
Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 1 of 50

Path-finding on Subway Networks

City Metro Maps for the HP-41

Written and programmed by Ángel M. Martin

Revision 1E – February 2018

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 2 of 50

This compilation revision 1.3.1

Copyright © 2017-18 Ángel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this

material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

Acknowledgments.-

Thanks to Greg J. McClure who lent his ear and provided advise and suggestions during the

preparation of this project.

Thanks to Jean-Marc Baillard who contributed with the Maze Generator and Traveling Salesman

programs.

http://www.hp41.org/

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 3 of 50

City Metro Maps for the HP-41

Table of Contents.

1. Introduction. 6

2. Describing the Network Lines . 7

3. Station Navigation . 8

4. Connecting Levels . 9

5. How Optimized are the results? . 10

6. A few Examples: Metro Madrid . 11

7. LEVEL and XFER Launchers. . 13

8. Showing the Results . 14

9. Station Parameters. Data I/O . 15

10. I’m Feeling Lucky . 18

11. Modeling other city networks:

a. London Tube . 19

b. Paris Metro . 21

c. Berlin U-Bahn . 23

d. New York City Subway . 26

12. Appendix 1: Tables Structure . 30

13. Appendix 2. Madrid Lines . 31

14. CODA1: Traveling Salesman Problem . 44

a. Bi-dimensional case

b. Tri-dimensional case

c. Spherical case

15. CODA2: Maze Generator . 48

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 4 of 50

The table below shows the function names in alphabetical order with a brief description. Note that
besides the Metro Lines there are a few other functions related to the Traveling Salesman Problem
and Mazes.

XROM Function Description Input Parameters Author

30,00 -METROPATHS Section Header n/a Ángel Martin

30,01 ^PATH _ Searches for Path Prompts FROM:/TO: Ángel Martin

30,02 ALINE _ _ _ Shows line alphabetical Line# in prompt Ángel Martin

30.03 ANYONE Random station Pick None Ángel Martin

30,04 CHANGE Changes Line Handle in X Ángel Martin

30,05 DOUBLE Shows Double Stations None Ángel Martin

30,06 DRCT? Checks direct connect From/To in Y,X Ángel Martin

30,07 FPATH Shows Full Path Path handles in stack Ángel Martin

30,08 LEVEL _ Level Launcher Prompts “0:1:2:3:X:^” Ángel Martin

30,09 LEVEL0 Tries Llevel-0 connect From/To in Y,X Ángel Martin

30,10 LEVEL1 Tries Level-1 connect From/To in Y,X Ángel Martin

30,11 “LEVEL2” Tries Level-2 connect From/To in Y,X Ángel Martin

30,12 “LEVEL3” Tries Level-3 connect From/To in Y,X Ángel Martin

30,13 LHEAD _ _ _ Line Head Station# in prompt Ángel Martin

30,14 LTAIL _ _ _ Line Tail Station# in prompt Ángel Martin

30,15 NEARX Nearest X-fer point Handle in X Ángel Martin

30,16 NEXTX Next Station Handle in X Ángel Martin

30,17 PREVX Previous Station Handle in X Ángel Martin

30,18 PLENG Path Length Path handles in stack Ángel Martin

30,19 SINGLE Shows Single Stations none Ángel Martin

30,20 STNAME _ _ _ Station Name Station# in prompt Ángel Martin

30,21 STINFO _ _ _ Station Information Station# in prompt Ángel Martin

30,22 TLINE _ _ _ Shows line in travel order Line# in prompts Ángel Martin

30,23 TRIPLE Shows Triple/Quad Stations None Ángel Martin

30,24 XFER _ X-fer Launcher Prompts “+:-:*:C:H:T:?” Ángel Martin

30,25 XFER? Checks for transfer type Station# in X Ángel Martin

30,26 “XPLORE” Whimsical Explorer From-To in Y,X Ángel Martin

30,27 XTRAIL Shows Transfer Stations Path handles in stack Ángel Martin

30,28 “*L2” Auxiliary routine Subroutine use Ángel Martin

30,29 ?MAP Checks CityMap existence None Ángel Martin

30,30 -A_MAZING Checks for Library#4 n/a Ángel Martin

30,31 ANUMDL ANUM w/ Deletion Text in ALPHA hp Co.

30,32 AREV ALPHA Reverse Text in APLHA Fran DeVries

30,33 DTOA LCD to ALPHA String in LCD Ángel Martin

30,34 RNG Random Number w/ Timer Current Time JM Baillard

30,35 “ASHFL” ALPHA Shuffle Text in ALPHA Harald Schumny

30,36 “MAZE” Maze Generator Data in Stack/Regs JM Baillard

30,37 “MAZE+” Driver for MAZE Prompts for data Ángel Martin

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 5 of 50

XROM Function Description Input Parameters Author

30,38 “TS2” TSP Bi-dimensional Data in Registers JM Baillard

30,39 “TS2+” Driver for TS2 Prompts for Data Ángel Martin

30,40 “TS3” TSP Tri-dimensional Data in registers JM Baillard

30,41 “TS3+” Driver for TS3 Prompts for data Ángel Martin

30,42 “TSS” TSP Spherical Data in registers JM Baillard

30.43 “TSS+” Driver for TSS Prompts for data Ángel Martin

30.44 “TS*” Auxiliary routine Subroutine use JM Baillard

NYC Subway version.

The New York Subway module has a slightly different FAT – Because of the very large sizes of the

network tables it is an 8k module that does not use the common Metro Lines engine, but its own one.
The Line functions prompt for alphanumeric values instead of numeric, and there is one additional

auxiliary function instead of all the TSP and MAZE sections in the FAT.

30,30 -A_MAZING Checks for Library#4 n/a Ángel Martin

30,31 ANUMDL ANUM w/ Deletion Text in ALPHA hp Co.

30,32 DTOA LCD to ALPHA String in LCD Ángel Martin

30,33 NYC# _ Codes Line# Line value in prompt Ángel Martin

30,34 RNG Random Number w/ Timer Current Time JM Baillard

You’re not supposed to have both versions plugged in the calculator at the same time, make sure the
common MetroPaths is removed when you’re using the NYC model. The NYC Subway is an

independent 8k Module, whereas the others are individual 4k modules than share the same search

engine – and are expected to be plugged right above it. Here’s a table showing how the different
networks work:

City Search Engine Network Data

Madrid

Metro Paths

Metro Madrid

London London Tube

Paris Paris Metro

Berlin Berlin U-Bahn

NYC NYC Subway

Module Dependencies.

The MetroPaths and NYC Subway modules check for the presence of its dependencies, i.e. the

Library#4 and the CX O/S. Note that if the Library#4 module is not plugged in the calculator, a
warning message is shown every time the calculator is switched on -- halting the polling points

process to avoid likely problems.

You should only use the module functions with the Library#4 module plugged in.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 6 of 50

City Metro Maps for the HP-41

Introduction.

Path-finding is a distinct subject within the different math applications to real life problems. This

module is but a humble first-contact approach to the subject applied to subway networks, with the

Madrid, Paris and London examples of implementation.

Don’t expect to find recursive algorithms using sophisticated backtracking, priority queues or cost-

weighing methods for path selection optimization within the network. Considering the odds, it’s quite

remarkable that just one path can be found using the tools and resources at hand - if you have ever

programmed in MCODE you’ll know what I mean. Thus the functions in the module don’t use any of

the popular references in the literature (Traveling Salesman, Dijkstra’s, et al.), but a set of tricks and

routines built from-the-scratch, creating dedicated tools and functions as they were needed with the

sole objective to connect the start and end stations.

Even this modest goal was ambitious considering the starting point: I had no previous experience

whatsoever in this type of applications, further constrained to the utilization of MCODE as the main

vehicle for the implementation – aided by a few short FOCAL routines for the more complicated

cases. All things considered, the final result included in the module is nothing short of amazing (if I

may say it).

The first implementation used the Madrid metro network as first example (all those rides of my youth

had to be honored). The network data takes a complete 4k block, located in the upper page of the

module. This one could be swapped with other “maps”, so the concept can be extended to other

subway networks from other cities, provided that the network is digitized in the format expected by

the path-finding routines. This is not difficult but a tedious job, so volunteers are welcome ;-)

Hope you enjoy the rides as much as I did putting these modules together.

These are the restrictions for the network

characteristics:

Max. Number of lines: 15

Max. Station multiplicity: 4 lines

Max. Station name length: 12

characters

Max. Data storage: 4,050 bytes

No support for “spurs” – which need to

be dealt with as independent lines or

as “loops” within a given line.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 7 of 50

Describing the Network Lines.

Two functions are available to list the line stations, either in alphabetical order (ALINE), or as

travelled sequence (TLINE) from beginning to end of line. The enumeration will be halted while any

key (other than R/Sand ON) is pressed. Once stopped press [<-] to clear the LCD.

The input for these functions is the line number, from 1 to 15. Any other value will trigger the

“NONEXISTING” error message.

In the Madrid metro there are 15 lines, with the following start/end stations: (see appendix 2 for the

complete list of stations)

Line# Start End Line# Start End

[1] Pinar Chamartín Valdecarros [9] Paco de Lucía Arganda del Rey

[2] Las Rosas Cuatro Caminos [10] H. Infanta Sofía Puerta del Sur

[3] Villaverde Alto Moncloa [11] Plaza Elíptica La Fortuna

[4] Argüelles Pinar Chamartín [12] Metrosur

[5] Alda. De Osuna Casa de Campo 13 (ML1) Pinar Chamartín Las Tablas

[6] Circular 14 (ML2) Colonia Jardín Est. de Aravaca

[7] H. de Henares Pitis 15 (ML3) Colonia Jardín Pta. de Boadilla

[8] NuevosMinistrs. Aeropuerto Radial Ópera Ppe. Pío

For the circular lines (#6 and #12 in this case) an arbitrary start/end combination has been

established. This has relevance for the search, as the algorithms will use it to determine a change of

direction in the tentative targets used in the different connection trials.

Functions SINGLE, DOUBLE, and TRIPLE will show an alphabetically ordered enumeration of the

stations with multiplicity number 1, 2, and 3 respectively. The listing can be also halted while any key

other than Back Arrow and ON are pressed. Press [<-] to abort.

Finally, when it comes to the individual stations, two functions are available to show the station name

and miscellaneous information: STNAME and STINFO. These functions use the station parameter as

input; either at the prompt if used interactively or in the X- registers if used in a program. Entering a

zero value in the prompt (in manual mode) will take the number in X instead as a shortcut. The range

for these inputs goes from 1 to 275. Any other value will trigger the “NONEXISTING” error message.

