
Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 1 of 56 April 2014

Tools & Utilities for the HP-41CX

User’s Manual and QRG.

Written and Programmed by Ángel M. Martin

April 2014

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 2 of 56 April 2014

This compilation revision 1.2.2

Copyright © 2012 -2014 Ángel Martin

Published under the GNU software licence agreement.

Original authors retain all copyrights, and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

Acknowledgments.- This manual and the described modules would obviously not exist without the
wonderful functions and routines included into them. Thanks to the MCODE pioneers and grand
masters who published their work in PPC Journal and other sources, such as Ken Emery (and alter-
ego Skiwd), Clifford Stern, Doug Wilder, Håkan Thörngren, Frits Ferwerda and Nelson F. Crowle
amongst others for their powerful functions, real examples of solid MCODE programming.

Everlasting thanks to the original developers of the HEPAX and CCD Modules – real landmark and
seminal references for the serious MCODER and the 41 system overall. With their products they
pushed the design limits beyond the conventionally accepted, making many other contributions pale
by comparison.

http://www.hp41.org/

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 3 of 56 April 2014

Table of Contents.

1. Introduction

1.1. Introduction. 5
1.2. Page#4 Library and Bank-Switching 5
1.3. The Functions at a glance: RAMPAGE 6
1.4. The Functions Con’t: TOOLBOX 7

2. RAMPAGE – I: General Purpose Utils

2.1 Ram Clearing and Exchange 10

2.1.1 Using non-merged functions 10
2.1.2 Selective or wholesale Clearing 11
2.1.3 Direct Access to Bytes & Registers 12

2.2 RAM Editors 13

2.2.1 Editing Ram with RAMEDIT 15
2.2.2 Editing RAM with RAMED (Zenrom) 17
2.2.3 Using RAMED outside PRGM Memory 18

2.3 Extended Memory Functions 20

3. RAMPAGE – II: KA/Buffer Utils

3.1. Key Assignment Functions 22

3.2. Buffer Functions 24

3.2.1. I/O Buffer Fundamentals 24
3.2.2. Creating, Retyping and Resizing Buffers 25
3.2.3. General Buffer Utilities 25
3.2.4. Buffer Data Exchange 26
3.2.5. The Buffer Catalog. 27

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 4 of 56 April 2014

4. TOOLBOX – I: System Info Utils

4.1. System Info utils 29

4.1.1. Configuration Details 29
4.1.2. Flag Handling Fns 30
4.1.3. HP-IL Related Fns 31
4.1.4. Other Miscellaneous utils 32

4.2. The System and its Pages. 35

4.2.1. Intro: I/O Bus Components 35
4.2.2. The System as a whole 37
4.2.3. The Pages within 39

5. TOOOBOX – II: Hacker’s Lab

5.1. Editing ROM areas with ROMED 42

5.1.1. Comparison with HEXEDIT

5.2. Advanced MCODE 44

5.2.1. Peeling the HEX Onion 44
5.2.2. Jumps and Executions 46

5.3. Advanced FOCAL 48

5.3.1. Last treats and tricks 48

Appendices.

1. VREG Program Listing 52
2. X-Mem File Header structures 53
3. X-Memory Structure 54
4. Overlap with the AMC_OS/X Module 55
5. HP-41 Byte Table 56

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 5 of 56 April 2014

Tools & Utilities for the HP-41CX

1. Introduction.

This manual documents two modules, the RAMPAGE and the TOOLBOX. These modules are
completely independent from one another, yet you’ll likely find yourself using them together or in
combination – therefore the treatment as a single unit for the purposes of the documentation. Their
areas of application are loosely defined by RAM-related utilities in the RAMPAGE case, and system and
ROM-related tools for the TOOLBOX.

These modules are result of the logical evolution that started with the SANDBOX module, back in 2002
– so here it is all rounded up, twelve years latter. Amongst the included functions you’ll find the usual
suspects: powerful ROM and RAM Editors, Buffer and Page Catalogs, Buffer and KA Save/Write to X-
Mem; Focal program compiler, X-Mem write-to / read-from HP-IL disk file, Checksum Page summing
and plenty of other system and X-Mem utilities.

The modules are a “greatest hits” compilation of functions from several sources. You’ll recognize some
from the ZENROM, and Doug Wilder’s DISASM/BLDROM but mostly are MCODE jewels published on
the PPC Journals. It comes without saying that only a fraction of the functions are written by the
author – although I can say I’ve tweaked them all to take advantage of the Library#4 and general
arrangements.

This manual is structured around the four sections of the modules (two sections each), as follows:

• RAMPAGE’X Includes general-purpose RAM utils, RAM Editors and X-Men extensions.
• KA/BUF FNS Buffer creation and management tools. Plus additional handy KA utils.
• TOOLBOX”4X General-purpose system info and details
• HACKERS LAB Advanced functions for programmers (FOCAL and MCODE)

Page#4 Library (but not Bank-Switching.)

The modules both use the Library#4 – but they are simple configurations, not-bank switched. Using
the Library#4 allowed for a substantial increase in the number and kind of functions compared with
the initial incarnations, yet the most limiting factor always is the number of functions in the FAT (64
maximum). Moving to a bank-switched configuration would have required an auxiliary FAT with sub-
functions; an approach used in other modules (POWERCL, SANDMATH, etc) that adds further
complexity to the design and imposes a few restrictions to the use and applicability. I opted for a
simpler design in this case, using two pages and two main FAT’s. – So sorry folks, but no fancy new
overlays, launchers or sub-function groups this time!

The last remark is regarding the CX dependency: they are designed for the CX version of the 41 OS,
as the code profusely uses subroutines from the CX OS code. This was a compromise to maximize the
functionality and the economy of ROM space – as it avoided having to replicate large code streams
already available on the CX. Do not use these modules on a 41C or CV machine, it’ll have unexpected
and unwanted results.

The modules check for the presence of their dependencies, i.e. the Library#4 and the CX.-- if the
Library#4 is missing or the machine is not a CX the errors will halt it to avoid likely problems. Note
also that these modules are not compatible with page#6 – avoid plugging them in that location.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 6 of 56 April 2014

Remember: The RAMPAGE and TOOLBOX modules extensively use routines and functions from the
Page#4 Library. Make sure the Library#4 revision “K” (or higher) is installed on your system or things
can go south. Refer to the Page#4 Library documentation to properly configure the Library#4 before
you start using it.

Function index at a glance.-

Without further ado, here are all 128 functions: two full-house FATs with the best tools in town.
Original authors are listed (to the best of my knowledge).

RAMPAGE Module: RAM Tools and Editors, KA & Buffer Management.

Function Name Description Input Output Author
‐RAMPAGE'X Header None Shows splash Lib#4 splash Nelson F. Crowle
A<>RG _ _ Swaps Alpha and Regs. prompts for RG# RG swapped Ángel Martin
A<>ST Swaps Alpha and Stack None ST swapped Ángel Martin
ARCLCHR ARCL Char FileName in Alpha Char appended to Alpha Håkan Thörngren
ARCLIP _ _ ARCL Integer Part decimal number in X ARCL integer part Frits Ferwerda
CLMM Clear Main Memory needs OK in Alpha Main Memory Deleted Zengrange
CLRAM Clears RAM needs OK in Alpha All RAM Deleted Raymond dTondo
CLXM Clear Extended Memory needs OK in Alpha EM deleted Zengrange
FLCOPY Copy File “Source,Destination” in Alpha File Contents copied Ángel Martin
FLHD File Header FileName in Alpha Header Address in X Ángel Martin
FLTYPE File Type FileName in Alpha Type in X Ángel Martin
GETST Get Status Rgs FileName in Alpha Restores all Status registers Ángel Martin
NRCLX _ _ non‐Normalized RCL Register# in prompt contents in X Syd Kelly
PEEKR NNN Recall Absolute address in X NNN in X Ken Emery
POKER NNN Store Absolute address in X NNN in Y Nelson F. Crowle
RAMED _ RAM Editor Address in M or PRGM pointer RAM Editor Zengrange
RAMEDIT _ RAM Editor Address in X or PRGM pointer RAM Editor Håkan Thörngren
RCLBM Recall Byte by M Address in M Byte in X Mark Power
READXM Reads EM from MassStg FileName in Alpha All EM Restored Skwid
RENMLFL Rename File OldName, NewName in Alpha File renamed Ángel Martin
RETPFL Re‐type File Old, New types in X File re‐typed Ángel Martin
RSTCHK Reset Checksum Program FileName in Alpha Checksum Restored Håkan Thörngren
ST<>Σ Swaps Stack and SRG None RG swapped Ángel Martin
ST<>RG _ _ Swaps Stack and RG prompts for RG# RG swapped Ángel Martin
SAVEST Save Status Registers FileName in Alpha All Status registers saved Ángel Martin
STOBM Store Byte by M Address in M, Byte in X Stores Byte Mark Power
WORKFL Get Work File none WorkFile name appended Sebastian Toelg
WRTXM Write EM to MassStg FileName in Alpha All EM written Skwid
X<>aNN NNN Exchange Absolute address in X NNN in Y Nelson F. Crowle
X<>BM Exchange Byte by M Address in M, Byte in X Exchanged values Mark Power
X<I>Y Swaps Ind(X) and Ind(Y) pointers in Y & X swapped values in Regs. Nelson F. Crowle
XQXM Execute XM Program File FileName in Alpha Program will execute Ross Wentworth
‐KA/BUF FNS Buffer Finder Buffer id# in X Yes‐No, skip if false Ángel Martin
ARCLBF _ _ ARCL Buffer Buf id# in prompt Buffer content to Alpha Ángel Martin
ASTOBF _ _ ASTO Buffer Buf id# in prompt Alpha to Buffer Ángel Martin
BF<>RGX _ _ Swap Buffer and Registers Buf id# in prompt Swaps Buffer and Regs. Ángel Martin
BF>ST _ _ Buffer to Stack Buf id# in prompt Buffer contents to Stack Ángel Martin
BFCAT Buffer Catalog none Enumerates all buffers Ángel Martin
BFHEAD Buffer Header Content Buffer id# in X Decodes Header Register Ángel Martin
BFLNG Buffer Length Finder Bufferid# in X Number of registers used Ángel Martin
BFRCL _ _ Recall Buffer from RG id# in X, prompts for RG# Buffer restored from RG Ángel Martin

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 7 of 56 April 2014

Function Name Description Input Output Author
BFSTO _ _ Buffer Address/Size id# in X, prompts for RG# Buffer Saved in RG Ángel Martin
BFVIEW _ _ Buffer View Buf id# in prompt Shows buffer registers Ángel Martin
BLIST Show Buffers none String with existing Buffers David Yerka
BUFHD Buffer Header Address Buffer id# in X Header Address in X Ángel Martin
CLBUF Clear Buffer by X Buffer id# in X Clears buffer Contents Ángel Martin
CRBUF Creates Buffer id#,size in X Creates Buffer Ángel Martin
DELBUF Deletes Buffer Buffer id# in X Deletes buffer Ángel Martin
GETBF Restores Buffer from EM FileName in Alpha Buffer restored Håkan Thörngren
GETKA Get Keys FileName in Alpha Key Assignments Restored Håkan Thörngren
KACLR Clear Key Assignments OK or OKALL in Alpha Deleted buffer(s) Hajo David
KALNG KA Length Finder None Number of registers used W&W GmbH
KAPCK Pack Key Assignments None Packed KA buffer Hajo David
KYOFF Key Assignment Off Press key at prompt KA suspended Frits Ferwerda
LKAOFF Suspend Local KA None Deactivates A‐J assignments Ross Cooling
LKAON Activate local KA None Reactivates A‐J assignments Ross Cooling
MRGKA Merge Keys FileName in Alpha Key Assignments Merged Håkan Thörngren
REIDBF Re‐issue buffer id Old, new id's in X Changes id# Ángel Martin
RESZBF Resize Buffer id#,size in X Buffer resized Ángel Martin
RGX>BF _ _ Registers to Buffer Buf id# in prompt Registers saved in Buffer Ángel Martin
SAVEBUF Saves Buffer in EM id# in X, FileName in Alpha Buffer Saved in EM Håkan Thörngren
SAVEKA Save Keys FileName in Alpha Key Assignments Saved Håkan Thörngren
ST>BF Stack to Buffer Buf id# in prompt Stack saved in Buffer Ángel Martin
VKEYS View Keys None Shows KA catalog Stephane Barizienne

TOOLBOX Module.- General System Utils and Advanced Programming.

