

© ÁNGEL M. MARTIN – MAY 2021 PAGE 1 OF 44

 HP-41 RECURSION MODULE QRG

Recursion and Modular Math
HP-41 Module

Introduction and Credits.

This HP-41 module provides a short collection of functions and routines about Recursion, Modular Math,

and Numeric arithmetic field. The recursion section is based on T.W. van der Berg’s seminal article

published in the PPCCJ – reproduced later in this manual. I added a few more examples using his

method, optimized the code for a ROM layout and converted some of the housekeeping routines to

MCODE for faster operation.

The first thing to say is that the HP-41 reduced memory and limited programming capabilities are not

well-suited for recursive code, and let’s not talk about its ultra-slow coconut CPU chip. Certainly, the SY-

41CL and DM-41X make the subject more palatable these days, as well as computer simulators like V41

from Warren Furlow. Yet, it could be argued that other methods less demanding on resources are better

on the HP-41 platform – and you’d be right, but the whole point of this module was to investigate the

possibilities and document the results, even if they’re not earth-shattering. In fact, in its “NUMERICAL”

section, the module also includes alternative MCODE functions for most of the recursive routines which,

when compare to the recursive code, run circles around them and then some more.

The “MODULAR MATH” section comprises a handful set of functions on the elusive and intriguing subject

of modulus math. They are contributed by Greg McClure and Jean-marc Baillard.

Finally, a couple of other programs deal with the calculation of decimal digits of pi and e. In particular the

MCODE function MDOP written by Peter Platzer, is a remarkable implementation even if it requires Q-

RAM to hold the results, so dust off your HEPAX RAM for the task.

Without further ado, here is a list of the functions in the Main FAT table.

XROM# Function Description Author

09.00 -RECURSION Section Header n/a

09.01 1/N Harmonic Numbers Ángel Martin

09.02 N^X Generic Faulhaber's Ángel Martin

09.03 $B2 Begin procedure- 2D Ángel Martin

09.04 $B3 Begin procedure - 3D Ángel Martin

09.05 $E2 End procedure - 2D Ángel Martin

09.06 $E3 End procedure - 3D Ángel Martin

09.07 "$I2 Initialize pointers - 2D Ángel Martin

09.08 "$I3 Initialize pointers - 3D Ángel Martin

09.09 "ACKER Ackermann Function T.W. van der Berg

09.10 "#ACK Procedure Subroutine T.W. van der Berg

09.11 "CATN Catalan Numbers Ángel Martin

09.12 "#CT Procedure Subroutine Ángel Martin

09.13 "FACT Factorial T.W. van der Berg

09.14 "#FCT Procedure Subroutine T.W. van der Berg

09.15 "FIBO Fibonacci Numbers T.W. van der Berg

file:///C:/HP-41/INFORMATICS/RECURSE/RECURSE_V2.xls%23RANGE!D3261
file:///C:/HP-41/INFORMATICS/RECURSE/RECURSE_V2.xls%23RANGE!D3261
file:///C:/HP-41/INFORMATICS/RECURSE/RECURSE_V2.xls%23RANGE!D1788
file:///C:/HP-41/INFORMATICS/RECURSE/RECURSE_V2.xls%23RANGE!D1788

© ÁNGEL M. MARTIN – MAY 2021 PAGE 2 OF 44

 HP-41 RECURSION MODULE QRG

09.16 "#FIB Procedure Subroutine T.W. van der Berg

09.17 "HANOI Hanoi Towers T.W. van der Berg

09.18 "#DSC Disc subroutine T.W. van der Berg

09.19 "#TWR Tower subroutine T.W. van der Berg

09.20 "HARM Harmonic Numbers Ángel Martin

09.21 "#HM Procedure Subroutine Ángel Martin

09.22 "STIR Stirling Numbers Ángel Martin

09.23 "COMB Binomial Coefficients Ángel Martin

09.24 "#ST Procedure Subroutine Ángel Martin

09.25 "PART Partitions T.W. van der Berg

09.26 "#Q Procedure Subroutine T.W. van der Berg

09.27 CLRTN Clear RTN stack Ángel Martin

09.28 RTNE? Is RTN Stack Empty? (no levels) Doug Wilder

09.29 RTNF? Is RTN Stack Full? (six levels used) Ángel Martin

09.30 RTNS Get # of used RTN levels Ángel Martin

09.31 XQ>GO Drop last RTN level Hakan Thörgren

09.32 MANYDIGOFPI Section Header n/a

09.33 DGT Sum of mantissa digits Ángel Martin

09.34 MREV Mantissa Digit Reversal Ángel Martin

09.35 MDOP _ _ _"_ Many Digits of Pi Peter Platzer

09.36 "PI000" pi to 1000 Decimal Places Ron Knapp

09.37 "E2900" Compute e to 2900 Places Ron Knapp

09.38 SKIP Skips one program line Erik Blake

09.39 -NUMERICAL Section Header n/a

09.40 APERY Apery Numbers Jean-Marc Baillard

09.41 BELL Bell Numbers Ángel Martin

09.42 BN2 Bernoulli Numbers Ángel Martin

09.43 FIB Fibonacci Numbers Ángel Martin

09.44 FIBI Inverse Fibonacci Ángel Martin

09.45 MLN Multinomial Coefficient Jean-Marc Baillard

09.46 FIB Sum of Fibonacci numbers Ángel Martin

09.47 IFIB Sum of Inverse Fibonacci numbers Ángel Martin

09.48 PHI Golden Ratio ~1.61803398875 Ángel Martin

09.49 BINETN Binet Formula for Integers Ángel Martin

09.50 BINETX Binet Formula for Real arguments Ángel Martin

09.51 -MODULARMTH Section Header n/a

09.52 1/M Inverse Modulus Jean-Marc Baillard

09.53 CONG Congruence Equation McClure-Martin

09.54 GCD Greatest Common Denominator Ángel Martin

09.55 LCM Least Minimum Multiple Ángel Martin

09.56 M+ Modulus Addition Greg McClure

09.57 M- Modulus Subtraction Greg McClure

09.58 M* Modulus product Greg McClure

09.59 M^ Modulus power Greg McClure

09.60 M^2 Modulus Square power Greg McClure

09.61 SQRTM Modulus Square Root Jean-Marc Baillard

09.62 UV Auxiliary routine for 1/M Jean-Marc Baillard

09.63 “ROUT Reads E2900 Results Ron Knapp

file:///C:/HP-41/INFORMATICS/RECURSE/RECURSE_V2.xls%23RANGE!D3852
file:///C:/HP-41/INFORMATICS/RECURSE/RECURSE_V2.xls%23RANGE!D3852
file:///C:/HP-41/INFORMATICS/RECURSE/RECURSE_V2.xls%23RANGE!D3049

© ÁNGEL M. MARTIN – MAY 2021 PAGE 3 OF 44

 HP-41 RECURSION MODULE QRG

Miscellaneous Number Functions

The module includes a few short functions useful for numerical analysis, cryptography, and games.

Function Description Input Output

DGT Sum of mantissa digits Value in X Sum in X, x in LastX

MREV Mantissa digit reversal Value in X Result in X, x in LastX

PHI Golden Ratio n/a in X, stack lifted

BINETN Binet formula for integers n in X f(n)

BINETX Binet formula for real values x in X f(x)

They’re described below.

• MREV performs a mantissa digit reversal of the value in X. The result is placed in X and the

original number is saved in LastX.

