1-Complement mode Frits Ferwerda
2CMP Sets 2-Complement mode Frits Ferwerda
X+Y Bitwise addition of values stored in X and Y; Result left in X Gordon Pegue
Y-X Bitwise subtraction of values in X and Y, Result left in X Gordon Pegue
XANDY Logical AND of values in X and Y, Result left in X Gordon Pegue
XORY Logical OR of values in X and Y, Result left in X Gordon Pegue
NOTX Logical NOT of values in X and Y, Result left in X Gordon Pegue
RXR Rotate right 56-bit field in X one digit (4 bits) Gordon Pegue
RXL Rotate Left 56-bit field in X one digit (4 bits) Gordon Pegue
BRXL Rotate Left 56-bit field in X one bit w/ wraparound Gordon Pegue
RLN Rotate Left 56-bit field in Y N digits, w/ N is in X Gordon Pegue
RRN Rotate Right 56-bit field in Y N digits, w/ N in X

Gordon Pegue

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 85 of 110 April 2014

6.1. Unit Management System – A full swing relapse.

Bank-switched modules are a fantastic invention, but there are a few system design limitations that
cannot be overcome, not even using this advanced technique. Such is the 64-entries limit in the FAT,
one of the absolute barriers (or boundary conditions if you prefer) that exerts its controlling power
regardless of the number of shadowed-banks we care to set-up.

It is because of this that bank switching lends itself very well to large bodies of code with few FAT
entries, as apposed to many functions of reduced size. The best example is the HEPAX module, where
dedicated banks are arranged for gigantic-code functions – such as HEXEDIT and DISASM.

In the POWERCL case the triggering point was the ROM table holding the image library information,
but even being large enough (over 1k) it doesn’t fill up the second bank completely. The idea of
adding the Unit Management System came as a natural to “fill the gap”, because it too has the ideal
attributes to be placed on the second bank: huge chunks of code, used sequentially and
independently from the rest of the module, with tables and hard-coded values to be read.

The idea was very appealing; as it removes the need to have the Unit Conversion module loaded and
saves one block for other uses – two big scores in one. It also provided the opportunity to write a
Constants Library a la 33S or 35S, sorely missing even in the UMS module.

So chances are you’ll never use it, but even then because they’re all tucked away in a secondary bank
it’s not adding any burden to your system configuration, or compromising the available resources. And
if you use it, well I think you’ll be pleased with the end result. Can anyone ask for more?

-SI Direct Unit Conversion FROM-TO in Alpha HP Co. / Á. Martin
A<>RG Swaps Alpha and Regs Alpha <> Regs Á. Martin
KLIB Constant Library 4 line-ups w/ 5 each Á. Martin
SI- Inverse Unit Conversion TO-FROM in Alpha HP Co. / Á. Martin
ST<>RG Swaps Registers Stack <> Reg Á. Martin
UCAT UNIT Catalog Prompts for Type P. Platzer / A. Martin

The main conversion functions are obviously –SI and SI-, where the hyphen sign indicates the
direction of the conversion “to/from” the International System of units (Systeme Internationale in
French); or in mixed specifications in the from/to unit string.

The auxiliary functions A<>RG and ST<>RG as added for convenience.- Use then to save
complete ALPHA unit strings in consecutive data registers, as well as making temporary back-ups of
the stack contents. They are both prompting functions in RUN mode, asking for the initial data
register.

Functions have been slightly modified to comply with the bank-2 requirements, and UCAT is also
enhanced with a new unit type prompt (“G:F:T:W:E“ for Geometry, Force, Temp/Mass, Work, and
Electrical units) and better internal structure.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 86 of 110 April 2014

6.2. An enhanced Constants Library.

KLIB is the new addition to the Unit Conversion. In its original implementation the module included
15 constants, each of them setup as an individual FAT entry. This allowed individual access in RUN
and PRGM modes, but however lacked a library catalog - offering a more convenient way to access
them.

Besides the obvious advantage in usability, with this new implementation only one FAT entry is used –
allowing for more functions to be added to the ROM. The use in PRGM mode is also possible by
selecting the specific constant by its index (a number from 1 to 20), as independent program line
following KLIB (thus the same non-merged approach also used elsewhere).

The following improvements have been made:

• Added 5 more constants to the library – for a total of 20. Not surprisingly quite a few of them
are related to the EE field, showcasing both the UMS extensions and the author’s background.

• Constants are presented in the display as line-up menus, with 4 groups of 5 entries each.
• In RUN mode, the selection is made using the top row keys, with the SST key used to

navigate between the four “line-up” screens. Flag annunciators 1-4 indicate the current
screen, so you know where you are.

• In PRGM mode the selection is made by adding an index number after KLIB, using the non-
merged functions technique: two program lines in total for the complete information, not
disrupting the stack. Note that the function will not offer selection screens in this case.

• The constant value is placed in the X register (stack is lifted), and its units are written in Alpha
– ready for any unit conversion activity.

The figure above shows the four line-ups available in KLIB, to select the constant from the library.
Note the flag annunciator indicating the one currently selected.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 87 of 110 April 2014

Because of the limited capabilities of the HP41 display, some of the symbols used to represent the
constants differ from the standard notation. Slightly improved notation is possible using the lower
case letters available in the “halfnut” character set but I have used the standard “fullnut” character set
for compatibility with all 41 models (and the CL specially).

KLIB follows the same model available in newer calculators, like the 33S and the 35S, so chances are
that you’re probably already familiar with it. Use the SST key to navigate to the next menu screen,
from 1 to 4 repeated in sequential way (no backwards choice). The appropriate flag indicator –
1,2,3,4 – will tell the current “screen” shown, so you’ll know where you are. Use the BackArrow key to
cancel out – and no constant will be selected.