Function Name Description Input Output Author
‐TOOLBOX 4 Header none Shows Lib#4 splash Nelson F. Crowle
ΣRG? Stat Regs Finder None Stat Regs Address in X Ken Emery
APPEND Append function none same as pressing ALPHA, Append Doug Wilder
BST^ non‐stop BST none lists prgm lines while pressed Nelson F. Crowle
CFX _ _ Clear Flag flag number in prompt flag status cleared (0‐55) Michael Katz
CRTN? Curtain Finder None Curtain Address in X N/A
CSST Continuous SST Program Pointer positioned. Program lines displayed Phi Trinh
CVIEW Continuous View non‐stop AVIEW Shows contents of Alpha Frits Ferwerda
DREG? Data Registers Finder None Current Size Ken Emery
DSP _ Sets decimal places Prompts for number settings made Sebastian Toelg
DSP? Recalls decimal places set none current decimal places in X Ángel Martin
FC?S _ _ Is flag set / set flag number in prompt does the logic Ken Emery
FS?S _ _ is flag clear / set flag number in prompt does the logic Ken Emery
FREG? Free Registers Finder None Available Main Memory registers Ken Emery
FSIZE? HPIL Media File Size File Name in Alpha HPIL File size in X Eramco?
GTEND Go to .END. none Goes to the permanent .END. Ken Emery
LASTP Last Program none Goes to last program in RAM Zengrange
NOP No Operation none Inserts a "F0" line in program Zengrange
PGCAT Page Catalog None Catalogs all Pages VM Electronics
PTCAT _ Port Catalog Port number (1,2,3,4) Catalogs ROM functions J.D. Dodin
READF Read Data File HPILName, EM Fname Copies data from HPIL to EM R. del Tondo
ROMCAT ROM Catalog ROM ID# in X Catalogs ROM functions J.D. Dodin
ROMLST Shows all ROM id´s none List in Alpha Ángel Martin
SFX _ _ Set Flag flag number in prompt Flag status set (0‐55) Michael Katz
SST^ Continuous SST set pointer in program Lists prgm lines while pressed Nelson F. Crowle
TGFX _ _ Toggle Flag flag number in prompt Flag status toggled (0‐55) Ken Emery
TGPRV _ Toggle Private Program name in Alpha Program Status Changed Sebastian Toelg
WRTDF Write Data File XMFName,ILFName in Alpha Copies data file to HPIL R. del Tondo

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 8 of 56 April 2014

Function Name Description Input Output Author
XQ>GO Pop Return Address none Destroys First Return Address Håkan Thörngren
XROM _ _/_ _ Input XROM function Promps for RR:FF Executes the function Clifford Stern
‐HACKER LAB Tests for subroutine RTN none YES/NO, skips line if False Doug Wilder
ADR? _ _ _ _ Address encoder 4‐digit address in prompt encoded NNN in X Doug Wilder
BCDBIN BCD to Binary BCD in X NNN in X Ken Emery
BINBCD Binary to BCD NNN in X BCD in X Ken Emery
BLANK? Tests page for blank pg# in X‐reg YES/NO Ángel Martin
CGO _ _ _ _ ?C GO encoder 4‐digit address in prompt result in display Doug Wilder
CHKSYS Check System none Checks ROM conflicts Ángel Martin
CHKROM _ _ Check ROM XROM Number Test result message HP Co.
CLBL Clear Block BBBB|EEEE in X as NNN Block cleared. Expects “OK” Friitz Ferwerda
COMPILE Compiles program Program name in Alpha All GTO/XEQ are compiled Frits Ferwerda
CPYPG _ _ Copy Page source in X, dest. In prompt Copies pg in x to pg in prompt Ángel Martin
CXQ _ _ _ _ ?C XQ Encoder 4‐digit address in prompt result in display Doug Wilder
DCODE _ _ _ Decode NNN in X / Prompt Hex in Alpha Clifford Stern
DISSST SST Disassembler Begin/End in prompts disassembled output VM Electronics
FDATA _ Function Data Prompts for Function Name Address, Type, asgn data in Alpha Klaus Huppertz
FNC? Function Stats XROM#,FNC# in X results in Alpha, X, and Y W&W GmbH
GETW Get Word Absolute ROM address in X Word Value in X as NNN Ángel Martin
HEX>VSM _ HEX to VASM Oct Prompts for Hex in Alpha Oct in Alpha in VASM format Ken Emery
HXENTRY _ Enter NNN Directly Prompts for Hex in Alpha NNN in X Clifford Stern
HEXIN _ Enter NNN Directly Prompts for Hex in Alpha NNN in X Håkan Thörngren
IOBUS I/O Bus Information 0,1,2, in prompt Free, Used, or banked pages Ángel Martin
JC JC Encoder distance in X result in display Doug Wilder ‐ Á. Martin
JNC JNC Encoder distance in X result in display Doug Wilder ‐ Á. Martin
NCGO _ _ _ _ ?NC GO Encoder 4‐digit address in prompt result in display Doug Wilder
NCXQ _ _ _ _ ?NC XQ Encoder 4‐digit address in prompt result in display Doug Wilder
NOPS Finds NOP´s BBBB|EEEE as NNN in X shows address and no. of NOPS Frits Ferwerda
PG? _ _ Page Stats Page number in prompt Pg# in prompt W&W GmbH
PGROOM Available Room in Page Page# in prompt total number of bytes left Ángel Martin
PGSIG _ _ ROM Signature Port number (dec) Trailing string in Alpha Ángel Martin
ROM? _ _ ROM Stats ROM id∙ in prompt Rom id# in prompt Frits Ferwerda
ROMED ROM Editor Prompts for address Edit mode Doug Wilder
SUMPG _ _ Checksum Calculation Prompts for Page number Checksum updated George Ioannou
VSM>HEX _ VASM Oct to HEX Prompt for Oct in Alpha Hex in Alpha Ken Emery
XQ>XR XEQ to XROM Program name in Alpha XEQ changed to XROM W&W GmbH

Now, take a breath and have a repeat look at the QRG’s above to realize there’s a lot of material to
cover ahead in the manual – something to look forward to, I hope. Perhaps you’re missing some of
the all-time favorites functions from the CCD Module, are you? Well, that’s not an overlook or
negligence on my part: the CCD has spawned an entire new module by itself, the AMC_OS/X Module
with the “best and the rest” of CCD-related material. You’re encouraged to check that one out in the
unlikely case you haven’t yet and aren’t using it as a permanent fixture on your 41 configurations.

Note: Make sure that revision “L” (or higher) of the Library#4 is installed.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 9 of 56 April 2014

Note: Make sure that revision “L” (or higher) of the Library#4 is installed.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 10 of 56 April 2014

2. RAMPAGE – General-purpose Utilities.

Let’s open up the manual with an easy selection of RAM-related utilities, for register exchange and
convenient block data handling.

A<>RG _ _ Swap ALPHA and Registers Initial RG# in prompt Ken Emery
A<>ST Swaps Alpha and Stack No inputs needed Ángel Martin
ARCLIP _ _ Appends Integer part to Alpha RG# in prompt Ángel Martin
ST<>Σ Stack swap with Stat Regs Uses current SREG setting Nelson F. Crowle
ST<>RG _ _ Stack swap with Data Regs. Initial RG# in prompt Angel Martin

• A<>ST and A<>RG are simple register exchange routines that swap the contents of the
Alpha registers (that is M, N, O, P) with the stack registers X, Y, Z, T o or with a register block
starting with the RG# input at the prompt respectively. This is nice to temporarily save the
stack in alpha for later reuse. Note however that register P is partially used by the OS as
scratch, so depending on what you do in between two executions of A<>ST the content of
the T register may have changed.

• ARCLIP appends to ALPHA the integer part of the number in register specified at the prompt.

Perfect to append indexes and counter values without having to change the display settings
(FIX 0, CF 29). This is similar to functions AINT, AIP, and ARCLI, except that these operate
on the X-register instead.

• ST<>RG and ST<>Σ are also register block exchange routines, which swap the stack with

your choice of data registers (4 registers in total) or with the statistical registers respectively
(five registers, including LASTX as well).

The existence of the highest-number register is always checked, resulting in the “NONEXISTENT”
error message if not available. Should that occur, you need to change the SIZE settings or make more
data registers as needed.

2.1.1. Using Non-Merged Functions in Programs.

Note that these prompting functions are programmable. When used in a program they take the
argument from the next program line, a technique known as “non-merged” program lines. This has
the obvious advantage of not using the X-register to hold the argument, which would defeat the
purpose of stack-related functions. If the second line is not a number, the function assumes zero for
argument.

For example, to swap the stack and data registers R00 to R03 simply use ST<>RG typing any
numbers for the prompt, they will we ignored in PRGM mode. To swap the Alpha {M,N,O,P} registers
and data registers R05 to R08 you need two program lines, as follows:

nn A<>RG
nn+1 5

This technique was first used on the HEPAX module, but this implementation is based on Doug
Wilder’s routines. Be aware that the preceding line cannot be a test function (YES/NO, skip if false) for
obvious reasons.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 11 of 56 April 2014

5.1.2. Clearing Memory – selectively or wholesale

CLMM Clears Main Memory Clears Data RGS, KA, buffers Zengrange
CLRAM Clears ALL RAM Same as MEMORY LOST (!) R. del Tondo
CLXM Clears X-Memory Clears all X-Mem files Zengrange
“VREG” View Registers Control word bbb,eee in X Ángel Martin

Use these functions carefully – there’s no way back and what you erase cannot be recovered (no
UNDO button!). To avoid unintentional uses, these functions expect the string “OK” or “OKALL” in
ALPHA. If that confirmation string isn’t there the execution will abort showing the error message
below:

• CLMM erases the calculator Main memory, including Stack & Data Registers, Programs, and
I/O Area - Key assignments and buffers (Alarms included). It will however leave X-Memory
untouched. Note that CLMM stores nulls into every register, and in addition all status
registers and flags are restored to default states. The size of program memory will be 219 on
an HP-41CX. Executing it from a running program will cause the program to stop – even if
that program is synthetically made to run in Extended Memory, and as such is not erased)
because the program pointer will be reset to point to the .END., causing the program to halt.

 is generated when executed.

• CLXM erases all files in extended memory, all gone for good! Note that this function is very
similar to CLEM, available in the AMC_OS/X and PowerCL modules – the only subtle
difference is that CLXM overwrites the contents of all existing Extended Memory registers
with nulls, whereas CLEM only erases the main X-Mem register but not the actual contents,
so at least in theory you could restore things if you’d made a backup of the header register
first (which in all practicality, nobody does of course).

 is generated when executed in RUN mode.

• CLRAM wipes off the complete calculator RAM, therefore like both above functions combined
together. This is similar to the MEMORY LOST condition indeed.

 is generated when executed in RUN mode

• VREG is a short FOCAL routine that sequentially shows the contents of the data registers

specified by the control word “bbb,eee” in the X-register. A short pause is made in-between
each display, you can stop it and resume it using R/S – This function is an example where
MCODE would not be of any real advantage.

Note: VREG was replaced by FLCOPY in the lasts version of the RAMPAGE module. See the
FOCAL listing in the appendix-1 if you’re interested.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 12 of 56 April 2014

Accessing Bytes and Registers Directly.

NRCLX Non-Normalized Data RG# RCL Data RG# in prompt Sid Kelly
PEEKR Absolute address RCL Absolute address in X-reg Ken Emery
POKER Absolute address STO Abs. adr in Y, content in X Ángel Martin
RCLBM Byte Recall by M Absolute address in M Mark Power
STOBM Byte Storage by M Abs. adr in M, content in X Mark Power
X<>BM Byte Exchange by M Abs. adr in M, content in X Mark Power
X<I>Y Indirect exchange by X and Y RG# in X and Y Nelson F. Crowle
SWAPR Non-normalized RG# Exchange Data RG# in prompt Ángel Martin

Use functions in this group to access individual registers or bytes within memory. The input arguments
can be either absolute addresses or the relative data register numbers. They are related by the
equation: ABS = RG# + R00#, where R00# is the absolute location of data register R00 – as returned
by the function CRTN? (the “Curtain” locator). Absolute addresses can range from zero to 0xFFF hex
(4,095 in decimal)

• NRCLX does a non-normalized RCL of the data register which number is entered in the
prompt; or in the X-reg if used in a program. The stack is lifted.

• SWAPR does a non-normalized exchange between the Y-register and the data register which

number is entered in the prompt; or in the X-reg if used in a program.

• X<I>Y is an all-indirect register exchange, using the RG# stored in X and Y. For example, to
exchange registers 13 and 32 you would use the following sequence (much more convenient
than using standard functions RCL IND, and X<>): 13, ENTER^, 32, X<I>Y

• RCLBM, STOBM, and X<>BM apply to byte-level handling (STO, RCL, <>) rather than to
whole registers. The byte value is expected in the X-reg. They use the ALPHA register M to
hold the byte absolute address as a string, according to the ZENROM convention. This
consists of two alpha characters which corresponding hex codes represent the memory
address (i.e. B:RRR in hex). Written by Mark Power, and published in Data File V7 N8 p24.

The NONEXISTENT error indicates that the byte value in X is greater than 255, or that the
byte position in M is greater than 6, or that the specified register does not exist.

For example, to recall the contents of flags 0-7 (sixth byte in status register 14) and clear
them, perform the following: X will contain old values (in decimal), and flags 0-7 will be clear

HEXIN “600E”, R/S, STO M, CLX, XEQ “X<>BM” , or alternatively
CLA, 96, XTOA, 14, XTOA , CLX, XEQ “X<>BM”

• PEEKR can be compared to the RCL function, however it is possible to read the contents of

any register without normalization into the X register. The register to be read is entered as
absolute address in to X. The stack is lifted. PEEKR works for every existing register address
from zero to 1,023. If we want to use relative data register numbers with PEEKR, the
absolute address of the data registers must be first obtained – using function CTRN?