Example: reverse the mantissa digits of pi

PI, MREV => 4.562951413 (in FIX 9)

• DGT sums all the mantissa digits of the value in X. The result is placed in X and the original

number is saved in LastX.

Example: sum the mantissa digits of pi:

PI, DGT => 40.00000000

Example: The short routine below calculates the digital root of the number in X, simply using

DGT repeated times until its result is a single-digit integer (i.e. less than 10).

01 LBL “DGRT”

02 9

03 *LBL 00

04 DGT

05 X>Y?

06 GTO 00

07 END

• PHI lifts the stack and places the golden ration in X, =~ 1.618033989

Note: this function is used as a 13-digit subroutine in the calculation of Fibonacci numbers with

the Binet formula.

• BINETN implements the well-known Binet formula for integer input values. The result is the n-th

Fibonacci number obtained directly without any iterations.

Example: Calculate f(9)

9, XEQ “BINETN” => 34.00000000

© ÁNGEL M. MARTIN – MAY 2021 PAGE 4 OF 44

 HP-41 RECURSION MODULE QRG

• BINETX implements an extension for non-integer real input values to calculate the interpolated

Fibonacci numbers. This provides an easy expression for the determination that guarantees real
values also for the interpolated Fibonacci numbers:

Example: Calculate f()

PI, XEQ “BINETX” => 0.043896342

In fact, this modified formula produces the real parts of the complex results obtained applying

Binet’s formula directly with complex arguments – where the term -^-n clearly yields a result in

the complex domain: (-)^(-n) = exp(-n . ln (-))

Note: You can refer to the 41Z Module manual for the complex case, implemented in that module

with the function ZFIB.

See below the graphical representation of Binet(x) for arguments between [-5 . 5]

Obviously, the values for integer arguments coincide with the natural Fibonacci number, since the

term cos(n) is equal to +/- one.

https://www.wolframalpha.com/input/?i=plot+fibonacci%28x%29+between+-5+and+5

© ÁNGEL M. MARTIN – MAY 2021 PAGE 5 OF 44

 HP-41 RECURSION MODULE QRG

Number Theory Functions

A set of numerical constants and series is also available in the module, some of them as a faster

alternative of the recursive routines to showcase the MCODE advantage.

Function Description Input Output

APERY Apery Numbers Index n in C n-th. Apery number

BELL Bell Numbers Index n in X n-th. Bell number

BN2 Bernoulli Numbers Index n in X n-th. Bernoulli number

FIB Fibonacci Numbers Index n in X n-th. Fibonacci number

FIBI Inverse Fibonacci Index n in X n-th/ inverse Fibonacci

MLN Multinomial Coefficient n in Y, k in X C(n,k)

FIB Sum of Fibonacci Range n in X Sum[fib(n)]

IFIB Sum of Inverse Fibonacci Range n in X Sum[1/fib(n)]

1/N Harmonic Number n in X Result in X, n in LastX

X^N Faulhaber formula n in Y, x in X Result in X, x in LastX

• 1/N calculates the Harmonic number of the argument in X, that is the sum of the reciprocals

of the natural numbers (which excludes zero) lower and equal to n. It will be used in the calculation

of the Kelvin functions and the Bessel functions of the second kind, K(n,x) and Y(n,x).

 Example: calculate H(5) and H(25).

5, XEQ “1/N” =>

 25, XEQ “1/N” =>

• N^X Calculates a generalized value of the Faulhaber’s formula for integer values of x. – The

few first integer values of x have explicit formulas for the result, but that’s not the case for a

general value - which can also be non-integer. Obviously for x=-1 this function returns identical

results than 1/N, albeit slower due to the additional complexity of the definition of the term.

Example: Check the triangular (x=1) and pyramidal (x=2) formulas for n=10 – which are particular
cases of the Faulhaber’s Formula, involving Binomial coefficients and Bernoulli’s numbers. See the

link below for details: http://en.wikipedia.org/wiki/Faulhaber%27s_formula

10, ENTER^, 1, XEQ “N^X” =>

10, ENTER^, 2, XEQ “N^X” =>

http://en.wikipedia.org/wiki/Faulhaber%27s_formula

© ÁNGEL M. MARTIN – MAY 2021 PAGE 6 OF 44

 HP-41 RECURSION MODULE QRG

Apéry Numbers. { APERY } (See JM Baillard’s reference page.)

Named after the French mathematising Roger Apéry, (University of Caen in Normandy), these numbers

are defined by:

The first few are: 1 5 73 1445 33001 [see Sloane's A005259]

These numbers may also be computed by the formula An = 4F3 (-n , -n , n+1 , n+1 ; 1 , 1 , 1 ; 1)

where 4F3 is a generalized hypergeometric function.

These numbers grow very quickly so the MCODE function presents the result in ALPHA to allow for

exponents larger than 99. The Mantissa is left in X and the exponent in Y. If the function is part of a

running program no ALPHA output will be shown.

Examples:

41, XEQ “APERY” =>

100, XEQ “APERY” =>

329, XEQ “APERY” =>

Note: In 1979, Apéry proved that zeta(3) is irrational. Since then, (3) is called Apéry's Constant. It has

an approximate value of: 1.20205690315959428539

Bell Numbers. { BELL } (See jm Baillard;s reference page)

In combinatorial mathematics, the Bell numbers count the possible partitions of a set, i.e. the Bell

number Bn counts the number of different ways to partition a set that has exactly n elements.

Bell numbers are defined by the iterative sequence below:

B(0) = 1 and

B(n+1) = {k=0..n} Cn,k B(k) if n > 1

 where Cnk = n! / [k!(n-k)!] are the binomial coefficients.

Examples:

10, XEQ “BELL” =>

89, XEQ “BELL” =>

http://hp41programs.yolasite.com/apery.php
http://hp41programs.yolasite.com/bell.php

© ÁNGEL M. MARTIN – MAY 2021 PAGE 7 OF 44

 HP-41 RECURSION MODULE QRG

Bernoulli Numbers { BN2 } (see JM Baillard reference page)

The Bernoulli numbers could be computed by the relations:

B(0) = 1 ;

B(0) + Cn+1,1 B(1) + Cn+1,2 B(2) + + Cn+1,n B(n) = 0

where Cnk = n! / [k!(n-k)!] are the binomial coefficients

If the convention B1=−1⁄2 is used, this sequence is also known as the first Bernoulli numbers; with the

convention B1=+1⁄2 is known as the second Bernoulli numbers. Except for this one difference, the first

and second Bernoulli numbers agree. Since Bn=0 for all odd n>1, and many formulas only involve even-

index Bernoulli numbers, some authors write Bn instead of B2n.

Example:

10, XEQ “BN2” => B(10) =

Note however that this recurrence relation is unstable, and the results are quite inaccurate for large n.

The generating function below is often used to avoid that:

Multinomial Coefficients. { MLN } (See JM Baillard’s reference page.)

Multinomial coefficients are an extension of the Binomial coefficient, using multiple indexes instead of

two. For example, if “k” is the number of variables we have:

P = (n1 , n2 , nk) ! = n ! / (n1! n2! nk!) ; where n = n1 + n2 + + nk

The function MLN expects the input values stored in data registers starting in R01, The number of

variables “k” is entered in the stack’ X-register.

Example: Calculate (76 , 107 , 112 , 184) !