The example shown below shows the information for the station “Avenida de América”, using its main

line (#4) parameter = 082

 ->

 ->

Note that the line numbers in the “X:” field are shown in hexadecimal (i.e. from 1 to F). This was

needed to allow all possible combinations fit in the 12-character LCD.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 8 of 50

Station Navigation functions.

These functions provide independent access points for some of the code routines used in the more

complex connecting functions. Some were specifically written to facilitate the job of the FOCAL

programs LEVEL2 and LEVEL3. They expedite the execution of the programs substantially, and

make the code much easier to understand, enhance and maintain.

• XFER? and DRCT? are test functions that check for multiple stations and whether two

stations are directly connected (on the same line). They follow the standard HP-41 rule

showing YES/NO and skipping a program line if the result is false.

• LHEAD and LTAIL retrieve the beginning or the end station respectively of the line the input

station belongs to. The input station parameter can be entered at the prompt in manual

mode, or taken from the X-register in a running program. The result station parameter is

entered in the X-register, and the stack is lifted.

• PLENG shows the full path length for a set of transfer stations stored in the stack and Alpha

registers. Refer to the table in page 8 for the expected register configurations. The

information is presented in the display as shown below – for a route between stations 136

and 228 – i.e. from “Pacífico” to “La_Granja”:

• PREVX and NEXTX locate the previous and next transfer station from a given station. The

references are relative to the direction of travel, or in this case to the direction given to the

lines with a beginning and an end. When the result is found the user flag 01 is set to indicate

success. The boundary conditions for these kick-in at the beginning or end of line – where

there’s not a previous or following solution possible. In that case the functions will leave the

user flag 01 cleared.

• NEARX is a condensed version of the above two, as will be content with finding the nearest

transfer station on either direction, taken from the given station parameter in the X-register.

Currently this function is only used in XPLORE, more about that to follow. Here too we can

have boundary conditions, if the line is just a single spur with a unique connection to other

line. User flag 01 is clear if no near transfer station is found, and set if successful.

• CHANGE is the digital equivalent to changing lines at a transfer station. The parameter in

the X-register is taken as input, and is replaced by the number in the transferred line. The old

parameter is stored in the LastX register L(4). Using it in single stations will trigger the “NO

X-FER” error message and stop the program execution.

This is what you’d want to do when getting in a cul-de-sac situation within the line – change

to another and continue to ride along towards your goal…

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 9 of 50

Connecting Functions.{ LEVELn }

There are several functions in the module to help you make a connection between two stations, the

“From:” station A, and the “To:” station B. These are classified in increasing complexity order as

LEVEL0, LEVEL1, LEVEL2, and LEVEL3 – where the index refers to the number of transfers

required to establish the connection.

• So for instance, if A and B are in the same line (no transfers are needed) they will be

successfully connected by LEVEL0. The complete station list will be shown, known as the

“full path” using the function FPATH (the execution is transferred automatically there).

• If A & B are in intersecting lines, then LEVEL0 won’t be able to make the connection and

you’ll need to use LEVEL1. The transfer station between them is called X1 – and even if

there can be multiple of these, the function will report the first one found meeting the

criteria. This may not be the most convenient - let alone the optimal combination – but at

least will take you there. The transfer trails in this case will be: A – X1 – B.

• If two transfers are required to complete the route (X1, and X2), then LEVEL1 won’t suffice

and you’ll have to use LEVEL2. Note that LEVEL2 is a FOCAL program that uses repeated

iterations of the LEVEL1 function with different trial targets, moving the destination station B

a long its main line. The transfer trails here will be: A – X1 – X2 – B

• Finally, if three transfers are required (X1, X2, X3) then you must use LEVEL3 to get a valid

connection. This case represents less than 5% of the cases on the network but because of

the iterative process (calling LEVEL2 as a subroutine repeated times) it may take much longer

to determine the solution. The transfer trails now are: A – X1 – X2 – X3 – B

Both LEVEL0 and LEVEL1 behave as test functions in a program, i.e. the execution will skip one

program step if the connection isn’t successfully established.

Note also that each of these functions can also be used in cases of less number of transfers, i.e.

LEVEL2 will also find a one-transfer path or direct connections; and LEVEL1 can also be used for

direct connections. Obviously LEVEL3 is therefore the most powerful function since it’ll find any

connection involving up to three transfers.

Conversely, if a simpler solution is found (i.e. one with less number of transfers) then the functions

won’t continue the search for a higher-level solution. This means the priority criteria is to minimize

the number of transfers. However, as any savvy metro user knows, sometimes an additional transfer

reduces the total travel time and number of stations – but that level of expertise is not included in the

algorithms at this point.

 …

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 10 of 50

How Optimized are the Results?

Believe it or not, there’s some intelligence programmed into the LEVEL1 function – the real

cornerstone of all connecting functions. Here’s a short description of the planned-for contingencies.

Moving along the starting line.

If two given lines intersect twice (making a local loop) the branch taken may not be the one with

fewer number of stations. In the initial version the algorithms operated on a first-found basis,

whereby the first line intersection found was taken as the X-fer solution. This is good to reduce the

execution time, but doesn’t always result in the shortest path, as it depends on the relative position of

the From: station with respect to the intersected line: we could miss a nearby x-fer “behind” as we

start to move “ahead” along the line in the opposite direction.

In revision 1B the algorithm has been changed to always look for a second line intersection (moving

backwards), even if a first one has been found in the forward direction, which is always tried first.

When two paths are found a comparison of the branch lengths(measured in number of stations)

between the two paths is made, and the shortest one is chosen.

Starting from a multiple Station.

If the From: station is multiple, the search will start moving along the lower-numbered line first.

Then the above method will be applied looking for a connecting path, but if none is found then the

algorithm will change lines and start scanning the next line (with the higher number). This is repeated

for the third and the fourth lines if no path is found in the previous two or three.

Only when no direct connection can be established from all of the lines the FROM: station belongs to

then the function will declare defeat. It’s time to move up to LEVEL2 to try for other methods…

Moving the start station along the destination line.

LEVEL2 ‘s operation is based on moving the destination station along its main line, positioning the

“current” station in the transfer points X1, and using LEVEL1 to try establish a 1-Xfer connection

between the From: station and X1. If not possible, the process continues with the next transfer

station on the line, X2, and checks again. This will continue until all X-fer points have been tried, in

either direction of the destination line.

Move and Change until they connect.

If this process doesn’t yield a positive connection then it’s time for LEVEL3’s tactics, which involve a

combination of moving to the next transfer point *and* changing lines to one still not tried. Then

move back and forth along it, looking for hits – which at this points are bound to occur, but if not the

algorithm will change lines again at the last transfer point found on the secondary line, getting into a

third line and repeating itself until the 1-Xfer condition is eventually met.

Obviously here we need to keep track of the intermediate X-fer points to be able to reconstruct the

complete path once the connection has been established. We use data registers R00 to R04 for this

purpose in this case - but no data registers are used for all previous levels.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 11 of 50

A few Examples.

The following examples illustrate the points made before on the branch selection and operation of the

functions. Let’s use LEVEL1 to find connecting paths from the “Méndez Álvaro” and “Conde de Casal”

Stations to “Atocha” in line#1.See the snapshot below as reference for this section of the network.

The input data are the Station Names using ^PATH, or the station parameters directly which can be

obtained from the tables in appendix 2:Méndez Álvaro = 139; Conde de Casal = 141; Atocha = 18

Armed with that information we can call LEVEL1 directly for a faster operation, as seen in the screen

dumps above on the right, taken from the ILPer window – and showing that the algorithms find the

best approach in either forwards or backwards situation.

LEVEL2 Example.

 Establish the connecting path between the

stations “Pinar del Rey” (#190, in Line#8)

and “Parque Avenidas” (#170 in line#7).

The screens on the right show both the

station listsand the transfer trails for details.

Going for a longer ride now, let’s find the

connecting path between stations “Dos

Castillas” (#305 on line 14) and “Ant.

Machado” (#180 on line 7). The full result is

listed below.

305.000 ENTER^
180.000 LEVEL
XROM "LEVEL2"
DOS_CASTLLAS
BE.LGICA
POZUELO_O
SOMOSAGUAS_C
SOMOSAGUAS_S
PRADO_DL_REY
COL_A.NGELES
PRADO_D_VEGA

COL_JARDI.N
COL_JARDI.N
CASA_D_CAMPO
BATA.N
LAGO
PRINCIPE_PI.O
PZA_D_ESPAN,A
TRIBUNAL
ALNS_MARTNEZ
GRIO_MARAN,O.N
GRIO_MARAN,O.N

ALONSO_CANO
CANAL
IS_FILIPINAS
GUZMA.N_BUENO
FR_RODRI.GUEZ
VALDEZARZA
ANT_MACHADO
P=23 ST

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 12 of 50

LEVEL3 Example.

As already mentioned these account for a small fraction of all possible combinations, yet show up in a

few cases that may be relevant to the metro dweller. Mostly arise when going from and to isolated

lines, such as line#12 (Metro Sur) and line #11 – which could be considered as a spur of the Circular

line#6.

Find a path between stations “La Fortuna” (#259, at the end of line #11) and “El Bercial” (#281 on

line#12). Using LEVEL3 for this yields the following list, with 43 stations and three transfer points:

259.000 ENTER^
 281.000 LEVEL
XROM "LEVEL3"
LA_FORTUNA
LA_PESETA
CRAB_ALTO
S_FRANCISCO
PAN_BENDITO
ABRANTES

PZA_ELI.PTICA
PZA_ELI.PTICA

OPAN,EL
OPORTO
CARPETANA
LAGUNA
LUCERO
ALTO_EXTRMDR
PTA_DL_A.NGEL

PRINCIPE_PI.O
PRINCIPE_PI.O

LAGO
BATA.N
CASA_D_CAMPO
COL_JARDI.N
AVIACIO.N_ESP
CUATRO_VNTOS
J_VILUMBRLES

PTA_DEL_SUR
PTA_DEL_SUR

PQUE_LISBOA
ALCORCO.N_C
PARQUE_OESTE
UREY_JCARLOS
MO.STOLES_C
PRADILLO

H_D_MO.STOLES
MLA_MALASAN,A
LORANCA
H_FUENLBRADA
PQUE_EUROPA
FUENLABRADA
PQUE_ESTADOS
ARYO_CULEBRO
CONSERVTORIO
ALNS_MENDOZA
GETAFE_CTL
J_DLA_CIERVA
EL_CASAR
L_ESPARTALES
EL_BERCIAL
P=43 ST

By now you have surely realized how difficult is to travel blind, and how much information is

contained in your humble metro map folded up into your pocket –better hold on to it ;-)

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 13 of 50

Consolidated Launchers { LEVEL_ , XFER }

The module includes two function launchers that consolidate related functions into a single,

convenient access point. Both launchers are interconnected and can be toggled using the [SHIFT]

key.