• POKER writes over the register which absolute address is specified in the Y register, with the

NNN contents of the X register. POKER works for the entire existing register range of the
calculator. The stack registers remain unchanged, as long as they are not specified by the
absolute address in Y. Since POKER can change any register, this function should only be
employed if the calculator structure is well understood. Otherwise it may result in unwanted
changes in programs, data registers, status registers, etc. or even a MEMORY LOST condition.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 13 of 56 April 2014

41CL Example: Creating second sets of Main and Extended Memory.

A nice utilization of these functions on the 41CL are the examples shown below to create backups of
your complete Main memory and Extended memory sets – located in RAM block 0x801 (that is, above
the standard calculator RAM space located at 0x800).

Because PEEKR and POKER accept input addresses higher than the standard calculator range,
they’re well suited for the task. Basically all we need to do is copy the contents of the Main/Extended
memory from its current addresses (refer to figure in page 16) to addresses located 1k above them.
In fact, one can have an alternate set of memory and “swap” between both as needed, duplicating so
the calculator’s on-line capacity. An additional benefit is that the secondary set will not be affected in
case of a MEMORY LOST, thus you can use it as a safety backup as well.

Main memory is trickier than extended in that the status registers should also be included in the
backup to ensure a properly configured FOCAL chain and memory configuration. These must include
register 13(c), and ideally also 10(+), 14(d) & 15(e) for compatible flags and key assignments
definition (together with the KA registers in the I/O area).

Below are the programs to swap the sets of Main and Extended memory at your convenience,
MMSWAP and XMSWAP respectively:

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 14 of 56 April 2014

Stating the obvious, MMCOPY cannot be run from main memory

And the program below copies the main memory to the higher location for a backup, or to prepare the
destination for successive main memory swapping (needs to “prime the pump” to make sure the
second set is compatible with the OS).

! – or you’ll get nice pyrotechnics

Note: you could also do the initial step copying the complete 4k block using YMCPY, with the

M

and a guaranteed ML event. Make sure you run it from ROM (HEPAX or similar), or even from X-
Memory if you are up to those tricks.

following string in ALPHA: “800>801”. This would be faster than MMCOPY but will not discriminate
ain Memory from Extended one, so both will be backed up.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 15 of 56 April 2014

RAMEDIT RAM Editor Uses GETKEY [KEYFNC] Håkan Thörngren
RAMED RAM Editor Uses [NEXT] ZENROM

RAM editors are no doubt amongst some the best examples ever written for the HP-41 system, and as
such not one but two are included in the module.

2.2.1. Editing RAM memory with RAMEDIT.

Written by MCODE master Håkan Thörngren, this powerful RAM editor is my preferred choice, as it
rivals with (and exceeds it in several aspects) the ZENROM implementation. It was first published in
PPCJ V13 N4 p26.-, you’re encouraged to check his original contribution for a complete description of
the functionality and usage.

The starting register address is taken from the X register in RUN mode either as a decimal value
between 0 and 999, or an a NNN with the address in the rightmost two bytes The latter form alloes
for a direct entry to a byte value within the register. In PROGRAM mode it uses the current program
pointer instead.

The display shows two distinct fields, with the nybble & byte section shown on the left side and the
actual register content shown on the right – as a 7-digit scrollable field controlled by the USER and
PRGM keys – very much like the CX’s ASCII file editor ED.

Nybble D (the 13th within the register) is selected upon start-up, with the cursor centered in the
middle of the field and its value blinking on the display. At this point you can use the control
characters to move between both areas and within the fields, or the digit keys plus A-F to input the
nybble HEX values being edited.

Scrolling includes a tone to signal the wrap-around condition within the register, as the nybble being
edited is updated in the address field on the left. A real tour-de-force and a masterful implementation
without any doubt.

The screens below show a couple of examples, editing the leftmost nybble of the Y register (address:
D002) and the rightmost digit of the X register (address 0003). The screenshots don’t capture its
magic; you really need to use it to appreciate its simple and powerful functionality.

The control keys for RAMEDIT are as follows:

[USER]: moves down to the previous nybble or position within the field
[PRGM]: moves up to the next nybble or position within the field
[+]: moves up to the next register
[-]: moves down to the previous register
[.]: the Radix key moves between both fields, use it to change the register address
[1]-[9],[A]-[F] the nybble value being edited
[<-] back-arrow cancels out and exits the editing
[ON]: turns the calculator OFF

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 16 of 56 April 2014

A couple of remarks are in order:

• RAMEDIT is a very powerful tool: the contents of all memory can be edited, including the
Status Registers, I/O Buffers, KA registers, and of course X-Memory files (see memory maps
below). Be very careful not to alter the contents of those system registers inappropriately to
avoid MEMORY LOST or system crashes.

• RAMEDIT uses a key-detection technique more power demanding than the Partial Key

Sequence, thus will drain on the battery life if used extensively. Do not leave it run idle for a
prolonged time.

Exercise caution in manipulating status register contents: Altering the contents of registers “+” and
“a” though “e” can lead to a MEMORY LOST condition or to a system crash if the register contents are
improperly altered.

Alteration of the “cold start constant” 169 in register “c” will always result in MEMORY LOST. Before
experimenting with these registers the user should be thoroughly familiar with the theory and
practical applications of synthetic programming.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 17 of 56 April 2014

2.2.2. Editing RAM memory with RAMED. (From the ZENROM)

The RAM Editor from the ZENROM provides an editor function, similar to that of the HP-41CX text file
editor ‘ED”, which permits review and replacement of any bytes, or optionally insertion of bytes in
program memory.

RAMED also redefines the HP-41 keyboard during execution to allow forward or backwards
movements through memory in byte or register increments by pressing the [USER] and [PRGM]
keys, (for bytes) and their shifted version for registers.

RAMED takes the start address from status (ALPHA) register M in RUN mode, or from the program
counter (status register b) in PRGM mode. If not in PRGM mode, it returns the last reviewed address
to M upon exit, or if in PRGM mode, exits at line where it entered (no change to the PC).

When used inside Program Memory area, pressing the [I] key toggles between replace and insert
mode – signified by the “1” annunciator being lit in the display. During entry of hexcode values, the
back arrow key will cancel the first digit input. By pressing and holding the second digit, the whole
hexcode entry is nullified – as it happens during normal HP-41 key-pressing. To exit from RAMED,
press the [ON] key.

A Quick Comparison.

The figure below compares the redefined keyboards for RAMEDIT (on the left) and RAMED (on the
right). Perhaps the most relevant differences are RAMED’s ability to insert bytes in program mode,
and the navigation controls - which in RAMEDIT’s case allow changing the register being edited on the
fly.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 18 of 56 April 2014

Using RAMED Outside Program Memory

The following section is taken from the ZENROM Manual.

RAMED can prove very useful for examination of memory and system status register structures plus
provide the possibility to directly modify or replace their byte contents. For example, you can directly
modify the key=assignment information.

To use RAMED out of program mode, the starting address is taken from Alpha – more specifically the
rightmost four hex-digits of register M, which are the rightmost two characters as seen in the display.
By this you can specify the exact register and byte within that register at which you wish to start
editing.

This means that if you know the absolute address of the place in HP-41 memory that you want to edit
(see the memory map in previous page), then simply use the synthetic text entry feature provided by
functions CODE, HEXIN, or HEXKB (any of them will do) followed by STO M. Once the two
characters are in ALPHA you can execute RAMED, and you’ll be editing memory, starting at the
address specified.

As an example, let’s take a look at the key assignments registers, which have a format as follows:

Byte # 6 5 4 3 2 1 0
Bytes: F0 A7 20 34 04 61 83

Bytes Description
0 Keycode of key to which assignment is made
1 & 2 Assignment information
3 Keycode of key to which assignment is made
4 & 5 Assignment information
6 Register ID to specify a KA register (F0 hex)

Suppose you wish to edit the lowest key assignment register, which is at address 0C0, and you want
to go in at byte 6 of that register (that should contain F0). In standard RAMED notation this is address
“6:0C0” – where the “:” character separates the byte from the register address.

To do this, execute HEXIN (or HEXNTRY) and type “60C0”, followed by R/S, STO M. Then execute
RAMED. Assuming there are no key assignments, the display will now show:

You can now begin editing the assignment register. Remember that you will also need to set the key
bit-maps in register 10(+) for un-shifted keys, and 15(e) for shifted keys; depending on the
assignment.

Note: I don’t know you but I always felt a bit shortchanged with this example – which basically
doesn’t tell you how to edit the key bit-maps. Also the manual refers to another example where
there’s a circular reference to the status registers structure, so let’s include these in here as well.-

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 19 of 56 April 2014

Basically the trick consists of setting the appropriate
bits in status register 10 (“|-“) and 15 (“e”),
depending on whether it’s a un-shifted or shifted
assignment.

Each bit within those registers represents one key on
the keyboard, as per the following mapping – linking
the key bitmap on the left with the bit position.

So you’d need to work out which bit needs editing,
and come up with the equivalent nybble codes to
write on the appropriate status register, using
RAMED of course.

Far from an automated approach, to say the least, but
as they say “with power comes responsibility”, and
after all RAMED is not meant to be used unless you
know your way around the system.

Remarks:-

Exercise caution in manipulating status register contents: Altering the contents of registers “+” and
“a” though “e” can lead to a MEMORY LOST condition or to a system crash if the register contents are
improperly altered.

Alteration of the “cold start constant” 169 in register “c” will always result in MEMORY LOST. Before
experimenting with these registers the user should be thoroughly familiar with the theory and
practical applications of synthetic programming.

Even more interesting considerations apply to the utilization of status registers during program
execution. Remember that register “b” holds the current program pointer, i.e. it’s a powerful way to
jump to other programs, or even ROM space without any global label.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 20 of 56 April 2014

This group includes functions related to the X-Memory control and enhanced functionality.

ARCLCHR ARCL Char from ASCII file Appends character to ALPHA Håkan Thörngren
FLHD File Header Returns address to X Ángel Martin
FLCOPY File Copy ‘Source,Destination” in ALPHA Ángel Martin
FLTYPE File Type Gets file type to X Ángel Martin
GETST Get Status Registers from File Status FileName in Alpha Ángel Martin
READXM Overwrites all XM from IL File FileName in ALPHA Skwid
RENMFL Rename X-Mem File “OldName,NewName” in ALPHA Ángel Martin
RETPFL Retype X-Mem File New type in X, FileName in Alpha Ángel Martin
RSTCHK Reset Checksum Program FileName in Alpha Håkan Thörngren
SAVEST Saves Status Registers FileName in ALPHA Ángel Martin
WORKFL Gets Work FileName Appends name to ALPHA Sebastian Toelg
WRTXM Writes all XM to IL File FileName in ALPHA Skwid
XQXM Executes a Program File Program FileName in ALPHA Ross Wentworth

The appendix-2 has a detailed description of the different X-Mem file header structures, which
should help to better understand the functionality provided by these functions. The following short
descriptions summarize the most important points for each of them:

• ARCLCHR appends the character at the current pointer position of the current ASCII file.

The file Pointer is advanced one position, ready to retrieve the next character if needed.
Originally published in PPCJ V13 N7 p19

• FLHD will return the absolute address (in decimal) for the Header register of the file named

in Alpha (or the current file if blank). This is useful as input for PEEKR and POKER, RAMED
and other memory editing functions.

• FLTYPE returns the type of the file which name is given in Alpha. Valid file types are shown
in the table below, note the five custom extensions supported by the AMC_OS/X module:

File PRGM DATA ASCII Matrix Buffer Keys “T” “Z” “Y” “X” “H”

Type 1 2 3 4 5 6 7 8 9 10 11

• RENMFL is a handy utility that renames an X-Mem file. The syntax is the same used by
RENAME for the HPIL Disks, that is the string “OLDNAME,NEWNAME” must be in alpha. The
function will check that the OLDNAME file exists (“FL NOT FOUND” condition otherwise), and
that there isn’t any other filed named NEWNAME already (“DUP FL” error message).

• RETPFL is a bit of a hacker trick: it modifies the file type information for the file named in

Alpha, changing it to the value in X. This is actually useful in a number of circumstances, like
sorting a Matrix file using SORTFL (which only works for DATA files): just change the type to
“2”, sort its contents with SORTFL, and change it back to “4”. You can use any value from 1
to 14 in X, other values will cause “FL TYPE ERR” conditions

• RSTCHK is a rescue function that restores the checksum value for a PROGRAM file. Use it if

this byte gets corrupt or when you alter the program file manually (hacker beware!), so the
file will recover its “valid” status. See original article on PPCJ V13 N2 p14

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 21 of 56 April 2014

• XQXM is a PROGRAM File Execute - direct execution of the program. Note that all GOTO’s

must be pre-compiled, and no calls to other programs may exist within the file.

• WRTXM and READXM are used to write/read the complete contents of the X-Memory
to/from a disk drive over HPIL. These functions exercise the full capability of the system, and
provide a nice permanent backup for your XMEM files. Note that only the non-zero content
will be copied, thus the resulting disk file size will not be larger than required - in other
words, it won’t always copy all XMEM even if zero, like other FOCAL implementations of the
same functionality can only do. These functions are taken from the Extended-IL ROM, written
by Ken Emery’s alter ego Skwid.

• WORKFL will append the name of the current file (a.k.a the workfile) to ALPHA. Easy does it!