The constants included, their values and appropriate units in which they are expressed are listed in
the following table (note the first column with the index for PRGM operation):

Name Description Value Units

1 e- Electron Charge -1,6021764 E-19 CB
2 Me Electron Mass 9,1093821 E-31 KG
3 c Speed of Light 2,9979245 E 08 M/S
4 MP Proton's Mass 1,6726216 E-27 KG
5 a Free-fall Acceleration 9,8066500 E 00 M/S2

6 ε0 Vacuum Permitivity 8,8541878 E-12 FD/M
7 μ0 Vacuum Permeability 1,2566370 E-06 N/A2
8 G Gravity Constant 6,6742800 E-11 N*M2/KG
9 NA Avogadro's Number 6,0221417 E 23 1/MOL
10 R Gas Constant 8,314472150 J/K*MOL

11 EH Hartree Energy 4,359748226 E-18 J
12 SG Stefan-Boltzmann 5,6705119 E-8 W/M2*K4
13 K Boltzmann's Constant 1,3806504 E-23 J/K
14 Z0 Vacuum impedance 376,7303134 OHM
15 H Planck's constant 6,6260689 E-34 J*S

16 F0 Magnetic flux quantum 2,0678336-15 WB
17 a0 Bohr Radius 5,2917720-11 M
18 U Atomic mass unit 1,6605387-27 KG
19 G0 Conductance quantum 77,480916-06 1/OHM
20 F Faraday constant 96.485,34 CB/MOL

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 88 of 110 April 2014

5.3.- Unit Conversion Catalog.

As the unit tables get larger it becomes more challenging to remember the exact spelling of each unit
symbol, resulting in frequent Invalid Conversion error conditions. A Unit Catalog is therefore almost an
obvious addition to the UMS – and as such it was mentioned in the old HP documentation as a next
addition, which obviously never came into being. Until now, that is.

UCAT lists all unit symbols sequentially, following the order in which they are stored on the Unit
Table. This used to be alphabetical in the original implementation – but has been modified in this new
incarnation for reasons explained in the next paragraph. UCAT adds a prompting entry to select the
magnitude section to start the listing from. The section prompts are as follows:

G: Geometry Section (length, surface and volume units)
F: Pressure and Force Section
T: Matter and Mass section (Mass, Density, Viscosity, Temperature)
W: Energy, Power and Time Section
E: Electrical and Luminance Section

The units listing will continue until the end of the table is reached (i.e. end of section 5) regardless of
where it got started. This is not perfect but good enough for the majority of circumstances where
one’s looking for the appropriate specific unit symbol.

Navigating the Unit Catalog.

The catalog can be paused and resumed at any time using R/S. Besides, you can use SST and BST to
single-step the units forwards and backwards, and resuming the listing with SHIFT activated will list
them in reverse order. Use the arrow key to stop the listing and return to the main OS.

• A running catalog will automatically terminate when it reaches the end of the unit table (or
the beginning if running backwards).

• A single-stepped catalog will not go beyond the last unit (or first one if moving backwards)

even if you keep pressing SST (or BST). To terminate it you can press R/S or the back arrow
key.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 89 of 110 April 2014

• Use R/S to toggle between continuous and single-step catalog display at any time during the
execution.

Catalog Hot-keys.

With the unit catalog paused, (i.e. in single-step mode) you can use the following keys to directly
edit the unit string in the Alpha register in the following manner:

• [ENTER] – Clears Alpha and adds the displayed unit symbol to the string.
• [SHIFT],[ENTER] – Appends the displayed unit as destination field in the unit string - i.e.

appends “-” plus the unit symbol to the text already existing in Alpha.
• [*] - Appends the displayed unit as multiplying unit (i.e. appends “*” plus symbol)
• [/] - Appends the displayed unit as dividing unit (i.e. appends “/” plus symbol)

In this way it’s rather simple to build complete unit string just by pressing the corresponding hot keys
during the catalog listing – no need to remember the exact spelling of the unit symbols. Obviously it’s
still the user’s task to recognize the symbol and identify it with the corresponding unit name. Of
course you can edit the Alpha register directly as always just typing the syntax in Alpha mode - if
that’s your preferred choice.

Note that there are no checks for the string built – so it’s possible to press [/] multiple times, or
repeat [SHIFT],[ENTER] – which obviously would not be a valid string. Note also that after every
usage of a hot key you need to re-start the catalog listing again if you want to continue to build the
complete unit string. A small price to pay for the convenience to occasional users (aren’t we all?) to
avoid syntax errors!

Meaningful Error Conditions.

The Thermal Pac only used standard OS error messages (like ALPHA DATA and DATA ERROR) to
inform the user of an error condition. It did NOT report unit spelling errors either, ignoring them even
if user flag 25 was cleared! The Petroleum Pac improved on that with its dedicated error message
“Invalid Conversion”.

This however wasn’t very informative, as it didn’t indicate where exactly was the problem: either a
syntax error (like typing the sigma or percent sign), an invalid unit string (non-homogeneous source
and destinations), or a misspelled unit symbol all produced the same “INVALID CONV”. Besides it
didn’t signal the ALPHA DATA condition anymore – clearly a step back here.

The Unit Conversion Module recovers the alpha data message and adds two new messages to the
Invalid Conversion condition – offering four error-trapping cases, and so making error detection and
correction a much easier task, needless to say. The messages are as follows:

ALPHA DATA – when a non-numeric input is in X
SYNTAX ERR – when using illegal characters (like lower-case letters)
NO SUCH UNIT – when the alpha string contains a symbol not on the unit table
INVALID CONV – when the unit string is not dimensionally correct.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 90 of 110 April 2014

Appendix.- Module Unit Conversion Comparisons.

The following five sections offer a detailed comparison between the implementations of the Unit
Conversion System, as found in the different modules.

Symbol Unit Magnitude Group U
ni
tC
on

Pe
tr
ol
eu
m

Th
er
m
al

M
ac
hi
ne

ACRE acre Surface Geometry 1 1 ‐ ‐
ANG angstrom Length Geometry 1 ‐ 1 1
AU Astronomica l Unit Length Geometry 1 ‐ ‐ ‐
BBL Barrel of petroleum Volume Geometry 1 1 1 ‐
CM Centimeter Length Geometry 1 1 1 1
FT Foot Length Geometry 1 1 1 1
GAL Gal lon (US) Volume Geometry 1 1 1 1
GALUK Gal lon (UK) Volume Geometry ‐ ‐ ‐
IN Inch Length Geometry 1 1 1 1
KM ki lometer Length Geometry 1 1 1 1
L l i ter Volume Geometry 1 1 1 1
LY Light Year Length Geometry 1 ‐ ‐ ‐
M meter Length Geometry 1 1 1 1
MI mi le Length Geometry 1 1 1 1
MIC micron Length Geometry 1 ‐ 1 1
MIL 1/1000 inch Length Geometry 1 ‐ 1 1
ML mil l i l i ter Volume Geometry 1 1 1 1
MM mil l imeter Length Geometry 1 1 1 1
PC Parsec Length Geometry 1 ‐ ‐ ‐
UM micrometer Length Geometry ‐ ‐ ‐
YD yard Length Geometry 1 1 1 1