First a LEVEL function launcher groups the five connecting cases into a selection prompt for your

convenience. This prompt will also be presented after the station selection A, B is made using the

input function ^PATH.

The second launcher is XFER, which groups the station movements functions: One station up, one

station down, End of line, Beginning of line, Change Line, and Map information.).

The table below shows all functions included in the launchers, and their hot-keys:

Key LEVEL 0:1:2:3;X:^ Key XFER +:-:*:C:H:T:?

[1] LEVEL0 [+] NEXTX

[2] LEVEL1 [-] PREVX

[3] LEVEL2 [*] NEARX

[4] LEVEL3 [C] CHANGE

[X] XPLORE [H] LHEAD

[ENTER] ^PATH [T] LTAIL

- - [?] ?MAP

[SHIFT] XFER _ [SHIFT] LEVEL _

[ALPHA] STNAME [ALPHA] STNAME

[PRGM] STINFO [PRGM] STINFO

Note that the input for the functions in this launcher are the station handle, whilst for the former

launcher it was the pair of handles for the From: and To: stations wanting to connect.

Other options at this point are provided by the ALPHA and PRGM keys, which will invoke the functions

STNAME and STINFO respectively. With them you can retrieve the station name and station

information, a single screen showing the main line, the position within it, and the other connecting

lines for multiple stations. The user flag indicator will also change accordingly, showing the

multiplicity order of the station. Note that this may alter the scope of the FPATH function in case you

want to repeat the enumeration of a result.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 14 of 50

Showing the Results, { FPATH, XTRAIL }

The output of the connecting functions is always the full path, i.e. enumerating all the stations

between the from/to points, and not only the transfer points. This can be a lengthy list, so you can

repeat the enumeration using FPATH as often as required after the solution has been found.

If all you need to know are the transfer points, then you can use XTRAIL to enumerate only these

key stations. Note that each transfer station will be shown twice – as they really are two different

stations, even if they’re located at the same topological point. When this output type is used the

enumeration also includes the station information for each transfer point - as provided by STINFO,

minus the user flag selection.

From the above descriptions it follows that the first line acts as the main reference for the station.

The station search routines will retrieve the position given by the first encounter within the LINES

table.

To make it valid across all cases, the scope of FPATH and XTRAIL includes a variable number of

registers. This is controlled by user flags UF 01 and UF 00 as follows:

UF 01 UF 00 Scope

Clear Indistinctly T:, Z:, Y:, and X:

Set Clear T:, Z:, Y:, X:, L:, and M:

Set Set T:, Z:, Y:, X:, L:, M:, N, and O:

The connecting functions do this automatically, but you should be aware of it in cases you want to

use the output functions separately. Also be aware that using non-connected station parameters as

From/To data will “throw them for a loop” - so make sure that’s never the case - for instance using a

LEVEL0 instruction right before. The listing can be halted while any key other than R/S and ON are

pressed. Once stopped press [<-] to clear the LCD.

Note: For LEVEL2 and LEVEL 3 cases it’s not possible to resume the station enumeration after

pressing R/S. Better let it run until the end and repeat the listing using FPATH or XTRAL.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 15 of 50

Station parameters and data input/output.{ ^PATH_ }

Each station has a unique parameter, as determined by its position on the LINES table. For the

Madrid network the parameters range between 1 and 325. Multi-line stations are repeated in that

table, and thus have multiple parameters, one per each line they belong to.

The connecting functions always expect the From: and To: station parameters in the stack Y- and X-

registers respectively. You can use the direct parameters if known, but these are automatically

retrieved by the ^PATH function, which will let you choose the From: and the To: stations by their

names in a very convenient way.

, then:

Once you choose an initial letter the enumeration will proceed alphabetically from that point on. You

can halt it at any moment with R/S, and navigate manually using the SST/BST keys. Pressing XEQ will

jump one entire initial section forwards or backwards depending on the SHIFT status. Finally you

press ENTER^ to select the station. The back-arrow aborts the function when the enumeration is

halted.

If the function doesn’t find a connection (because the number of transfers is greater than what it can

cope with), the display will show “NO” and the same From:/To: parameters will remain in the stack –

so you can try the next level function if so desired.

If the function finds a connection, then the different transfer points are added (inserted really) to the

stack and ALPHA registers as needed, according to the following pattern:

• LEVEL1 adds the two parameters for the transfer station X1, one for each line it belongs to

• LEVEL2 adds four parameters for the two transfers points, X1, and X2.

• LEVEL3 adds 6 parameters, two per each of the three transfer points X1, X2, X3.

The table below shows the register layout of the output results for all cases:

Stack Reg. LEVEL0 LEVEL1 LEVEL2 LEVEL3

T: 0 A2 A2 A2

Z: A1 X1(a) X1(1) X1(1)

Y: A2 X1(b) X1(2) X1(2)

X: B2 B2 X2(1) X2(1)

L: B1 scratch X2(2) X2(2)

M: scratch scratch B2 X3(1)

N: scratch scratch X3(2)

O: scratch scratch B2

During the enumeration of the results the transfer stations will be included twice, which feels like a

longer showing time on the LCD during the enumeration.

Note that other registers are also used as scratch, like both registers L(4) and 5(M) are always used

as scratch (even for LEVEL1). For the 2- and 3-transfer cases data registers R00 to R03 are also

needed to hold the intermediate trials used by the algorithms.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 16 of 50

Program listings for the multi-transfer Routines

See below the listings for the FOCAL programs. They’re conspicuously short (but hard to figure out!)

since they use the dedicated MCODE functions from the module.

Solving a Two X-fers situation. LEVEL2program,introducing functions PREVX and NEXTX.

To remark the utilization of the “tentative” targets obtained by the successive movements of the TO:

station along the main line it belongs to. This is done by functions PREVX and NEXTX. This ensures

that one transfer point common to the intersecting lines will be reached, and then used to establish

the full transfer trail.

1 LBL "LEVEL2"

2 CF 06 Not Subroutine mode

3 CF 00 excludes {N, O} from ROUTE

4 "SEARCHING…"

5 AVIEW

6 GTO 06

7 LBL "LV2'

8 SF 06 Subroutine mode

9 LBL 06

10 LEVEL1 connected?

11 GTO 05 yes!

12 STO M(5) Iini tia l pos i tion

13 LBL 00

14 PREVX previous X-fer

15 FC? 01 exists?

16 GTO 02 no, try other direction

17 LEVEL1 connected?

18 GTO 05 yes!

19 GTO 00 no, keep trying

20 LBL O2

21 CLX

22 RCL M restore initial TO:

23 LBL 01

24 NEXTX next X-fer

25 FC? 01 exists?

26 GTO 02 no, abandon ship

27 LEVEL1 yes, connected?

28 GTO 05 yes!

29 GTO 01 no, keep trying

30 LBL 02

31 CF 01 s ignal fa i lure to connect

32 X<> M reinstate initial pos

33 FS? 06 subroutine?

34 RTN yes , return here

35 "NO CIGAR" no, show error

36 AVIEW

37 RTN done.

38 LBL 05

39 FROUTE show route

40 END done.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 17 of 50

Solving a Three X-fers situation: LEVEL3 program, introducing function CHANGE

Note the parallel with the previous case using “LVL2” instead of LEVEL1. Here the notable point is

the use of the function CHANGE – to change lines at the intersections found by the “tentative”

targets used in LEVEL2. This ensures that eventually a common transfer point between two lines will

be encountered, and once that’s done we’ll need to stitch that segment with the previous movements

made.

Note that there’s no provision for a “not found” contingency – such is the beauty of the Madrid metro,

never need to transfer more than three times to reach any point on the network.

1 LBL "LEVEL3"

2 "SEARCHING…"

3 AVIEW

4 STO N(6) Iini tia l pos i tion

5 0,1

6 STO O(7)

7 RDN

8 LBL 02 TO: counts as X0

9 STO IND 0(7) save this marker Xk

10 ISG O(7) pointer to next REG

11 LBL 00

12 PREVX previous X-fer

13 FC? 01 exists?

14 GTO 01 no, try other direction

15 STO IND 0(7) save this marker, X0

16 XEQ "LV2"

17 FS? 01 connected?

18 GTO 05 yes!

19 GTO 00 no, keep trying

20 LBL 01

21 NEXTX next X-fer

22 FC? 01 exists?

23 GTO 02 no, abandone line

24 STO IND 0(7) save this marker, X0

25 XEQ "LV2"

26 FS? 01 connected?

27 GTO 05 yes!

28 GTO 01 no, keep trying

29 LBL 02

30 CLX

31 RCL IND 0(7) reca l l las t marker

32 ISG O(7) pointer to next REG

33 CHANGE change line here

34 GTO 02

35 LBL 05 last marker in L, M

36 X<> 01

37 X<> N(6) N(6) <> 01

38 X<> 01

39 SF 00

40 X<> 00

41 X<> 0(7) O(7) <> 00

42 X<> 00

43 FROUTE

44 END

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 18 of 50

I’m Feeling Lucky.{ ANYONE , XPLORE }

The module is equipped with a random number generator based on the Time Module (CX owners

rejoice). It was written by JM Baillard, named RNG in the FAT.

This functionality is used by ANYONE to come up with a valid station parameter, i.e. an integer

number between 1 and 325 – which will be placed in X (lifting the stack). The Station name

corresponding to this parameter is displayed.

Using ANYONE twice instead of the more mindful ^PATH is a great way to test the different

functions in the module: just get two stations at random and see which level is needed to make a

connection between them.