16 STO 01 24 STO 02 41 STO 03 48 STO 04

4 XEQ "MLN" => P =

http://hp41programs.yolasite.com/bernouilli.php
http://hp41programs.yolasite.com/multinomial.php

© ÁNGEL M. MARTIN – MAY 2021 PAGE 8 OF 44

 HP-41 RECURSION MODULE QRG

Fibonacci Numbers { FIB , FIBI }

These functions calculate the Fibonacci and the Fibonacci Inverse numbers using the well-known

recurrent relationship:

f(0) = 0 ,

f(1) = 1 ;

f(n) = f(n-2) +f(n-1)

And the "Fibonacci Inverse" defined as

f’(0) = 0

f’(1) = 1

f'(n) = 1/f('n-2) + 1/f'(n-1).

Note that this is *not* the same as the inverse of Fibonacci, which would simply be 1/F(n)

Examples:

10, XEQ “FIB” => 55.00000000 ; LASTX, XEQ : FIBI” => 0.683299104

25, XEQ “FIB” => 75,025.00000 ; LASTX, XEQ “FIBI” => 0.707165965

Sum of Fibonacci numbers { FIB , FIBI }

Here we’re calculating the sum of the first n Fibonacci numbers, starting at f(0)=0 until f(n).

An interesting fact is the sum of the first Fibonacci numbers with odd index up to f(2n−1) is the 2n-th.

Fibonacci number, and the sum of the first Fibonacci numbers with even index up to f(2n) is the (2n+1)-

th. Fibonacci number minus 1:

Moreover, the general expression below relates the sum to the sequence value:

{0..n)F(n) = f(n+2)-1

Example:

15, XEQ “FIB” =>

Verifying the formula above:

17, XEQ “FIB” =>

Example:

15, XEQ “FIBI” =>

© ÁNGEL M. MARTIN – MAY 2021 PAGE 9 OF 44

 HP-41 RECURSION MODULE QRG

Recursion on the HP-41 - by T.W. van der Berg (10079)

From PPC Calculator Journal V11N9 - Nov/Dec 1984

Here is my answer to your latest request for more input from the members: an article about recursion in

the HP41. In a few examples I will make the method to implement recursive algorithms on the HP41

clearer (there is an elegant way to do it). The examples in this article are:

• Factorials

• Fibonacci

• Ackermann function

• Towers of Hanoi

• Partitions

• Prefix, Infix and Postfix rotations

• Harmonic Numbers

• Stirling Numbers

• Binomial Coefficient

• Catalan Numbers

In the future I hope to send more programs. - Happy recursive programming!

Recursion on the HP-41

A well-known example of recursion is the function for n factorial, n!

n! = n*(n-1)! If n>1
 = 1 if n=1 Or written as an algorithm:

Algorithm 1: Factorial

Function FAC(n:natural) :natural;

Begin
If n=1 Then FACT:= 1

 else FACT:= n*FAC(n-1)
End

The job consists on translating this algorithm into HP41 language. The main problems are:

• How to implement local variables (each call of FAC creates a new variable n);

• How to handle the large amount of return addresses (the HP41 can only handle 6 levels of

subroutine calls).

A solution for the latter to problems is a memory stack. Each time you call FAC the current value of n is

pushed onto the stack. The return address is also pushed onto the stack.

Translation of algorithm 1:

1) Define a stack (in the data register area of the calculator)

2) Define two stack pointers (sp1, sp2). Sp1 points to n; sp2 points to the return address. (It is

much easier to work with two stack pointers)

3) Translate all statements in algorithm 1.

This will require two FOCAL programs, a CALLING program and a CALLED subroutine. The calling

program initializes the stack pointers and repeatedly calls the procedure subroutine until the algorithm

reaches the final boundary condition. The called subroutine should not be executed by itself, since it lacks

the proper initialization pointer and stack definitions.

© ÁNGEL M. MARTIN – MAY 2021 PAGE 10 OF 44

 HP-41 RECURSION MODULE QRG

We’ll start with the called subroutine, which implements the algorithm using HP41 instructions. You can
NOT run this program. You always need another program to call the subroutine and to initialize the
stack pointers sp1 and sp2. Below are both #FCT (called program) and the calling program for LBL “#FCT”

Called Routine Comment

LBL “#FCT” function FAC

ISG 01 begin
NOP
ISG 02 (
NOP sp1:=sp1*2
STO IND 01 sp2;=sp2+2
CLA sp1^:=n
X<>M sp2:=RTN
X<> a)
X<> M
ASTO IND 02

1
X=Y? if n=1 then FAC:=1
GTO “END”
-
XEQ “#FCT” Else:
RCL IND 01 FAC:=FAC(n-1)*n
*
LBL “END” end
CLA
ARCL IND 02
X<> M RTN:=sp2^

X<> a sp2:=sp2-2
X<> M sp1:=sp1-2
DSE 02)
NOP
DSE 01
NOP
RTN

Driver Program Comment

LBL “FACT” Calling program

10.00002 initialize stack pointers
STO 01 the stack starts at R10
11,00002
STO 02
DSE 01 sp1:=8.00002
NOP
DSE 02 sp2:=9.00002
NOP
“ENTER N”
PROMPT
XEQ “#FCT”
END

Instructions: Result: Example: Display

1) XEQ “FACT” ENTER N XEQ “FACT” =>

2) n, R/S n! 5, R/S =>

The essential point of #FCT is the implementation of the statements ‘begin’ and ‘end’. Note the
symmetry: “begin” = “end” ^-1 (i.e LBL “END” is the reverse sequence of steps defined in the “begin’

section of the code inscribed in the rectangle, therefore it basically undoes it in preparation for the next
iteration - execution of the #FCT function).

As you see #FCT keeps calling itself while the argument is greater than 1. Each iteration u

ses two data registers to save the pointers, therefore this scheme produces the following arrangement:

R10 n1 sp1=10
R11 RTN1 sp2=11

R12 n2 sp1=12
R13 RTN2 sp2=13

R14 n3 sp1=14
R15 RTN3 sp2=15

R16 … sp1=
R16 … sp2=

© ÁNGEL M. MARTIN – MAY 2021 PAGE 11 OF 44

 HP-41 RECURSION MODULE QRG

A few comments are in order.

Note that sp1 is a BCD number (the current value of n) but sp2 is a binary number since the return
addresses are in hex. This is handled by the ASTO/ARCL instructions storing and recalling the contents of

the “a” register holding the upper half of the HP-41 RTN stack. Register M is just an intermediate location

needed for the transaction in-between “a” and the data registers holding all its different iterations.

CLA clears M
X<> M stores n in M, clears X

X<> a clears “a”, saves RTN in X
X<> M moves RTN to M, brings n back to X

ASTO IND 02 saves RTN in data register

All this dancing around is required to avoid the data normalization that occurs when using STO/RCL

instructions, which you’d normally tend to utilize when having to copy data between register “a” and the
data registers:

RCL a
STO IND 02

Which would’ve been more intuitive – but alas, we need to use ALPHA data instead, which means using

the M register and ASTO instead of STO. (We could have used non-normalizing functions such as

PEEKR/POKER but that’s another story entirely and would have required a capable additional module).

Remarkably, only the “a’ register needs to be backed-up since it’s the one getting overflowed (capacity
exceeded). The last three return addresses held in register “b” will be managed by the O/S itself, pushed

into the “a” register as the number of subroutine levels increases. Another subtle effect of the method is

that only one subroutine level is ever used in the “ä” register, which is backed-up at every iteration so
there’s no time for it to accumulate multiple levels (up to three). This has a small drawback though,

because the backup also happens even when there’s no data in “ä” – that is three data registers are used
without a real strict need for it. Indeed, a small price to pay for the sake of an scalable algorithm.

