

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 1 OF 58

 HP- RANDOM ROM QRG

RANDOM_ROM Manual
HP-41 Module

Introduction and Credits.

Welcome to the Random ROM (“RANROM” for short), yet another HP-41 little adventure around the

whimsical realm of aleatory confines, where we should have some fun learning about sequences of

random numbers and how to determine the goodness of those mystifying little buggers, for the lack of

a better term ;-).

As the name implies this module gathers a collection of routines and utilities about Random Numbers

on the HP-41 platform. This includes a few MCODE pseudo-random number generators (p-RNG) from

diverse sources like the (never released!) Toulouse Math ROM; Journal contributions (eventually

coalescing into the the SandMath module); as well as a ported version of the Voyager implementation.

As a second category, other MCODE and RPN-based p-RNGs are also included, both from the

PPC/Datafile archives and Jean-Marc Baillard’s collection.

Besides the expected set of utilities and small routines on the random topic, an attempt has been made

to have a self-contained group of routines and programs to make the content as complete as possible -

within the space constraints imposed by the ROM format. To that effect, a couple of UPL programs are

included to evaluate the different p-RNGs in terms of their randomicity, normality, etc. Due credit is

given to the original programmers in the respective sections of this manual.

Special thanks are due to Valentín Albillo who suggested numerous enhancements and additional

subjects to include, such as Gaussian-distributed p-RNGs and others. He also provided critical feedback

on several sections and steered the development towards a wider range of subjects that have no doubt

shaped up the module for the better. Make sure you don’t miss the adaptation of his brilliant

“Mandelbrot Set Area Estimation” from his HP Collection.

On the programming side, thanks to Mark Power and Håkan Thörgren for their classic contributions in

Datafile and PPC. Credit is also due to “Mike (Stgt)” for porting the HP’s M-code featured in the

Voyager series (HP-11C / HP-15C). And lastly, thanks to the programmers of the Toulouse Math ROM

and the CCD Module for their seminal work on the subject.

Caveat Lector: Not being an expert on the field I have used this project as a learning vehicle myself,

hoping that the discovery path and final result can also be interesting to other people as well. Whether

it has worked or not I can say that at least I tried, but of course you are free to do your very own ;-)

Dependencies.

This ROM is designed for the HP-41CX O/S, obviously housed in Q-RAM-capable hardware devices like

Clonix/NoVRAM, MLDL_2k and others. As a general rule no additional software dependency exists, so it

will also run on any CX-equivalent system such as the SY-41CL (with a TIME module) and the DM-41X.

The exception to this rule is the Mandelbrot Set Area, which needs the 41Z Module - and in turn the

Library#4 as well.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 2 OF 58

 HP- RANDOM ROM QRG

Without further ado, here is a list of the functions in the Main FAT table.

XROM# Function Description Author

06.00 -RANDOM 1C Section header n/a

06.01 SEEDT Sets initial Seed / Manual or Time-based Håkan Thörgren

09.02 RNDM RNG Sequence from SEEDT Håkan Thörgren

06.03 1RAN Time-based initial Seed JM Baillard

06.04 RAN00 RNG from seed in R00 Mark Power

06.05 RAN20 RNG from seed in R20 Mark Power

06.06 RANR _ _ RNG from seed in prompt register Power-Martin

06.07 RCLSD Recalls Voyager Seed HP Co./ Mike (Stgt)

06.08 RN RN from SEED HP Co./ Mike (Stgt)

06.09 SEED Sets initial Seed HP Co./ Mike (Stgt)

06.10 RAND RNG from SEED Toulouse Math ROM

06.11 RANDXY RNG formatted by XY Toulouse Math ROM

06.12 STORAND Stores new initial seed Toulouse Math ROM

06.13 -MONTECARLO Section header n/a

06.14 AINT Append integer X Frits Ferwerda

06.15 IROUND Integer Round Ángel Martin

06.16 “MCE MC-based calculation for e Valentín Albillo

06.17 “MCPI MC-base calculation for p Albillo-Martin

06.18 “MCLN2 MC-base calculation for Ln2 Albert Chan

06.19 “MCLN2+ Driver for MCLN2 ÁM

06.20 “MBA Mandelbrot Set Area Estimation Albillo-Martin

06.21 “MCITG+ Driver for MCITG Ángel Martin

06.22 “MCITG MC Integration functions one variable ÁM

06.23 “FX Example function got MCITG – 1 variable ÁM

06.24 “MCITG3 MC Multiple Integration (up to thee vars) Ángel Martin

06.25 “FXY Example function for MCITG2 – 2 variables ÁM

06.26 “FXYZ Example function for MCITG – 3 variables ÁM

06.27 “MCITGN MC Multiple Integration – n variables Greg McClure

06.28 -RANDOMNESS Section header n/a

06.29 BXMR Gaussian RNG using Box Muller Ángel Martin

06.30 ERF Error function Baillard-Martin

06.31 MREV Mantissa Digit Reversal Ángel Martin

06.32 RANG Gaussian RNG using “12R-6” Ángel Martin

06.33 DGT Mantissa Digit Sum Ángel Martin

06.34 “EVAL Evaluation of p-RNGs L. H. Gilbert

06.35 “RNG1 p-RNG Sequence 1 JM Baillard

06.36 “RGN2 p-RNG Sequence 2 JM Baillard

06.37 “RNG3 p-RNG sequence 3 JM Baillard

06.38 “RNG4 p-RNG Sequence 4 JM Baillard

06.39 “STRAT Stratified Random Sampling ravi – MoHP forum

06.40 “BENCH Benchmarking Gaussian RNGs Ángel Martin

06.41 “TRANG Testing Gaussian RNGs Ángel Martin

06.42 “12R-6 “12x minus 6” Method Ángel Martin

06.43 “BX-MR Box Muller Method Ángel Martin

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 3 OF 58

 HP- RANDOM ROM QRG

XROM# Function Description Author

06.44 “INDEX Deviation Index from Normal distribution Ángel Martin

06.45 “TSTRNG Testing Integer RNG’s Charles T. Tart

06.46 “CHI Chi-Square Test AUG 1982, 10 pgs.

06.47 “UC1 Ulam’s Conjecture – V1 Robert G. Wilson

06.48 “UC2 Ulam’s Conjecture – V2 Ward Edwards

06.49 “UC3 Ulam’s Conjecture – V3 Gerhard Kruse

The contents in a nutshell:

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 4 OF 58

 HP- RANDOM ROM QRG

SandMath Random Numbers

The first set of RNG functions is taken from the SandMath, which used versions of Håkan Thörngren’s

p-RNGs published in the PPC Calculator Journal. The functions are:

Function Description Input Output

SEEDT Sets initial seed Value in X Loaded in buffer

RNDM Randon Mumber Current RN in buffer Next RN in the sequence

SEEDT takes the fractional part of the value in X as initial seed for the RN’s sequence. If the value in

X is zero then the function will use the actual Time & Date information to generate the seed, assuming

of course that the Time Module is present (not a problem when using a HP-41CX).

The value is saved in the first register (right above the header) of Buffer #9, thus it’s compatible with

the OSX, SandMath and CCD versions of the same functionality.

On the other hand, RNDM generates the next random number in the sequence, which obeys to the

following LCG rule (albeit using 0 for the final term, ‘mod 0”):

r(k+1) = FRC [r(k) * 9,821 + 0.211327]

well-known to PPC members, since it was also used in the RN routine – albeit using a regular data

register instead of a buffer for the actual storage of the sequence terms.

Variations on a theme.-

The formula above is good because it already provides the RNs in canonical form. i.e. their values are

between 0 and 1 (this one excluded). It however shows a flagrant weakness in that the last three

decimal digits are always zero. You can check this using the PPC ROM, the CCD Module or previous

versions of the SandMath itself (*), as the three use the same LCG expression (Linear Congruent

Generator).

In the RANROM I have used a different approach, simply overwriting the last three digits with the first

three of the mantissa in reversed order. Now, you may argue (and probably will be right) that this isn’t

an orthodox way to tackle the problem but intuitively it’s got to be better than the three-zero case, thus

the choice was clear. (**)

Examples: using pi as initial seed calculate the first six RANs:

You’d key: PI, SEEDT, RNDM, RNDM, RNDM, RNDM, RNDM and RNDM

To obtain:

(*) The SandMath has since been patched with the same variation to remove the zeros.

(**) We’ll make a more formal comparison between both cases later on, using the program “EVAL”

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 5 OF 58

 HP- RANDOM ROM QRG

Toulouse Math ROM Random Numbers

The second set is a very interesting one, as it’ll be determined by the comparisons made for the

“benchmarking” sections later on. It’s also interesting because the source was never released to the

public - at least to my knowledge, pls. send feedback if you know better?