This becomes very useful when working with MATRIX files, see the SandMatrix Module if
interested.

• FLCOPY is a handy utility that allows copying complete like-to-like files of any type. Requires

both file names in Alpha, separated by a comma: “from,to” (or “NAME ERR” will occur). Both
files must exist in X-Memory (or “FL NOT FOUND” will occur), be of the same type (or “FL
TYPE ERR” will occur), and have the same size (or “FL SIZE ERR” will occur). The contents of
the source file will be copied to the destination. The File Names and Headers will not change.

• SAVEST and GETST are special in a couple of ways. For starters because their subject is the
complete Status Registers, i.e. the “Chip0” of the system RAM. Use SAVEST to make backups
of the entire status registers area to XMEM, including the stack, flags, Alpha, and the other
control registers. Use GETST to restore the status registers back to the same state. For
obvious reasons the file size will always be 16. They’re also special because they use a file
type 7, which is properly recognized as type “T” by the CAT’4 implementation in the AMCOS/X
module:

A couple of observations are in order:

o The X-Mem file name is expected in ALPHA, thus this imposes a little limitation on
things. You can however add a comma to the FileName and write additional text after
it – which will be ignored by the functions.

o Register 12(b) stores the program counter (PC). Executing GETST in a program will

overwrite the current PC, and the program execution will be “lost” – going to the
same place it was at when the status registers were saved. There are more tricky
issues using these in PRGM mode, like the question of the subroutine stack and the
program line. Suffice it to say it’s not really advisable – yet I resisted the idea to make
it non-programmable, but users beware!

o Saving and restoring the Key Assignments involves two separate actions. GETST only

restores the key mappings in registers 10(|-) and 15(e), but it doesn’t have anything
to do with the actual KA registers in the I/O area. Make sure you use SAVEKA and
GETKA instead for this need, or the key assignments will be scrambled. See the KA
utilities section.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 22 of 56 April 2014

3. RAMPAGE: KA / Buffer Functions

The table below shows the Key Assignments related functions. Typically no inputs are required
(no need to identify the “buffer type” in this case), with a few of exceptions:

ASG _ Multi-byte ASN Supports synthetics Frits Ferwerda
GETKA Gets KA from File FileName in Alpha Håkan Thörngren
KACLR Clears KA / Buffers OK/OKALL in Alpha Hajo David
KALNG KA Length No inputs Hajo David
KAPCK Packs KA Area No inputs Hajo David
KYOFF Deletes KA from Key Prompts for Key Frits Ferwerda
LKAOFF Deactivates Local KA No inputs Gordon Pegue
LKAON Activates Local KA No inputs HP Co.
MRGKA Merge KA to File FileName in Alpha Håkan Thörngren
SAVEKA Save KA to File FileNAme in Alpha Håkan Thörngren
VKEYS View Keys Enumerates KA PANAME ROM

• ASG is another example of first-class MCODE programming: imagine being able to directly
input multi-byte functions (even with synthetics support) into the ASN prompt, so to assign
“LBL IND e”, or “RCL M” to a key - not using key codes or byte tables? Well no need to
imagine it, just use ASG instead. This function is taken from the MLROM, and it resides
completely in the Page#4 Library, with only the FAT entry in the RAMPAGE calling it. You’re
encouraged to refer to the MLROM documentation for further details.

Note that ASG turns the ALPHA mode ON automatically upon execution, so there’s no need to
press it twice – this is an improvement over the standard HP-41 OS behavior, that now can be
used across all Library#4-aware modules.

Example:- Assign the synthetic function ‘RCL IND e” to the LN key.

A quick look into the byte table determines that the byte values required are in Hex 90,FF and the
key code is 15. Armed with that information it’s easy to just fill the prompts in the OX/S ASN
function: ASN, [H], 90, FF, 15

Alternatively you can execute the ASG function and spell out the function name. Note that the
ALPHA mode is turned on automatically for this:

ASG, R, C, L, space, I, e (lower case)

In either case executing CAT”6 will show the function assigned with its correct name:

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 23 of 56 April 2014

• KACLR is used to erase all Key Assignments and possibly also the buffers. It expects a
confirmation string in Alpha. With “OK” only the KA will be erased (so equivalent to CLKEYS
in the CX); but with “OKALL” the complete IO area will be purged (that is the KA registers and
ALL buffers).

• KALNG returns the number of registers used in the I/O area for key assignments. So you
could use it before and after calling KAPCK to see the effect of the packing (if anything at
all). If no key assignments exist then the result will be zero.

• Saving and getting KA in/from Extended Memory with SAVEKA, GETKA and MRGKA also
expect the FileName in Alpha. GETKA will completely replace the existing key assignments
with those contained in the file, whilst MRGKA will merge them – respecting the unused keys
so only the overlapping ones will be replaced. Same error handing is active to avoid file
duplication or overwrites. Like their Buffer counterparts they will check for available memory,
showing “NO ROOM” when there isn’t enough for the retrieval..

• LKAON and LKAOFF are meant to be used together, to temporarily suspend the local key

assignments (on keys A-J) so that it doesn’t interfere with local program labels. These
functions only modify the key mappings in status registers 10(”|-“) and 15(“e”), not altering
the actual KA registers.

• KAPCK will pack the KA registers, compacting the voids (blanks) left behind when un-

assigning individual function keys. The diagram below shows that each KA register can hold
up to two key assignments, structured as two nybbles for the key code and four for the
function id#. It also shows that they always have 0xF0 in nybbles 13 and 12 – which explains
why the value 15 is not available as buffer id#.

F 0 C O D E K Y C O D E K Y
13 12 11 10 9 8 7 6 5 4 3 2 1 0

• KYOFF is a selective KA removal function. It prompts for the key you wish to remove any
assignments from, either un-shifted or shifted. Upon completion the assignment is gone
entirely, i.e. cannot be “reactivated”. This function is taken from the ML ROM, compiled by
Firtz Ferwerda and Meindert Kuipers.

• VKEYS is a KA Catalog alternative to the CX or the OS/X implementations. It shows a
sequential list of all key assignments in the system, making short pause in-between entries.
No control characters (or hot keys) are available. The output will be sent to a printer is
connected and set in NOR/TRACE modes. No input is required. VKEYS is taken from the
PANAME ROM, therefore credited to Stephane Barizienne. It is an MCODE equivalent to the
PPC routine ‘VK”, in case you remember.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 24 of 56 April 2014

Fascinating things these Buffers, so challenging and elusive they are that prompted the development
of the BUFFERLAND Module. Most of its functions are incorporated in here as well, as follows:

BFCAT Buffer Catalog Enumerates Buffers Ángel Martin
BFLST Lists Buffers Shows list in Alpha Ángel Martin
BFLNG Buffer Length Buffer id# in X David Yerka
BUFHD Buffer Header Displays all registers Ángel Martin
BFHEAD Decodes buffer header Shows decoded header Ángel Martin
CLBUF Clears Buffer contents Zeroes all data Ángel Martin
CRBUF Creates Buffer Address to X Ángel Martin
DELBUF Deletes Buffer ID#,SIZE in X Ángel Martin
GETBF Gets buffer from File Buffer id# in X Håkan Thörngren
SAVEBF Save Buffer to File FileName in Alpha, id in X Håkan Thörngren
REIDBF Re-issue Buffer id# OLDID,NEWID in X Ángel Martin
RESZBF Resize Buffer ID#,SIZE in X Ángel Martin

A quick summary recap on “buffer theory” will help understand this section better:-

1. Buffers reside in the I/O area of RAM, which starts at address 0x0C0 and extends up until the

.END. register is found. Typically they are located right above the Key Assignments registers,
the only exception being buffer-14, used by the Advantage Pac to hold the SOLVE and INTEG
data (expected to be in fixed addresses by the code). Note that this implies that the actual
location of a buffer will be dynamically changed when Key assignments are made or removed;
when timer alarms are set or run, and possibly also when other buffers are removed - either by
the OS housekeeping tasks or using the buffer functions.

2. Each buffer has a header register (at the bottom) that holds its control data. The structure of
the header varies slightly for each buffer, but all must have the buffer type (a digit between 1
and E) repeated twice in nybbles 13 and 12, as well as the buffer size in nybbles 11-10
(maximum 0xFF = 255 registers). The rest are buffer-dependent; for example the 41Z buffer
holds the data format (RECT or POLAR) in nybble 9, and the LastFunction id# in nibbles 5-3.
The HP-IL Devel buffer uses nybbles 9-7 to store the pointer value, and nybble 3 to hold the
pointer increment type (MAN or AUTO).

T T S Z A D R
13 12 11 10 9 8 7 6 5 4 3 2 1 0

3. Some buffers write the initial address location in the [S&X] field (nybbles 2-0) but this is of
relative use at best, since the buffer can get re-allocated as mentioned above. In fact, BFCAT
uses that field to record the distance to the previous buffer in the I/O area, necessary to keep
tabs with the RAM structure in SST/BST operation mode.

4. When the calculator awakens from Deep Sleep the OS erases nybble 13 from all buffer headers
found. The execution is transferred to the Polling Points of those modules present, which
should re-write the buffer type in that nybble for those buffers directly under their
responsibility. At the end of this process (when all Modules have done their stuff) the OS
performs a packing of the I/O area, deleting all buffers not preserved” – i.e. with nybble 14 still
holding zero.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 25 of 56 April 2014

5. Under some rare circumstances a given buffer can exist in memory as a “left-over” not linked
to any module (i.e. nybble 13 in the Header register is cleared). The OS upon the next
PACKING operation will reclaim these orphan buffers, so their life span is very short – get what
you need from it before it’s gone! Note that to denote this contingency, BFCAT will add a
question mark to the buffer id# in the display. The screen below shows an example of an
“orphan” buffer id#5 on V41:

With these preambles made let’s delve into the description of buffer functions. The following general
remarks and individual comments apply:-

When the function operates on a given buffer its id# is expected to be in the X register. This is the
case for BFLNG and DELBUF. The X-MEM Save/Get functions SAVEBF and GETBF also expect
the File Name in Alpha.

Note that while it is possible to have multiple files with different (or the same) contents of one
specific buffer id#, only one buffer id# can exists in the I/O RAM area at a time.

3.2.1 Creating, Retyping and Resizing Buffers.

b3 B3 Header

b2 B2 Header

b1 B1 Header

KA regs
0C0

B3

B2

B1

RAM

The input for CRBUF and RESZBUF is given in X as a combined
decimal number: ID#,SIZE. The integer part represents the
buffer id# (must be between 1 and 14), and the decimal part its
size in registers, including the header (must have three decimal
places). Maximum size is 255 registers; larger values (as well as
zero) will trigger “DATA ERROR” messages.

This convention also applies to REIDBF, so the new id# must be
expressed with three significant digits. For example, to change
buffer #9 into buffer #10 we type: 9,010 ; XEQ “REIDBF”

Note that those buffers created with CRBUF are somehow
“extemporaneous” (i.e. not managed by dedicated modules) -
thus they’ll be short-lived by nature, because they won’t survive a
power-off cycle.

The operation of RESZBF is compatible with KA and multiple
buffers existence. Note however that while upsizing a buffer will
be smooth and will keep the previous buffer contents, downsizing
it will cause the loss of the data contained in the removed
section.

CRBUF, RESZBF as well as GETBF will check for available
memory in the RAM I/O area, showing “NO ROOM” when there
isn’t enough room RAM to proceed.

3.2.2. General Buffer Utilities.

The section header –KA/BUF FNS is a “stealth” access for BUF?, which checks for the existence
of a buffer with id# in the X register. When executed in RUN mode the result will be YES/NO shown
in the display – and if run in a program it’ll follow the “do if true” rule, skipping the next program
line if the buffer is not present in the system.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 26 of 56 April 2014

BFLST is a poor-man’s version of the buffer catalog, showing a short list in Alpha of the buffer
id#’s currently present in the system; (lean and compact, see example below):

CLBUF clears the buffer contents (i.e. zeroes all registers) but does not delete the buffer. The
buffer is still available and will show in the buffer catalog.

DELBUF will remove the buffer with id# in X. It works simply by clearing the nybble 14 in the
buffer header register, and then calling the OS routine [PKIOAS] to reclaim the registers previously
used by it – so no “uncommitted” buffers are left behind. This function is equivalent to CLB,
available in the CCD Module and its derivatives (like the AMCOS/X). Also available in those ROMs is
function B?, to test the existence of a buffer.

BUFH and BFHEAD are related functions. BUFHD will recall (as a NNN) the contents of the
header which id# is specified in X. BFHEAD goes one step further and will automatically decode
the contents into its HEX equivalent. It will be placed in ALHA. You can think of BFHEAD as the
combination of BUFHD and DCD together.

SAVEBF and GETBF are used for saving and Getting buffers in/from Extended memory. They
follow the same convention used for other file types, with the buffer id# in X and the FileName in
Alpha. Error handling includes checking for duplicate buffer (“DUP BF”), buffer existence (“NO
BUF”), as well as previous File existence (“DUP FL”).

3.2.3. Buffer Data Exchange functions

This function group deals with data transfer between Buffers and Main memory.