It’s worth noting that each iteration is adding one more RTN address to the stack (all pointing at the
same program step after the XEQ “#FCT” instruction!), and that when finally when the term n=1 is

reached, all the additions will be run sequentially, decreasing the RTN stack one at a time and executing
the ending part of the program (LBL END”) the same number of times.

Note that the RECURSE module implements this approach in an optimized way. First, the sp1 pointer is

held in N(6) and sp2 is held in M(5), freeing so R01 and R02, and the memory stack starts in data
register R01 instead of R10. Secondly, it includes dedicated MCODE functions for the begin: and end:

procedures, including two subroutines for the backup and restore of the RTN stack – replacing the X<>
steps in the FOCAL counterpart. Thus, [LVUP] copies the “a” register in the indirect location pointed at by

M (moves it one level up), and [LVDN] recalls it from said location into “a” (moves it one level down).

There are two sets of MCODE functions for the begin:/end: housekeeping. The first set $BEG2 / $END2

used for routines that need two stack pointers (such as FACT), and $BEG3 / $END3 for those routines
that employ two indexes and therefore need three stack pointers – more about this later.

Stack

“a”

Data

Reg

Stack

“a”

Data

Reg

ALPHA

“M”

© ÁNGEL M. MARTIN – MAY 2021 PAGE 12 OF 44

 HP-41 RECURSION MODULE QRG

A few more examples not part of the original article are included in the RECURSE module:

Algorithm 1.2: Harmonic numbers.

Definition of Harmonic numbers as a recurrent expression:

H(0)= 0

H(n) = H(n-1)+1/n n>1

XEQ “HARM” =>

10, R/S =>`

Algorithm 1.3: Catalan numbers

Named after the Belgian mathematician Eugene Charles Catalan, they’re defined as:

And they satisfy the following recurrence relation implemented here:

 Cn+1 = Cn (4n-2)/(n+1) , n>1

XEQ “CATN” =>

7, R/S =>

Algorithm 1.4: Stirling numbers of the 1st kind

Stirling numbers of the first kind S(n, k) are defined by the following recurrence relation:

S(n, 0) = 0 ;

S(n, k) = S(n-1, k-1) - (n-1) S(n-1, k) , 1 <= k <= n

XEQ “STIR” =>

6, ENTER^, 3, R/S =>

12, ENTER^, 7, R/S =>

© ÁNGEL M. MARTIN – MAY 2021 PAGE 13 OF 44

 HP-41 RECURSION MODULE QRG

Algorithm 1.5: Binomial Coefficient

Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0. It is the coefficient of the

x^k term in the polynomial expansion of the binomial power (1 + x)^n, and is given by the formula:

Arranging the numbers in successive rows for n = 0 , 1 , 2 ,… gives a triangular array called Pascal's

triangle, satisfying the recurrence relation used in this implementation:

C(n,k) = C(n-1,k-1) + C(n-1, k)

XEQ “COMB” =>

6, ENTER^, 3, R/S =>

R/S =>

13, ENTER^, 5, R/S => (takes a *very* long time)

Note: obviously speed is not this method’s forte. If you need a more practical solution you’re encouraged

to check the implementation of the Combinations function available in the SandMath and in a few other

math modules.

© ÁNGEL M. MARTIN – MAY 2021 PAGE 14 OF 44

 HP-41 RECURSION MODULE QRG

Algorithm 2: Fibonacci numbers.

Definition of Fibonacci numbers:

F(0) = 0

F(1) = 1

F(n) = F(n-1) + F(n-2) ; if n>1

Function FIB(n:natural) :natural ;
Begin

If n<= 1 then FIB:=n

 Else FIB:=FIB(n-1)+FIC(n-2)
End.

Which has been implemented in the corresponding pair of FOCAL programs shown below.

LBL “#FIB” function FIB

ISG 01 begin procedure

NOP
ISG 02

NOP
STO IND 01

CLA

X<> M
X<> a

ASTO IND 02
1 if n<=1 then FIB:=n

X<>Y

X<>Y?
GTO 01

-
CHS else:

XEQ “#FIB” FIB:=FIC(n-1)+FIB(n-2)
X<> IND 01

2

-
XEQ “#FB” else:

RCL IND 01 FIB:=FIC(n-1)+FIB(n-2)

+
LBL 01 end procedure

CLA

ARCL 02
X<> M

X<> a

X<> M
DSE 02

NOP
DSE 01
NOP

RTN

LBL “FIBO” Calling program for #FB

8.0002 init stack pointers
STO 01 sp1 will start at 10

9,0002
STO 02 sp2 will start at 11

“ENTER N”

PROMPT prompts for index
XEQ “#FIB” compute F(n)

END

Note the simplification in the calling program compared with the factorial case: the pointers are given
directly, also there’s no need for a global label to “END”. Those were explicit there for didactical purposes

only.

Note as well that two calls to the recursive function #FIB are needed for each iteration; one for n-1 and
another for n-2.

Instructions: Results: Example: Display:

1) XEQ “FIBO” ENTER N XEQ “FIBO” =>

2) N, R/S F(n) 5, R/S => 5

© ÁNGEL M. MARTIN – MAY 2021 PAGE 15 OF 44

 HP-41 RECURSION MODULE QRG

Algorithm 3: Ackerman function.

The Ackerman function is defined as: A(m,n) = n+1 , m=0

 = A(m-1, 1) , n=0
 = A(m-1, A(m. n-1)) , m>0 , n>0

This is different from the previous examples on several accounts. For starters, we’re now dealing with
two indexes, therefore will need to add a third pointer, sp3, and the corresponding data registers in the

stack. The function has been Implemented with the following program: (warning: very slow!)

LABEL #ACK” function ACKER

ISG 01 begin procedure
NOP

ISG O2 (
NOP sp1:=sp1+3

ISG 03 sp2:=sp2+3

NOP sp3:=sp3+3
STO IND 01

X<>Y
STO IND 02

CLA
X<> M

X<> a

X<> M
ASTO IND 03

X=0? If m=0 then
GTO 00 ACKER:=n+1

X<>Y if n=0 then

X=0? ACKER:=ACKER(m-1, 1)
GTO 01

1 ACKER:=
- ACK(m-1, ACK(m, n-1))

XEQ “#ACK”
RCL IND 02

1

-
X<>Y

XEQ “#ACK” compute A(m-1, x)
GTO 02
LBL 00 ACKER:=n+1

X<>Y

1
+

GTO 02
LBL 01 ACKER:=ACKER(m-1, 1)

X<>Y
1

-
1

XEQ “#ACK”
LBL 02 end procedure

CLA
ARCL IND 03

X<> M
X<> a

X<> M

DSE 03
NOP

DSE 02
NOP

DSE 01

NOP
RTN

LBL “ACKER”

7.00003 the stack starts at R10
STO 01 sp1:=7.00003

8.00003 sp2:=8.00003

STO 02 sp3:=9.00003
9.00003

STO 03
“ENTER M^N” input indexes

PROMPT

XEQ “#ACK” compute A(m,n)
END

Three calls to the recursive function #ACK are needed for each iteration, which contributes to

the slowness of the program – about 45-50 seconds on V41 with TURBO mode (!)

Instructions: Results: Example: Display

XEQ “ACKER” ENTER M^N XEQ “ACKER” =>
M, ENTER^, n, R/S A(m,n) 3, ENTER, 2, R/S =>

© ÁNGEL M. MARTIN – MAY 2021 PAGE 16 OF 44

 HP-41 RECURSION MODULE QRG

Algorithm 4: Towers of Hanoi.