Function Description Input Output

STORAND Sets initial seed Value in X Loaded in buffer

RAND Randon Number Current RN in buffer Next RN in the sequence

RANDXY RN between [a, b] Values in X,Y Integer RN in [a,b]

RCLRAND Gets current RN from buffer Current RN in buffer Current RN in X

Here’s a short description for the functions in this group:

STORAND is used to store the initial seed in the buffer. It uses Buffer #3, storing the seed value in

digits <9:0> of the header register. This conflicts with the system standards used across the board and

may cause havoc if you use other buffer utilities. BFCAT in particular will partially overwrite the RN

value, as it uses the buffer header digits <2:0>; so better not to use it to be safe.

RAND calculates the next RN in the sequence and stores its value as new seed

RCLRAND recalls the current seed – not changing its value in the buffer.

RANDXY provides a boundary for the resulting random number, which must be withing that interval.

This implementation is also different (“C’est la France, vive la différence!” :-) in that it uses a digit level

algorithm (see chapter on this later) instead of an LCG approach to generate the sequence of RNs.

There’s a byte table in the code with values used to generate the RN digits according to the algorithm,

still not sure how exactly but working on it as we speak.

Same Example using pi as initial seed:

And if now we want a RN between, say 12 and 17:

12, ENTER^, 17, RANDXY =>

This last function comes very handy for your Lottozahl needs (a.k.a “Lotería Primitiva”) – assuming

your faith in science goes that far of course ;-)

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 6 OF 58

 HP- RANDOM ROM QRG

Voyager Random Numbers

The RANROM module includes a version of the Voyager implementation of random numbers capability,

taken from the VORANOGE-2 ROM, prepared by mike-stgt and published here:

https://forum.hp41.org/viewtopic.php?f=13&t=428#p1279

The use in the RANDOM module is covered under the Q Public license, see here for details. A copy of

the license document is included as attachment to this manual.

The functions included are shown below:

Function Description Input Output

SEED Sets initial seed Value in X Loaded in buffer

RN Randon Mumber Current RN in buffer Next RN in the sequence

RCLSD Gets current RN from buffer None Current RN in X

This set operates very much like the previous two cases for the SandMath and Toulouse Math ROM

implementations. The values are stored in a buffer (with id# = 4) and like the Toulouse Math case –

and contrary to the HP-41 default standards – the values are store in the buffer header itself,

specifically in digits <9:0> (i.e. 10-digit mantissa format). This criterion was probably used by HP to

save RAM memory, which was more at a premium in the 11C and 15C than in the HP-41C.

In addition to the conflict mentioned in the previous case with BFCAT (overwriting of the current RN),

here it gets more interesting because it will show this buffer as non-committed, i.e. unclaimed by any

module and thus will be erased by the OS next time the calculator does a power off/on cycle.

With that out of the way, the actual RNG scheme is given by the expression below:

Which is another case of a Linear Congruent Generator (LCG) as defined here:

https://en.wikipedia.org/wiki/Random_number_generation

As far as the functions are concerned, we have a repeat (although chronologically speaking they came

earlier) of the buffer-based design, with an initial seed function and a RAN instance for the elements of

the sequence. RCLSD is a handy twist that can be used to know the current term in the sequence

without generating the next one (for instance to make sure the seed is the desired one).

Same example again, with pi as initial seed:

https://forum.hp41.org/viewtopic.php?f=13&t=428%23p1279
https://opensource.org/licenses/QPL-1.0

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 7 OF 58

 HP- RANDOM ROM QRG

Digit-Level Random Number Generator

The functions below were written by Mark Power, an old hand in MCODE and active DataFile member,

with many remarkable feats under his belt – such as the MCODE Debugger and PLAY ROMs.

See http://www.hp41.org/LibView.cfm?Command=View&ItemID=1471

and http://www.hp41.org/LibView.cfm?Command=View&ItemID=1472

Function Description Input Output

RAN00 RAN from seed in R00 Value in R00 Next RN in the sequence

RAN20 RAN from seed in R20 Value in R20 Next RN in the sequence

RANR _ _ RAN from sed in prompt reg Value in Rnn Next RN in the sequence

These functions were published in DataFile V6N8 p9. They expect the seed (or previous RN) stored in

the corresponding data register. The result is placed in X and stored in the same register upon

completion.

Examples. Storing pi in R00 we’ll key:

PI, STO 00, RND00, RND00, RND00, RND00, RND00, RND00

To get:

RANR is a prompting function, accepting also INDirect registers – but not stack registers, sorry.

In manual mode just enter the register number where you seed is stored. In a running program it will

take it from the X-register instead, so it’ll be RANR IND X so to speak.

Time-Based Seed Generator

This function was written by Jean-Marc Baillard, see: http://hp41programs.yolasite.com/alea.php

Use it to generate a time-based seed that can be used to generate a sequence of RN’s by any of the

methods reviewed so far, (perfect complement for RAN00/RAN20 indeed) and a few more still to cover

in the manual.

Example:

XEQ “1RAN” =>

Note: don’t use 1RAN to generate a sequence of RNs; doing so will generate skewed results due to the

fairly similar “seeds” used – all taken from the internal Timer registers, which can be very similar in

cases of TURBO running programs!

http://www.hp41.org/LibView.cfm?Command=View&ItemID=1471%20
http://www.hp41.org/LibView.cfm?Command=View&ItemID=1472

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 8 OF 58

 HP- RANDOM ROM QRG

MCODE listing for RAN00, RAN20, and RANR.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 9 OF 58

 HP- RANDOM ROM QRG

Other Random Number Generators for the HP-41

 This section is taken from Jean-Marc Baillard web pages, see:

http://hp41programs.yolasite.com/alea.php

Overview

 Several pseudo random number generators are listed on this web page:

"RNG1" "RNG2" "RNG3" work on every HP-41.

"RNG4" & the M-Code routine 1RAN require a Time-Module.

Finally, the last program is an attempt to play (win?) the lottery...

Program #1 (35 bytes / SIZE 001)

A well-known RNG is given by the formula: Xn+1 = FRC (9821 Xn + 0.211327) which provides 1

million random numbers.

The following program gives 1,000,000,000 random numbers r (0 <= r < 1). The formula used is:

Xn+1 = FRC (98 Xn + 0.236067977)

The coefficient 98 = 43,046,721 may be replaced by a where a = 1 (mod 20)

and the value in line 0.236067977 may be replaced by b where b*109 is not divisible by 2 or 5.

01 LBL "RNG1"
02 9
03 ENTER^
04 ENTER^
05 R^
06 *
07 FRC
08 *
09 FRC
10 *
11 FRC
12 *
13 FRC

14 *
15 FRC
16 *
17 FRC
18 *
19 FRC
20 *
21 FRC
22 5
23 SQRT
24 +
25 FRC
26 END

 STACK INPUTS OUTPUTS

 X xn xn+1

Example:

0.2 XEQ "RNG1" yields

R/S ... etc ...

http://hp41programs.yolasite.com/alea.php

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 10 OF 58

 HP- RANDOM ROM QRG

Program #2 (26 bytes / SIZE 001)

"RNG2" provides 9,999,999,996 random numbers with the formula: Xn+1 = (1059 Xn) MOD p

where p = 9,999,999,967 is the greatest prime < 1010

Xn are integers between 0 and p (exclusive) which are then divided by p to be reduced to a number

between 0 and 1.

This routine works well because the MOD function gives exact results even when the operands are

greater than 1010.

Actually, the exponent E59 in line 3 may be replaced by any integer m provided m is relatively prime to

p-1 = 2*3*11*457*331543, but I don't know what the best choice is.

Unlike "RNG1" and other routines based upon the same type of formulae, the least significant digits

don't go through any cycle of ten, one hundred and so on.

Register R00 is used to store the different xn integers.

01 LBL "RNG2"
 02 RCL 00 STACK INPUTS OUTPUTS

 03 E59 X / 0 < r < 1

 04 *

 05 10

 06 10^X

 07 33

 08 -

 09 MOD

 10 STO 00

 11 LASTX

 12 /

 13 END

Example:

1 STO 00 XEQ "RNG2" gives R00 = 3129146787 = mod (1059, p)

 R/S R00 = 6904570181 ... etc ...

These ideas may be used to create your own RNG.

Actually if p is a prime, (Z/pZ-{0} ; *) is a group and if a is an integer, the number of distinct

elements in the subset { 1 ; a ; a2 ; ; ak ; } (mod p) divides p-1

If p-1 is the smallest positive integer q such that aq = 1 (mod p) , then the sequence

a ; a2 ; ; ak ; ; ap-1 (mod p) is a permutation of 1 ; 2 ; ; p-1

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 11 OF 58

 HP- RANDOM ROM QRG

In particular, if p = 2p' + 1 where p' is also a prime, and if ap' is not equal to 1 (mod p) then a

satisfies the required property.