Let’s see an example of the complete route output using these functions: -

ANYONE

PPE_VERGARA
ANYONE

UREY_JCARLOS
LEVEL
LEVEL1

NO
LEVEL
XROM "LEVEL2"

SEARCHING...
PPE_VERGARA
NUNEZ_BALBOA
AV_AMERICA
CRUZ_DL_RAYO

CONCH_ESPINA
COLOMBIA
PIO_XII
DUQ_PASTRANA

PZA_CASTILLA
PZA_CASTILLA

CUZCO
ST_BERNABEU
NUEVOS_MINST
GRIO_MARANON
ALNS_MARTNEZ
TRIBUNAL
PZA_D_ESPANA
PRINCIPE_PIO

LAGO
BATAN
CASA_D_CAMPO
COL_JARDIN
AVIACION_ESP
CUATRO_VNTOS
J_VILUMBRLES

PTA_DEL_SUR
PTA_DEL_SUR

PQUE_LISBOA
ALCORCON_C
PARQUE_OESTE
UREY_JCARLOS
P=28 ST

The Whimsical Explorer.

Another connecting function available is the module is XPLORE – which uses a rather risky approach

to attempt the solution. The method used here is to always change lines in all possible opportunities,

i.e. at every transfer station in the lines. This may result in a quick, multi-transfer route but it may

also (and likely will) fall into an infinite loop of repetition – so as the name implies it’s good to explore

if you really like riding the subway.

Like it’s often the case in real Metro networks, this function is currently “under construction”, so

handle it with care.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 19 of 50

Modeling the London Tube.

The second map available is for the London Tube network – in its basic configuration, i.e. excluding

the Overground, Tram and LDR lines. Even with those restrictions the structure of the underground

lines differs from the standard model in two aspects:

1. A few lines (Central, District, Northern & Metropolitan) have a forked termination, i.e. there’s

a bifurcation with two different line ends. Some even have that as a mid-line loop, like in the

Central line.This contingency has been modeled by treating the forked branches as if they

were independent lines, making for a total of 15 lines - the complete list of lines is as follows:

Line # Name Line # Name Line# Name

1 Bakerloo 5 District 8 Northern

2 Central C District-branch E Northrn.-E

B Central-branch 6 Jubilee 9 Piccadilly

3 Hammersmith 7 Metropolitan F P’dilly-branch

4 Circle D Metroplt.-Branch 10 Victoria

2. Two stations exceed the maximum multiplicity index supported by the model. This is the case

for Baker Street (m=5) and King’s Cross (m=6), and has been handled by splitting them in

two different stations, each with a multiplicity less than five, and with a common line (acting

as the “hinge” for both clones) to allow for the transfer options. With this arrangement only

line#7 (Metropolitan) has the double-up stations configured, whereas the others have either

one of the splintered versions. This is shown below:

Station Line#1 Line#2 Line#3 Line#4
Baker St.-1 Bakerloo Hammersmith Jubilee Metropolitan

Baker St.-2 Circle Metropolitan

King’s Cross-1 Hammersmith Metropolitan Northern Piccadilly

King’s Cross-2 Circle Metropolitan Victoria

Other than that, the two network maps share all the same characteristics and support the

same functionality. The chart below shows some of their vital constants in comparison:

Madrid London Paris Berlin

Stations 275 268 300 274

Table Entries 325 386 376 400

Lines 15 15 15 14

0

2

4

6

8

10

12

14

16

18

20

0

50

100

150

200

250

300

350

400

450
Stations Table Entries Lines

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 20 of 50

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 21 of 50

Modeling the Paris Metro network.

The third map available is for the Paris Metro network – in its basic configuration, i.e. excluding the

Trams and RER lines. Also very short lines “3bis”and “7bis”are not included. Even with those

restrictions the structure of the underground lines differs from the standard model in a few points:

1. Branched lines – as it is the case for line #7 and line #13, and in less degree also line #10.

In this implementation, the line#13 branch has been separated as an independent line #15,

joining at the “La_Fourche” station. However, the other two branches are “absorbed” into the

main line.

2. Two stations exceed the maximum multiplicity order – “Châtelet” and “République”, both with

m=5. Like in the London Tube’s case, these have been dealt with by adding a second

“shadow” station to reduce their multiplicities. The schema uses the following lines for the

transfers:

Station X-fer#1 X-fer#2 X-fer#3 X-fer#4
Châtelet Line #1 Line #4 Line #7 Line #11

Châtelet-2 Line #11 Line #14

République Line #3 Line #5 Line #8 Line #9

République-2 Line #9 Line #11

The common (“hinge”) lines are line #11 for Châtelet and line #9 for République.

Other than that, the metro stations often used hyphened names with combined descriptions for the

place. This makes it troublesome to fit the name in the 12-chars length of the LCD, and also

contributes to a larger size for the station NAMES table. I’ve tried to reach a sensible compromise that

works in most of the cases, even if a few instances it’s an unusual text. The apostrophes are included

but other special French characters (accents, etc.) are ignored.

The chart below shows the table sizes for all maps: the NAMES table in bar format (left axis), and the

ENTRIES table in line format (right axis). As usual, English shows to be quite an economical

language!

580

600

620

640

660

680

700

720

740

760

780

800

2500

2600

2700

2800

2900

3000

3100

3200

3300

3400

Madrid London Paris Berlin

Table Sizes

NAMES ENTRIES

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 22 of 50

I find the official Paris metro map very hard to read so here’s an alternate version that it’s easier on

the eyes and somehow clearer without the colored background. Note that there’s no circular line, but

two semi-circles formed by lines #2 and #6 together. Definitely a very dense network!

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 23 of 50

Modeling the Berlin U-Bahn network.

The fourth map available is for the Berlin U-Bahn, which also includes four of the famous S-Bahn lines

so emblematic to that city. The assumptions made are similar to the previous three cases, and can be

summarized as follows:

1. Underground lines U1 to U9 are called lines #1 to #9 in the model. They constitute the core

section of the model.

2. Circular S-Bahn lines (Ring lines S41 and S42 in the original) have been merged into a

common line #10.- The ramification lines S45, S46 are not included in the model.

3. S-Bahn lines S1, S2 (the north-south lines) are called lines #11 and #12 in the model.

4. S-Bahn lines S3, S5 (the West-East lines) are called lines #13 and #14 in the model.

5. No “hinge” or duplicate stations are implemented, even if the Alexander Platz station has five

transfers. This is justified by the similar topology of lines S3 and S5.

There is a total of 14 lines with 274 stations, which take up to 400 table entries due to their

multiplicity – notably high in the S-Bahn lines.

Some station names are challenging due to the compounded syntax and length, thus frequent

compromises have been made. Some common abbreviations include “ST.” for Strasse, “PL.” for Platz,

“BK.” for Brücke, and “MK.” For Markt. The Umlaut sign is represented by a colon next to the letter in

the names. The results should be intelligible even if you’re not acquainted with the network –

although being familiar with German words would definitely help.

The map below is for the U-Bahn alone, whilst the map in the next page also includes the S-Bahn

lines.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 24 of 50

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 25 of 50

New York, New York….

The fifth and probably last map of this project is for the “great white shark” of underground systems:

nothing less than the New York Subway – almost entirely covered, which is not a small feat

considering its size and complexity. Yes, this baby is huge, so much so that the station names alone

already fill up a complete 4k-page, displacing the lines tables from the standard arrangement. The

solution was to move it to the main page, which for the NYC Subway is slightly different from the

general-purpose implementation for reasons that will be discussed next. Refer to the table in page# 3

for configuration details.

The charts below show a quick comparison amongst the five networks; behold the NYC Subway case!

But size alone is not the only problem: with it comes the distinction between Local/Express trains

within the same lines (or “tracks”); week-days and week-end schedules, rush-hour skips and late-nigh

stops, etc. All that complexity makes it more difficult to plan for in a simple model like this, thus you

should be prepared to find some compromises in the choices made, such as:

• The model doesn’t distinguish between the day/night or weekend schedules,

• All stations are reported if the train stops there in any of the possible cases.

• Street transfers between stations with different names are implemented as “guest” stations

on the associated line

• Stations with line multiplicity m>4 are implemented with the addition of a “shadow” station

with the same name. This was also present in the London and Paris networks.

Berlin London Madrid Paris NYC

Stations 274 268 275 300 382

Table Entries 400 386 325 376 637

Lines 14 15 15 15 16

0

2

4

6

8

10

12

14

16

18

20

0

100

200

300

400

500

600

700
Stations Table Entries Lines

Berlin London Madrid Paris NYC

NAMES 3289 3027 3294 3289 4073

ENTRIES 712 774 652 754 1276

0

200

400

600

800

1000

1200

1400

2500

2700

2900

3100

3300

3500

3700

3900

4100

4300
Table Sizes

NAMES ENTRIES

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 26 of 50

Several additional aspects made modelling the NYC Subway a challenge, not only its vast size.

For starters, there is a combination of numbers and letters for the lines and stations descriptions, and

there are plenty of station names that are numeric strings. These two considerations alone required a

modification of the station name and line number input routines, to allow for alphanumeric values:

using the [SHIFT] key for numbers during the ALPHA mode, as it is standard for the OS.

Note that selecting non-available letters will briefly show the ‘NO MATCH” message, and will repeat

the same prompt – either for the source or destination depending on the current stage.

The next issue was the number of lines amply exceeding the limit of the model (with 15 max). This

was managed by grouping similar lines into a combined one, based on the commonality between

them and their shared tracks. If you’re at all familiar with the NYC subway you’ll no doubt relate to

the Local/Express varieties of the same lines, which New Yorkers refer to “trains” (remember the

“Take the A-Train” jazz chestnut?). This consolidation lead to the following lines:

• Line 2/3; combining Lines 2 and Line 3 - minus final section of line #2

• Line 4/3; combination of lines 4 and 5 - minus the initial section of line #4

• Line B/D; combining lines B and D - minus final section of line #B

• Line N/R, combining lines #N and R - minus final section of line #R

Even with these consolidations there was no possible to include lines #S and #W, a small omission

considering that for the most part they overlap with lines #B, #D, #N, and #R which are included.

For line entries in the prompting functions (such TLINE, and ALINE) you’re expected to enter the

actual line letter or number as in the real network, i.e. a value included in the table below. For your

convenience, the functions won’t allow non-available choices. The input will be converted to an

internal hex value used by the code as shown below, but you don’t need to worry about that unless

you want to look under the hood:

NYC Line Hex token NYC Line Hex token NYC Line Hex token

1 1 A
A

L D

2
2

C M 3

3 B
B

N
5

4
4

D R

5 E E Q 8

6 6 F F J
9

7 7 G C Z
Note: the output of function STINFO will show the internal hex codes in the transfer field of the LCD.