ARCLBF Appends buffer to ALPHA Buf id# in prompt Ángel Martin
ASTOBF Stores ALPHA in Buffer Buf id# in prompt Ángel Martin
BF<>RGX Swaps w/ Data Registers Id# in prompt, RG# in X Ángel Martin
BF>ST Dumps Buffer to Stack Buf id# in prompt Ángel Martin
BFVIEW Views buffer contents Buf id# in prompt Ángel Martin
RGX>BF Copies Data Regs to Buf Id# in prompt, RG# in X Ángel Martin
ST>BF Copies Stack to Buffes Buf id# in prompt Ángel Martin

Pretty obvious in their scope, with almost self-explanatory names. They all use a prompt to input the
buffer id#, and the X-register should have the first register of the block when data registers are
involved (not needed for ALPHA or Stack destinations).

In addition to the usual “NO BUF”, and “DUP BUF” messages - if the buffer is longer/shorter than the
source/destination, only the fitting registers will be transferred and an “END OF BUF” message will be
shown. Register existence will be performed as well, returning the “NONEXISTENT” error if not
available. You know what to do.

They pretty much cover all contingencies, except perhaps the BF>RGX case. You can use the
sequence of BF<>RGX and RGX>BF together for that case.

But we’re not done yet: in the tradition of leaving the best for last, let’s see the Buffer Catalog to end
this section.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 27 of 56 April 2014

3.2.4. Buffer Catalog (*)

BFCAT Buffer CATalog Hot keys: R/S, SST, SHIFT, D, H Ángel Martin

[D] Deletes Buffer In manual mode Asks Y/N?
[H] Decodes Header register In manual mode

This function is very close to my heart, both because it was a bear to put together and because the
final result is very useful and informative. It doesn’t require any input parameter, and runs
sequentially through all buffers present in the calculator, providing information with buffer id# and
size.

HP-41 buffers are an elusive construct that is mainly used for I/O purposes. Some modules reserve a
memory area right above the KA registers for their own use, not part of the data registers or program
memory either. The OS will recognize those buffers and allow them to exist and be managed by the
“owner” module – which is responsible to claim for it every time the calculator is switched on.

Each buffer has an id# number, ranging from 1 to 14. Only one buffer of a given id# can exist, thus
the maximum number present at a given time is 14 buffers – assuming such hoarding modules would
exit – which thankfully they don’t.

For instance, plug the OS/X module into any available port. Then type PI, SEED, followed by BFCAT
to see that a 2-register buffer now exists in the HP-41 I/O area – created by the SEED function.

 id#=5, buffer at address 194, size=2, properly allocated.

Suppose you also change the default word size to 12 bits, by typing: 12, WSIZE. This has the effect
of increasing the buffer size in one more register, thus repeating BFCAT will show:

 id#=5, buffer at address 194, size=3, properly allocated.

Say now that you also plug the 41Z module into a full port of your CL. Just doing that won’t create the
buffer, but switching the calculator OFF and ON will – or alternatively execute the -HP 41Z function.
After doing that execute BFCAT again, then immediately hit R/S to stop the listing of the buffers and
move your way up and down the list using SST and BST. You should also see the line for the 41Z
buffer, as follows:

 id#=8, buffer at address 197, size=12, properly allocated.

If the module is not present during the CALC_ON event (that’s to say it won’t re-brand the buffer id#)
the 41 OS will mark the buffer space as “reclaimable”, which will occur at the moment that PACKING
or PACK is performed. So it’s possible to have temporary “orphan” buffers, which will show a question
mark next to the id# in the display. This is a rather strange occurrence, so most likely won’t be shown
– but it’s there just in case.

Perhaps the best example is the Time module, which uses a dedicated buffer to store the alarms data.
Other HP modules use them to temporarily store scratch data, like in the HP-IL Development Module
for the IL frame codes (functions MONITOR and SCOPE); or the Advantage Pac as scratch area for
calculations (used in functions SOLVE and INTEG).

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 28 of 56 April 2014

The table below lists the well-known buffers that can be found on the system:

Buffer id# Module / EPROM Reason
1 David Assembler MCODE Labels already existing
2 David Assembler MCODE Labels referred to
3 Eramco RSU-1B ASCII data pointers
4 Eramco RSU-1A Data File pointers
5 CCD Module, Advantage Seed, Word Size, Matrix Name
6 Extended IL (Skwid) Accessory ID of current device
7 Extended IL (Skwid) Printing column number & Width
8 41Z Module Complex Stack and Mode
9 SandMath, PowerCL Time Seed, Last Function data
10 Time Module Alarms Information
11 Plotter Module Data and Barcode parameters
12 IL-Development; CMT-200 IL Buffer and Monitoring
13 CMT-300, FORTH-41 Status Info, FORTH Code
14 Advantage, SandMath INTEG & SOLVE scratch
15 Mainframe Key Assignments

The id# 15 is not really a buffer type, but reserved for the key assignment registers.

BFCAT has a few hot keys to perform the following actions in manual mode:

[R/S] stops the automated listing and toggles with the manual mode upon repeat pressings.
[D] for instant buffer deletion – there’s no way back, so handle with care!
[H] decodes the buffer header register. Its structure contains the buffer ID#, as well as

some other relevant information in the specific fields - all buffer dependent.
[V] Views the contents of the buffer, sequentially showing its registers in the display
[SHIFT] flags the listing to go backwards – both in manual and auto modes.
[SST]/[BST] moves the listing in manual mode, until the end/beginning is reached
[<-] Back Arrow to cancel out the process and return to the OS.

Like it’s the case with the standard Catalogues, the buffer listing in Auto mode will terminate
automatically when the last buffer (or first if running backwards) has been shown. In manual mode
the last/first entry will remain shown until you press BackArrow or R/S.

Should buffers not be present, the message ”NO BUFFERS” will be shown and the catalog will
terminate. Note also that the catalogue will be printed if in NORM/TRACE mode, producing a record of
all buffers present in the system.

(*) CATalog functions are notoriously complex and take up a significant amount of ROM space – but if
you’re like me you’ll like to have good visibility into your machine’s configuration. Therefore you’d
hopefully agree with me that the usability enhancements they provide make them worthwhile the
admission price.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 29 of 56 April 2014

 4. TOOLBOX: System Information Utils.

The first group of functions in the TOOLBOX can be described as “General Information” utilities. Use
them to retrieve system set-up and configuration details.

ΣRG? Stat Regs Finder Stat Regs Address in X Ken Emery
CRTN? Curtain Finder Curtain Address in X Nelson F. Crowle
DREG? Data Registers Finder Current Size Ken Emery
DSP _ Sets decimal places Input dec# in prompt Sebastian Toleg
DSP? Decimal Places Finder decimal places in X Ángel Martin
FREG? Free Registers Finder Main Memory Regs Ken Emery

• ΣRG? Returns the current location of the Statistical Registers - i.e. those used by the
Statistical functions to accumulate the data pairs. Basically it’s identical to the CX function
ΣREG?.

• CRTN? Returns to X the absolute address of the curtain (i.e. separation between program

and data registers). It is also the absolute address of data register R00. No input value is
required.

• FREG? Returns to X the number of available (free) program registers in Main Memory. No

input value is required. The general equation is: Total Registers = (Data + Program) Regs;
where Total Regs = 512 on the CV and CX models.

• DREG? Is another SIZE finder, slightly faster than the native version SIZE?

• DSP? is used to return the number of decimal places currently selected in the display. This is
independent from the decimal mode, FIX / SCI / or ENG.

• DSP is the reverse function: use it to specify the number of decimal places shown in the
display, between 0 and 9. Input the number in the prompt or in the X-register if used in a
program – all without changing the FIX/SCI/ENG mode. The prompt will be maintained is an
invalid input is entered.

Note that the storage location for the details retrieved by some of these functions is the status
register 13(c), as per the table below:

Σ R G Scratch 1 6 9 R 0 0 E N D
13 12 11 10 9 8 7 6 5 4 3 2 1 0

Whereas the information for the number of decimal places to display (from zero to 15 theoretically,
although the display only has 10 physical positions) is held in the flags register, specifically flags 36 to
39 (see table on next page for details).

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 30 of 56 April 2014

4.1.2. Flag Handling functions.-

Modest but still interesting – the functions below round up the flag handling capabilities.

CFX _ _ Extended CF Allows ANY flag# Michael Katz
SFX _ _ Extended SF Allows ANY flag# Michael Katz
TGFX _ _ Toggle Flag Allows ANY flag# Ken Emery
FC?S _ _ Is Flag Clear and Set it Allows ANY flag# Ken Emery
FS?S _ _ Is Flag Set and Set it Allows ANY flag# Ken Emery

• CFX and SFX are natural extensions to the mainframe standard Clear/Set Flag functions.

Unlike those, the input is expected in X as a decimal entry. Also unlike them they’ll accept
anyone of the 56 flags from 0 to 55. When used in a program enter the flag# in the preceding
program line.

• TGFX is a toggle function, inverting the status of the flag which number is in X. It’s equivalent
to IF, the Invert Flag routine in the PPC ROM. See the PPC ROM manual pages 217 and 218
for fun examples altering the status of the system reserved flags.

• FS?S and FS?C are the symmetric counterparts to the native FC?S and FC?C functions. They

extend the logic and provide shorter handling – sometimes not possible without them. They
also operate on the complete flag range, as you’d expect.

Probably not a bad moment for a quick flag recap, see the table below:

0-4 shown when set
5-8 general-purpose
9-10 matrix end of line/column

 11 auto execution
 12 print double width
 13 print lower case
 14 card reader allow overwrite
 15-16 HPIL printer mode:
 0) manual; 1) normal

2) trace; 3)trace w/stack print
 17 record incomplete
 18 IL interrupt enable
 19-20 General-Purpose

21 printer enabled
 22 numeric input available
 23 alpha input available
 24 ignore range errors
 25 ignore any errors & clear
 26 audio output is ignored
 27 user mode is active
 28 radix mark: 0). 1),
 29 digit groupings shown:

0) no; 1) yes

30 catalog set
31 date mode: 0)M.DY 1)D.MY
32 IL man I/O mode
33 can control IL
34 prevent IL auto address
35 disable auto start
36-39 number of digits, 0-15
40-41 display format: 0) sci; 1) eng

2) fix; 3) fix/eng mode)
42-43 angle mode: 0) deg; 1) rad
 2) grad; 3) rad
44 continuous on
45 system data entry
46 partial key sequence
47 shift key pressed
48 alpha keyboard active
49 low battery
50 set when message is displayed
51 single step mode
52 program mode
53 IL I/O request
54 set during pause
55 printer exists

Note. As a sideline, the example below illustrates an unexpected application of X<>F and X<>BM –
applied to the leftmost byte of the status register 14(d), i.e. the user flags 0-7. Basically these
functions can be used to invert the bits in the byte, as their results are logically reversed values.

• First get the address in ALPHA, ZENROM-style: HEXIN “600E”, R/S, STO M
• Now to obtain the NOT of the value in X, type: X<>F, XEQ “X<>BM”

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 31 of 56 April 2014

4.1.3. HP-IL Related Functions

The Extended Functions module gave us GETAS and SAVEAS to write and read ASCII files to HP-IL
Mass Storage devices, but nothing about DATA files. This gap is now closed by the functions described
below.

FSIZE? HPIL Media File Size FileName in ALPHA R. del Tondo
READF Read Data File IL FName, XM FName R.del Tondo
WRTDF Write Data File XM FName, IL FName R. del Tondo
READPG Reads page from HP-IL Page# and FileName In the OS/X Module
WRTPG Writes page to HP-IL Page# and FileName In the OS/X Module

• FSIZE? Returns to X the length in registers of the (primary) mass storage file which name is
specified in Alpha. If no HP-IL is present on the system the error message “NO HPIL” will be
shown.

• READF and WRTDF are used to read and write individual DATA files between the IL Drive
and XMEM. To use them properly you need to first create the destination files (like GETAS
and SAVEAS do for ASCII file types).

Fortunately you can use FSIZE? And FLSZE to find out that required piece of information,
and then create the file appropriately either in X-Mem or in the Mass Storage device. The
FOCAL programs below would do that automatically – just type the source and destination file
names in ALPHA separated by a comma:

01 LBL “GETDF” 08 LBL “SAVEDF”
02 FSIZE? 09 FLSZE
03 ASWAP 10 ASWAP
04 CRFLD 11 CREATE
05 ASWAP 12 ASWAP
06 READF 13 WRTDF
07 RTN 14 END

Note: These functions are related to READXM and WRTXM seen before, but remember that
those operate on the whole XMEM contents, not on individual files.

(*) The function ASWAP is available in the AMC_OS/X Module, The ALPHA_ROM, and the
PowerCL Module amongst other sources.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 32 of 56 April 2014

4.1.4. Other Miscellaneous Utilities

The rest of this pack - not necessarily related but grouped just the same.