For instance, p = 7,841,296,787 = 2*3,920,648,393 + 1

7,841,296,787 and 3,920,648,393 are primes and -1024 = 4,851,307,369 (mod p)

satisfies (-1024)p' = -1 therefore the routine below gives 7,841,296,786 random integers
{ E24, *, CHS, 7841296787, MOD }

Program #3 (17 bytes / SIZE 001)

The following algorithm is given by Clifford Pickover in "Keys to Infinity" (John Wiley & Sons) ISBN 0-

471-11857-5

 01 LBL "RNG3"
 02 LN STACK INPUTS OUTPUTS

 03 E2 X xn xn+1

 04 *

 05 1

 06 MOD

 07 END

Example:

 0.1 XEQ "RNG3" produces

 R/S ... etc ...

Program #4 (25 bytes / SIZE 000)

 01 LBL "RNG4"
 02 DATE STACK INPUTS OUTPUTS

 03 TIME X / 0 < r < 1

 04 +

 05 E49

 06 *

 07 PI

 08 MOD

 09 LN1+X

 10 R-D

 11 FRC

 12 END

No examples can be provided since the result depends on the instant you press R/S

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 12 OF 58

 HP- RANDOM ROM QRG

M-Code Routine

This M-Code routine uses the TIME module - or an HP41-CX

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 13 OF 58

 HP- RANDOM ROM QRG

Monte Carlo Methods

This chapter covers the application of Monte Carlo method to do diverse calculations, like integrals of

functions of several variables, Mandelbrot set Area estimation, and approximations for numerical

constants, such as Ln2, pi and e. If there’s something they all have in common it’s their long execution

time (ger ready to use V41 in TURBO mode) and the relative small accuracy of the results – unless

many more iterations are done, which worsens the execution time, Be that as it may, this is an

appropriate subject for the random topic so ready or not, here it comes.

1. Monte Carlo Integration.

The RANROM includes specific routines for the cases of functions of one, two, and three variables; as

well as a general case for n-variables written by Greg McClure

Function Description Input/Output Author

“MCITG+ Driver for MCITG Prompts for params Ángel Martin

“MCITG MC Integration – One var. FNAME in ALPHA Ángel Martin

 “FX” Example function n/a Á. Martin

“MCITG3 MC Integration, up to 3 vars Prompts for params Ángel Martin

 “FXY” Example with 2-vars n/a Á. Martin

 “FXYZ” Example with 3-vars n/a Á. Martin

“MCITGN MC Integration, n-vars See below. Greg McClure

Let’s see a brief description for them, starting from the top.-

MCITG and MCITG+ deal with integration of functions of a single variable (such as the example

provided “FX”). It’s the simplest case but also the most likely to be used thus the dedicated routine for

it. The driver function does all the parameter prompting for the user, and then calls the main

subroutine – which can also be run separately provided that the user sets all those parameters

manually prior to the call.

The basic formula involves a repeat application of RNs {Xi}, at a very large scale:

The program uses the SandMath-type p-RNG, i.e. functions SEEDT an RNDM.

So let’s integrate f(x) = x^2 . e^x between [0,1] using different number of iterations to see how that

influences the result.

XEQ “MCITG+”

0, ENTER^, 1, R/S

100, R/S ; (ALPHA is turned ON)

“FX”, R/S ; quite clearly we need more points…

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 14 OF 58

 HP- RANDOM ROM QRG

If flag 10 is set the program will display a countdown showing the current iteration, decreasing to

“1”before presenting the result.

Let’s repeat the integration using 1000 iterations as follows:

1000 XEQ B =>

The correct result is shown below:

MCITG3 can handle functions of up to three variables, thus the number of variables is also an input

parameter to be entered – as well as the integration limits for each dimension and the number of

iterations to run. The program will prompt for the input date so no need to set them up in advance.

You can use MCITG3 for functions of a single variable, although MCITG will be easier and slightly

faster.

Let’s use MCITG3 to calculate an approximation of the provided functions FXY and FXYZ, between

the intervals [0,1] in each dimension.

f(x,y) = x^2 + y^2

XEQ “MCITG3” =>

2, R/S =>

0, ENTER^, 1, R/S =>

0, ENTER^, 1, R/S => ; (ALPHA is turned ON)

“FXY”, R/S =>

1000, R/S => , not quite good, try w/ more runs:

R/S (or XEQ B) =>

10,000 R/S => , getting better…

R/S =>

100,000 R/S =>

Very long execution times with slow “convergence” (for the lack of a better word), but

surprising nonetheless… at least good to have as “the last resort” when everything else fails!

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 15 OF 58

 HP- RANDOM ROM QRG

Going now for the 3D example:

f(x,y,z) = x^2 + y^2 + z^2

XEQ “MCITG3” =>

3, R/S =>

0, ENTER^, 1, R/S =>

0, ENTER^, 1, R/S =>

0, ENTER^, 1, R/S =>

“FXYZ”, R/S =>

1000, R/S => , not quite good, try w/ more runs:

R/S =>

10000, R/S => - it didn’t get better!

This is an unexpected result and *may* be related to the lackluster quality of the p-RNG. Further

testing should be done using other pairs of { SEED, RAN } functions instead to see if that gets things

back to the “logical” path, i.e. “the more number of points, the better accuracy”.

 Program listings.

 01*LBL "MCITG+"

 02*LBL A

 03 "a^b=?"
 04 PROMPT
 05 "N=?"
 06 PROMPT
 07 "FNAME?"
 08 AON
 09 PROMPT
 10 AOFF

 11*LBL "MCITG"

 12*LBL B

 13 ASTO 00
 14 STO 01
 15 STO 05
 16 RDN
 17 X<>Y

 18 STO 02
 19 -
 20 STO 03
 21 0
 22 STO 04
 23 SEEDT
 24*LBL 00

 25 RNDM
 26 RCL 03
 27 ABS
 28 *
 29 RCL 02
 30 +
 31 XEQ IND 00
 32 ST+ 04
 33 FS? 10
 34 VIEW 01

 35 DSE 01
 36 GTO 00
 37 CLD

 38*LBL C

 39 RCL 04
 40 RCL 05
 41 /
 42 RCL 03
 43 *
 44 RTN
 45 GTO B

 46*LBL "FX"

 47 X^2
 48 LASTX
 49 E^X
 50 *
 51 END

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 16 OF 58

 HP- RANDOM ROM QRG

01*LBL "MCITG3"

 02*LBL A

 03 E
 04 STO 02
 05 3
 06 "DIM=?(1,2,3)"
 07 PROMPT
 08 X>Y?
 09 GTO A
 10 ST+ X
 11 4
 12 +
 13 E3
 14 /
 15 5
 16 +
 17 STO 00
 18*LBL 00

 19 0
 20 ENTER^
 21 E
 22 "a^b("
 23 RCL 00
 24 4
 25 -
 26 2
 27 /
 28 INT
 29 E
 30 +
 31 AINT
 32 RDN
 33 "`)=?"
 34 PROMPT
 35 X<>Y

 36 ST- Y
 37 X<>Y
 38 ST* 02
 39 ABS
 40 STO IND 00
 41 ISG 00
 42 X<>Y
 43 STO IND 00
 44 ISG 00
 45 GTO 00
 46 "FNAME?"
 47 AON
 48 STOP
 49 AOFF
 50 ASTO 01

 51*LBL B

 52 "#POINTS=?"
 53 PROMPT
 54 STO \
 55 X<> 01
 56 STO M
 57 CLX
 58 SEEDT
 59 STO 03
 60*LBL 03

 61 RCL 00
 62 FRC
 63 5
 64 +
 65 STO 00
 66*LBL 01

 67 RNDM
 68 RCL IND 00
 69 *
 70 ISG 00

 71 RCL IND 00
 72 +
 73 ISG 00
 74 GTO 01
 75 XEQ IND M
 76 ST+ 03
 77 VIEW N
 78 DSE N
 79 GTO 03
 80 RCL 03
 81 RCL 02
 82 *
 83 RCL 01
 84 /
 85 RCL M
 86 STO 01
 87 RDN
 88 "MCIT="
 89 ARCL X
 90 PROMPT
 91 GTO B

 92*LBL "FXYZ"

 93 XEQ 05
 94 X<>Y
 95 X^2
 96 +
 97 RTN

 98*LBL "FXY"

 99*LBL 05

100 X^2
101 X<>Y
102 X^2
103 +
104 END

Note. The Central Limit Theorem establishes that the error in the calculation is proportional to 1/sqr(N),

with N being the number of points used. This explains the poor accuracy results for the reduced sets

used in the previous example. In practice we should be using N>= 1,000,000 for a decent

approximation.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 17 OF 58

 HP- RANDOM ROM QRG

Finally, MCITGN is the general-case for functions of N-variables. Unfortunately there’s no driver

section (ran out of room in the ROM!), therefore all the parameters must be manually entered (yes,

this can be onerous…) in the expected registers prior to calling the routine, as follows:

• ORDER SHOULD BE IN R00

• NUMBER OF ITERATIONS (N) SHOULD BE IN R01

• POINTER TO RANDOM REGISTERS WILL BE SAVED IN R02 FOR USERS

• NAME OF USER FUNCTION SHOULD BE IN ALPHA, IT WILL BE SAVED IN R03

• INTEGRAL SUM WILL BE SAVED IN R04 (AS WILL BE FINAL RESULT)

• LIMITS IN R05-R2N+4

• RANDOM VALUES FOR USER FUNCTION IN R2N+5 TO R3N+4

MCITGN was written by Greg McClure and posted on the MoHP Forum here:
https://www.hpmuseum.org/forum/thread-6311.html?highlight=montecarlo

Let’s see an example of a quintuple integral next.

f(x,y,z,u,v) = sqrt (6 - x^2 - y^2 - z^2 - u^2 - v^2)

; EXAMPLE OF QUINTUPLE INTEGRAL OF SQRT(6-X*X-Y*Y-Z*Z-U*U-V*V)

; X FROM 0 TO 0.7

; Y FROM 0 TO 0.8

; Z FROM 0 TO 0.9

; U FROM 0 TO 1.0

; V FROM 0 TO 1.1

; ALPHA = "5DINT"

; REGISTER 00 = 5

; REGISTER 01 = N (10, 100, AND 1000 USED FOR RUNS BELOW)

; REGISTERS 05, 07, 09, 11, 13 = 0

; REGISTER 06 = 0.7

; REGISTER 08 = 0.8

; REGISTER 10 = 0.9

; REGISTER 12 = 1.0

; REGISTER 14 = 1.1

01 LBL "5DINT"

02 6

03 RCL 15

04 X^2

05 RCL 16

06 X^2

07 RCL 17

08 X^2

09 +

10 +

-

11 RCL 18

12 X^2

13 RCL 19

14 X^2

15 +

16 -

17 SQRT

18 END

https://www.hpmuseum.org/forum/thread-6311.html?highlight=montecarlo

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 18 OF 58

 HP- RANDOM ROM QRG

; 9 RUNS FOR N=10: 1.150 1.229 1.193 1.179 1.193 1.194 1.204 1.189 1.174

; 6 RUNS FOR N=100: 1.192 1.190 1.179 1.193 1.187 1.192

; 4 RUNS FOR N=1000: 1.186 1.192 1.192 1.190

Commented Program Listing.

01 LBL "MCINT"

02 CF 21 ; AVIEW will show countdown.
03 CLX
04 STO 04 ; clear sum
05 SEEDT ; Seed - randomize
06 ASTO 03 ; save user function name
07 RCL 01 ; save count in O(7)
08 STO O
09 RCL 00 ; get dimension
10 ST+ X ; double for # of regs for limits
11 E3
12 /
13 E
14 + ; convert to ISG value
15 4.004 ; bump to point to first LL
16 +
17 STO M ; save in M(5)
18 RCL 00 ; create pointer to random regs.
19 E3
20 /
21 RCL 00
22 ST+ X
23 +
24 +
25 STO N ; save in N(6)
26 STO 02 ; for user
; PRODUCE RANDOM VALUES
27 LBL 00

28 RCL IND M ; LL(N) in X
29 ENTER^ ; LL(N) in X and Y
30 ISG M
31 RCL IND M ; UL(N) IN X, LL(N) IN Y AND Z
32 X<>Y
33 - ; UL(N) - LL(N) in X, LL(N) in Y
34 RNDM ; RAND
35 *
36 + ; rand value between LL(N) UL(N) in X

37 STO IND N
38 ISG M ; continue
39 STO X
40 ISG N ; bump random reg. pointer
41 GTO 00 ; continue until done
42 RCL 00
43 ST- N ; reset limits and values counters
44 ST- M
45 ST- M
; CALL USER FUNCTION, SUM IN R04
46 XEQ IND 03
47 ST+ 04
48 VIEW O
49 DSE O
50 GTO 00
; FINAL RESULT. ; CALC MULTIPLIER
51 1 ; init multiplier
52 LBL 01

53 RCL IND M ; LL(N) IN X
54 ISG M
55 RCL IND M ; UL(N) in X, LL(N) in Y
56 X<>Y
57 - ; UL(N) - LL(N) in X
58 * ; new multiplier
59 ISG M
60 GTO 01
; MULTIPLY RESULT, DIVIDE BY NUMBER OF
POINTS
61 ST* 04
62 RCL 02
63 ST/ 04
; RESTORE ALPHA NAME, DISPLAY RESULT
64 CLA
65 ARCL 03
66 RCL 04
67 CLD
68 END

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 19 OF 58

 HP- RANDOM ROM QRG

2. Approximating Math Constants – Monte Carlo method

This section uses a variation of the Monte Carlo strategy to evaluate both pi and e. It’s not, however,

based in circle relationships derived from randomly throwing needles or shooting at targets, but on

probability theory instead. It was explained by Valentín himself in his HP Challenge VA511 - 2020-03-

14 - SRC 006 Pi Day 2020 Special.pdf

Quoting directly from that article:

“It's quite simple, actually. My recent program is this:

1 DESTROY ALL @ RANDOMIZE 1 @ FOR K=1 TO 5 @ N=10^K @ S=0

2 FOR I=1 TO N @ IF NOT MOD(IROUND(RND/RND),2) THEN S=S+1
3 NEXT I @ P=S/N @ STD @ DISP N, @ FIX 3 @ DISP 5-P*4 @ NEXT K

which is computing the probability that the closest integer to A/B is even, where A and B are

uniformly distributed random numbers in [0,1), as produced by the RND keyword. Each time

the rounded value is even (i.e., it's 0 modulo 2) the number of favorable outcomes (S) is

incremented by one (see line 2). After N tries have been sampled, the probability P for the even

case will be the number of favorables outcomes (S) divided by the number of tries (N), thus we

have the estimated probability P = S/N.

But I know from theory that in the limit, for N -> Infinity, the exact probability P = (5-Pi)/4, so

isolating Pi we have Pi = 5-P*4, which is displayed by the program in line 3 above.”

Note that he goes on to include yet another possible approach, which results in an even shorter BASIC

program. Here’s the explanation:

“Now, my earlier program, the one-liner, namely:

10 INPUT K @ N=0 @ FOR I=1 TO K @ N=N-MOD(IROUND(RND/RND),2) @ NEXT I @ DISP 1-4*N/K

is computing the probability that the closest integer to A/B is odd, where A and B are uniformly

distributed random numbers in [0,1), as produced by the RND keyword. Each time the rounded

value is odd (i.e., isn't 0 modulo 2) the number of favorable outcomes (N) is decremented by

one, and after K tries have been sampled, the probability for the odd case will be the number of

favorable outcomes (-N) divided by the number of tries (K), thus we have the estimated

probability P = -N/K.

As the probability of the rounded division being either even or odd is 1 (certainty), the probability for

the odd case is 1 minus the probability for the even case, thus it's P = 1-(5-Pi)/4 = (Pi-1)/4, so isolating

Pi we have Pi = 1+4*P = 1+4*(-N/K) = 1-4*N/K, which is then displayed by the one-line program.”

I chose to use the first approach in this module, partially because it also requires the IROUND function,

and I was intrigued by it. I ended up writing a short MCODE utility for that purpose, which facilitates

the porting of the BASIC code to HP-41 FOCAL, shown in next page.

https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA511%20-%202020-03-14%20-%20SRC%20006%20Pi%20Day%202020%20Special.pdf
https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA511%20-%202020-03-14%20-%20SRC%20006%20Pi%20Day%202020%20Special.pdf

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 20 OF 58

 HP- RANDOM ROM QRG

With regard to the e calculation, the source has also been Valentín’s HP Challenge VA030 - Short Sweet

Math Challenge 25 San Valentin Special - Weird Math.pdf. In that thread there’s one section (the first

“concoction”) about calculating a “weird limit” that can be used for the calculation of e (making the

sum--to-exceed s=1).

“The limit average count for the sum of a series of [0,1) uniformly distributed random numbers to

exceed 1 is exactly e = 2.71828182845904523536+, the base of the natural logarithms, which is pretty

"weird" and can be considered an analog of Buffon's Needle experiment to estimate the value of Pi.

Here we don't throw needles on a grid but merrily add up random numbers keeping count and we get e

instead.”