The last important difference worth mentioning is that when compared to the other cities there are

multiple cases of different stations with the same name. This is likely because of the way the subway

was built and the history behind the different companies involved (IND, IRT, and BMT), but it only

makes it more confusing to the unaware rider; so novices be aware and ensure you have the right

name before you start!

Ready for some examples? Let’s ride!

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 27 of 50

Example 1. Intrepid subway dweller Jeremy Carr needs to find his way between the Green Point

Avenue in line G and Central Avenue in line M. Can you help him?

Solution: either using ^PATH to select by names, or checking the station table directly, the station

handles for the begin-end stations are 191 and 298 respectively. Both LEVEL0 and LEVEL1 return

no connection, so we embark in LEVEL2 with the following result:

GREENPNT_AV
NASSAU_AV
METROP.-LRMR.
BDWY.-UNION
FLUSH.-MARCY
MYRTL-WLGBY.
BEDFD-NOSTR.
CLASSON_AV

CLNTN.-WASH.”
FULTON ST.”
HOYT-SCHMR.
BERGEN/F:
BERGEN/F:
JAY_ST-METRO
YORK_ST
E._BROADWAY

DELANCEY
DELANCEY
MARCY_AV
HEWES_ST
LORIMER_ST
FLUSHING_AV
MYRTLE_AV
CENTRAL_AV

The transfers used are BERGEN and DELANCEY, with a total path length of 21 stations.

Not bad, although there’s a much shorter solution (only 12 stations) changing lines at the
METROPLT.-LORM., getting on line #L until MYRTL-WYCKF, then changing to line #M for the
remaining two stations to the destination. Oh well, at least we got him there even if using the scenic
route…

Example 2. Find a path to travel to Coney Island from Far Rockaway (at the end of Line #A). The
station handles are: From 58 to 142,

LEVEL1 quickly yields the suitable route with 47 stops, no less – with just a single transfer at
“JAY_ST”. station between lines #1 and #F.

Example 3.- Jane Rider needs to go from Clark street to 21 St. – Jackson Ave. What solution does the
model find? The station handles are 350 and 190, as selected by ^PATH. Remember to use the SHIFT
key to access the numeric characters in the stations, like in this case for the destination. Also make
sure you select “21_ST/JA”, and not “21_ST/QB”.

The path found is 20 stations long, with two transfers at stations “TIMES_SQ” to get on line #7 and
“COURT_ST” to end on line #G – and from there backtrack one stop.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 28 of 50

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 29 of 50

Final Comments.

The NYC Subway has a high level of “centrality”, which most certainly will make unnecessary to

transfer more than twice to get to any point from any initial station. Sometimes the transfer requires

going to the street level, but that seems to be a small price to pay to shorten the route length and

ride time if it weren’t done.

That’s not to say that astute riders won’t resort to three-transfer paths for shorter and possibly less

time-consuming solutions that those found by this model. This is also the case with the other cities,

and is an inherent limitation of the implementation that searches for minimum number of transfers

instead of distances or path lengths.

If you’re interested in learning more about the NYC Subway there are a plethora of articles and

videos online that are excellent references, from Wikipedia to the MTA official side.

Map of line elevation in relation to the ground; underground segments are in orange, and above

ground segments are in blue, whether they are elevated, embanked, graded or open cut.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 30 of 50

Appendix 1. Structure of the Network Tables.

For each city map, there are two tables that hold the network station information and line topology:

the STATIONS table and the LINES table.

The LINES table lists all stations arranged in travelling order, starting with line-1 and ending with line-

15. The entries on this table have the addresses in the STATIONS table for the station name and

extended info. Each entry consists of two bytes as follows:

a b c - header byte #1

d e f - header byte #2

• a : signals the multiplicity of the station: 0 for single, 1 for double, 2 for triple, and 3 for

quadruple stations (currently in the Madrid network there is only one station of this kind)

• b : signals the line this station belongs to. Note that stations are listed on all lines that

include them, so there will be multiple entries on the LINES table under each of the different

line sections. All of these entries will have the same address

• {cef}: is the hex address in the STATIONS table.

• d : denotes the beginning (value =1) or the end (value = 2) of line. This is utilized by the

code to determine an “end-of-line” condition.

The STATIONS table consists of an alphabetical list of all stations, where each entry has a variable

number of bytes per entry: featuring a two-byte header plus the station name, up to 12 characters

max. The header has the following information coded in the first two bytes of the entry:

x y z - header byte #1

m n p - header byte #2

• {x } : indicates the multiplicity of the station, together with the “1” digit in { m }.

• {z y p n} : are the four lines this station can belong to. This format implies that there cannot

be more than 15 lines on the network (from 1 to F) as only one digit is reserved for the line#.

It also means that quintuple station(s) will need to be handled as special cases in the code.

• m : is always 1 – acts as a delimiting semaphore for the enumeration routines.

For the Madrid Metro, the STATIONS table is a huge structure with 275 entries occupying 3,294 bytes

long; whilst the LINES table is 652 bytes long with 325 stations in it. Of these, 275 are unique whilst

the remaining 50 are repeated stations as per their multiplicity in the network. These tables occupy

the upper page of the module, which can be extended with other maps if you feel like keying in all

that data to enter your very own city’s underground ;-)

A few interesting tidbits: the London tube was the first metro in the world, and Boston had the first

underground in the US - and therefore in the new world. The NYC Subway was thought to be too

large so it wouldn’t fit within the constraints of the design unless it is size is somehow reduced… to be

continued.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 31 of 50

Appendix 2. Madrid Metro Stations.

The following tables show all the stations listed in traveling order, with the different transfer points.

The information is current as today’s date, April 11, 2017. You’re encouraged to check the official

Metro website for a wealth of information, including a “route planner” that offers several options for

optimal path selection at: https://www.metromadrid.es/en/index.html

Note that Line “R” (a single segment linking the Ópera&Ppe_Pío stations) is not included in this

implementation. Neither are the “walking passageways” that exist between some stations (like Pza.

De España&Noviciado; or Acacias &Embajadores).