APPEND _ Append to ALPHA Appends prompt as text W. Doug Wilder
BST^ Repeat BST Repeated while pressed Nelson F. Crowle
SST^ Repeat SST Repeated while pressed Nelson F. Crowle
CSST Continuous SST Automated PRGM listing Phi Trinh
CVIEW Continuous VIEW Non-halting AVIEW Frits Ferwerda
GTEND Go to .END. Sets PC to .END. Ken Emery
LASTP Goes to Last Program Sets PC to begin of PRGM ZENROM
NOP No Operation Inserts “F0” in program ZENROM
TGPRV _ Toggle PRIVATE status Program Name in Alpha Sebastian Toelg
PC<>RTN Exchanges PC and RTN Adr Alters PRGM execution W&W GmbH
XQ>GO Pops Return Address One level is removed Håkan Thörngren
XROM _ _:_ _ Executes XROM Function Prompts ROM and FCN id# Clifford Stern
RTN? Pending RTN stack YES/NO, skip if false W. Doug Wilder

• CVIEW is a non-stop AVIEW, so it avoids the printer halt even if flag 21 is set.

• GTEND Sends the program counter to the permanent .END. in program memory (the position
of the Curtain). Almost identical to it is LASTP, the difference being that the program pointer
is placed at the first line of the Last program in RAM, i.e. the one closest to the .END.

• NOP is a useful No-Operation function. While in RUN mode it pretty much useless, when used
in a program it’ll mutate into a synthetic Text-0 line (“F0” byte) – which is the fastest and
smallest NOP known to man in a FOCAL program. Seeing is believing… try it for yourself.

• APPEND is equivalent to using the “append” functionality manually, i.e. pressing [ALPHA],
and “|-“ keys. More interestingly, in a program it will prompt the existing ALPHA contents for
the user to continue entering more. Similar to PMTA, but the initial string will remain.

• TGPRV is the inevitable Set/Clear Private status functions – with a twist. To use it the

program name must be in ALPHA. This includes programs in RAM or in MLDL/HEPAX RAM
(seen as ROM by the calculator). Note that in RUN mode, the ALPHA mode is switched on
automatically for you to spell the program name. TGPRV is also programmable. If Alpha is
empty the program pointer must be set to any line within the program.

• XQ>GO is a nifty function that drops one RTN address from the subroutine RTN stack. This

can come very handy when you don’t want to return to the calling XEQ while running a
subroutine, for example depending on the partial results obtained.

Note: You can combine this function with RTN? (Stealth in the module, using the section header “-
HACKER LAB”) if you want to remove all pending RTN addresses from the RTN stack, using the
following FOCAL routine:

01 LBL”POPALL” 04 RTN? (-HACKER LAB)
02 LBL 00 05 GTO 00
03 XQ>GO 06 END

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 33 of 56 April 2014

• SST^ and BST^ are lazy-users (and keyboard-savers!) methods to advance or go back in a
FOCAL program in a semi-automated fashion: the SST/BST action will be repeated while the
key is depressed, with a small pause between each program line displayed. You must be in
PROG mode for these functions to work as intended.

• CSST is a more automated approach to the same task. It sequentially displays the program
steps of the program pointed at by the Program Counter (PC). It’s equivalent to using the
SST key multiple times, and thus its name.

This function is programmable, operating in single-step mode or in back-step mode depending
on whether the user flag 0 is cleared or set. The back-arrow key terminates the display of
program lines, yielding to normal keyboard operation in RUN mode, or transferring control to
the running FOCAL program that executed CSST. In the latter case, the program execution
resumes with the currently displayed line (i.e. it has moved the program pointer).

The [ON] key switches between single-step operation to back-step operation and vice-versa
(i.e. toggles between both modes). The “0” annunciator is visible in the display whenever
back-step operation is in effect.

The delay between lines shown can be adjusted by pressing any keyboard key, see the table
below taken from the original article in PPCJ V9N7 p49 (refer there for further details). To use
it, position first the PC at the target location (using GTO or similar). Note that the display time
increases linearly from the top key down to the bottom key in a given key column on the
keyboard, and continues to increase on the next column to the right. Furthermore (staying on
the same row of keys), pressing the key one column right of the selected key will roughly
double the selected display time.

There are 37 different speeds available at the touch of a single key. The default speed may be
reselected at any time by pressing the [SQRT] key in the middle column. Holding down any key
(except the back-arrow) freezes the display at the current program line. The user is therefore
given complete control over the speed and direction of the flow of program lines on the LCD
display. Note that it won’t list PRIVATE programs… but of course you know how to overcome that,
right?

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 34 of 56 April 2014

• RTN? Is included as stealth under the section header function “-HACKER LAB”. It looks at the
RTN stack checking for pending levels, reporting YES/NO depending on the case. If used in a
program it’ll skip the next line if false.

Note: PC<>RTN in the AMC_OS/X Module can be used in combination with RTN?. It is a
program-pointer manipulation function. Use it to exchange it with the (last) subroutine return
address. To be used with a solid understanding of their capabilities (and possible
consequences).

• XROM is a well-known function to directly call any function within a plug-in ROM, knowing its

ROM id# and function#. Written by Clifford Stern in the heydays of the 41 systems, with a
real inside knowledge of the internal OS routines [PARSE]. Both prompt inputs are to be
entered as DECIMAL values.

This is helpful to program functions even if the module they reside in is not present – but
obviously will require it to be plugged when the function is to be executed.

Another unusual aspect of this function is that it can be coaxed to access internal (mainframe)
functions and routines – using zero as ROM id#. There was a slew of articles along the years
on the “XROM 00,xx” subject, feel free to dive into the PPC vault and fish for related topics.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 35 of 56 April 2014

4.2.1. Introduction: I/O Bus , Ports and Pages.-

Each port of the HP-41 can be occupied by up to 8 Kbytes of program material (in non- bank switched
configuration; or up to 32k if bank-switching is used to its max). Since most application modules
address the lower 4K of the port they’re plugged into, then the upper page of that I/O port is
inaccessible under normal circumstances, and the corresponding catalog will display the message “NO
ROM” for that address block.

Some modules use both pages but have only one Function Address Table (FAT). In those cases the
message “NO FAT” is shown as appropriate.

The picture below (taken from the HEPAX manual) provides the relationship between ports and pages,
also showing the physical addresses in the bus and those reserved for special uses (like OS, Timer,
Printer, HP-IL, etc). Note that some pages (also called 4k-blocks or simply “blocks”) are bank-
switched. As always, a picture is worth 1,024 words:

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 36 of 56 April 2014

Full House Configuration of the I/O Pages.-:

A full-house configuration like the one shown in the figure below can have up to 132 kB; quiite an
impressive feat considering we’re talking about a hand-held calculator design from 1979 – which
although extended, expanded, and stretched to the limit really shows the versatility and solid
engineering of the design.

Port Page Addresses Primary Bank Secondary Bank Bank #3 Bank #4

FFFF
F000
EFFF
E000

DFFF
D000

CFFF
C000

BFFF
B000
AFFF
A000
9FFF
9000
8FFF
8000
7FFF
7000

6FFF
6000
5FFF
5000

4FFF
4000
3FFF
3000
2FFF
2000
1FFF
1000
0FFF
0000

CL Library

SandMath ‐ B1

POWERCL‐B1

Solve & Integ

AEC Solvers

SandMatrix ‐ B1

HL_Math ‐ B1

CX FNS ‐ Bank 2

AMCOSX4 ‐ B2

HL_Math ‐ B2

Vector Calc‐ B2

Hepax RAM

HEPAX_1D‐ b1 HEPAX_1D‐ b4HEPAX_1D‐ b3HEPAX_1D‐ b2

ADV Matrix ‐ B1

YFNP_1C

ADV Matrix ‐ B2

POWERCL‐B3 POWERCL‐B4POWERCL‐B2

SandMath ‐ B2

3 CX FNS‐ Bank 1

Library #4 4

9

5

7 AMCOSX‐4

PRINTER

TIMER

8

D

C

2

F

E
4

3

B

A

1

hpi l

0

6

AECPROG ‐ B3

OS ‐ ROM 0

2

1 OS ‐ ROM 1

OS ‐ ROM 2

IR Printer ‐ b2

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 37 of 56 April 2014

4.2.2. The system as a whole.

CHKSYS Checks ROMS plugged in OK/BAD Ángel Martin
ROMLST Lists ROMS plugged in String of ROM id#’s Ángel Martin
OSREV Shows OS Revisions String with rev’s Nelson F. Crowle
PGCAT Page Catalog VM Electronics Source: HEPAX Module
ROMCAT _ _ ROM Catalog ROM id# in prompt J.D. Dodin
PTCAT _ Port Catalog Port# in prompt Nelson F. Crowle
IOBUS _ I/O Bus Usage Free, Used, Banked Ángel Martin

PGCAT is taken from the HEPAX Module (called BCAT there, within
the HEPAX sub-functions group) -and written by Steen Petersen.
PGCAT enumerates the first function of each page, starting with
page 3. The enumeration can be stalled pressing any key other than
R/S or ON, but the individual functions won’t be listed.

PGCAT Lists the first function of every ROM block (i.e. Page), starting with Page 3 in the 41 CX or
Page 5 in the other models (C/CV). The listing will be printed if a printer is connected and user flag 15
is enabled.

- Non-empty pages will show the first function in the FAT, or “NO FAT” if such is the case
- Empty pages will show the “NO ROM” message next to their number.
- Blank RAM pages will also show “NO FAT”, indicating their RAM-in-ROM character.

No input values are necessary. This function doesn’t have a “manual mode” (using [R/S]) but the
displaying sequence will be halted while any key (other than [R/S] or [ON]) is being depressed,
resuming its normal speed when it’s released again.

See below the printout outputs from both BFCAT and PGCAT using J-F Garnier’s PIL-Box and the
ILPER PC program, showing a nice traceability of the pressed keys:

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 38 of 56 April 2014

• PTCAT is related to the same concept, but driven by the port number instead of the pages.
The CAT 2 enumeration will start at the port number input at the prompt, which is expected
to be 1,2,3 or 4. In fact the prompt will be maintained if a value greater than 4 is input (a
more intelligent error handling method than putting up an error message like “DATA
ERROR”). Entering zero will start at Page#5, listing the internal modules as well.

• IOBUS will present colon-separated strings of hex numbers corresponding to those free,

used, or bank-switched pages in the calculator – according to the input value 0,1,2
respectively. Obviously the OS will always be included in the “Used” string, which is a nice
clue to quickly tell which particular string you’re looking at. See for instance the examples
bellow showing a pretty decent configuration:

 for the free pages, and

 for the used pages.

The strings are compiled using the display, and transferred to ALPHA upon completion. For
full-house configurations the list of used pages will take up more characters than those
allowed in the display – and the string will be scrolled to the left, dropping the first three
pages in the worst case. Since those hold the OS (always there) there’s no real information
loss.

The bank-switched (or simply “Banked”) corresponds to those pages with a bank-switched
configuration, as defined in the ROM signature characters. The official convention is not
strictly followed by the (very few) authors of the few bank-switched ROMs, but the number of
banks should be marked in characters 2/3/4 of the ROM signature. An example with both the
PowerCL and the SandMath_2x2 plugged returns the following:- Can you explain the presence
of the “5”? Hurry, time’s ticking out!

,

The strings can have “holes”, as this is totally dependent on the modules plugged. Some of
them use the upper part of the port (like the Zenrom and the Card Reader), or just simply due
to the physical locations used.

The TOOLBOX implementation is a “little brother” of the function with the same name in the
POWER_CL Module. Here the prompt is expecting values 0,1, or 2 as only valid entries. Any
other number will simply be ignored and the prompt will be maintained - which is a more
intelligent error handling than putting out a NONEXISTENT message.

• OSREV simply shows the revisions for the three first pages, containing the core Operating
System code (in ROMS 0/1/2) / which for an unmodified HP-41CX are as follows: (Note that
this result must be obtained using function PGSIG, covered in the next section).

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 39 of 56 April 2014

• ROMCAT was written by Jean-Daniel Dodin, well-known MCODE pioneer and HP-41 old hand.
It prompts for the XROM id# and starts CAT’2 from the position used by such ROM (if
present). The usual conventions apply, whereby only the ROM headers are listed unless the
catalog is stopped and ENTER^ is pressed in manual mode.

This is especially useful when the ROM in question is configured in the internal pages of the
I/O Bus, like the printer, Time Module or HP-IL interface. You need to know its ROM id#
instead, entered as a decimal number in the prompt = or in the X-reg. when used in a
program.

• CHKSYS is a very useful routine to check for incompatibilities in the system configuration, as
may occur when two ROMs with the same XROM id# are plugged. The function will scan all
the ROM blocks looking for repeat values, showing a confirmation or a warning message
depending on the case.

It will also report all and every offending id# in case of conflicts, as many as there may exist.
Use it as frequently as you need, it’s the best way to ensure that things are fine after plugging
any of the many modules available on the CL library – a match made in heaven.

 or

 plus:

• ROMLST has somewhat of a similar purpose: it will produce a list in Alpha with the XROM

id#’s of the plugged modules on the system, so you can check for dups. Because of the 24-
char limit in the Alpha string, only the last 8 modules will be shown – sufficient in the majority
of cases, specially considering that pages 3, 4, and 5 are most likely unique because of being
dedicated to the X-Functions, the Library#4, and the Time Module.

Example: winning Lotto combination or ROM list?