“This is the general formula to numerically compute the theoretically exact value and my simple 1-

line, 53-byte HP-71B program to instantly compute them given the sum to exceed: “

1 DESTROY ALL @ INPUT X @ S=0 @ FOR K=0 TO IP(X) @ S=S+(K-X)^K/FACT(K)*EXP(X-K) @

NEXT K @ DISP S

For the porting we’ll certainly need the new IROUND utility and obviously capable random number

capabilities, which shouldn’t be much of a problem using the SandMath’s functions SEEDT and RNDM.

E’ll use a time-generated initial seed (input zero for SEEDT), and RNDM will do the work using the well-
known RNG recurrence:

r(k+1) = FRC [r(k) * 9,821 + 0.211327]

A few results are given in the table below:

Iterations MCE MCPI

10

100

1,000

10,000

100,000

1,000,000

As you can see from the table results above both routines require a very large number of iterations to

get to a reasonably accurate result, which of course was expected as “it ‘comes with the territory”
when resorting to this type of approaches. See below for the actual program code.

https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA030%20-%20Short%20Sweet%20Math%20Challenge%2025%20San%20Valentin%20Special%20-%20Weird%20Math.pdf
https://albillo.hpcalc.org/challenges/HP%20Challenge%20VA030%20-%20Short%20Sweet%20Math%20Challenge%2025%20San%20Valentin%20Special%20-%20Weird%20Math.pdf

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 21 OF 58

 HP- RANDOM ROM QRG

Note:- The poor-man version of IROUND would consist of setting FIX 0 before the LBL 11 loop, and

adding an INT instruction after the division of both random numbers (i.e. replacing IROUND with INT).
That’s almost equivalent but doesn’t handle the EVEN condition for the result, i.e. IROUND(5.5)=5

whereas INT(4.5) in FIX 0 is equal to 4 instead. Not a show-stopper though, considering how unlikely it

is to find such an occurrence amongst the hundreds of random points used by the routine.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 22 OF 58

 HP- RANDOM ROM QRG

One more for the road.

And as the adagio goes “there’s never two without three”, so let’s add a third constant to this section –

namely Ln 2 – another proud member of the irrational family.

The following is taken from this Albert Chan’s post in the MoHP forum.

He uses another condition from probability, not so well-known:

LN(2) = 2 * probability of integer part of RND/RND is odd

10 INPUT K @ N=0 @ FOR I=1 TO K @ N=N+MOD(IP(RND/RND),2) @ NEXT I @ DISP 2*N/K @ GOTO 10

Moreover, we can improve LN(2) estimate by scaling RND/RND:

> 10 DEF FNL(K) @ N=0
> 20 FOR L1=1 TO K @ N=N+MOD(IP(10*RND/RND),2) @ NEXT L1
> 30 FNL=N/(5*K)+1501/2520 @ END DEF

See below the HP-41 version of the code. The driver program just adds the prompts for the initial seed
and the number of points, then fall into the main subroutine – that expects N in X and the seed in Y
registers.

Examples:

PI , 500 , XEQ “MCLN2” =>

https://www.hpmuseum.org/forum/thread-13796-post-129470.html#pid129470

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 23 OF 58

 HP- RANDOM ROM QRG

3. Mandelbrot set Area estimation

Saving the best for last, here is a brilliant example of RN’s utilization provided by Valentín Albillo’s

excellent articles on the estimation of the Mandelbrot set area on the HP-42 and Free42 (see here:

HP Article VA040a - Boldly Going - Mandelbrot Set Area (42S).pdf)

Quoting sections or copying parts of that article is bound to do the reader and the article itself a huge

disservice, so you’re encouraged to read the original – included in this manual in its entirety. Thanks to

Valentín for graciously granting permission to do so.

Porting it to the HP-41 platform was relatively straight-forward, once the function set was enhanced to

deal with the required utilities. Obviously the HP-41 has its own limitations compared to the HP-42S

and more so to Free42, however it does a good-enough job aided by the 41Z_Complex Number

Module, needed for the complex math functions required by the program.

Here’s the program listing on the HP-41 w/ the 41Z Module.

 01*LBL "MBA"

 02 2.5
 03 STO 06
 04 2
 05 STO 07
 06 1.2
 07 STO 08
 08 .25
 09 STO 09
 10 1
 11 SEEDT
 12 "POINTS=?"
 13 PROMPT
 14 STO 04
 15 STO 00
 16 256
 17 "#ITERS=?"
 18 PROMPT
 19 STO 05
 20 CLX
 21 STO 02
 22 "EVERY=?"
 23 PROMPT
 24 STO 03
 25 CF 21
 26 "WORKING..."
 27 AVIEW
 28 CF 00

 29 X#0?
 30 SF 00
 31*LBL 00

 32 RCL 05
 33 STO 01
 34 FS? 00
 35 XEQ 03
 36 RNDM
 37 RCL 06
 38 *
 39 RCL 07
 40 -
 41 RNDM
 42 RCL 08
 43 *
 44 X<>Y
 45 ZRPL^
 46 ZSIGN
 47 ZENTER^
 48 RCL 07
 49 -
 50 Z-
 51 ZMOD
 52 RCL 09
 53 *
 54 Z<>W
 55 ZMOD
 56 X<>Y

 57 RDN
 58 X<Y?
 59 GTO 02
 60 SIGN
 61 ZRUP
 62 RCL Z
 63 -
 64 ZMOD
 65 RCL 09
 66 X>Y?
 67 GTO 02
 68 ZRUP
 69 ZRPL^
 70*LBL 01

 71 Z^2
 72 Z+
 73 ZMOD
 74 RCL 07
 75 X<=Y?
 76 GTO 04
 77 ZRDN
 78 LASTZ
 79 DSE 01
 80 GTO 01
 81*LBL 04

 82 ISG 02
 83*LBL 02

 84 VIEW 00

 85 DSE 00
 86 GTO 00
 87*LBL 03

 88 RCL 00
 89 RCL 03
 90 MOD
 92 X#0?
 93 RTN
 94 CLA
 95 RCL 04
 96 RCL 00
 97 -
 98 X=0?
 99 RTN
100 AINT
101 "`->"
102 RCL 02
103 AINT
104 PROMPT
105 RCL Y
106 /
107 6
108 *
109 "AREA="
110 ARCL X
111 AVIEW
112 END

https://albillo.hpcalc.org/articles/HP%20Article%20VA040a%20-%20Boldly%20Going%20-%20Mandelbrot%20Set%20Area%20(42S).pdf

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 24 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 25 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 26 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 27 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 28 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 29 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 30 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 31 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 32 OF 58

 HP- RANDOM ROM QRG

Gaussian Distribution of Random Numbers

Let’s move to a different chapter of the module, dealing with Gaussian- (or Normal-) distributed

random numbers. As a way of introduction, Normal distribution of random numbers play an important

role in numerous science fields and therefore must be covered.

The module includes two techniques to obtain gaussian random numbers, both using output from the

SandMath/PPC p-RNG described earlier in the manual. The techniques are the Box-Muller and the “12R

minus six” methods, described below.

Function Description Input Output

BXMR Gaussian RN (Box Muller) SEED/RN in buffer Normal RN in X

RANG Gaussian RN (12R-6) SEED/RN in buffer Normal RN in X

See: https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

and: https://mathworld.wolfram.com/Box-MullerTransformation.html

Note that both functions generate GRNs “Nr” with “Standard” Normal Distribution, i.e. with mean 0 and

variance 1. This can be “moved” to GRNs “Xr” of any Normal Distribution with mean and variance

using the relationship: Nr = (Xr -) / ; and thus: Xr = + .Nr

The Box-Muller method uses two uniformly distributed RN’s { x1, x2 } generated via SEEDT, RNDM to

calculate two GRNs { z1, z2 } using the following transform:

Whereas the “12R-6” method uses the sum of twelve random numbers generated via SEEDT, RNDM p-

RNG, and subtracts the value 6 from the result to obtain the GRN. Simpler formula but more

demanding requiring 6x more RNs.

z = (x1 + x2 + x3 + … + x12) - 6

Both functions are implemented in MCODE, and the execution times are very similar,

Example. Using pi as initial seed, generate 6 GRNs for each method:

PI, XEQ “SEEDT” =>

 BXMR RANGxxxxx x

You should be getting the exact same results as the Time seed was not used.

https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
https://mathworld.wolfram.com/Box-MullerTransformation.html

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 33 OF 58

 HP- RANDOM ROM QRG

Digging deeper: which p-RGN to use?

The MCODE functions are “fixed” to the SandMath/PPC p-RNG but their FOCAL counterparts can use

any of the three sets of p-RNGs, controlled by the user flags as follows:

Function Description Input Output

BX-MR Gaussian RN (Box Muller) SEED/RN in buffer Normal RN in X

12R-6 Gaussian RN (12R-6) SEED/RN in buffer Normal RN in X

p-RNG used:

Flag Set p-RNG Conditions

UF 00 SandMath/PPC None

UF 01 Toulouse Math UF 00 Clear

UF 02 Voyager 11C/15C UF 00 and UF 01 clear

Note that the interrogation follows the flag number order, thus if UF 00 is set that will prevail over the

status of the other two because it’s the first one checked.