https://www.metromadrid.es/en/index.html

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 32 of 50

Line 1: Pinar de Chamartín - Valdecarros

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

1 1 Pinar de Chamartín 4 L1 0 1

1 2 Bambú 0 0 0 2

1 3 Chamartín 10 0 0 3

1 4 Plaza de Castilla 9 10 0 4

1 5 Valdeacederas 0 0 0 5

1 6 Tetuán 0 0 0 6

1 7 Estrecho 0 0 0 7

1 8 Alvarado 0 0 0 8

1 9 Cuatro Caminos 2 6 0 9

1 10 Ríos Rosas 0 0 0 10

1 11 Iglesia 0 0 0 11

1 12 Bilbao 4 0 0 12

1 13 Tribunal 10 0 0 13

1 14 Gran Vía 5 0 0 14

1 15 Sol 2 3 0 15

1 16 Tirso de Molina 0 0 0 16

1 17 Antón Martín 0 0 0 17

1 18 Atocha 0 0 0 18

1 19 AtochaRenfe 0 0 0 19

1 20 Menéndez Pelayo 0 0 0 20

1 21 Pacífico 6 0 0 21

1 22 Puente de Vallecas 0 0 0 22

1 23 Nueva Numancia 0 0 0 23

1 24 Portazgo 0 0 0 24

1 25 Buenos Aires 0 0 0 25

1 26 Alto del Arenal 0 0 0 26

1 27 Miguel Hernández 0 0 0 27

1 28 Sierra de Guadalupe 0 0 0 28

1 28 Villa de Vallecas 0 0 0 29

1 29 Congosto 0 0 0 30

1 30 La Gavia 0 0 0 31

1 31 Las Suertes 0 0 0 32

1 32 Valdecarros 0 0 0 33

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 33 of 50

Line 2: Las Rosas – Cuatro Caminos

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

2 1 Las Rosas 0 0 0 34

2 2 Avenida de Guadalajara 0 0 0 35

2 3 Alsacia 0 0 0 36

2 4 La Almudena 0 0 0 37

2 5 La Elipa 0 0 0 38

2 6 Ventas 5 0 0 39

2 7 Manuel Becerra 6 0 0 40

2 8 Goya 4 0 0 41

2 9 Príncipe de Vergara 9 0 0 42

2 10 Retiro 0 0 0 43

2 11 Banco de España 0 0 0 44

2 12 Sevilla 0 0 0 45

2 13 Sol 1 3 0 46

2 14 Ópera 5 0 0 47

2 15 Santo Domingo 0 0 0 48

2 16 Noviciado 0 0 0 49

2 17 San Bernardo 4 0 0 50

2 18 Quevedo 0 0 0 51

2 19 Canal 7 0 0 52

2 20 Cuatro Caminos 1 6 0 53

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 34 of 50

Line 3: Villaverde Alto - Moncloa

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

3 1 Villaverde Alto 0 0 0 54

3 2 San Cristóbal 0 0 0 55

3 3 Villaverde Bajo Cruce 0 0 0 56

3 4 Ciudad de losÁngeles 0 0 0 57

3 5 San Fermín - Orcasur 0 0 0 58

3 6 Hospital 12 de Octubre 0 0 0 59

3 7 Almendrales 0 0 0 60

3 8 Legazpi 6 0 0 61

3 9 Delicias 0 0 0 62

3 10 Palos de la Frontera 0 0 0 63

3 11 Embajadores 0 0 0 64

3 12 Lavapiés 0 0 0 65

3 13 Sol 1 2 0 66

3 14 Callao 5 0 0 67

3 15 Plaza de España 10 0 0 68

3 16 Ventura Rodríguez 0 0 0 69

3 17 Argüelles 4 6 0 70

3 18 Moncloa 6 0 0 71

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 35 of 50

Line 4: Argúelles – Pinar de Chamartín

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

4 1 Argüelles 6 10 0 72

4 2 San Bernardo 2 0 0 73

4 3 Bilbao 1 0 0 74

4 4 Alonso Martínez 5 10 0 75

4 5 Colón 0 0 0 76

4 6 Serrano 0 0 0 77

4 7 Velázquez 0 0 0 78

4 8 Goya 2 0 0 79

4 9 Lista 0 0 0 80

4 10 Diego de León 5 6 0 81

4 11 Avenida de América 6 7 9 82

4 12 Prosperidad 0 0 0 83

4 13 Alfonso XIII 0 0 0 84

4 14 Avenida de la Paz 0 0 0 85

4 15 Arturo Soria 0 0 0 86

4 16 Esperanza 0 0 0 87

4 17 Canillas 0 0 0 88

4 18 Mar de Cristal 8 0 0 89

4 18 Parque de Santa María 0 0 0 90

4 19 Hortaleza 0 0 0 91

4 19 San Lorenzo 0 0 0 92

4 20 Manoteras 0 0 0 93

4 21 Pinar de Chamartín 1 L1 0 94

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 36 of 50

Line 5: Alameda de Osuna – Casa de Campo

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

5 1 Alameda de Osuna 0 0 0 95

5 2 El Capricho 0 0 0 96

5 3 Canillejas 0 0 0 97

5 4 Torre Arias 0 0 0 98

5 5 Suanzes 0 0 0 99

5 6 Ciudad Lineal 0 0 0 100

5 7 Pueblo Nuevo 7 0 0 101

5 8 Quintana 0 0 0 102

5 9 El Carmen 0 0 0 103

5 10 Ventas 2 0 0 104

5 11 Diego de León 6 4 0 105

5 12 Núñez de Balboa 9 0 0 106

5 13 Rubén Darío 0 0 0 107

5 14 Alonso Martínez 4 10 0 108

5 15 Chueca 0 0 0 109

5 16 Gran Vía 1 0 0 110

5 17 Callao 3 0 0 111

5 18 Ópera 2 0 0 112

5 19 La Latina 0 0 0 113

5 20 Puerta de Toledo 0 0 0 114

5 21 Acacias 0 0 0 115

5 22 Pirámides 0 0 0 116

5 23 Marqués de Vadillo 0 0 0 117

5 24 Urgel 0 0 0 118

5 25 Oporto 6 0 0 119

5 26 Vista Alegre 0 0 0 120

5 27 Carabanchel 0 0 0 121

5 28 Eugenia de Montijo 0 0 0 122

5 29 Aluche 0 0 0 123

5 30 Empalme 0 0 0 124

5 31 Campamento 0 0 0 125

5 32 Casa de Campo 10 0 0 126

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 37 of 50

Line 6: Circular .

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

6 1 Principe Pío 10 (R) 0 127

6 2 Puerta del Ángel 0 0 0 128

6 3 Alto de Extremadura 0 0 0 129

6 4 Lucero 0 0 0 130

6 5 Laguna 0 0 0 131

6 6 Carpetana 0 0 0 132

6 7 Oporto 3 0 0 133

6 8 Opañel 0 0 0 134

6 9 Plaza Elíptica 11 0 0 135

6 10 Usera 0 0 0 136

6 11 Legazpi 3 0 0 137

6 12 Arganzuela - Planetario 0 0 0 138

6 13 Méndez Álvaro 0 0 0 139

6 14 Pacífico 1 0 0 140

6 15 Conde de Casal 0 0 0 141

6 16 Sainz de Baranda 9 0 0 142

6 17 O'Donnell 0 0 0 143

6 18 Manuel Becerra 2 0 0 144

6 19 Diego de León 4 5 0 145

6 20 Avenida de América 4 7 9 146

6 21 República Argentina 0 0 0 147

6 22 NuevosMinisterios 8 10 0 148

6 23 Cuatro Caminos 1 2 0 149

6 24 Guzmán el Bueno 7 0 0 150

6 25 Metropolitano 0 0 0 151

6 26 Ciudad Universitaria 0 0 0 152

6 27 Moncloa 3 0 0 153

6 28 Argüelles 3 4 0 154

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 38 of 50

Line 7: H. del Henares –Pitis .

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

7 1 Hospital del Henares 0 0 0 155

7 2 Henares 0 0 0 156

7 3 Jarama 0 0 0 157

7 4 San Fernando 0 0 0 158

7 5 La Rambla 0 0 0 159

 L7 6 Coslada Central 0 0 0 160

7 7 Barrio del Puerto 0 0 0 161

7 8 Estadio Olímpico 0 0 0 162

7 9 Las Musas 0 0 0 163

7 10 San Blas 0 0 0 164

7 11 Simancas 0 0 0 165

7 12 García Noblejas 0 0 0 166

7 13 Ascao 0 0 0 167

7 14 Pueblo Nuevo 5 0 0 168

7 15 Barrio de la Concepción 0 0 0 169

7 16 Guzmán el Bueno 6 0 0 170

7 16 Parque de las Avenidas 0 0 0 171

7 17 Cartagena 0 0 0 172

7 18 Avenida de América 4 6 9 173

7 19 Gregorio Marañón 10 0 0 174

7 20 Alonso Cano 0 0 0 175

7 21 Canal 2 0 0 176

7 22 Islas Filipinas 0 0 0 177

7 25 Francos Rodríguez 0 0 0 178

7 25 Valdezarza 0 0 0 179

7 26 Antonio Machado 0 0 0 180

7 27 Peñagrande 0 0 0 181

7 28 Avenida de la Ilustración 0 0 0 182

7 29 Lacoma 0 0 0 183

7 30 Pitis 0 0 0 184

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 39 of 50

Line 9: Paco de Lucía – Arganda del Rey .

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

9 1 Paco de Lucía 0 0 0 193

9 2 Mirasierra 0 0 0 194

9 3 Herrera Oria 0 0 0 195

9 4 Barrio del Pilar 0 0 0 196

9 5 Ventilla 0 0 0 197

9 6 Plaza de Castilla 1 10 0 198

9 7 Duque de Pastrana 0 0 0 199

9 8 Pío XII 0 0 0 200

9 9 Colombia 8 0 0 201

9 9 Concha Espina 0 0 0 202

9 10 Cruz del Rayo 0 0 0 203

9 11 Avenida de América 4 6 7 204

9 12 Núñez de Balboa 5 0 0 205

9 14 Ibiza 0 0 0 206

9 14 Príncipe de Vergara 2 0 0 207

9 15 Sainz de Baranda 6 0 0 208

9 16 Estrella 0 0 0 209

9 17 Vinateros 0 0 0 210

9 18 Artilleros 0 0 0 211

9 19 Pavones 0 0 0 212

9 20 Valdebernardo 0 0 0 213

9 21 Vicálvaro 0 0 0 214

9 22 San Cipriano 0 0 0 215

9 23 Puerta de Arganda 0 0 0 216

9 24 Rivas Urbanizaciones 0 0 0 217

9 25 Rivas Futura 0 0 0 218

9 26 Rivas Vaciamadrid 0 0 0 219

9 27 La Poveda 0 0 0 220

9 28 Arganda del Rey 0 0 0 221

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 40 of 50

Line 10: H. Infanta Sofía – Puerta del Sur .

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

10 1 Hospital Infanta Sofía 0 0 0 222

10 2 Reyes Católicos 0 0 0 223

10 3 Baunatal 0 0 0 224

10 4 Manuel de Falla 0 0 0 225

10 5 Marqués de la Valdavia 0 0 0 226

10 6 La Moraleja 0 0 0 227

10 7 La Granja 0 0 0 228

10 8 Ronda de la Comunicación 0 0 0 229

10 9 Las Tablas L1 0 0 2130

10 10 Montecarmelo 0 0 0 231

10 11 Tres Olivos 0 0 0 232

10 12 Fuencarral 0 0 0 233

10 13 Begoña 0 0 0 234

10 14 Chamartín 1 0 0 235

10 15 Plaza de Castilla 1 9 0 236

10 16 Cuzco 0 0 0 237

10 17 Santiago Bernabéu 0 0 0 238

10 18 NuevosMinisterios 6 8 0 239

10 19 Gregorio Marañón 7 0 0 240

10 20 Alonso Martínez 4 5 0 241

10 21 Tribunal 1 0 0 242

10 22 Plaza de España 3 0 0 243

10 23 Principe Pío 6 (R) 0 244

10 24 Lago 0 0 0 245

10 25 Batán 0 0 0 246

10 26 Casa de Campo 5 0 0 247

10 27 Colonia Jardín L2 L3 0 248

10 28 Aviación Española 0 0 0 249

10 29 Cuatro Vientos 0 0 0 250

10 30 Joaquín Vilumbrales 0 0 0 251

10 31 Puerta del Sur 12 0 0 252

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 41 of 50

Line 7. NuevosMinisterios – Aeropuerto .

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

8 1 NuevosMinisterios 6 10 0 185

8 2 Colombia 9 0 0 186

8 3 Pinar del Rey 0 0 0 187

8 4 Mar de Cristal 4 0 0 188

8 5 Campo de las Naciones 0 0 0 189

8 6 Aeropuerto T1 T2 T3 0 0 0 190

8 7 Barajas 0 0 0 191

8 8 Aeropuerto T4 0 0 0 192

Line 11. Plaza Elíptica – La Fortuna.

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

11 1 Plaza Elíptica 6 0 0 253

11 2 Abrantes 0 0 0 254

11 3 Pan Bendito 0 0 0 255

11 4 San Francisco 0 0 0 256

11 5 Carabanchel Alto 0 0 0 257

11 6 La Peseta 0 0 0 258

11 7 La Fortuna 0 0 0 259

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 42 of 50

Line 12 – Metrosur (Circular)