1

1

1. Geometry Units.

Symbol Unit Magnitude Group U
ni
tC
on

Pe
tr
ol
eu
m

Th
er
m
al

M
ac
hi
ne

ATM Atmosphere Pressure Force & Pressure 1 1 1 1
BAR Bar Pressure Force & Pressure 1 1 1 ‐
DYNE Dyne Force Force & Pressure 1 1 1 1
FTH2O Foot of Water Pressure Force & Pressure 1 1 1 ‐
INHG Inch of Mercury Pressure Force & Pressure 1 1 1 ‐
INH2O Inch of Water Pressure Force & Pressure 1 1 1 ‐
KGF Ki logram Force Force Force & Pressure 1 1 1 ‐
KIP Ki lopound Force Force Force & Pressure 1 1 1 ‐
KPA ki lopascal Pressure Force & Pressure 1 1 1 1
KSI KIP per square inch Pressure Force & Pressure ‐ 1

1

‐ ‐
LBF pound force Force Force & Pressure 1 1 1 1
MBAR mi l ibar Pressure Force & Pressure ‐ ‐ ‐
MMHG mil l imiter of mercuryPressure Force & Pressure 1 1 ‐ ‐
MN meganewton Force Force & Pressure ‐ ‐ ‐
MPA megapasca l Pressure Force & Pressure 1 1 ‐ ‐
N newton Force Force & Pressure 1 1 1 1
PA pasca l Pressure Force & Pressure 1 1 1 1
PDL poundal Force Force & Pressure 1 ‐ 1 1
PSF pound force per squ

1

aPressure Force & Pressure 1 1 1 1
PSI pound force per squaPressure Force & Pressure 1 1 1 1
TORR torr Pressure Force & Pressure 1 1 1 ‐

2. Force and Pressure Units.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 91 of 110 April 2014

Symbol Unit Magnitude Group U
ni
tC
on

Pe
tr
ol
eu
m

Th
er
m
al

M
ac
hi
ne

API Degree API Dens i ty Matter & Mass ‐ 1
1

1
1

1
1

‐ ‐
BCF Bi l l ion Cubic Feet of Gas Volume Matter & Mass ‐ ‐ ‐
C Degree Cels ius Temperature Matter & Mass 1 1 1 1
CP Centipoise Viscos i ty Matter & Mass ‐ ‐ ‐
CST Centis toke Kinematic Viscos i t Matter & Mass ‐ ‐ ‐
D Darcy Poros i ty Matter & Mass 1 1 ‐ ‐
DA Dalton Mass Matter & Mass 1 ‐ ‐ ‐
F Degree Farenheit Temperature Matter & Mass 1 1 1 1
G Gram Mass Matter & Mass 1 1 1 1
K Kelvin Temperature Matter & Mass 1 1 1 1
KG Ki logram Mass Matter & Mass 1 1 1 1
KMOL ki lomole Matter Matter & Mass ‐ ‐ ‐
KT ki lotonne Mass Matter & Mass ‐ ‐ ‐
LBM pound mass Mass Matter & Mass 1 1 1 1
MCF thousand cubit feet gGas Volume Matter & Mass ‐ ‐ ‐
MD mil l idarcy Poros i ty Matter & Mass ‐ ‐ ‐
MG megagram Mass Matter & Mass ‐ ‐ ‐
MMCF mi l l ion cubic feet ga Gas Volume Matter & Mass ‐ ‐ ‐
MOL(E) mole Matter Matter & Mass 1 1 1 ‐
MT megatonne Mass Matter & Mass ‐ ‐ ‐
P(OISE) poise Viscos i ty Matter & Mass 1 1 1 ‐
R degree rankine Temperature Matter & Mass 1 1 1 1
SCF standard cubic foot Gas Volume Matter & Mass ‐ ‐ ‐
SCM standard cubic mete Gas Volume Matter & Mass ‐ ‐ ‐
SCMZ standard cubic mete Gas Volume Matter & Mass ‐ ‐ ‐
SLUG slug Mass Matter & Mass 1 ‐ 1 1
SPGR speci fi c gravi ty to wa Dens i ty Matter & Mass ‐ ‐ ‐
ST(OKE) stoke Kinematic Viscos i t Matter & Mass 1 1 1 ‐
T tonne Mass Matter & Mass ‐ ‐ ‐
TON short ton Mass Matter & Mass 1 1 1 1
TONUK long ton Mass Matter & Mass ‐ ‐ ‐

1
1
1
1

1

1
1
1

1

1

1

3. Matter & Mass Units.

Symbol Unit Magnitude Group U
ni
tC
on

Pe
tr
ol
eu
m

Th
er
m
al

M
ac
hi
ne

BTU Bri ti sh Thermal Unit Energy Energy & Time 1 1 1 1
CAL Calorie Energy Energy & Time 1 1 1 1
CV Cheva l Vapeur Power Energy & Time 1 ‐ ‐ ‐
DAY Day Time Energy & Time 1 1 1 ‐
ERG Erg Energy Energy & Time 1 1 1 1
EV Electron‐Volt Energy Energy & Time 1 ‐ ‐ ‐
HP Horsepower Power Energy & Time 1 1 1 1
HR Hour (mean solar) Time Energy & Time 1 1 1 1
J Joule Energy Energy & Time 1 1 1 1
KCAL ki localorie Energy Energy & Time 1 1 1 ‐
KJ Ki lojoule Energy Energy & Time ‐ 1

1
1
1

1

‐ ‐
KW ki lowatt Power Energy & Time 1 1 1 1
MIN minute Time Energy & Time 1 1 1 1
MJ megajoule Energy Energy & Time ‐ ‐ ‐
MO month Time Energy & Time ‐ ‐ ‐
MW megawatt Power Energy & Time ‐ ‐ ‐
S second Time Energy & Time 1 1 1 1
THERM 10^5 BTU Energy Energy & Time ‐ ‐ ‐
W watt Power Energy & Time 1 1 1 1
YR year Time Energy & Time 1 1 ‐ ‐

4. Energy, Power & Time Units

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 92 of 110 April 2014

5. Electrical & Luminance Units

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 93 of 110 April 2014

Farewell.

And with this you’ve reached the end of the POWERCL manual. – I hope these few pages have proven
useful to you in your quest to become familiar with its capabilities and whet your appetite for even
more to come.