Repeating last example for the other two p-RNG we obtain: (don’t forget to initialize the corresponding

seed with PI, using the corresponding functions: STORAND and SEED instead of SEEDT

 For Voyager p-RNG – SF 02 For Toulouse Math p-RNG - SF 01

 BX-MR 12R-6 BX-MR 12R-6 xxxxx

And how to make heads or tails of all these GRNs?

Armed with these two additional routines we can do comparative testing, pitting the methods against

each other and choosing which p-RNG to use on every case. The routines “TRANG (Test RANG) and

“BENCH are provided to that end, as described next. A third program “INDEX is also provided to

evaluate the goodness of each combination of method and p-RNG – by establishing a comparison with

the Normal Probability Function P(x).

Normality Tests Description Input

“BENCH Driver for “TRANG” + “INDEX” Sample Size, p-RNG, Method

“INDEX Calculate Normality Index Quantile data in {R00-R05}, R10

“TRANG Test one Method/p-RNG combo Sample Size & User Flag 0-3

Here’s how these work.-

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 34 OF 58

 HP- RANDOM ROM QRG

TRANG. Besides selecting the appropriate p-RNG user flag, “TRANG uses UF 03 to choose which

method to employ: UF 03 Set = Bix-Muller, and UF 03 Clear = 12R-6 method.

Once those four flags are properly set you would execute “TRANG to calculate the 6 quantiles reflecting

the GRN probability distribution amongst them. The width of the quantiles is determined by the sample

size: w = N/6

A final message in ALPHA like the one below shows the results for the first four quantiles – (not six,

need to make it fit in ALPHA), the most important ones since usually the two remaining ones are

always 100% (notice no decimal digits is provided for this cas to save some real state).

For example, for a sample size of 50 GRNs and setting UF 02 (Voyager p-RNG) and also setting UF 03

(Box-Muller method) we’ll type:

XEQ “TRANG” =>

50, R/S =>

Is that good or bad? Well, here’s where function INDEX comes to the scene. It expects the quantile

GRN probability data already stored (either by TRANG or manually by the user), and compares those

percentages with the theoretical cumulative probability corresponding to a normal distribution, i.e.

With x being the five abscissas of the five quantiles, and the mean and standard deviation of the

distribution.

The module includes the Error Function erf(x) to calculate that integral by the following expression:

The last step is a direct comparison between the theoretical and actual results, i.e. the “Normality

Index”. For this example:

XEQ “INDEX” => =>

Calculated as:

Index = [sqrt (Q(n)^2 – P(n)^2], n= 1,2…,6

 A perfect set result would have index = 0, so the lower the better.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 35 OF 58

 HP- RANDOM ROM QRG

All together now: Driver program

For maximum convenience the driver program “BENCH” does the leg work with the User flag setting for

you, navigating the different options with ALPHA prompts, see next.

Let’s find the normality index of a set of 100 gaussian random numbers generated using the 12R-6

method with the Toulouse Math p-RNG. We’d type:

XEQ “BENCH” presents the first menu-driven screen with the name of the two methods:

 choose [B] or [D]

XEQ [D], which presents the second selection screen with the name of the three p-RNG choices:

 choose [A], [C] or [E]

XEQ [E] for the Toulouse Math, =>

100, R/S =>

Set UF 10 to see a countdown with the current GRN being calculated. When completed we’ll see the

“RUNNING. . .” message and then the ALPHA screen with the GRN percentages for each quantile:

; 68.00; 95.00; 100; 100 ; 100; 100

pressing R/S =>

Meaningful comparisons should be made between sets with equal sample sizes, or else the normality

will be totally skewed of course.

And the winner is…

The table below summarizes the results like those obtained in the example above, (sample size = 100),

repeated for all possible combinations. The initial seed is always 1.

Method / p-RNG RNDM RN RAND

Box-Muller

12R-6

The Toulouse Math ROM takes the gold, and that’s using either of the two methods. Second place is for

the Voyager 11C/15C p-RNG, and the bronze medal is for the SandMath/PPC contender.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 36 OF 58

 HP- RANDOM ROM QRG

Testing Random Number Generators

There’s quite an abundance of relevant literature on this subject available on the internet. If you google

the title of this chapter, the hit list is long, and the entries are quite informative, ranging from very

pragmatical to heavy on the theoretical side. See for instance this one by Dan Biebighauser.

For the RANROM I decided to take the historic perspective, including two old programs on the direct

subject plus a more recent one about a related topic published in the MoHP forum.

Program Description Author / Source

“EVAL” Evaluation of p-RNGs L. H. Gilbert / UPL #10240

“RNGTST” Randomicity Test Paper Charles T. Tart / Paper

“CHI” Chi-square test

“STRAT” Stratified Random Samplimg Rawi / MoHP Article

1. Evaluation of p-RNGs (by L.H. Gilbert, UPL# 10240)

The original program has been modified slightly to allow for a more convenient handling of the p-RNG

selection, which obviously cannot be entered in the main body of the program when this is in ROM.

Besides I’ve replaced the data entry section with a new, menu-driven one. No other changes were

made. Quoting from the original UPL document. -

The program executes a user-provided random number generator, and checks the output in the

following ways:

- the mean and standard deviation of a sequence are computed

- The correlation between Xi andX(i+1) is calculated

- A running check is made to determine when the generator enters a closed cycle (if ever)

- A histogram is plotted, and

- A Chi-square test of uniformity is calculated.

The program requires one memory module. A printer is recommended.

Application, Equations, Variables.

The random number generator produces a sequence of (uniform) numbers, X = { xi }, i = 1,…, N.

- For each xi, x2i is computed and matched. If they’re equal, a closed cycle of numbers has been

detected.

- A histogram of 20 “bins” on the interval 0 – 1 is constructed, and a count made of where each

xi falls.

- The extended count per bin, N/20, is employed in a Chi-Square test:

 ^2 = [(fi – fe)^2 / fe ; i= 1,2…,20

with fi = expected count, and fe = N/20

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjcmY-2ldn2AhWMKewKHZALAxMQFnoECDYQAQ&url=https%3A%2F%2Fwww-users.cse.umn.edu%2F~garrett%2Fstudents%2Freu%2FpRNGs.pdf&usg=AOvVaw0SGlZbT4zTsAPEpZAUlnw4

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 37 OF 58

 HP- RANDOM ROM QRG

At the 5% level of significance the ^2 should be greater that 30 in order toconclude that the N random

numbers are not uniformly distributed.

Operating limits and warnings.

The program is designed to evaluate a generator of uniform random numbers, on the interval [0, 1 [

Using all the program fcacilities, each number takes about 3.6 seconds to generate and evaluate; about

3.0 seconds with the printer switched off.

The RNG must be program under a general label in memory, it will be called by the main program.

Example.

A sequence of N=100 numbers was generated by the formula: Xi+1 = FRC [9821 * xi + 0.211327]

The initial seed was 0.159753, and the formula has been programmed as:

01 LBL “RNG0”

02 9821

03 *

04 ,211327

05 +

06 FRC

07 RTN

Starting the program now:

XEQ “EVAL” – sets SIZE 36 and resets all flags.

The initial set of questions prepare the flags for the program execution automatically. You just need to

enter the initial letter of the choice you want, and then press R/S. A shortcut is also enabled so if no

letter is pressed the default option is the first choice.

 R/S - Clears/Sets UF 00

 R/S - Clear /Sets UF 01

 R/S - Clear/Sets UF 02

 "H”, R/S - Clear/Sets UF 03

 R/S - Clear Sets UF 04

 “RNG0”, R/S

 0.159753, R/S

 100 , R/S

The execution starts, showing a countdown as the sample is being processed. Finally, the HP-41 beeps

and halts at end. Pressing R/S again starts the output of result – ending with the value of ^2 in the

display.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 38 OF 58

 HP- RANDOM ROM QRG

Here are the frequency counts on each bin for the first (left) and second (right) 100 digits:

• If F00 is clear the execution halts after N numbers so that the printer can be switched off. If it is

set no halt occurs, the printer is always on.

• If F01 is clear each sequence of N numbers is treated separately,. If it’s set the data is

accumulated for each successive sequence.

• If F02 is clear the program, will check for duplicate numbers. If set there won’t be checked 0

faster running time.

• If F03 is clear the histogram is printed. If set, there’s no print of histogram.

• If F04 is clear the program does a complete evaluation. If it’s set only a check for duplicate

numbers is done.