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

12 1 Puerta del Sur 10 0 0 260

12 2 Parque Lisboa 0 0 0 261

12 3 Alcorcón Central 0 0 0 262

12 4 Parque Oeste 0 0 0 263

12 5 Universidad Rey Juan Carlos 0 0 0 264

12 6 Móstoles Central 0 0 0 265

12 7 Pradillo 0 0 0 266

12 8 Hospital de Móstoles 0 0 0 267

12 9 Manuela Malasaña 0 0 0 268

12 10 Loranca 0 0 0 269

12 11 Hospital de Fuenlabrada 0 0 0 270

12 13 Parque Europa 0 0 0 271

12 14 Fuenlabrada Central 0 0 0 272

12 15 Parque de losEstados 0 0 0 273

12 16 Arroyo Culebro 0 0 0 274

12 17 Conservatorio 0 0 0 275

12 18 Alonso de Mendoza 0 0 0 276

12 19 Getafe Central 0 0 0 277

12 20 Juan de la Cierva 0 0 0 278

12 21 El Casar 0 0 0 279

12 22 Los Espartales 0 0 0 280

12 23 El Bercial 0 0 0 281

12 24 El Carrascal 0 0 0 282

12 25 Julián Besteiro 0 0 0 283

12 26 Casa del Reloj 0 0 0 284

12 27 Hospital Severo Ochoa 0 0 0 285

12 28 Leganés Central 0 0 0 286

12 29 San Nicasio 0 0 0 287

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 43 of 50

Lines 13, 14, 15: Metro Ligero L1, L2, L3

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

L1 1 Pinar de Chamartín 1 4 0 288

L1 2 Fuente de la Mora 0 0 0 289

L1 3 Virgen del Cortijo 0 0 0 290

L1 4 Antonio Saura 0 0 0 291

L1 5 Álvarez de Villaamil 0 0 0 292

L1 6 Blasco Ibáñez 0 0 0 293

L1 7 María Tudor 0 0 0 294

L1 8 Palas de Rey 0 0 0 295

L1 9 Las Tablas 10 0 0 296

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

L2 1 Colonia Jardín 10 L3 0 297

L2 2 Prado de la Vega 0 0 0 298

L2 3 Colonia de losÁngeles 0 0 0 299

L2 4 Prado del Rey 0 0 0 300

L2 5 Somosaguas Sur 0 0 0 301

L2 6 Somosaguas Centro 0 0 0 302

L2 7 Pozuelo Oeste 0 0 0 303

L2 8 Bélgica 0 0 0 304

L2 9 Dos Castillas 0 0 0 305

L2 10 Campus de Somosaguas 0 0 0 306

L2 11 Avenida de Europa 0 0 0 307

L2 12 Berna 0 0 0 308

L2 13 Estación de Aravaca 0 0 0 309

Line# Stop# Name Xf-1 Xf-2 Xf-3 Param#

L3 1 Colonia Jardín 10 L2 0 310

L3 2 Ciudad de la Imagen 0 0 0 311

L3 3 José Isbert 0 0 0 312

L3 4 Ciudad del Cine 0 0 0 313

L3 5 Cocheras 0 0 0 314

L3 6 Retamares 0 0 0 315

L3 7 Montepríncipe 0 0 0 316

L3 8 Ventorro del Cano 0 0 0 317

L3 9 Prado del Espino 0 0 0 318

L3 10 Cantabria 0 0 0 319

L3 11 Ferial de Boadilla 0 0 0 320

L3 12 Boadilla Centro 0 0 0 321

L3 13 Nuevo Mundo 0 0 0 322

L3 14 Siglo XXI 0 0 0 323

L3 15 Infante Don Luís 0 0 0 324

L3 16 Puerta de Boadilla 0 0 0 325

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 44 of 50

Traveling Salesman Problem for the HP-41

By Jean-Marc Baillard

Overview : Three cases are available depending on the system dimension (2D & 3D), plus an

spherical same given its direct applicability to the earth.

These programs employ the "nearest neighbor algorithm". It's likely not the best algorithm to solve

this problem, but it may perhaps be useful.

For your convenience, the module includes versions of the programs with included data entry

routines. They have a “+” sign in their names, such as “TS2+”, “TS3+”, and “TSS+”

Two-Dimensional Problem

 Data Registers: Registers R00 thru R2n are to be initialized before executing "TSP"

• R00 = n = Nb of points

• R01 = x1 • R03 = x2 • R2n-1 = xn
• R02 = y1 • R04 = y2 • R2n = yn

Flags: none; Subroutines: none ; (161 bytes / SIZE 2n+1)

 01 LBL "TSP"
 02 RCL 00

 03 2

 04 -
 05 ST+ X

 06 E3
 07 /

 08 ISG X

 09 STO M
 10 LBL 01

 11 RCL M
 12 2.004

 13 +
 14 STO N

 15 E99

 16 STO O
 17 LBL 02

 18 RCL IND M
 19 RCL IND N

 20 -

 21 X^2
 22 ISG M

 23 ISG N

 24 RCL IND M
 25 RCL IND N

 26 -
 27 X^2

 28 +

 29 RCL O
 30 X<=Y?

 31 GTO 03
 32 X<>Y

 33 STO O
 34 RCL N

 35 RCL M

 36 2
 37 +

 38 RCL IND X
 39 X<> IND Z

 40 STO IND Y

 41 CLX
 42 SIGN

 43 ST- Z

 44 -
 45 RCL IND X

 46 X<> IND Z
 47 STO IND Y

 48 CLX

 49 LBL 03
 50 SIGN

 51 ST- M
 52 ISG N

 53 GTO 02
 54 ST+ M

 55 ISG M

 56 GTO 01
 57 RCL 00

 58 ST+ X
 59 STO M

 60 STO N

 61 RCL IND X
 62 RCL 02

 63 -

 64 X^2
 65 DSE N

 66 RCL IND N
 67 RCL 01

 68 -

 69 X^2
 70 +

 71 SQRT
 72 DSE N

 73 LBL 04
 74 RCL IND M

 75 RCL IND N

 76 -
 77 X^2

 78 DSE M
 79 DSE N

 80 RCL IND M

 81 RCL IND N
 82 -

 83 X^2

 84 +
 85 SQRT

 86 +
 87 DSE M

 88 DSE N
 89 GTO 04

 90 RCL 00

 91 ST+ X
 92 E3

 93 /
 94 ISG X

 95 X<>Y

 96 CLA
 97 END

 STACK INPUTS OUTPUTS

 Y / 1.2n

 X / Length

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 45 of 50

Example: The coordinates of 8 points are given as follows:

 x | 1 2 6 7 9 8 3 4 Store these 16 R01 R03 R05 R07 R09 R11 R13 R15
 y | 1 7 9 6 4 2 5 8 numbers into: R02 R04 R06 R08 R10 R12 R14 R16
respectively

 Number of points = 8 STO 00

 XEQ "TSP" >>>> L = 26.47818047 ---Execution time = 34s---

 X<>Y 1.016

The points have been permuted and we find in R01 thru R24:

 x | 1 3 2 4 6 7 9 8
 y | 1 5 7 8 9 6 4 2

So, the suggested solution is 1-7-2-8-3-4-5-6

Note: If there are 23 points, the execution time is about 4m00s

Tri-Dimensional Problem

 Data Registers: Registers R00 thru R3n are to be initialized before executing "TSP3"

 • R00 = n = number of points
• R01 = x1 • R04 = x2 • R3n-2 = xn

• R02 = y1 • R05 = y2 • R3n-1 = yn
• R03 = z1 • R06 = z2 • R3n = zn

Flags: none; Subroutines: none. (202 bytes / SIZE 3n+1)

 01 LBL "TSP3"

 02 RCL 00

 03 2
 04 -

 05 3
 06 *

 07 E3

 08 /
 09 ISG X

 10 STO M
 11 LBL 01

 12 RCL M
 13 3.006

 14 +

 15 STO N
 16 E99

 17 STO O
 18 LBL 02

 19 RCL IND M

 20 RCL IND N
 21 -

 22 X^2

 23 ISG M

 24 ISG N
 25 RCL IND M

 26 RCL IND N
 27 -

 28 X^2

 29 +
 30 ISG M

 31 ISG N
 32 RCL IND M

 33 RCL IND N
 34 -

 35 X^2

 36 +
 37 RCL O

 38 X<=Y?
 39 GTO 03

 40 X<>Y

 41 STO O
 42 RCL N

 43 RCL M

 44 3

 45 +
 46 RCL IND X

 47 X<> IND Z
 48 STO IND Y

 49 CLX

 50 SIGN
 51 ST- Z

 52 -
 53 RCL IND X

 54 X<> IND Z
 55 STO IND Y

 56 CLX

 57 SIGN
 58 ST- Z

 59 -
 60 RCL IND X

 61 X<> IND Z

 62 STO IND Y
 63 LBL 03

 64 2

 65 ST- M

 66 ISG N
 67 GTO 02

 68 ST+ M
 69 ISG M

 70 GTO 01

 71 RCL 00
 72 3

 73 *
 74 STO M

 75 STO N
 76 RCL IND X

 77 RCL 03

 78 -
 79 X^2

 80 DSE N
 81 RCL IND N

 82 RCL 02

 83 -
 84 X^2

 85 +

 86 DSE N

 87 RCL IND N
 88 RCL 01

 89 -
 90 X^2

 91 +

 92 SQRT
 93 DSE N

 94 LBL 04
 95 RCL IND M

 96 RCL IND N
 97 -

 98 X^2

 99 DSE M
100 DSE N

101 RCL IND M
102 RCL IND N

103 -

104 X^2
105 +

106 DSE M

107 DSE N

108 RCL IND M
109 RCL IND N

110 -
111 X^2

112 +

113 SQRT
114 +

115 DSE M
116 DSE N

117 GTO 04
118 RCL 00

119 3

120 *
121 E3

122 /
123 ISG X

124 X<>Y

125 CLA
126 END

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 46 of 50

 STACK INPUTS OUTPUTS

 Y / 1.3n

 X / Length

 Example: The coordinates of 8 points are as follows:

 x | 1 2 10 7 9 8 3 4 Store these 24 R01 R04 R07 R10 R13 R16 R19 R22

 y | 1 7 1 6 4 2 5 5 numbers into : R02 R05 R08 R11 R14 R17 R20 R
 z | 1 5 4 8 7 1 2 6 respectively R03 R06 R09 R12 R15 R18 R21 R24

Number of points = 8 STO 00

 XEQ "TSP3" >>>> L = 33.23751462 ; Execution time = 50s
 X<>Y 1.024

The points have been permutated and we find in R01 thru R24: thus the suggested solution is 1-7-2-
8-4-5-3-6

 x | 1 3 2 4 7 9 10 8

 y | 1 5 7 5 6 4 1 2
 z | 1 2 5 6 8 7 4 1

Note: with 17 points the execution time is about 3m25s

Spherical Problem

Data Registers: Registers R00 thru R2n are to be initialized before executing "TSPS"

 • R00 = n = number of points
 • R01 = L1 • R03 = L2 • R2n-1 = Ln L & b expressed in ° ' ''
 • R02 = b1 • R04 = b2 • R2n = bn