The 41CL is an innovative realization nothing short of incredible, with amazing possibilities that open
the door to yet new developments on the HP-41 platform; all this still happening 33+ years after the
original 41 was launched. Now that’s what I call an achievement!

Before and after: 33 years separate these boards:

Photo: Steve Leibson, (c) May 2011

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 94 of 110 April 2014

Appendices.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 95 of 110 April 2014

Appendix 0. Summary of [ΣCL] Function launching functionality.

There are several function launchers in the POWERCL. We’ve also seen that they show very flexible
and interconnected combinations, sometimes “warping” around the complete module in a lot of ways.
It’s initially a bit confusing, yet you should not get intimidated by the multiple layers - as you’ll get
very quickly acquainted to the design and comfortable using it.

Notice that in some instances the same function can be accessed from two different places (i.e.
HEPDIR, MMUCAT). Note also that they may be required to sequentially input the prompts from two
(or more) launchers to finally get to the desired end result. –

For instance, say you want to plug the AMC”OS/X ROM into port 7 (the HP-IL one). Say you don’t
remember its CL ROMid#, nor the function name to accomplish that (which happens to be PLUGH).
You decide to start at the very beginning, executing ΣCL, then chose “”C” for CATALOGS, then “L” for
CLLIB, then “A” to start the enumeration from the letter A, then R/S at the “AOSX”, followed by “P”
to invoke the PLUG action. Then “G” to go to the page settings, then “7”. A breeze !! ☺

Putting it all together now.-

Granted this is one of the more complex examples (but trust me, not the worst one!) Here it is again
with more details so it’s easier to follow:- Let the display be our guide in this dialog with our trusty
companion…

Start off by executing ΣFL, which will present:

, enter “C” for the Catalog Launcher [XCAT]

, enter “L” for the CL Library [CLLIB]

, input “A”, R/S, SST to navigate until you see:

, enter “P” to trigger the PLUG functionality [PLUG]

, enter “G” to invoke the page-plugging [PLUGG]

, enter “7” - the page number to complete the job.

Easy does it – and you didn’t have to remember any mnemonic or function name; nor does it require
any key assignment other than ΣCL - to call up to 58 different functions. Does it get any better than
this?

As a handy summary see the menu map in the left, and the table in next page showing all possible
combinations to access a given function, using the different function launchers. Cells show the keys to
press to access to the function, starting from the launcher on the column header.

BLACK fns. YFNS Functions
BLUE fns.

POWERCL Functions

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 96 of 110 April 2014

F. Name Σ CL BAUD XCAT HEPX MMU TURBO PLUG UPLUG
1 BAUD12 B,1 1
2 BAUD24 B,2 2
3 BAUD48 B,4 4
4 BAUD96 B,9 9
5 BFCAT C,F F
6 BLCAT C,B B
7 CLLIB _ C,L L
8 HEPDIR H,D H D
9 HEPINI _"_ H,I I
10 HPX16 _ H,6 6
11 HPX4 _ H,4 4
12 HPX8 _ H,8 8
13 KLIB _ C,K K
14 MMU? M,? ?
15 MMUCAT M,T M T
16 MMUCLR M,C C
17 MMUDIS M,D D
18 MMUEN M,E E
19 PLUG1 P,1 L,*,P,1 1 [] ,1
20 PLUG1L P,L,1 L,*,P,L,1 L,1 [] ,L,1
21 PLUG1U P,U,1 L,*,P,U,1 U,1 [] ,U,1
22 PLUG2 P,2 L,*,P,2 2 [] ,2
23 PLUG2L P,L,2 L,*,P,L.2 L,2 [] ,L,2
24 PLUG2U P,U,2 L,*,P,U,2 U,2 [] ,U,2
25 PLUG3 P,3 L,*,P,3 3 [] ,3
26 PLUG3L P,L,3 L,*,P,L,3 L,3 [] ,L,3
27 PLUG3U P,U,3 L,*,P,U,3 U,3 [] ,U,3
28 PLUG4 P,4 L,*,P,4 4 [] ,4
29 PLUG4L P,L,4 L,*,P,L,4 L,4 [] ,L,4
30 PLUG4U P,U,4 L,*,P,U,4 U,4 [] ,U,4
31 PLUGG _ P,G L,*,P,G G [] ,G
32 PLUGG? _ P,A L,*,P,A G A [] ,A
33 PLUGH P,H L,*,P,H H [] , H
34 PLUGP P,P L,*,P,P P [] ,P
35 PPG#4 _ P,G,4 L,*,P,G,4 G,4 [] ,G,4
36 ROMLIB _ C,L,[] L,[]
37 SERINI B,I I
38 TURBO? T,? ?
39 TURBO10 T,1 1
40 TURBO2 T,2 2
41 TURBO20 T,0 0
42 TURBO5 T,5 5
43 TURBO50 T,";" ";"
44 TURBOX T,X X
45 UCAT _ C,U
46 UPLGG _ U,G L,*,P,[] ,G [] ,1 G
47 UPLUG1 U,1 [] ,L,1 1
48 UPLUG1L U,L,1 [] ,U,1 L,1
49 UPLUG1U U,U,1 [] ,2 U,1
50 UPLUG2 U,2 [] ,L,2 2
51 UPLUG2L U,L,2 [] ,U,2 L,2
52 UPLUG2U U,U,2 [] ,3 U,2
53 UPLUG3 U,3 [] ,L,3 3
54 UPLUG3L U,L,3 [] ,U,3 L,3
55 UPLUG3U U,U,3 [] ,4 U,3
56 UPLUG4 U,4 [] ,L,4 4
57 UPLUG4L U,L,4 [] ,U,4 L,4
58 UPLUG4U U,U,4 [] ,G U,4
59 UPLUGA U,A [] ,A A
60 UPLUGH U,H [] , H H
61 UPLUGP U,P [] ,P P
62 UPPG4 U,G,4 [] ,G,4 G,4

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 97 of 110 April 2014

Appendix 1 – Detailed ROM id# table – in alphabetical order.

The table below lists all modules included in the CL Library, sorted alphabetically by CL-ID mnemonic.