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 40 of 56 April 2014

4.2.3 The Pages within.

SUMPG _ Sums Page checksum Page# in prompt/X George Ioannou
PG? _ Page vital constants Page# in prompt/X W&W GmbH
ROM? _ _ Rom vital constants XROM id# in X W&W GmbH
CHKROM _ _ Verifies ROM checksum XROM id# in prompt HP Co.
CPYPG _ _ Copies Pages Source in X, Dest. in prompt Ángel Martin
CLBL Clear Block BBBB|EEEE in X as NNN Frits Ferwerda
PGSIG _ _ Page Signature PG# in prompt Ángel Martin
BLANK? Tests for blank page YES.NO, skips if false Ángel Martin
PGROOM _ _ Counts the Page blanks Pg# in prompt or X if PRGM Ángel Martin

• PG? This function returns miscellaneous information corresponding to the page number input

in the prompt (as a two-digit decimal format) in RUN mode, or in X as decimal value if run in
a program.
The information returned is as follows:

o Header function name in ALPHA, and:
o [XROM id#] ; [# of functions] in X. (in integer and fractional parts)

An input larger than 15 will cause a NONEXISTENT error message to be shown. If there’s
nothing plugged in the page the message “NO ROM” will be shown.

,
Input prompt Page is not used (Free).

• ROM? is also a prompting function. It returns the ROM vital constants for the XROM id#
value input in the prompt (in decimal), as follows:

o Page# where is plugged in X, and
o number of functions in Y.
l

The ROM header (first function name) is also displayed (but not saved in Alpha). Note that
this is very similar to PG?, only that the input is not the page number but the XROM id#
instead. If the ROM is not found the display will simply show “NO” – indicating that this
functions doubles as a test function as well, and therefore it’ll skip one line in a program in
this case (i.e. following the “do if true, skip if false” rule).

lbl

• PGROOM counts the number of words with zero value in the page which number is input in
the prompt (or in X in PRGM). Interesting to see the density of your favorite MCODE modules
(use the OS as a ranking benchmark), and to get an idea on how much room is still available
in the page.

Note that if the page is blank the result will be zero – as a proxy for 4,096 words.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 41 of 56 April 2014

• PGSIG will retrieve the signature string of the ROM plugged in the page entered at the
prompt (in Hex format) – or in the X register (in Decimal) if used in a program. If no ROM is
plugged it’ll return four “@” characters.

input prompt represents a “blank” signature value.

If the input is greater than 15 the functions will show the OS Revisions for ROMS 0,1 and 2 –
i.e. the same as function OSREV. This is better than a static “DATA ERROR” message.

• CHKROM will check the ROM which XROM id# is input at the prompt (or in X when run in
PRGM mode) for the correct checksum byte value. The display shows information message
while the test takes place, followed by a confirmation or a warning depending on the case.

,

Incidentally it’s more than likely that if you run CHKROM on the TOOLBOX or RAMPAGE the
result is “BAD”. This is not because of an error; I just usually don’t bother to update the
checksum values, as the code is updated very frequently.

SUMPG prompts for the page number in Hex in a fancy manner, with alternating texts as
shown below (that alone covered its admission price). Its mission is to calculate the Checksum
byte and to write it in the last word of the page – and that it’ll do very nicely. Needless to say
that the checksum won’t be written if the page holds a ROM module, and not a MLDL-RAM /
HEPAX RAM setup.

• CPYPG copies the contents from page number in X to the page entered in the prompt (in
decimal format). The destination page must also be RAM-mapped. No confirmation string is
required! CPYPG is not programmable.

COPYROM in the HEPAX module section, pretty much does the same as CPYPG, but taking
the FROM: page input from Y and the TO: page input from the X register instead of the
prompts. The function name is somehow misleading, as it’s operating on PAGE numbers and
not on XROM id#’sY. Note that if you use this function on HEPAX RAM pages, the protected
status will be ignored – you’re instructed to use COPYROM instead.

• CLBL will clear the block between addresses “bbbb|nnnn” given as a NNN placed in X, which
is used as input. If the input is just one digit it’ll delete the complete page. Obviously will only
work with ROM-mapped pages. Note that CLRAM in the “-HEPAXA” section also clears the
complete page, and it takes a decimal input for the PG# in X. Both require the string “OK” in
Alpha, as a security measure to avoid accidental usage.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 42 of 56 April 2014

5. TOOLBOX - Hacker’s Lab

Editing ROM areas with ROMED.

Written by W. Doug Wilder, another MCODE master - this ROM editor has all the basic functionality
required for the most common needs; perhaps just a couple of notches below the tremendous
HEPAX’s HEXEDIT – but in a much more concise foot-print implementation and not exempt of
wonders on its own.

The initial prompt requests the address to edit, ranging from 0x0000 to 0xFFFF as you would expect.
Once entered, the display is identical to that one in HEXEDIT, with three distinct fields showing the
address being edited, the current value, and three underscore characters where the new value will be
written as the input progresses.

Usual rules of the game apply: the first character can only be 0,1,2,3; and obviously there must be a
Q-RAM block for the input to be actually written in. A nice touch (lacking in HEXEDIT) is a “ROM”
message shown when the destination is read-only.

Here’s the original description:

Write ROM. MLDL Q-RAM editor. Execute and supply hex address on the hex keyboard. Use SST, BST
and TAN to navigate, press backarrow to enter a new address and backarrow again to exit. Input a
new value by keying it in on the hex keyboard, the first digit must be zero to three. The input may be
terminated at the last digit by nulling out the keypress. After keying in the new value, the address is
automatically incremented. This function uses only the WROM (040H) instruction; it uses the Q
register for address storage during low power (partial key sequence) keyboard driver calls. If the word
cannot be written, "ROM" is displayed for 300 ms.

Note: This function clears F18 "Interrupt Enable" to prevent the HP-IL Development ROM from
destroying Q and the CPU return stack during low power keyboard call (Light Sleep).

ROMEDIT Control Keys:

The operation of ROMED can be controlled with the following keys:

[SST] : moves up one word
[BST], [TAN] moves down one word
[1]-[9],[A]-[F] the nybble value being edited
[ENTER^]: inputs three zeroes as word value
[<-]: first back-arrow prompts for a new address, second exits the editing
[ON] turns the calculator OFF

ROMED is taken from the DISASM ROM. Besides the changes “of rigueur” to use the Library#4
routines, I have made a couple of enhancements to the original implementation, adding the
underscores for the edited field and the [ENTER^] control key for a closer resemblance with the
HEPAX implementation in HEXEDIT.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 43 of 56 April 2014

ROMED can only edit the main banks, so the only missing functionality is perhaps this: no access to
the other banks in bank-switched modules (like the HEPAX, Advantage, Timer, or POWER_CL itself).
Certainly not a big deal in the 90% of the cases; and sure enough well worth the admission price.

[Note: The other missing functionality is the ability to do live-editing of polling points and other OS-
controlled hot addresses, which the HEPAX manages by preventing the calculator from going into light
sleep – definitely hardly used in the 99,9% of the cases.]

The screenshots below show editing of the Library#4 contents on-the-fly – a real godsend for
MCODERS to quickly test small code changes without having to re-compile / rebuild the ROM images.

ROMED uses the partial-sequence key entry technique, more gentle on the battery drain
requirements – and incidentally also the reason why it cannot be located on bank-2, as a technical
detail.

Final remark.- The original ROMED is available in the DISASM module, under the name WROM,
and RAMEDIT is also included in the OS/X module, named RAMED there. Yes, a bit of a naming
conflict but who said life was perfect?

A Quick Comparison.

The figure below shows a comparison between ROMED and the HEPAX HEX Editor HEXEDIT – with
the latter literally a superset of the former one, so the same keyboard overlay could be used for both.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 44 of 56 April 2014

5.2.1. First things first: Peeling the HEX Onion.

These functions address classic needs, subject of frequently asked and often misunderstood topics
when it comes to the internals of the system and general Hex domain (I know I’ve been there myself
for one, and more often than none!)

HEX>VSM Hex to VASM Converts prompt to VASM Clifford Stern
VSM>HEX VASM to Hex Converts Address to HEX Clifford Stern
BCDBIN From BCD-Hex to Binary Decimal input in X Ken Emery
BINBCD From Binary to BCD-Hex NNN input in X Ken Emery
GETW Get ROM Word Absolute adr in X (!) Rafael Lorente
DISSST SST Disassembly Requires HEPAX VM Electronics

• BCDBIN converts the decimal number in X into its binary representation, stored in the S&X
field of the X-register as NNN output. The original argument is saved in LASTX. The valid
range of values goes from 0 to 4,095 – thus covering all the S&X field from 0 to FFF.

• BINBCD is the inverse function, which decodes the S&X data in the NNN stored in X and

returns its decimal equivalent to the X-register. The original NNN is saved in LASTX.

Note: If you’re reading this you’ll probably be aware of the OS routines [BCDBIN] (in the mainframe)
and [BIN-BCD] (in the CX), so you have no doubt realized that the valid ranges accepted by the
functions are larger than those for the OS counterparts, which only reach 256 = 0FF.

• DISSST is a token of appreciation for the HEPAX Module. It is the same program included in
the HEPAX Manual, used for line-by-line to disassembling. You need to input the initial and
final addresses, and press R/S for each consecutive MCODE line shown in the display.
Naturally it requires the HEPAX Module plugged in the system, as the function DISASM does
all the heavy lifting for you.

The FOCAL listing for DISSST is shown below:- easy does it when you have powerhouse functions
behind!

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 45 of 56 April 2014

• GETW is an indulgence function – as a memento of the very early days of the author’s

MCODE experimentation many moons ago (when I should have been dedicating all my
energies to passing my EE exams, but, well, I wasn’t). It simple reads the ROM word located
at the address specified in the X-register, as a decimal number. Valid ranges start at zero, and
end at (16*4,096 –1) = 65,535. The word value is of course stored in the S&X field of register
X (as FETCH would do and actually does within GETW).

As an example, to read the first word of the ROM plugged in page “C” (which happens to be
the POWER_CL in my system) , you’ll type:

12*4096= 49,152.0000, then GETW, DCD -> 00C = XROM id#12

• HEX>VSM and VSM>HEX are what you need when trying to read the HP VASM Listings –
which are arranged in a Quad-based fashion, using Octal addresses within each page (from 0
to F) and quad (from 0 to 3). This, let’s say it clearly, is a pain the rear back for anyone other
than the original HP developers (and coming to think about that, maybe to them as well); so
a conversion to/from Hex was in order – and thanks to Ken Emery we have it.

These functions will prompt for the appropriate fields in each case, a beauty to behold and
perhaps the only way to not make mistakes if you only use them sporadically. The prompts
will look as follows:

1. HEX>VSM prompts for the Hex address; you need to input four digits and press R/S The

result will be formatted according to the VASM convention. The number keys and the A
through F keys are the only ones which are allowed for inputs. Once four digits have been
entered, no more may be keyed in.

2. VSM>HEX prompts sequentially for the Page number, quad number, and Octal address (also

four digits) separated by hyphens in the display. Press R/S to see the result, an address in
Hex. The range of legal addresses is 0000 to 1777. Digits outside this range will not be
accepted by the routine. If the address is less than 1000, you must key in a leading zero.

For example, let’s convert the address 0x4321 in VASM form and back to “normal” :

XEQ “HEX>VSM”, at the prompt “H:” type further: ”4, 3, 2, 1”

 , R/S ->

And now the reverse:

XEQ “VSM>HEX”, at the prompt “O:” type the data fields:

 , R/S ->

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 46 of 56 April 2014

5.2.2. Jumps and Executions: Hex codes from Mnemonics.

Welcome to the land of the bold and the brave M-Coder! The following sections deal with many
important functions, really indispensable for the MCODE programmer.-

JC Jump if Carry Encodes Jump from X D. Wilder / A. Martin
JNC Jump if Not Carry Encodes Jump from X D. Wilder / A. Martin
CGO _ _ _ _ GoTo if Carry Encodes GOTO code W. Doug Wilder
CXQ _ _ _ _ GoSub if Carry Encodes GOSUB code W. Doug Wilder
NCGO _ _ _ _ GoTo if Not Carry Encodes GOTO code W. Doug Wilder
NCXQ _ _ _ _ GoSub if Not Carry Encodes GOSUB code W. Doug Wilder

What could be a better way to start than with the Jump and Execute aid functions? Written by Doug
Wilder and available in different revisions of the DISASM ROM, this function set is an essential fixture
in every system. I cannot imagine approaching MCODE writing without them, now you know one of
my secret weapons!

• JC and JNC encode the jump distance provided in the X-register (in decimal) into the
appropriate hex code for a carry or no-carry jumps respectively. The argument can be positive
or negative, depending of the jump direction. The value cannot be larger than 63 or 64
respectively, or the “NONEXISTENT” message will be shown.

For example, to obtain the hex codes for jumps of 35 words back the current PC, we type:

35, CHS, JC for the carry set condition,

35, CHS, JNC for the Not-carry condition.

Notice how the result includes the mnemonic in the display, as a convenient feedback to remind you
of the original requirement. You can take my word for that – this is a godsend functionality that
spares you from repeat checking of jump tables, and the error-prone process associated to it.

• CGO, CXQ, NCGO, and NCXQ all share the same user interface: a four-digit length prompt

meant to input the GOTO or GOSUB addresses, anywhere in the I/O Bus of the HP-41 system
(i.e. from 0000 to FFFF). Obviously this only makes sense if used with permanent addresses,
like the OS, the Library#4, or some system-peripherals like the Time Module, printer or HP-IL
Interface.