 01 LBL "TSPS"

 02 DEG

 03 RCL 00
 04 2

 05 -
 06 ST+ X

 07 E3
 08 /

 09 ISG X

 10 STO M
 11 LBL 01

 12 RCL M
 13 2.004

 14 +

 15 STO N
 16 SIGN

 17 STO O
 18 LBL 02

 19 RCL IND M
 20 RCL IND N

 21 ISG M

 22 ISG N

 23 RCL IND M
 24 X<>Y

 25 RCL IND N
 26 XEQ 04

 27 RCL O
 28 X<=Y?

 29 GTO 03

 30 X<>Y
 31 STO O

 32 RCL N
 33 RCL M

 34 2

 35 +
 36 RCL IND X

 37 X<> IND Z
 38 STO IND Y

 39 CLX
 40 SIGN

 41 ST- Z

 42 -

 43 RCL IND X
 44 X<> IND Z

 45 STO IND Y
 46 CLX

 47 LBL 03
 48 SIGN

 49 ST- M

 50 ISG N
 51 GTO 02

 52 ST+ M
 53 ISG M

 54 GTO 01

 55 GTO 05
 56 LBL 04

 57 HR
 58 X<> T

 59 HMS-
 60 HR

 61 2

 62 /

 63 SIN
 64 X^2

 65 RDN
 66 HR

 67 +
 68 2

 69 /

 70 ST- Y
 71 COS

 72 X^2
 73 ST* T

 74 RDN

 75 SIN
 76 X^2

 77 ST* Y
 78 -

 79 -
 80 RTN

 81 LBL 05

 82 RCL 00
 83 ST+ X

 84 STO M
 85 STO N

 86 DSE N

 87 RCL IND N
 88 RCL IND Y

 89 RCL 01
 90 RCL 02

 91 XEQ 04
 92 SQRT

 93 ASIN

 94 STO O
 95 DSE N

 96 LBL 06
 97 RCL IND M

 98 RCL IND N

 99 DSE M
100 DSE N

101 RCL IND M

102 RCL IND N

103 X<> T
104 XEQ 04

105 SQRT
106 ASIN

107 ST+ O

108 DSE M
109 DSE N

110 GTO 06
111 RCL 00

112 ST+ X
113 E3

114 /

115 ISG X
116 RCL O

117 ST+ X
118 D-R

119 6371

120 *
121 CLA

122 END

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 47 of 50

Flags: none; Subroutines: none. (204 bytes / SIZE 2n+1)

 STACK INPUTS OUTPUTS

 Y / 1.2n

 X / Length

Example: The coordinates of 16 "points" are:

 City L b City L b

Paris 2°20' 48°50' Ottawa -75°43' 45°24'

Bombay 72°49' 18°53' Oslo 10°43' 59°54'

Canberra 149°00 -35°19 Mt. Palomar -116°52' 33°21'

Glasgow -4°17' 55°52' Pulkovo 30°20' 53°46'

Johannesburg 28°01' -26°11' Rio -43°13' -22°53'

Cape Town 18°29' -33°56' Sydney 151°12' -33°52'

Madrid -3°41' 40°24' Washington DC -77°04' 38°55'

Moscow 37°33' 55°42' Zikawei 121°11' 31°11'

Store these 32 numbers into R01 to R32 (or use TSS+ directly)

 16 , STO 00

 XEQ "TSPS" >>>> L = 71589 km ; Execution time = 7m52s

 X<>Y 1.032

The coordinates of these 16 points have been modified in R01 thru R32 which suggests the following
journey:

Paris-Glasgow-Oslo-Pulkovo-Moskow-Madrid-Ottawa-Washington-MountPalomar-Rio-CapeTown-
Johannesburg-Bombay-Zikawei-Sydney-Canberra

Notes:

The length is calculated for the Earth, assuming the mean radius = 6371 km (line 119)
In fact, it's not the shortest path: if you swap the first 2 towns, you get L = 65181 km

So you can try to execute "TSPS" again after changing the order of the points.
Of course V41 and the 41-CL will give you the results much more quickly.

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 48 of 50

Mazes for the HP-41 , by Jean-Marc Baillard

Overview.- The program hereunder generates a pseudo-random rectangular maze of dimensions n

x m .You place a random seed in register R00 , n in register Y and m in register X and XEQ "MAZE"

The algorithm uses backtracking (cf reference [1]):

Starting at register R01, the HP41 successively finds non-visited neighbors and deletes the walls

between them. When it becomes impossible, it backtracks until it finds an non-visited cell. When that
also becomes impossible, the HP41 returns to register R01 and we have our maze.

Registers R01 , R02 , , Rmm are the 1st raw.
Rm+1 , Rm+2 , , R2m are the 2nd raw and so on...

Program Listing

Data Registers: (Register R00 is to be initialized before executing "MAZE")

 • R00 = alea R01 to Rmn = the different cells of the maze.

 01 LBL"MAZE"
 02 STO M
 03 X<>Y
 04 STO N
 05 *
 06 .12
 07 LBL 00
 08 STO IND Y
 09 DSE Y
 10 GTO 00
 11 SIGN
 12 STO O
 13 ST+ 01
 14 LBL 10
 15 FS? 10
 16 VIEW O
 17 CF 01
 18 CF 02
 19 CF 03
 20 CF 04
 21 CLX
 22 STO Q
 23 RCL N
 24 RCL O
 25 RCL M
 26 ST* Z
 27 +

 28 X>Y?
 29 GTO 02
 30 RCL IND X
 31 INT
 32 X#0?
 33 GTO 02
 34 SF 01
 35 ISG Q
 36 LBL 02
 37 RCL O
 38 RCL M
 39 MOD
 40 X=0?
 41 GTO 02
 42 SIGN
 43 RCL O
 44 +
 45 RCL IND X
 46 INT
 47 X#0?
 48 GTO 02
 49 SF 02
 50 ISG Q
 51 LBL 02
 52 RCL O
 53 RCL M
 54 -

 55 X<=0?
 56 GTO 02
 57 RCL IND X
 58 INT
 59 X#0?
 60 GTO 02
 61 SF 03
 62 ISG Q
 63 LBL 02
 64 CLX
 65 SIGN
 66 RCL O
 67 RCL M
 68 MOD
 69 X=Y?
 70 GTO 02
 71 RCL O
 72 DSE X
 73 INT
 74 RCL IND X
 75 INT
 76 X#0?
 77 GTO 02
 78 SF 04
 79 ISG Q
 80 LBL 02
 81 X<> Q

 82 X=0?
 83 GTO 07
 84 RCL 00
 85 R-D
 86 FRC
 87 STO 00
 88 *
 89 INT
 90 SIGN
 91 ST+ L
 92 FS? 04
 93 4
 94 FS? 03
 95 3
 96 FS? 02
 97 2
 98 FS? 01
 99 1
100 LBL 05
101 RDN
102 DSE L
103 GTO 05
104 GTO IND T
105 LBL 01
106 RCL M
107 RCL O
108 ST+ Y

109 .1
110 GTO 06
111 LBL 02
112 SIGN
113 RCL O
114 ST+ Y
115 .02
116 GTO 06
117 LBL 03
118 RCL O
119 RCL M
120 -
121 STO Y
122 .1
123 GTO 06
124 LBL 04
125 RCL O
126 1
127 -
128 STO Y
129 .02
130 LBL 06
131 ST- IND Y
132 X<> Z
133 X<> O
134 E5
135 /

136 1
137 +
138 ST+ IND O
139 GTO 10
140 LBL 07
141 RCL IND O
142 E2
143 *
144 FRC
145 E3
146 *
147 STO O
148 X#0?
149 GTO 10
150 RCL M
151 RCL N
152 *
153 E3
154 /
155 ISG X
156 CLA
157 END

 (261 bytes / SIZE n.m+1)

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 49 of 50

Flags: F01-F02-F03-F04. Set F10 if you want to follow the construction of the maze

Subroutines: none/

Lines 140 & 150 are synthetic three-byte GTO 10

Register Q is used. It can be replaced by another synthetic register like register P

STACK INPUTS OUTPUTS

Y n /

X m 1.eee

Where n = number of rows , m = number of columns and 1.eee = cntrol number of the maze

with eee = m.n

The driver program MAZE+ is a more convenient way to use it, as it will prompt for the required
data entry, so the user doesn’t need to load all values beforehand.

Example: Let's try with n = 7 and m = 10

If we choose r = 1 as the random seed: 1 STO 00

 7 ENTER^
 10 XEQ "MAZE" >>>> 1.070 ---Execution time = 5m11s---

Each register now contains a number of the form a.bcdef

 a = 0 for an non-visited cell

 a = 1 for a visited cell So, at the end, all the cells have been visited and a = 1

 3
The walls are numbered this way: 4 |__| 2
 1

where walls n°3 and n°4 are in fact the walls 1 and 2 of other contiguous cells, so we only need to

deal with walls 1 & 2 as an effective fact.

 bc = 00 if the walls 1 & 2 are both deleted
 bc = 10 if the wall 2 only is deleted

 bc = 02 if the wall 1 only is deleted
 bc = 12 if the walls 1 & 2 are not deleted

The decimals def indicate the previous visited cell.

So, we only have to take bc into account to draw the maze (We assume that the edges of the
rectangle are already drawn)

For R01 bc = 02 , that gives the first cell on the left: |
For R02 bc = 10 , ------------- 2nd --- of the 1st raw: __ ... and so on ...

Path-finding on Metro Networks – HP-41 Module

©2017-18 Ángel Martin Page 50 of 50

Then we get a maze that looks (approximately) as shown below:

 __ __ __ __ __ __ __ __ __ __ __

 | | __ __ __ __ __ __ | |

 |__ | __ __ __ | | __| |

 | | __ __ | __ __ |__ | |

 | __ | __ | __ __| | |

 | __ | __ __ __| __ __ | | |

 | | | __ | | |__ |

 |__ __ __|__ __ __ |__ | ______|

Finally, choose the entry and the exit at random! - though the HP41 could do that too...

Note: If you have an extended functions module or an HP-41CX, adding the following lines after line
155 may help to visualize the walls more easily:

156 ENTER^
157 FIX 0
158 CF 29
159 LBL 08
160 " C"
161 ARCL X
162 "~="
163 ARCL IND X

164 FRC
165 10
166 *
167 INT
168 ST- L
169 SF 05
170 X=0?
171 GTO 08

172 95
173 XTOA
174 RDN
175 CF 05
176 LBL 08
177 X<> L
178 10
179 *

180 INT
181 X=0?
182 GTO 08
183 FS?C 05
184 "~ "
185 33
186 XTOA
187 RDN

188 LBL 08
189 RDN
190 AVIEW
191 ISG X
192 GTO 08
193 X<>Y
194 FIX 4
195 SF 29

Line 162 is "append = "
Line 184 is "append space"
Set flag F21 and each AVIEW will stop the HP-41, or replace line 190 by PROMPT.

Perhaps will you find better characters to display walls n°1 & n°2 in a cell ?

Reference:

[1] http://en.wikipedia.org/wiki/Maze_generation_algorithm

http://en.wikipedia.org/wiki/Maze_generation_algorithm