Repeated here is the article published in PPCCJ V8N3 p22.

Given three pegs (A, B, and C), N discs of varying size stacked in order of size (large on the

bottom, small on the top) on peg A.

Problem: In the smallest number of moves, one disc at a time, in such a way that a disc is never

placed on the top of a smaller one, move the N discs (similarly stacked) from peg A to pag B.

Algorithm: Two sections are involved:

MDISC(A, B): moves a disc from peg A to peg B.
MTOWER(A, B, C, N) : moves a tower of N discs from peg A to peg B via peg C

Procedure MTOWER(var A,B,C :peg ; N :natural) ;

Begin

 If N=1 then MDISC(A, B)
 Else MTOWER(A, B, C, N-1)

 MDISC(A, B)
 MTOWER(C, B, A, N-1)

End.

Here’s the FOCAL code that implements this procedure. As expected, this example is more

complex than the previous ones so it has a more demanding resource utilization, such as data
register usage.

LBL “#MTWR” procedure MTOWER

ISG 00 begin

NOP
CLA

X<> M
X<> a

X<> M
ASTO IND 00

X<>Y MTWR(A,B,C,N)

DSE T
XEQ “#MTWR”

ISG T
NOP

X<> Z

CLA end
ARCL IND 00

X<> M
X<> a

X<> M
DSE 00

NOP

RTN

LBL “#MDSC” procedure MDISC

STO 06 save stack

RND

STO 05

RDN
STO 04

RDN
RCL IND 04

RCL IND 05
RCL IND 06

DSE Y

NOP moves disc from peg A
X<> IND Z to peg B

X<> IND Y
X<> IND Z

ISG Z

NOP
STO IND 06

RDN
STO IND 05

RDN
STO IND 04

RDN

RCL 04
RCL O5

RCL 06
X<> L swap (X, L)

“PEG A:” display peg A

© ÁNGEL M. MARTIN – MAY 2021 PAGE 17 OF 44

 HP-41 RECURSION MODULE QRG

AVIEW

RDN
RCL 01

XEQ 01
“PEG B:” display peg B

AVIEW

RDN
RCL 02

XEQ 01
“PEG C:” display peg C

AVIEW

RDN
RCL 03

XEQ 01
ADV layout instructions

CLD
X<> L swap (X, L)
LBL 01 display a peg

ISG X

NOP
DSE X

RTN
LBL 02

VIEW IND X
ISG X

GTO 02
RTN

LBL “HANOI” calling program

FIX 0

“ENTER N”
PROMPT

RCL X
RCL X

10

STO 00

DSE 00

NOP
+

STO 02
*

STO 03

RDN
RCL 01

1
-

 E3

/
+

ST+ 01 R01 :=
LASTX R01+(9+2N)/1000

+
ST+ 02 R02 :=

LASTX R02+(9+4N)/1000

+
ST+ 03 R03 :=

RDN R03+(9+4N)/1000
RCL 01

1
LBL 00

STO IND Y
ISG X

NOP
ISG Y

GTO 00

R^
1

2 T = N
3 Z = pointer to R01 (A)

XEQ “#MTWR” Y = pointer to R02 (B)

END X = pointer to R03 I

Memory usage:

R00 : stack pointer R10 to R(10+N-1) : stack

R01 : pointer to peg A R(10+N) to R(10+2N-1) : peg A

R02 : pointer to peg B R(10+2N) to R(10+3N-1) : peg B
R03 : pointer to peg C R(10+3N) to R(10+4N-1) : peg C

Notice the implementation of ‘var’ in procedure MTOWER. If a call by reference is used (denoted by

var) then use pointers to the variables. (you can find more about call by reference or call by value in

books about software engineering).

© ÁNGEL M. MARTIN – MAY 2021 PAGE 18 OF 44

 HP-41 RECURSION MODULE QRG

Instructions: Results
XEQ “HANOI” ENTER N

N, R/S PEG A:
 Sequence of numbers

 PEG B:

 Sequence of numbers, … etc.

The sequence of numbers are the numbers of the discs. Disc 1 is the smallest disc. Disc N is the largest
disc. Each time a disc is moved from a peg to another peg the contents of each peg is displayed (peg

A, peg B, peg C).

Example: Display:

XEQ “HANOI” ENTER N
5 , R/S

© ÁNGEL M. MARTIN – MAY 2021 PAGE 19 OF 44

 HP-41 RECURSION MODULE QRG

Algorithm 5: Partitions.

You can write a positive integer m as a sum of positive terms (0 < term <= n)

6 = 1 + 1 + 1 + 1 +1 +1

 = 2 + 1 + 1 + 1 +1

 = 2 + 2 + 1 + 1
 = 2 + 2 + 2

 = 3 + 1 + 1 + 1
 = 3 + 2 + 1

 = 3 + 3

 = 4 + 1 +1
 = 4 + 2

 = 5 + 1
 = 6

The number of partitions Q(m, n) is the number of different ways the number can be written as sum of
terms, thus Q(6, 6) = 11

Algorithm:

Function Q(m, n : natural) :natural ;

begin

 if n=1 or m=1 then Q: = 1
 else

 begin
 If m<n then Q: = 1 + Q(m, m-1)

 Else Q:= Q(m, n-1) + Q(m-n, n)

 end
end

And shown below is the program that implements it. This one more standard as it uses the same
structures as those seen in the examples before HANOI., now with three stack pointers because of the

existence of two numeric inputs, m and n

LBL “#Q” function Q

ISG 00 begin
NOP

ISG 01

NOP
ISG 02

NOP
STO IND 02

X<>Y

STO IND 01
CLA

X<> M
X<> a

X<> M

ASTO IND 00 if m=1 or n=1 X<>Y
X=Y? then Q=1

GTO 00

X<> Z if m<=n then
RDN Q:=Q(m,m-1)+1

X<=Y?
GTO 01

X<>Y Q(m,n-1)+Q(m,n-1)

1
-

XEQ #Q” compute Q(m,n-1)
X<> IND 01

RCL IND 02
ST- Y

XEQ “#Q” compute Q(m,m-1)

1
+
LBL 00 end

CLA

ARCL IND 00

© ÁNGEL M. MARTIN – MAY 2021 PAGE 20 OF 44

 HP-41 RECURSION MODULE QRG

X<> M

X<> a
X<> M

DSE 02
NOP

DSE 01

NOP
DSE 00

NOP
RTN

LBL “PART” calling program

7,00003
STO 00

8,00003 can also use { 1 +}
STO 01

9.00003

STO 02
“ENTER M^N”

PROMPT
XEQ #Q”

END

Instructions: Result: Example: Display:
XEQ “PART” “ENTER M^N” XEQ “PART”

m ENTER n, R/S Q(m,n) 6 ENTER^6, R/S

Modifications made in the RECURSE module.

The algorithms reviewed have a similar structure that have been implemented as common subroutines

shared by all of them, as shows below:

- Initialization of pointer values $I2, $I3

- Begin of the procedure $BEG2, $BEG3

- Math on the partial results within each program

- Ending of the procedure. $END2, $END3

You can set User flag F10 to see the register numbers used to store the partial results.

© ÁNGEL M. MARTIN – MAY 2021 PAGE 21 OF 44

 HP-41 RECURSION MODULE QRG

 Routine listing.