ID Size Name Type Author

1 441Z 8k Lib#4 based 41Z Math Ángel Martin
2 4ALP 4k Alpha_44 Utilities Ángel Martin
3 4AOX 4k AMC_OS/X 4L Extensions Ángel Martin
4 4DIG 4k Lib#4 41Z Diagnostics Math Ángel Martin
5 4LIB 4k Library#4 Extensions Ángel Martin
6 4MTR 4k Lib#4 Matrix ROM Math Ángel Martin
7 4PLY 4k Lib4#4 Polynomial ROM Math Ángel Martin
8 4RAM 4k RamPage_4L Utilities Ángel Martin
9 4SM4 16k Lib4# SandMath 2x2 Math Ángel Martin
10 4SMT 8k SandMath_44 Math Ángel Martin
11 4TBX 4k ToolBox_4L Utilities Ángel Martin
12 4UTL 4k CL_Utils 4H Extensions Ángel Martin
13 A41P 12k Advantage Pac Math HP Co.

J‐F Garnier 14 AADV 4k Advantage Applications Science
15 ADV1 16k Adventure_1 Games Ángel Martin
16 ADV2 12k Adventure_2 Games Ángel Martin
17 AEC3 8K AECROM 13‐digit Engineering Ángel Martin
18 AECR 8k AECROM Engineering Red Shift
19 AFDE 8k AFDC1 Engineering GunZen
20 AFDF 8k AFDC2 Engineering GunZen
21 AFIN 4k Auto Finance Financial GMAC
22 ALGG 8k Algebra ROM Math Ángel Martin
23 ALGY 4k Astro*ROM Science Elgin Knowles & Senne
24 ALPH 4k ALPHA ROM Utilities Á. Martin & D. Wilder
25 ANTS 4k Antennas Engineering HP Co.
26 AOSX 4k AMC OS/X Engineering Ángel Martin
27 ASM4 4k Assembler4 Extensions ??
28 ASMB 4k Assembler3 Extensions ??
29 ASTT 16k ASTRO‐2010 Module Science Jean‐Marc Baillard
30 AUTO 4k Auto‐Start / Dupl ROM Extensions HP Co.
31 AV1Q 4k AV1 ROM Engineering Beechcraft
32 AVIA 4k Aviation Pac Engineering HP Co.
33 B52B 8k B‐52 ROM Engineering Boeing
34 BCMW 4k BCMW ROM Engineering ??
35 BESL 8k Bessel ROM Math Á. Martin & JM Baillard
36 BLDR 8k BLD ROM Utilities W. Doug Wilder
37 BLND 4k Bufferland ROM Utilities Ángel Martin
38 BSMS 4k Bus Sales/Mkt/Stat. Financial HP Co.
39 BUD2 8k Buderus‐2 Engineering WMK
40 BUD3 4k Buderus‐3 Engineering WMK
41 CCDA 4k CCD AdvApps. Utilities Ángel Martin
42 CCDP 8k CCD Plus Utilities W&W + Angel Martin
43 CCDR 8k CCD Module Utilities W&W
44 CCDX 4k CCD OS/X Extensions W&W + R. del Tondo
45 CENG 4k Chemical Engineering Engineering HP Co.
46 CHEM 4k Chemistry User ROM Science Les Wright
47 CHES 8k Chess/Rubik's ROM Games C. Roetlgen / J. Perry
48 CIRC 4K Circuit Analysis Pac Engineering

HP Co.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 98 of 110 April 2014

ID Size Name Type Author

49 CLIN 4K Clinical Lab Pac Engineering HP Co.
50 CLUT 4k CL Utilities Utilities Ángel Martin
51 CMT1 16k CMT‐10 Eprom Test Extensions CMT
52 CMT2 4k CMT‐200 ROM Extensions CMT
53 CMT3 8k CMT‐300 ROM Extensions CMT
54 CNTL 4k Control Systems Engineering HP Co.
55 CURV 8k Curve‐Fitting Module Math Ángel Martin
56 CVPK 8k Cv‐Pack ROM Engineering ??
57 DA4C 4k DisAssembler 4C Extensions W. Doug Wilder
58 DACQ 8k Data Acquisition Pac Extensions HP Co.
59 DASM 4k DisAssembler 4D Extensions W. Doug Wilder
60 DAVA 4K David Assembler 2C Extensions David van Leeuwen
61 DEMO 16k 41 System Demo Module Extensions HP Co.
62 DEV2 4k HP‐IL Devil‐2 Extensions HP Co. + ÁM
63 DEVI 8k HP‐IL Development Extensions HP Co.

64 DIFF 8k DIFFEQ ROM Math Jean‐Marc Baillard

65 DIGT 4k DigitPac ROM Engineering Ángel Martin
66 DIIL 4k HP‐IL Diagnostics Extensions HP Co.
67 DMND 4k Diamond ROM Financial ??
68 DYRK 4k Dyerka ROM Utilities David Yerka
69 E41S 8k ES41 Module Extensions Eramco
70 EENG 4k Electrical Eng. Engineering HP Co. + ÁM
71 EILP 4k Extended IL+ Extensions Christoph Klug

S. Bariziene & JJ Dhenin 72 EPRH 4k ML Eprom 1H Utilities
73 EPRM 4k MM Eprom Utilities Dutch PPC Members
74 ESML 4k ES MLDL 7B Extensions Eramco
75 ETI3 4k ETSII‐3 Engineering Ángel Martin
76 ETI4 4k ETSII‐4 Engineering Ángel Martin
77 ETI5 4k ETSII‐5 Engineering Ángel Martin

HP Co. 78 EXIO 4k Extended I/O Module Extensions
79 EXTI 4k Extended‐IL ROM Extensions Ken Emery
80 FACC 4k 300889_FACC Engineering ??
81 FAIR 8k Gear Design Module Engineering Fairfield Inc.
82 FDYN 4k Fluid Dynamics Solutions Engineering HP Co.
83 FFEE 4k For‐Fee Engineering Ángel Martin
84 FINA 4k Financial Pac Financial HP Co.
85 FRTH (*) 8k FORTH Module Extensions Serge Vaudenay
86 FUNS 8k Fun Stuff Module Games Ángel Martin
87 GAME 4k Games Pac Games HP Co.
88 GEOM 4k Geometry Math HP Co. + ÁM
89 GMAS 4k Auto Fiance‐2 Module Financial GMAC
90 GMAT 8k Auto Fiance‐3 Module Financial GMAC
91 GMTY 4k Geometry 2011 Math Jean‐Marc Baillard
92 HCMP 4k HydraComp ROM Engineering Paul Monroe
93 HEPR 4k HEPAX RAM Template Extensions VM Electronics
94 HEPX 16k HEPAX Module Extensions VM Electronics
95 HMTH 4k High‐Level Math Math HP Co.
96 HOME 4k Home Management. Pac Financial HP Co.
97 HVAC 4k Heatinv, Vent. & AirCon Engineering HP Co.
98 ICDO 4k Icode ROM Extensions ??
99 ICEB 4k ICE Box Utilities Geir Isene
100 IDC1 8k ML‐ICD Engineering BCMC 1987
101 IDC2 4k BG/UG IDC Engineering