When a duplicate number is detected the program halts showing a message that identifies the element

in the sequence causing the event:: “”,

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 39 OF 58

 HP- RANDOM ROM QRG

Let’s now run EVAL for our three p-RNGs to – finally! – establish a comparison and therefore

determine their relative ranking. For that we need to write three trivial FOCAL routines for EVAL to call,

as follows:

01 LBL “RPPC” 01 LBL “RTOU” 01 LBL “RVYG”

02 RNDM 02 RAND 02 RN

03 RTN 03 RTN 03 RTN

Using a sequence length of N=1,000 and the same seed = 0.123456789 for all of them.

The results are shown below:

XROM "EVAL"

 S RUN

 A RUN

 RUN

 O RUN

 RUN

 “RPPC” RUN

 0.123456789 RUN

 1,000.000000 RUN

N=1,000.

SEED<N>= 1.234567890-01

SEED<2N>=1.234567890E-1

= 0.4954 s= 0.2791

r=-0.0088 N= 1,000.

E(f)= 50.0

 44. 47. 50. 56. 54. 39. 56. 45. 49. 63. 69. 50. 45. 52. 51. 51. 44. 50. 42. 43.

CHI-SQ<5%:30> = 19.80

For the second group we use LBL B - there’s no need to repeat all data entry:

XEQ C

 “RTOU” RUN

 0.123456789 RUN

 1,000.000000 RUN

 = 0.5152 s= 0.2884

r=-0.0009 N= 1,000.

E(f)= 50.0

43. 53. 56. 45. 36. 49. 40. 51. 41. 59. 51. 44. 59. 56. 58. 52. 51. 56. 44. 56.

CHI-SQ<5%:30> = 18.20

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 40 OF 58

 HP- RANDOM ROM QRG

And going for the third group now:

XEQ C

RNG PRGM? “RVYG” RUN

SEED=? 0 .123456789 RUN

N=? 1,000.00 RUN

N=1,000.

SEED<N>= 1.234567890-01

SEED<2N>=1.234567890E-1

 = 0.4918 s= 0.2837

r=-0.0304 N= 1,000.

E(f)= 50.0

43. 46. 54. 57. 44. 50. 47. 56. 51. 56. 49. 66. 45. 44. 51. 41. 60. 51. 47. 42.

CHI-SQ<5%:30> = 16.44

Alright then, according to the results above the better p-RNG is the Voyager’ style.

Uniformity Test SandMath/PPC Topulouse Math Voyager 11C/15C

^2

This is an interesting result, because despite being the better of the three in uniformity, if you recall it

however did not hold the winner place for the normality of the gaussian random numbers generated

from it; so not quite a slam dunk! If anything, this demonstrates that there are different considerations

to the quality of “randomness”.

Going the extra mile, we can widen the comparisons by also testing some of the other p-RNGs available

in the module, like Mark Power’s from DataFile and JM Baillard’s from his web site. Doing so we obtain

the following table of results:

Uniformity Test RAN00 RNG1 RNG2

^2

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 41 OF 58

 HP- RANDOM ROM QRG

Program listing.

01*LBL "EVAL"

 02 SIZE?
 03 37
 04 X>Y?
 05 PSIZE
 06 CLX
 07 X<>F
 08 AON
 09 "STOP/CONT?"
 10 PROMPT
 11 ATOX
 12 83
 13 X#Y?
 14 SF 00
 15
"CLRG/ACCUM?"
 16 PROMPT
 17 ATOX
 18 67
 19 X#Y?
 20 SF 01
 21
"XN=2N/OMIT?"
 22 PROMPT
 23 ATOX
 24 88
 25 X#Y?
 26 SF 02
 27 "HISTO/OMIT?"
 28 PROMPT
 29 ATOX
 30 72
 31 X#Y?
 32 SF 03
 33 "ALL/DUP?"
 34 PROMPT
 35 ATOX
 36 65
 37 X#Y?
 38 SF 04
 39 AOFF

 40 REG 09

 41*LBL C

 42 CLRG
 43 "RNG PRGM?"

 44 AON
 45 PROMPT
 46 AOFF
 47 ASTO 36
 48 "SEED=?"
 49 PROMPT
 50 X=0?
 51 1RAN
 52 STO 00
 53 STO 01
 54 FS? 04
 55 GTO 03
 56 "N=?"
 57 PROMPT
 58 STO 02
 59*LBL 01

 60 RCL 00
 61 RCL 01
 62 RCL 02
 63 RCL 36
 64 FC? 01
 65 CLRG
 66 STO 36
 67 RDN
 68 FIX 0
 69 "N="
 70 ARCL X
 71 ACA
 72 PRBUF
 73 STO 02
 74 STO 03
 75 RDN
 76 STO 01
 77 RDN
 78 STO 00
 79 SCI 9
 80 "SEED<N>="
 81 ACA
 82 ACX
 83 PRBUF
 84 "SEED<2N>="
 85 ARCL 01
 86 ACA
 87 PRBUF
 88 16

 89 STO 15
 90 CF 21
 91 FIX 0
 92*LBL 02

 93 VIEW 03
 94 RCL 00
 95 RCL 00
 96 XEQ IND 36
 97 STO 00
 98 s+
 99 CLX
100 .05
101 /
102 INT
103 RCL 15
104 +
105 E
106 ST+ IND Y
107 FC? 02
108 XEQ 04
109 DSE 03
110 GTO 02
111 BEEP
112 FC? 00
113 STOP
114 FC? 55
115 PRBUF
116 SF 21
117 XEQ 05
118 XEQ 06
119 FC? 00
120 STOP
121 ADV
122 ADV
123 GTO 01
124*LBL 03

125 E
126 ST+ 03
127 VIEW 03
128 RCL 00
129 XEQ IND 36
130 STO 00
131 XEQ 04
132 GTO 03
133*LBL 04

134 RCL 01
135 XEQ IND 36
136 XEQ IND 36
137 STO 01
138 RCL 00
139 X#Y?
140 RTN
141 TONE 9
142 "CYCLE AT "
143 ARCL 03
144 PROMPT
145 RTN
146*LBL 05
147 FIX 4
148 2
149 ACCHR
150 61
151 ACCHR
152 MEAN
153 ACX
154 2
155 SKPCHR
156 115
157 ACCHR
158 61
159 ACCHR
160 SDEV
161 ACX
162 PRBUF
163 114
164 ACCHR
165 61
166 ACCHR
167 SDEV
168 *
169 RCL 09
170 RCL 11
171 *
172 RCL 14
173 /
174 RCL 13
175 -
176 CHS
177 RCL 14
178 E

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 42 OF 58

 HP- RANDOM ROM QRG

179 -
180 /
181 X<>Y
182 /
183 ACX
184 " N= "
185 FIX 0
186 ARCL 14
187 ACA
188 PRBUF
189 RTN
190*LBL 06

191 CLX
192 STO 08
193 RCL 15
194 RCL 15
195 19
196 +
197 E3
198 /
199 +
200 STO 03
201 69
202 ACCHR
203 40
204 ACCHR
205 102
206 ACCHR
207 41
208 ACCHR
209 61
210 ACCHR
211 RCL 14

212 20
213 /
214 FIX 1
215 ACX
216 FIX 0
217 RND
218 STO 07
219 STO 05
220 PRBUF
221 FS? 03
222 GTO 08
223 RCL 14
224 2
225 /
226 SQRT
227 RND
228 ST+ 05
229 -
230 X<=0?
231 0
232 STO 04
233 ADV
234 ACX
235 5
236 SKPCHR
237 "FREQ"
238 ACA
239 4
240 SKPCHR
241 RCL 05
242 ACX
243 ADV
244 "------"
245 ASTO L

246 ARCL L
247 ARCL L
248 ACA
249 ADV
250 126
251 RCL 05
252 RCL 04
253 -
254 /
255 RCL 07
256 RCL 04
257 -
258 *
259 INT
260 E3
261 /
262 126
263 +
264 STO 06
265*LBL 07

266 RCL 03
267 INT
268 RCL 15
269 -
270 5
271 *
272 CLA
273 ARCL X
274 ACA
275 RCL IND 03
276 RCL 07
277 -
278 X^2

279 ST+ 08
280 RCL IND 03
281 ACX
282 RCL 04
283 RCL 05
284 RCL 06
285 STKPLOT
286 ISG 03
287 GTO 07
288*LBL 09

289 ADV
290 RCL 07
291 ST/ 08
292 FIX 2
293 "CHI-SQ"
294 "`<5%:30> ="
295 ACA
296 RCL 08
297 ACX
298 PRBUF
299 ADV
300 RTN
301*LBL 08

302 RCL IND 03
303 ACX
304 RCL 07
305 -
306 X^2
307 ST+ 08
308 ISG 03
309 GTO 08
310 GTO 09
311 END

Note that the initial seed is stored in R00 when first entered by the user, and that R00 is used to store

all the random numbers as they’re being generated in the sequence. This works well for data-register

based p-RNGs but for buffer-based p-RNGs we may need to initialize them manually entering the seed,

using the corresponding SEED function for each case. This is only needed if we want the results to be

comparable across different p-RNG, of course.