Even if in the module the routines are in MCODE a translation to FOCAL is provided below for your
convenience. Note how we use the ALPHA registers M,N,O to hold the data register pointers sp1, sp2,

and sp3 instead of R00, R01, R02.

23 *LBL “$I2”

 02 “N=?”
 03 PROMPT
 04 -2.00002
 05 STO M
 06 E
23 +
23 STO N
23 RDN

 10 RTN

 11 *LBL “$I3”

 12 “N^K=?”
 13 PROMPT
 14 -3.00003
 15 STO M
 16 E
 17 +
 18 STO N
 19 E
 20 +
 21 STO O
 22 RDN
 23 END

01 LBL “$END3”

02 DSE O(7)
03 NOP

04 LBL “$END2”

05 DSE N(6)
06 NOP
07 XEQ “LVDN”
08 DSE M(5)
09 NOP
10 RTN

11 LBL “$BEG3”

12 ISG O(7)
13 NOP
14 STO IND 7(O)
15 X<>Y

16 LBL “$BEG2”

17 ISG N(6)
18 NOP

19 STO IND N(6)
20 ISG M(5)
21 NOP

22 LBL “LVDN”

23 CLA
24 ARCL 02
25 X<> M
26 X<> a
27 X<> M
28 RTN

29 LBL “LVUP”

30 CLA
31 ARCL IND 00
32 X<> M
33 X<> a
34 X<> M
35 END

© ÁNGEL M. MARTIN – MAY 2021 PAGE 22 OF 44

 HP-41 RECURSION MODULE QRG

RTN Stack Functions

The table below summarizes the RTN stack functions included in the module:

Function Description Input Output

CLRTN Clear RTN stack RTN Stack contents Erases pending addresses

RTNE? Is RTN Stack Empty? (no levels) RTN Stack contents Yes if L=0

RTNF? Is RTN Stack Full? (six levels used) RTN Stack contents Yes if L=6

RTNS Get # of used RTN levels RTN Stack contents Number in X, stack lifted

XQ>GO Drop first RTN level RTN Stack contents Last addr removed

None of the recursion routines described before make use of these functions but nevertheless they’re
related to the same subject, thus their inclusion in the module. They provide enhanced control of the

program flow, so your routines can become more powerful and flexible.

Background information:

The OS has provision for up to six levels of subroutines; that is your FOCAL programs can have up to five

chained XEQ calls to other programs or subroutines. The program pointer (PC) and the first two pending

return addresses are stored in status registers b(12), the third is stored as two halves on each register,

and the remaining three in status register a(11).

b(12):

R 3 A D R 2 A D R 1 P C N T

13 12 11 10 9 8 7 6 5 4 3 2 1 0

a(11):

A D R 6 A D R 5 A D R 4 A D

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Getting Information on Subroutine Levels usage.

• RTNS returns the number of pending RTN levels to the X register. Obviously, the result will be

zero if executed in manual mode, as no pending subroutines exist. The stack is lifted.

• CLRTN clears all return addresses in the RTN stack. It does not alter the current program pointer

so it’s safe to use in a running program.

• RTNE? and RTNF? are used to check whether the RTN stack is empty (no levels) or full (six

levels used). They behave like the standard test functions in the calculator, returning YES/NO

and skipping a line in a running program if the condition is false.

• XQ>GO removes one pending routine address off the RTN stack and shifts the rest one level

down. No output to X is produced.

© ÁNGEL M. MARTIN – MAY 2021 PAGE 23 OF 44

 HP-41 RECURSION MODULE QRG

Let’s see a few examples of utilization.

The diagram below is taken from the HP-41CX manual, Vol. II page 302. It shows an example of six
RTN stack levels utilization by a main program calling six subroutines – not the only way to get there

but certainly a clear one.

Example1:

Using RTN? Is a good way to control whether an information message should be displayed. This

situation arises frequently when using a FOCAL routine both as its own function or as a subroutine of
another larger program, when displaying the partial result isn’t desired.

LBL “SUBRTN”
. . .

. . .
“MESSAGE”

RTN?

RTN
PROMPT

END

Example2:

RTNF? provides a control safety check to prevent RTN Stack overflowing. Simply add it before the XEQ

instructions and SKIP the XEQ call if the result is affirmative:

. . .
 . . .

RTNF?

SKIP
XEQ “XYZ”

. . .

. . .

Example3:

XQ>GO is the best way to cancel a pending return, very useful in cases when the called subroutine
has encountered either an error condition or a game-changer result; calling this function will cancel the

return to the calling point.

© ÁNGEL M. MARTIN – MAY 2021 PAGE 24 OF 44

 HP-41 RECURSION MODULE QRG

Modular Math (by Greg McClure and JM Baillard)
The following description was written by Greg, taken from the GJM ROM manual.

For those acquainted with modular math, the following modulus functions are provided:

• M+ performs Z+Y MOD X. It works for values up to 10 digits and takes into consideration the

sign of the values. M+ handles differently signed parameters. It is in MCODE and uses 13-

digit math, making it much faster.

• M- performs Z-Y MOD X. The same comments apply as in M+.

• M* performs Z*Y MOD X. The same comments apply as in M+ and M-.

• M^2 performs Y^2 MOD X. It really uses much of the same code as M*, it is actually doing a

Y*Y MOD Z.

With the above MCODE routines, the following FOCAL functions taken from Jean-Marc Baillard run

much quicker…

• 1/M performs 1/Y MOD X. This function may or may not have an answer. Remember, the

definition is “Return the value that, when multiplied by Y MOD X yields 1”. This value may not

exist. The function will stop with “DATA ERROR” if this is the case.

• SQRTM performs SQRT(Y) MOD X. This function will return either 0 (no solution) or the

control number of the registers containing the answers. Remember, the definition is “Return

the value that, when multiplied by itself, returns Y MOD X”. So if 1.002 is returned to X then

the answers are in R1 and R2. They should be considered as dual answers, that is, +R1, -R1,

+R2, and –R2 (that would be 4 answers).

Where is M/ ? Well actually this is the congruence function (if AX = B MOD C then X = B/A MOD C).

The CONG function solves AX=B MOD C, expecting A in Z, B in Y, and modulus C in X. This may or

may not yield an answer (for example 2X = 3 MOD 10 has no solutions), so it is possible that the

function will stop with a DATA ERROR. If it doesn’t, then X will contain the primary answer, and Y will

contain the value that can be added or subtracted any integer number of times for the other answers.

For example, to solve 2X = 4 MOD 10, do:

 2, ENTER^, 4, ENTER^, 10, XEQ “CONG” ;

the result is X = 2, Y = 5. This means the solution set is {…, -8, -3, 2, 7, 12, 17 …}.

The Alpha register is used, so it will be cleared if a solution is found. If not, then synthetic registers M,

N, and O will contain the reduced A, B, and C (a GCD is performed on A, B, and C before 1/M is

performed and this is saved in M, N, and O). This may be useful in determining why the DATA ERROR

occurred. BTW I have listed Ángel Martin as a co-author, since he did much of the grunt work to help

determine the method of solution needed. Once I read all the info, applying 1/M, GCD, and M* was

a simple matter.

© ÁNGEL M. MARTIN – MAY 2021 PAGE 25 OF 44

 HP-41 RECURSION MODULE QRG

Program listing

The FOCAL routines are listed in the next couple of pages for your reference.