BCMC 1985

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 99 of 110 April 2014

ID Size Name Type Author

102 IERF 8k Inverse ERF Math Ángel Martin
103 ILBF 4k IL‐Buffer Extensions Ángel Martin
104 IMDB 4k Module Database Extensions Monte Dalrymple
105 INTG 8k Integrator ROM Math JM Baillard & Á. Martin
106 ISEN 4k ISENE ROM Utilities Geir Isene
107 ISOL 4k Interchangeable. Solutions Science UPLE

Jean‐Marc Baillard 108 JMAT 8k JMB Math Math
109 JMTX 8k JMB Matrix Math Jean‐Marc Baillard
110 KC135 12k Weight & Balance Comp. Engineering ??
111 L119 8k AFDC‐1E‐003 Engineering Zengun
112 LAIT (*) 4k LaitRAM XQ2 Extensions LaitRam Corp.
113 LAND 4k Land Navigation ROM Science Warren Furlow

W. Doug Wilder 114 LBLS 4k Labels ROM Extensions
115 LENG 4k Solar Engineering Solutions Engineering HP Co.
116 LNDL 4k Lend, Lease & Sav. Financial HP Co.
117 LPLC 8k Laplace Transform ROM Math Raymond Moore
118 MADV 12k Advanced Matrix Pac Math Ángel Martin
119 MASS 4k Mass Storage Utilities Extensions Ángel Martin
120 MATH 4k Math Pac Math HP Co.
121 MCHN 4k Machine Construction Pac Engineering HP Co.
122 MCMP 4k Mountain Computer Utilities Paul Lind
123 MDP1 8k AFDC‐1F ROM Engineering Zengun
124 MDP2 8k AFDC‐1F ROM Engineering Zengun
125 MELB 4k Melbourne ROM Utilities PPC Members
126 MENG 4k Mechanical Eng. Engineering HP Co. + ÁM
127 MILE 8k Military Engineering ROM Engineering ??
128 MLBL 4k Mainframe Labels Extensions David van Leeuwen
129 MLRM 4K ML ROM Utilities Frits Ferwerda
130 MLTI 8k? Multi‐Prec. Library Math Peter Platzer
131 MONO 8k MONOPOLY ROM Games Thomas Rodke
132 MTRX 4k MATRIX ROM Math Ángel Martin
133 MTST 4k MC Test ROM Utilities ??
134 MUEC 8k Muecke ROM Engineering Mücke Software GmbH
135 NAVI 8k Navigation Pac Science HP Co.
136 NCHP 4k NoVoCHAP Utilities G. Isene & A. Martin
137 NEA1 8k SNEAP1 Engineering SNEAP Society (F)
138 NEA2 8k SNEAP2 Engineering SNEAP Society (F)
139 NEA3 8k SNEAP3 Engineering SNEAP Society (F)
140 NFCR 4k NFC ROM Utilities Nelson F. Crowle
141 NPAC 8k NavPac ROM Science ??
142 NTHY 4k Number Theory ROM Math Jean‐Marc Baillard
143 NVCM 8k NaVCOM 2 Science ??
144 OILW 8k OilWell Module Engineering Jim Daly
145 OPTO 4k Optometry I & II Science HP Co.
146 OTRP 8k OvenTrop Engineering WMK

147 P3BC 16k Aviation for P3B/C Engineering ??

148 PANA 8k PANAME ROM Utilities S. Bariziene & JJ Dhenin
149 PARI 4k PARIO ROM Extensions Nelson F. Crowle
150 PCOD 4k Proto‐Coder 1A Extensions Nelson F. Crowle
151 PETR 8k Petroleum Pac Engineering HP Co.
152 PHYH 4k Physics Science HP Co.
153 PLOT 8k Plotter Module Extensions HP Co.
154 PMLB 4k PPC Melb ROM Utilities

PPC Members

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 100 of 110 April 2014

ID Size Name Type Author

155 POLY 8k Polynomial Analysis Math Á. Martin & JM Baillard
156 PPCM 8k PPC ROM Utilities PPC Members
157 PRFS 4k ProfiSet Extensions Winfried Maschke
158 PRIQ 8k PRIDE ROM Engineering James Frieslng
159 PWRL 16k PowerCL_B4 Extensions Ángel Martin
160 QUAT 8k Quaternion ROM Math Jean‐Marc Baillard
161 RAMP 4k RAMPage Module Utilities Ángel Martin

Real State Pac Financial HP Co. 162 REAL 8k
163 RM32 4k RAMBOX‐32 Extensions W&W GmbH
164 ROAM 4k ROAM Module Utilities Wilson B. Holes
165 ROMS 4k SV's ROM Utilities Serge Vaudenay
166 SANA 12k SandMath‐12k Math Ángel Martin
167 SBOX 8k SandBox Utilities Ángel Martin

Engineering Navy Air 168 SEAK 4k SeaKing MK5
169 SECY 4k Securities Pac Financial HP Co.
170 SGSG 4k Gas Module Engineering SGS Redwood
171 SIHP 4k Solve/Intg ROM Math HP Co. + ÁM
172 SIMM 16k SIM Module Science ??
173 SKWD 4k Skwid's BarCode Extensions Ken Emery
174 SMCH 8k Speed Machine Financial Alameda Mngmt. Corp.
175 SMPL 4k Simplex Module Math Phillipe J. Roussel
176 SMTS 8k SandMath‐8k Math Ángel Martin
177 SND2 8k SandMath‐II Math Ángel Martin
178 SPEC 4k Spectral Analysis Math Jean‐Marc Baillard
179 SRVC (*) 4k Service ROM Extensions HP Co.
180 STAN 4k Standard Pac Science HP Co.
181 STAT 4k Statistics Pac Math HP Co.
182 STRE 4k Stress Analysis Pac Engineering HP Co.
183 STRU 8k Structural An, Pac Engineering HP Co.
184 SUD1 4k SUDOKU & Sound Games Á. Martin & JM Baillard