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 43 OF 58

 HP- RANDOM ROM QRG

2. Randomicity Testing. (by Charles T. Tart)

This program is designed for INTEGER random numbers and thus cannot be used for our cases-

nevertheless it’s got intrinsic value that warrant including in the RANROM. Here’s the complete contents

of the paper, available here.

https://s3.amazonaws.com/cttart/articles/april2013articles/Randomicity+Test+Program+for+Pseudo-Random+Number+Generator+Routines+on+The+New+HP-41C.pdf

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 44 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 45 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 46 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 47 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 48 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 49 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 50 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 51 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 52 OF 58

 HP- RANDOM ROM QRG

3. Stratified Random Sampling (by rawi, MoHP Articles)

see: https://www.hpmuseum.org/forum/thread-15709.html

The following is taken verbatim from the MoHP post.

This is my first program for the HP 41 since decades. So it may be that there are numerous ways to

improve the code. I have tested it on a DM 41X and a HP 41CL.

What it does:

The program helps to analyze stratified random samples.

You can either put in the weights (i.e. the shares of the strata in universe) and the standard

deviations within the strata or you can put in a density function and the weights of the strata and

the standard deviations within the strata are computed.

For the allocation of the sample on the strata you can put in numbers or let the program compute

sample sizes for proportional or optimal allocation.

Standard deviation of total mean is computed.

Needs command “FINTG” from the SandMath Module (or INTEG from the Advantage Pac).

Use of registers:

R00 - Final result

R01 - Name of density function global label (Alpha)

R02 - Number of strata (maximum: 6)

R03 - Sample size

R04 - Lower limit of first stratum

Stratum 1 2 3 4 5 6

Upper limit R05 R06 R07 R08 R09 R10

Weights R11 R12 R13 R14 R15 R16

Std. dev. R17 R18 R19 R20 R21 R22

RegisterS R23-R30 are used for computations.

The function FINTG from SandMath module needs another 32 unused program registers.

Usage instructions: See program listing.

https://www.hpmuseum.org/forum/thread-15709.html

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 53 OF 58

 HP- RANDOM ROM QRG

Example:

You want to analyze a stratified sample with 4 strata and optimum allocation of sample. The variable

has a standard normal distribution. Strata limits are -1, 0, 1. Total sample size is n=1000.

For convenience you take as lower limit of standard normal distribution -7.5 and as upper limit 7.5.

First type in routine for normal distribution under a global label:

01 LBL “NV”

02 X^2

03 2

04 /

05 CHS

06 E^X

07 2

08 PI

09 *

10 SQRT

11 /

12 RTN

XEQ “STRAT”

-> 1000 , R/S (sample size input)

-> 4 , R/S (input of number of strata)

-> 1 , R/S (we use the densitiy function, so we type 1)

-> “NV” , R/S (input of label of program with density function)

-> 7.5 CHS , R/S (lower limit of first stratum is -7.5)

-> 1 CHS , R/S (upper limit of first stratum is -1)

-> 0 , R/S

-> 1 , R/S

-> 7.5 , R/S

After about 15 minutes (HP 41) / 20 seconds (DM 41X with USB cable):

-> 2 , R/S (we want optimum allocation, so we type 2)

-> (sample size in stratum 1)

R/S -> (sample size in stratum 2)

R/S ->

R/S ->

R/S -> (std deviation of stratified sample mean)

Weights and standard deviations can be seen in registers, e.g. weight in stratum 1:

RCL 11 ->

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 54 OF 58

 HP- RANDOM ROM QRG

Program listing.

01 LBL STRAT

02 ”SMPL SZ?”
03 PROMPT Input of sample size
04 STO 03
05 “N STRATA?”
06 PROMPT Input of number of strata (maximum: 6)
07 1 E3
08 /
09 1
10 +
11 STO 02
12 0
13 STO 00
14 STO 27
15 “0=I 1=DF?” Input whether weights and std. dev. of strata are individually typed
16 PROMPT (0) or whether they are computed by given density function (1)
17 4
18 +
19 XEQ IND X
20 “0=I 1=P 2=O?” Input whether allocation of sample on strata should be individually
21 PROMPT given (0), proportional to weights (1) or optimal (2)
22 STO 30
23 FIX 0
24 10
25 STO 28
26 16
27 STO 29
28 LBL 08 Determination of sample size in strata

29 1
30 ST+ 28
31 ST+ 29
32 RCL IND 28
33 RCL IND 29
34 XEQ IND 30
35 RCL IND 28
36 RCL IND 29
37 *
38 x^2
39 x<>y
40 /
41 ST+ 00
42 ISG 02
43 GTO 08

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 55 OF 58

 HP- RANDOM ROM QRG

44 FIX 4
45 RCL 00
46 SQRT
47 STO 00 Standard dev. of mean of total sample is shown
48 CF 01
49 RTN
50 LBL 04 Manual Input of weights and std. dev. in strata

51 10
52 STO 28
53 16
54 STO 29
55 FIX 0
56 LBL 06

57 1
58 ST+ 28
59 ST+ 29
60 “W”
61 ARCL 02
62 “|-?”
63 PROMPT
64 STO IND 28
65 “S”
66 ARCL 02
67 “|-?
68 PROMPT
69 STO IND 29
70 *
71 ST+ 27
72 ISG 02
73 GTO 06
74 XEQ 09
75 RTN
76 LBL 05 Computation of weights and std. dev. in strata with given function

77 AON
78 FIX 0
79 “NM DF?” Asks for name of global program label with density function
80 PROMPT
81 ASTO 01
82 AOFF
83 4
84 STO 28
85 “LL S1?” Asks for lower limit of stratum 1
86 PROMPT
87 STO 04
88 STO 23
89 LBL 07

90 1

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 56 OF 58

 HP- RANDOM ROM QRG

91 ST+ 28
92 “UL S”
93 ARCL 02
94 “|-?”
95 PROMPT Asks for upper limit of stratum l
96 STO IND 28
97 ISG 02
98 GTO 07
99 FIX 5 Format defines accuracy of integration
100 4
101 STO 28
102 10
103 STO 29
104 XEQ 09
105 LBL 10 Computation of parameters of strata

106 1
107 ST+ 28
108 ST+ 29
109 CLA
110 CF 01
111 ARCL 01
112 RCL 23
113 RCL IND 28
114 STO 24
115 INTEG Computation of weight of stratum l = integral(f(x))
116 STO IND 29
117 STO 25
118 “STRAX”
119 RCL 23
120 RCL 24
121 INTEG Computation of integral(x*f(x))
122 RCL 25
123 /
124 STO 26 Mean in stratum
125 SF 01
126 RCL 23
127 RCL 24
128 STO 23
129 INTEG Computation of integral(x²*f(x))
130 RCL 25
131 /
132 RCL 26
133 X^2
134 -
135 SQRT std. dev. in stratum
136 RCL 29
137 6

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 57 OF 58

 HP- RANDOM ROM QRG

138 +
139 x<>y
140 STO IND Y
141 RCL 25
142 * weight in stratum * std. dev. in stratum
143 ST+ 27
144 ISG 02
145 GTO 10
146 XEQ 09
147 RTN
148 LBL 09 Refreshing loop register 02

149 RCL 02
150 FRC
151 1
152 +
153 STO 02
154 RTN
155 LBL 00 Manual input of sample size in stratum

156 “N”
157 ARCL 02
158 “|-?”
159 PROMPT
160 RTN
161 LBL 01 Computation of proportional sample size in stratum

162 X<>Y (share of stratum in sample and in universe are equal)
163 RCL 03
164 *
165 GTO 03
166 LBL 02 Computation of optimum sample size in stratum

167 * (proportional to weight*std. dev in stratum)
168 RCL 27
169 /
170 RCL 03
171 *
172 LBL 03 Output of sample size in stratum

173 AON
174 “N”
175 ARCL 02
176 “|-=”
177 ARCL X
178 STOP
179 AOFF
180 END

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 58 OF 58

 HP- RANDOM ROM QRG

01 LBL “STRAX” Subroutine for computation of integral x*f(x) and x²* f(x)

02 STO 30 depending of status of flag 01
03 XEQ IND 01
04 RCL 30
05 FS? 01
06 x^2
07 *
08 END

Appendix – Original DataFile Article by Mark Power

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 59 OF 58

 HP- RANDOM ROM QRG

© ÁNGEL M. MARTIN – MARCH 2022 PAGE 60 OF 58

 HP- RANDOM ROM QRG

Appendix.- Q Public Licence.