01 LBL “1/M”

02 RAD
03 E

04 XROM “UV”
05 STO Z

06 FRC

07 X#0?
08 GTO 00

09 RDN
10 FRC

11 X=0?

12 GTO 01
13 *LBL 00

14 CLX
15 LN
16 *LBL 01

17 CLX

18 RCL 02
19 ABS

20 MOD
21 END

01 LBL “UV” auxiliary subroutine

02 STO 00

03 CLX

04 STO 02
05 STO 03

06 E
07 STO 01

08 STO 04
09 *

10 +
11 LBL 01

12 STO T
13 MOD

14 ST- Y

15 X<> Z
16 /

17 RCL 01
18 X<> 02

19 STO 01
20 X<>Y

21 *
22 ST- 02

23 CLX

24 RCL 03
25 X<> 04

26 STO 03
27 LASTX

28 *
29 ST- 04

30 RDN

31 X#0?
32 GTO 01

33 X<>Y
34 ST/ 00

35 RCL 03

36 RCL 01
37 RCL 00

38 ST* Z
39 *

40 END

© ÁNGEL M. MARTIN – MAY 2021 PAGE 26 OF 44

 HP-41 RECURSION MODULE QRG

01 LBL “SQRTM”

02 STO Z
03 2
04 /
05 INT
06 X<> Z
07 MOD
08 0
09 STO 00
10 SF 10
11 *LBL 01

12 CLX
13 RCL Z
14 ST* X
15 LASTX
16 MOD
17 X#Y?

18 GTO 02
19 X<> T
20 ISG 00
21 CLX
22 STO IND 00
23 *LBL 02

24 DSE Z
25 GTO 01
26 FS?C 10
27 GTO 01
28 RCL 00
29 E3
30 /
31 X#0?
32 ISG X
33 END

 1 LBL "M^"

2 SIGN
3 STO 00
4 RDN
5 STO 02
6 X<>Y
7 STO 01
8 GTO 03
9 *LBL 01

10 2
11 MOD
12 X#0?
13 GTO 02
14 LASTX
15 ST/ 02
16 RCL 01
17 R^

18 M^2
19 STO 01
20 GTO 03
21 *LBL 02

22 ST- 02
23 RCL 00
24 RCL 01
25 R^
26 M^2
27 STO 00
28 *LBL 03

29 LASTX
30 RCL 02
31 X#0?
32 GTO 01
33 RCL 00
34 END

01 LBL “CONG”

02 STO M(5)
03 RDN
04 STO N(6)
05 RDN
06 STO O(7)
07 RCL M(5)
08 GCD
09 RCL N(6)
10 GCD
11 ST/ M(5)

12 ST/ N(6)
13 ST/ O(7)
14 RCL O(7)
15 RCL M(5)
16 1/M
17 RCL N(6)
18 RCL M(5)
19 M*
20 RCL M(5)
21 CLA
22 X<>Y
23 END

© ÁNGEL M. MARTIN – MAY 2021 PAGE 27 OF 44

 HP-41 RECURSION MODULE QRG

Many Digits of Pi. (by Peter Platzer, MoHPC Forum)

The module includes the remarkable and impressive MCODE implementation of the Spigot algorithm by

Peter Platzer, published in the Museum of HP Calculators forum. His description is available in the

appendix, but here are the highlights:

The code asks for three inputs: The page where the MLDL ram starts to use, the number of digits and
the base b to use (max = 5 for 5 digits at a time). One can set Flag 0 and the calc will stop at each

group of digits and wait for a key to be pressed, otherwise it just keeps calculating …

Setting Flag 1 will store the found digits in the same compressed format – each group of up to 5 digits

is stored in 2 words, with the right nibble converted to hex. They are stored in reversed order though

In manual execution the function prompts for the number of digits to calculate (limited to 1999 by the

prompt) and the destination page where to store them. This needs to be a q-RAM page to allow writes
into it. The maximum number of digits is 4095 – which will fill up the page in its entirety.

The screens below show an example to calculate 1,046 digits to be stored in page B:

 ….

In an unmodified HP-41 it delivers 1,160 digits in about 9 hours 3,600 digits in about 4 days , and

4,915 digits in about 8 days. The chart below shows a comparison with the previous record-holding
approaches described in the article.

© ÁNGEL M. MARTIN – MAY 2021 PAGE 28 OF 44

 HP-41 RECURSION MODULE QRG

Extended precision: Pi to 1,000 places. (by Ron Knapp, PPCCJ V8N6 p69)

“Compute the first 1,000 decimal digits of Pi in less than 11 hours, 30 minutes”. That was the friendly

challenge put out by the PPC ‘Journal”, especially to members of the TI Personal Calculator Club,

approximately a year ago. This challenge was repeated in the “Calcu-letter” of Popular Science
Magazine, July 1981.

Up to the present time, I have heard of no serious attempts to eclipse this record. So,-- I decided to

improve my own program. The program listed below computes Pi to 1,000 decimal places in just 8

hours, 30 minutes.

Ed. note: with 2x machines, and some will run Faster, (fastest reported so far was Emett Ingram (17)
at 2.8x) a 4 hour, 1,000 digit Pi program is the state of the PPC art. How long will it be before someone
places 100,000 digits of Pi on a cassette? A printer on the HP-IL would take nearly 45 minutes to print
it on 70 feet of paper at 20 digits per line, 2 lines per second.

The first 1.000 decimal places of Pi contains 93 0s, 116 1s, 103 2s, 102 3s, 93 4s, 97 5s, 94 6s, 95 7s,

101 8s, and 106 9s. Below is "3 dot" followed by the first 1,000 decimals of Pi.

3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7 5 1 0 5 8 2 0 9

7 4 9 4 4 5 9 2 3 0 7 8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6 2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7 9 8 2 1 4 8 0 8 6 5 1 3 2

8 2 3 0 6 6 4 7 0 9 3 8 4 4 6 0 9 5 5 0 5 8 2 2 3 1 7 2 5 3 5 9 4 0 8 1 2 8 4 8 1 1 1 7 4 5 0 2 8 4 1 0 2 7 0 1 9

3 8 5 2 1 1 0 5 5 5 9 6 4 4 6 2 2 9 4 8 9 5 4 9 3 0 3 8 1 9 6 4 4 2 8 8 1 0 9 7 5 6 6 5 9 3 3 4 4 6 1 2 8 4 7 5 6

4 8 2 3 3 7 8 6 7 8 3 1 6 5 2 7 1 2 0 1 9 0 9 1 4 5 6 4 8 5 6 6 9 2 3 4 6 0 3 4 8 6 1 0 4 5 4 3 2 6 6 4 8 2 1 3 3

9 3 6 0 7 2 6 0 2 4 9 1 4 1 2 7 3 7 2 4 5 8 7 0 0 6 6 0 6 3 1 5 5 8 8 1 7 4 8 8 1 5 2 0 9 2 0 9 6 2 8 2 9 2 5 4 0

9 1 7 1 5 3 6 4 3 6 7 8 9 2 5 9 0 3 6 0 0 1 1 3 3 0 5 3 0 5 4 8 8 2 0 4 6 6 5 2 1 3 8 4 1 4 6 9 5 1 9 4 1 5 1 1 6

0 9 4 3 3 0 5 7 2 7 0 3 6 5 7 5 9 5 9 1 9 5 3 0 9 2 1 8 6 1 1 7 3 8 1 9 3 2 6 1 1 7 9 3 1 0 5 1 1 8 5 4 8 0 7 4 4

6 2 3 7 9 9 6 2 7 4 9 5 6 7 3 5 1 8 8 5 7 5 2 7 2 4 8 9 1 2 2 7 9 3 8 1 8 3 0 1 1 9 4 9 1 2 9 8 3 3 6 7 3 3 6 2 4