James W. Vick 185 SUPR 8k SUP‐R‐ROM Science
186 SURV 4k Surveying Pac Science HP Co.
187 TEST 4k Test Statistics Math HP Co.
188 THER 4k Thermal Pac Engineering HP Co.
189 TIME 4k Timer SolBook Extensions HP Co.
190 TOMS 4k Tom's ROM Science Thomas A. Bruns
191 TOOL 4k ToolBox‐II Utilities Ángel Martin
192 TREK 4k Start Trek Games Ángel Martin
193 TRIH 4k 83Trinh Utilities Phil Trinh
194 UNIT 4k Unit Conversion Extensions Ángel Martin
195 USPS 8k Mail Delivery Engineering USPS
196 VECT 4k VECTOR Analysis Math Ángel Martin
197 WMK3 8k WMK‐3 Engineering WMK
198 WMK4 4k WMK‐4 Engineering WMK
199 XXXA 4k Empty Not listed
200 XXXB 4k Empty Not listed
201 XXXC 4k Empty Not listed
202 XXXD 8k Empty Not listed
203 XXXE 8k Empty Not listed
204 XXXF 16k Empty Not listed
205 YACH 8k Yach Computer Science Bobby Schenk
206 YFNP 4k YFNS Plus Extensions Monte Dalrymple
207 YFNS 4k

Alternate YFNS Extensions Monte Dalrymple

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 101 of 110 April 2014

ID Size Name Type Author

208 YFNZ 4k Main YFNS Extensions Monte Dalrymple
209 Z41Z 8k 41Z Module Math Ángel Martin
210 ZENR 4k Zenrom Utilities Zengrange Ltd.
211 ZEPR 4k Programmer Extensions Zengrange Ltd.

(*)Take-over ROM. Need to use PPG#4
(**)Must be located in page#4. Plug it manually using YPOKE

Other modules not included in the Library:-

For sure many more of these abound, yet these are the ones I know about – feel free to complete the
list with your own entries, and don’t forget to share them with the whole community.

1. Market Forecast 4k Forecaster?
2. Mortar Fire Data Calculator 8k MDN Canada
3. Dr. Z RaceTrack Module 4k William T. Ziemba

© Photo courtesy of Wilson “Bill” Holes.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 102 of 110 April 2014

Appendix 2. FOCAL program Listings.

Provided for your reference and in case you feel
like experimenting with your own settings.

As always, mind the potential conflicts with other
modules when plugging stuff, and pay special
attention not to overwrite YFNS. (you’re safe if
using PLUGGX – it won’t let you to :-)

In the HEPAX configuration code the role of
HEPINI is to write the appropriate words into
the HRAM pages, as per the description provided
before. This could also be done using YPOKE,
but the memory requirements are much larger
due to all the alpha strings that would be
required to do so.

For example, see below for the 16k case, using
pages C,D,E, and F.

This would mean having to write on each page
the four page id#s, plus the pointers to the
previous and next pages, for a total of 10x – or
equivalent to 110 bytes:

"809FE7-000C"
"808000-000C"

"808FE8-000D"
"80AFE7-000D"
"809000-000D"

"809FE8-000E"
"80BFE7-000E"
"80A000-000E"

"80AFE8-000F"
"80B000-000F"

In fact such was the original method used in
earlier versions of the CLUTILS – so using
HEPINI resulted in significant byte savings that
allowed the inclusion of other functionality.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 103 of 110 April 2014

Appendix 3.- MCODE Listing showing the Alphabetical sections prompting code.

The function CLLIB begins by building the prompt text in the display. Using the OS routine [PROMF2]
is helpful to save bytes, so there’s no need to write the function name again. Alpha is cleared using
[CLA], just to prepare for a possible copy of the ROM id# to Alpha using the [A] hot-key in run mode.
Then we get into a partial data entry “condition”, waiting for a key to be pressed.

Back Arrow sends the execution to [EXIT3], to do the housekeeping required to reset everything back
to the standard OS-required status (disable Display, resetting Keyboard bits, CPU flags, etc.). Since
the valid keys are quite a lot [A-Z] we need to use multiple conditions in the logic. The first two rows
are the easiest; as they set up CPU flag#4 and that can be tested easily. In this case we copy the
mantissa sign in A to C[S&X], then store it in B[S&X] and we move on.

For the rest [K-Z] we’ll need to read the keycode of the pressed key and act accordingly. Also we
need to discard any non-letter key, rejecting it if its keycode value is outside of the [A,Z] range.

Now the show is about to start: see how the key pressed value (in N) is compared with every
possible value in the [K-Z] range, building the “pointer” in C[S&X] by repeat one-additions until
coming up to its final result.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 104 of 110 April 2014

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 105 of 110 April 2014

The last part is about presenting the chosen key – allowing NULLing if it’s held down long enough –
Resetting everything back to normal conditions [CLNUP], and see whether there actually exists such a
section – before we launch into a blindfold enumeration. This is done by the subroutine [SRCHR],
which will fetch the address in the ROM id #table where the section starts. With that we’ll transfer the
execution to the ROMLIB function code where the actual enumeration will take place - only with a
padded value to start from, as opposed to doing it from the top of the table.

Note how [SRCHR] is really part of the ADRID function code, which also does table look-ups for its
own purpose. This code is written around the table structure; refer to the Blueprints for more details.

And that’s all folks - easy when you know the tricks ☺

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 106 of 110 April 2014

Appendix 4.- Serial Transfer CLWRITE and CLREAD source code.
 – Written by Raymond Wiker.

 1) Copy YFNS-1A to RAM at 80C000, and patch for items 2, 5, 8. These
 affect the operation of YIMP. I did this with a variation of the
 PATCHIT program posted earlier.

 2) Execute TURBO50.

 3) Execute SERINI

 4) Execute BAUD12. From the documentation, this should not be
 necessary, but I had to explicitly set 1200 baud to get the transfer
 to work.

 5) The file yfns-1e.rom has the opposite byte order of what YIMP
 expects, so the transfer program needs to perform byte swapping.
 Alternatively, you might do the byte-swapping before you do the
 transfer.

 6) Transfer the ROM; I chose to transfer it to 80D000 (i.e, put
 80D000-0FFF in the alpha register, start YIMP). For the transfer, I
 used the CLWriter program that I posted a few days back, with the
 command

 CLWriter.exe yfns-1e-fixed.rom com1 1200 5

 --- the file yfns-1e-fixed.rom is the byte-swapped version of
 yfns-1e.rom. I probably should have chosen a slightly different
 name, but that does not really matter. The "5" means that I put a 5
 millisecond delay after each byte. It may not actually be necessary;
 I added it because I got timeouts, but these were probably because I
 left out step 4 (BAUD12).