And who said the 12-chars LCD display was too small to be useful? Look at the concise yes absolutely
clear representation of the information as returned to the display by any of these four functions; a
beautiful compromise to say the least:

Even taking the risk of insulting your intelligence, allow me to clear out the meaning of the different
fields in the display.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 47 of 56 April 2014

The three distinct areas include the type of jump, the hex address, and the hex codes used to
program it. The table below explains the meaning of the type characters:

Symbol Condition Description
GC ?C GO If Carry GOTO
XC ?C XQ If Carry GOSUB
GN ?NC GO If No-Carry GOTO
XN ?NC XQ If No-Carry GOSUB

The other two fields in the display provide the address given in the prompt, and the two hex codes
corresponding to the appropriate instructions. Therefore you always have confirmation that the input
address was correct – quite a fundamental requirement and thus worth re-assuring in each result.

Summarizing, the four examples listed above corresponded to the following cases:

?CGO 1111 045,047 ; ?CXQ 1111 045,045
?NCGO 43AB 2AD,10E ; ?NCXQ 43AB 2AD,10C

Now you’d understand how useful these functions have been when putting together all those
Library#4 calls from the different Library#4-aware modules. Can you imagine doing it without these
functions? I honestly can’t!

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 48 of 56 April 2014

5.3.1. Last Treats and Tricks

ADR? Address Encoder Encoded NNN in X W. Doug Wilder
DCODE _ _ _ NNN to HEX string NNN in X, RG# in prompt Frits Ferwerda
FDATA _ Function Data Prompts for F. Name
HEXIN _ HEX Input 1-9, and A-F Håkan Thörngren
HEXNTRY HEX Keyboard 1-9, and A-F Clifford Stern
COMPILE Compiles jump distances Global LBL in ALPHA Frits Ferwerda
NOPS Finds NOPs BBB|EEE as NNN in X Frits Ferwerda
PC<>RTN Exchanges PC and RTN Get your head spiining! W&W GmbH
XQ>XR XEQ to XROM Converts instructions W&W GmbH

• ADR? provides an easy and convenient way to encode system addresses as NNN in the X-

register. The outcome of ADR? Can be used by RAMEDIT directly, and by RAMED after you
copy it into ALPHA (using CLA, ARCL X for instance). The prompt expects an Hex value with
four digits, and the keyboard is redefined to only accept numeric keys and letters A-F as valid
data options. Use the back-arrow key to cancel, as always.

• Functions DCODE is the ubiquitous NNN->HEX function present in every ROM worth its name

(ML ROM, HEPAX, TOOLBOX…). We can’t have enough of a good thing, or so it seems… This
implementation will prompt for the register absolute address in the prompt.

, wich allow arguments up to 999 dec

DCODE reads and decodes in ALPHA the contents of the register which absolute address is
in X (in program mode) or given at the prompt (in RUN mode). No stack drop is performed.
Register address is checked for existence. DCODE is equivalent to VRG in the OS/X Module,
and can be thought as the combination of PEEKR and DCD together in one function.

As an example to impress your friends, decode the contents of the Status register 12(“c”) =
Switch on ALPHA to see the complete contents scroll.

• FDATA returns the relevant data for a function in a plug-in module, including its FAT
coordinates, and code location address. It also indicates whether it is an MCODE or a FOCAL
program. You need to enter the function name at the prompt (note that ALPHA will be
switched on automatically for you), or have it ready in ALPHA if used in a program. The result
will be placed in ALPHA, and shown in the display if in RUN mode. For example, applying it to
itself: XEQ “FDATA”, then enter “F, D, A, T, A”, ALPHA:

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 49 of 56 April 2014

• HEXNTRY is the well-known function published in Ken Emery’s book “MCODE for beginners”,
and originally written by Clifford Stern. The calculator keyboard is redefined to be a HEX-
keypad, with the numeric keys and letters A to F available for data input. For all purposes it
supercedes CODE (or CDE), which is available in the AMC_OS/X module anyway.

• HEXIN does basically the same thing, except that it uses the text in Alpha (if any) as prompt
(quite useful in programs). Use Back-Arrow to delete digits and R/S to terminate the data
entry.

The prompt will only accept hex characters, A-F and 0-9. Use Back-Arrow to delete digits and
R/S to terminate the data entry. Upon termination, the corresponding NNN is placed in the X-
register. HEXIN was written by Håkan Thörngren, and published in PPCJ V13N4 p13

• COMPILE is a very powerful function that writes all the jump distances in the GOTO and XEQ

instructions within the program named in ALPHA. This is extremely useful when uploading a
program to a Q-RAM device, like the HEPAX RAM. Having all the jumping distances compiled
expedites the execution of the program (no need to search for the label), and also guarantees
that short-form GOTO’s are not used inappropriately.

o There are feedback messages shown during the execution, indicating which type of
instructions are being compiled: 2-Byte GOTO’s, and 3-Byte GOTO/XEQ’s.

,

o When the work is done, the message “READY” is shown to inform the user that the
execution is completed. Alternatively if a label is missing the execution stops with the
program pointer set at the GTO/XEQ statement, and a working message is shown:

• XQ>XR is without a doubt also a powerful function. It converts the XEQ instructions included
in a FOCAL program (saved in Q-RAM) into the appropriate XROM equivalents, assuming that
the calls were made to other programs residing in a plugged-in module. The need for this
arises when programs are loaded on Q-RAM devices, like the HEPAX RAM.

The net result is substantial byte savings, because any XROM instruction takes only two bytes,
regardless of the label length of the called program. XQ>XR is not strictly a “full-page”
function, but it only operates on RAM pages thus its inclusion here is justified.

 will be shown while the conversion occurs.

This function is taken from the RAMBOX OS, written by W&W GmbH (authors of the world-
class, emblematic CCD Module).

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 50 of 56 April 2014

• NOPS is a sleek function taken from the ML ROM, a great resource for the dedicated M-
Coder. It searches the locations within the addresses specified in X as a NNN (in the form
BBB|EEE) looking for two or more consecutive NOPS. If found, the locations and number of
NOPs are reported in the display, and the NNN in X is updated so that it can be re-used by
NOPS again to locate the next “hole” within the initial address range.

Let’s see an example. I have the POWER_CL module plugged in page 12 in my system, and
I’m curious to see where the NOPS are. Say I’m too lazy to open the ROM blueprints so let’s
use NOPS instead. The first step is to provide the address range to scan, which we’ll do using
HEXIN as follows: HEXIN, “C, 0, 0, 0, C, F, F, F”, R/S -> beautiful NNN in the X-reg.

Next we called NOPS, witch immediately reports the first group found (which corresponds to
the FAT-END pair):

,

Since the NNN in X has been appropriately updated by the function, we bravely execute NOPS
again, returning:

,

and repeating this until the end we can compile the following table:

Addresses Number of NOPs Cumulative SUM
C082 – C083 2 2
C286 – C287 2 4
C2A3 – C2C4 34 38
C5FA – C61B 34 72
C7C0 – C7CB 12 84
CA00 – CA01 2 86
CA85 – CA86 2 88
CC4E – CC56 9 97
CD96 – CD98 3 100
CDB1 – CDB3 3 103
CFCB – CFF2 40 143
CFF4 – CFF8 5 148

When there’s no more NOPS to be found the function returns ‘NO”; an if used in a program it
will skip the next program line (as FALSE condition).

Note: As a way to verify all these intermediate results, we can use sub-function PGROOM
within the POWER_CL Module to count the total number of NOPs – which should be equal or
greater then the sum of all the partial results returned by the repeat executions of NOPS
(which was 148 in this case). When we do that, we get:

12, XQ2 “PGROOM” 97,000 Oooops !!

Trouble in paradise??? – not so, what we’re seeing is the typical effect of a bank-switched
module: PGROOM is located in bank-3 of the Power_CL, thus it has found 97 NOPS in that
bank, which is not the same as those existing in the main bank, or bank-1. If we looked at the
Bank-1 blueprint we’d see that there are 234 NOPS in it, which fits the bill as it is larger than
148 indeed. In fact, the remaining (234 – 148) = 86 are single-NOPs scattered around the
bank-1 code. Tricky but lovely :-)

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 51 of 56 April 2014

That’s all folks, this concludes the RAMPAGE & TOOLBOX manual. Hope you find it useful, or at least
interesting to have all these functions documented at last – from the historian of the archaeological
SW department to the global community with my best wishes.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 52 of 56 April 2014

Appendix 1.- VREG Program Listing.

As mentioned in page 4, VREG was removed from the RAMPAGE module to allow the
inclusion of FLCOPY. It is but a very simple routine (albeit may become useful at times);
see below the FOCAL listing in case you’re interested in having it available on your machine.

Input: bbb.eee in X
Output: sequential listing of Rnn with their contents

01 LBL "VREG"
02 CF 21
03 CF 29
04 LBL 00
05 FIX 0
06 "R"
07 ARCL X
08 "|‐: "
09 FIX 4
10 ARCL IND X
11 AVIEW
12 PSE
13 ISG X
14 GTO 00
15 SF 29
16 END

All in all, not much to write home about, thus hopefully you agree FLCOPY is a much more
interesting function to have in the toolset instead.

The irony here is that such a simple FOCAL program is more code-efficient than an
equivalent MCODE implementation of the same functionality; so you see sometimes FOCAL
has its point.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 53 of 56 April 2014

Appendix 2.- X-Memory File Headers.

Generally speaking, all X-Mem files have a NAME register and a HEADER register. The Name
register obviously holds the file name, which is used as parameter in ALPHA for diverse file
functions. The Header register is a control and status register that holds key information
relevant to the file type & size, address in memory, and other accessory parameters – like
the pointers in some file types.

The following figures show the header layout for the different file types.- Note how the file
type and size (in registers) fields are common to all of them, and that those are the only
fields for the “simpler” files (like Buffer, Kay Assignments, STATUS and Complex-Stack).

1. PROGRAM Files:

T - - - - - - - B Y T S Z E
13 12 11 10 9 8 7 6 5 4 3 2 1 0

2. DATA Files:

T A D R - - - - R E G S Z E
13 12 11 10 9 8 7 6 5 4 3 2 1 0

3. ASCII Files:

T A D R - C H R R E C S Z E
13 12 11 10 9 8 7 6 5 4 3 2 1 0

4. MATRIX Files:

T A D R L/U C O L i j # S Z E
13 12 11 10 9 8 7 6 5 4 3 2 1 0

5. Buffer, Key-Assignment, Status-Regs, and Complex-Stack Files:

T - - - - - - - - - - S Z E
13 12 11 10 9 8 7 6 5 4 3 2 1 0

For Data and ASCII files, the address field is initially blank – and only filled in when the
pointer is set, either manually using SEEKPT(A) or automatically using some dedicated
function (like GETRGX, or APPREC/CHR).

To the author’s knowledge the PROGRAM Files never get the address field filled in.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 54 of 56 April 2014

Appendix 3.- Extended Memory Structure.

Extended memory is comprised of up to three disjoint memory ‘blocks”, depending on
whether only the X-Mem/Funct. module is present, or if other Extended Memory modules are
also plugged into the calculator.

Each of these blocks has a “linking” registers at the bottom, holding the pointers to the
previous and next block, as well as its own starting location. They are located at the bottom
of each block, that is addresses 0x040, 0x201, and 0x301.

The structure of the information contained in the linking registers is shown in the figure
below:

- - C U R P R V N X T T O P
13 12 11 10 9 8 7 6 5 4 3 2 1 0

CUR: number of files; only used in bottom linking register at 0x040
PRV: address of linking register of PREVIOUS module (or zero if first block)
NXT: address of top register of NEXT module (or zero if last block)
TOP: address of top register within this module

The contents of the linking registers vary depending on the number of X-Mem modules
present and where they are plugged, so for instance for a full configuration (or the HP-41
CX) including 5 files in total they are as follows:

@ 0x301:

 2 0 1 0 0 0 3 E F
13 12 11 10 9 8 7 6 5 4 3 2 1 0

@ 0x201:
 0 4 0 3 E F 2 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

@ 0x040:
 0 0 5 0 0 0 2 E F 0 B F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note: Some of the boundary values appear to be hard-coded in the file management
routines, like EMDIR, EMROOM, and file search utilities. This makes it impossible to add
more blocks above - even if the memory is available (like is the case for the 41CL machine) –
as shown below. Also it’s unfortunately not possible to change their locations to other pages
in RAM, say 1kB higher (for a second set of XM).

@ 0x401:

 3 0 1 0 0 0 4 E F
13 12 11 10 9 8 7 6 5 4 3 2 1 0

@ 0x301:
 2 0 1 4 E F 3 E F

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 55 of 56 April 2014

Appendix 4.-
Function Repeats.

The table on the right shows all functions in
the OS/X module, indicating in which other
modules they’re also available.

The table does not include the Power_CL
module, which pretty much has them all
included.

The stats are as follows:

38 unique functions,
12 dup fns in the TOOLBox,
14 dup fns in the RAMPAGE.

Rampage / Toolbox Modules ‐ Revision “4L”

(c) Ángel M. Martin Page 56 of 56 April 2014

Appendix 0.- HP-41 Byte Table

	April 2014
	This compilation revision 1.2.2
	Copyright © 2012 -2014 Ángel Martin