 7) Execute PLUG1L with "80D-RAM" in the Alpha register.

 8) Verify (using CATALOG 2) that I'm now running YFNS-1E.

CLREADER follows somehow the reverse process, Make sure you execute CLREADER on the PC
first, followed by YEXP so there won’t be any data stream missed.

Using TURBO50 settings the transfer rate can safely be increased to 4800 and most likely up to 9600
without any data loss. More critical is the padding time, which heavily depends on your system
hardware. I have obtained reliable results with 1 ms and 4800 as my standard settings in either
direction - write and read.

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 107 of 110 April 2014

using System;
using System.IO;
using System.IO.Ports;
using System.Threading;

public class CLWriter
{
 public static void Main(string [] args)
 {
 int baudrate = 1200;
 int delay = 0;
 if (args.Length < 2) {
 Console.Error.WriteLine("Usage:");
 Console.Error.WriteLine(" {0} file port [baudrate [delay]]", "CLWriter");
 Console.Error.WriteLine();
 Console.Error.WriteLine("Where baud defaults to {0}", baudrate);
 Console.Error.WriteLine("and delay defaults to {0}", delay);
 Console.Error.WriteLine("Available Ports:");
 Console.Error.WriteLine();
 foreach (string s in SerialPort.GetPortNames())
 {
 Console.Error.WriteLine(" {0}", s);
 }
 return;
 }
 string filename = args[0];
 string portname = args[1];
 if (args.Length > 2) {
 baudrate = int.Parse(args[2]);
 if (baudrate != 1200 && baudrate != 2400 &&
 baudrate != 4800 && baudrate != 9600) {
 Console.Error.WriteLine("Invalid baudrate {0}; should be one of", baudrate);
 Console.Error.WriteLine("1200, 2400, 4800, 9600");
 return;
 }
 }
 if (args.Length > 3) {
 delay = int.Parse(args[3]);
 if (delay > 10) {
 Console.Error.WriteLine("delay {0} probably too large.", delay);
 return;
 }
 }

 if (!File.Exists(filename)) {
 Console.Error.WriteLine("File {0} does not exist.", filename);
 return;
 }

 FileStream fstream = File.Open(filename, FileMode.Open);

 if (fstream.Length > 8192) {
 Console.Error.WriteLine("WARNING: {0} is over 8192 bytes long ({1});", filename,
fstream.Length);
 Console.Error.WriteLine("Will only transfer the first 8192 bytes.");
 }

 BinaryReader binReader = new BinaryReader(fstream);

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 108 of 110 April 2014

 SerialPort serialport = new SerialPort();
 serialport.PortName = portname;
 serialport.BaudRate = baudrate;
 serialport.Parity = Parity.None;
 serialport.DataBits = 8;
 serialport.StopBits = StopBits.One;
 serialport.Handshake = Handshake.None;

 serialport.Open();

 try {
 byte[] buffer = new byte[8192];
 int count = binReader.Read(buffer, 0, 8192);

 // swap high & low bytes:
 for (int i = 0; i < count; i+= 2) {
 byte tmp = buffer[i];
 buffer[i] = buffer[i+1];
 buffer[i+1] = tmp;
 }

 for (int i = 0; i < count; i++) {
 Console.Write("{0:x2} ", buffer[i]);
 if (i % 16 == 15) {
 Console.WriteLine();
 }
 serialport.Write(buffer, i, 1);
 if (delay > 0) {
 Thread.Sleep(delay);
 }
 }
 Console.WriteLine();
 }
 catch (EndOfStreamException) {
 // nada
 }
 serialport.Close();
 }
}

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 109 of 110 April 2014

using System;
using System.IO;
using System.IO.Ports;
using System.Threading;

public class CLReader
{
 public static void Main(string [] args)
 {
 int baudrate = 1200;
 if (args.Length < 2) {
 Console.Error.WriteLine("Usage:");
 Console.Error.WriteLine(" {0} file port [baudrate]", "CLReader");
 Console.Error.WriteLine();
 Console.Error.WriteLine("Where baud defaults to {0}", baudrate);
 Console.Error.WriteLine("Available Ports:");
 Console.Error.WriteLine();
 foreach (string s in SerialPort.GetPortNames())
 {
 Console.Error.WriteLine(" {0}", s);
 } return;
 }
 string filename = args[0];
 string portname = args[1];
 if (args.Length > 2) {
 baudrate = int.Parse(args[2]);
 if (baudrate != 1200 && baudrate != 2400 &&
 baudrate != 4800 && baudrate != 9600) {
 Console.Error.WriteLine("Invalid baudrate {0}; should be one of", baudrate);
 Console.Error.WriteLine("1200, 2400, 4800, 9600");
 return;
 }
 }
 if (File.Exists(filename)) {
 Console.Error.WriteLine("File {0} already exists, will not overwrite.",
 filename);
 return;
 }
 SerialPort serialport = new SerialPort();
 serialport.PortName = portname;
 serialport.BaudRate = baudrate;
 serialport.Parity = Parity.None;
 serialport.DataBits = 8;
 serialport.StopBits = StopBits.One;
 serialport.Handshake = Handshake.None;
 serialport.ReadTimeout = 30000; // milliseconds

 serialport.Open();

 byte[] buffer = new byte[8192];
 int pos = 0;

 try {
 int count;

 do {

 count = serialport.Read(buffer, pos, 8192 - pos);
 pos += count;

PowerCL Module ‐ Revision “4M”

(c) Ángel M. Martin Page 110 of 110 April 2014

 } while (pos < 8192);
 }
 catch (TimeoutException) { // nada
 }
 serialport.Close();

 if (pos % 2 != 0) {
 Console.Error.WriteLine("Odd number of bytes read.");
 return;
 }
 // swap high & low bytes:
 for (int i = 0; i < pos; i+= 2) {
 byte tmp = buffer[i];
 buffer[i] = buffer[i+1];
 buffer[i+1] = tmp;
 }

 FileStream fstream = File.Open(filename, FileMode.CreateNew, FileAccess.Write);

 BinaryWriter binWriter = new BinaryWriter(fstream);

 binWriter.Write(buffer, 0, pos);
 binWriter.Close();
 fstream.Close();

 }
}

	April 2014
	 This compilation revision 4.W.7.7
	Copyright © 2012 -2014 Ángel Martin