4 0 6 5 6 6 4 3 0 8 6 0 2 1 3 9 4 9 4 6 3 9 5 2 2 4 7 3 7 1 9 0 7 0 2 1 7 9 8 6 0 9 4 3 7 0 2 7 7 0 5 3 9 2 1 7 1

7 6 2 9 3 1 7 6 7 5 2 3 8 4 6 7 4 8 1 8 4 6 7 6 6 9 4 0 5 1 3 2 0 0 0 5 6 8 1 2 7 1 4 5 2 6 3 5 6 0 8 2 7 7 8 5 7

7 1 3 4 2 7 5 7 7 8 9 6 0 9 1 7 3 6 3 7 1 7 8 7 2 1 4 6 8 4 4 0 9 0 1 2 2 4 9 5 3 4 3 0 1 4 6 5 4 9 5 8 5 3 7 1 0

5 0 7 9 2 2 7 9 6 8 9 2 5 8 9 2 3 5 4 2 0 1 9 9 5 6 1 1 2 1 2 9 0 2 1 9 6 0 8 6 4 0 3 4 4 1 8 1 5 9 8 1 3 6 2 9 7

7 4 7 7 1 3 0 9 9 6 0 5 1 8 7 0 7 2 1 1 3 4 9 9 9 9 9 9 8 3 7 2 9 7 8 0 4 9 9 5 1 0 5 9 7 3 1 7 3 2 8 1 6 0 9 6 3

1 8 5 9 5 0 2 4 4 5 9 4 5 5 3 4 6 9 0 8 3 0 2 6 4 2 5 2 2 3 0 8 2 5 3 3 4 4 6 8 5 0 3 5 2 6 1 9 3 1 1 8 8 1 7 1 0

1 0 0 0 3 1 3 7 8 3 8 7 5 2 8 8 6 5 8 7 5 3 3 2 0 8 3 8 1 4 2 0 6 1 7 1 7 7 6 6 9 1 4 7 3 0 3 5 9 8 2 5 3 4 9 0 4

2 8 7 5 5 4 6 8 7 3 1 1 5 9 5 6 2 8 6 3 8 8 2 3 5 3 7 8 7 5 9 3 7 5 1 9 5 7 7 8 1 8 5 7 7 8 0 5 3 2 1 7 1 2 2 6 8

0 6 6 1 3 0 0 1 9 2 7 8 7 6 6 1 1 1 9 5 9 0 9 2 1 6 4 2 0 1 9 8 9

© ÁNGEL M. MARTIN – MAY 2021 PAGE 29 OF 44

 HP-41 RECURSION MODULE QRG

Program listing.-

 *LBL "PIE3" 1

 *LBL A 2

 " PI -?-" 3
 AVIEW 4
 CLRG 5
 FIX 3 6
 4 7
 STO 09 8
 E5 9
 ST/ Y 10
 STO 04 11
 X^2 12
 STO 05 13
 X<>Y 14
 427 15
 + 16
 STO 02 17
 239 18
 X^2 19
 STO 07 20
 LASTX 21
 E2 22
 * 23
 STO 13 24
 RDN 25
 X^2 26
 STO 08 27
 94 E-5 28
 STO 11 29
 14.0139 30
 STO 12 31
 25 32
 STO 10 33
 *LBL 00 34

 RCL 11 35
 ST+ 12 36
 RCL 12 37
 RND 38
 STO 00 39
 RCL 07 40
 RCL 02 41
 INT 42
 ENTER^ 43
 ST* Z 44
 2 45
 - 46

 ST- Z 47
 * 48
 RCL 10 49
 * 50
 STO 06 51
 CLX 52
 STO 01 53
 X<>Y 54
 RCL 13 55
 * 56
 ENTER^ 57
 GTO 02 58
 *LBL 01 59

 RCL 06 60
 ST/ Z 61
 MOD 62
 X<>Y 63
 INT 64
 X<>Y 65
 RCL 04 66
 ST* Z 67
 * 68
 ENTER^ 69
 *LBL 02 70

 RCL 06 71
 ST/ Z 72
 MOD 73
 STO 03 74
 RDN 75
 INT 76
 + 77
 RCL 05 78
 ST- Y 79
 X<>Y 80
 RCL IND 00 81
 + 82
 X>0? 83
 ISG 01 84
 *LBL 03 85

 X<0? 86
 + 87
 RCL 01 88
 RCL 04 89
 ST/ Z 90
 * 91
 ENTER^ 92

 *LBL 02 93

 RCL 08 94
 ST/ Z 95
 MOD 96
 R^ 97
 INT 98
 LASTX 99
 FRC 100
 RDN 101
 + 102
 X<>Y 103
 INT 104
 RCL 04 105
 ST* T 106
 ST* Z 107
 * 108
 STO IND 00 109
 RDN 110
 ENTER^ 111
*LBL 03 112

 RCL 08 113
 ST/ Z 114
 MOD 115
 X<>Y 116
 INT 117
 ST+ IND 00 118
 RDN 119
 + 120
 STO 01 121
 RCL 03 122
 RCL 04 123
 * 124
 ENTER^ 125
 ISG 00 126
 GTO 01 127
 DSE 02 128
 GTO 00 129
 4096 E-7 130
 STO 08 131
 1439.00006 132
 STO 02 133
 837 E-6 134
 STO 11 135
 115.115 136
 STO 12 137
 80 138
 STO 13 139

© ÁNGEL M. MARTIN – MAY 2021 PAGE 30 OF 44

 HP-41 RECURSION MODULE QRG

 5 E6 140
 STO 07 141
 .75 142
 STO 06 143

*LBL “Q” 144

 RCL 11 145
 ST+ 12 146
 RCL 12 147
 RND 148
 STO 00 149
 STO 03 150
 SF 00 151
*LBL 05 152

 RCL 02 153
 INT 154
 ENTER^ 155
 ENTER^ 156
*LBL 02 157

 2 158
 - 159
 ST* Z 160
 RCL 10 161
 ST* Z 162
 X<>Y 163
 * 164
 2 165
 ST- L 166
 CLX 167
 LASTX 168
 ST* T 169
 ST- Y 170
 RDN 171
 * 172
 R^ 173
 ST+ T 174
 X^2 175
 R^ 176
 + 177
 + 178
 FC? 00 179
 GTO 02 180
 RCL 13 181
 * 182
 3 183
 DSE 02 184
 GTO 03 185
*LBL 02 186

 RCL 07 187

 * 188
 RCL 06 189
*LBL 03 190

 X<>Y 191
 RDN 192
 / 193
 STO 01 194
 CLX 195
 R^ 196
 ENTER^ 197
 GTO 09 198
*LBL 08 199

 RCL 01 200
 ST/ Z 201
 MOD 202
 X<>Y 203
 INT 204
 X<>Y 205
 RCL 04 206
 ST* Z 207
 * 208
 ENTER^ 209
*LBL 09 210

 RCL 01 211
 ST/ Z 212
 MOD 213
 RDN 214
 INT 215
 + 216
 RCL IND 00 217
 - 218
 X>0? 219
 GTO 02 220
 DSE 00 221
*LBL 03 222

 DSE IND 00 223
 ISG 00 224
 RCL 05 225
 + 226
*LBL 02 227

 STO IND 00 228
 R^ 229
 RCL 04 230
 * 231
 ENTER^ 232
 ISG 00 233
 GTO 08 234
 RCL 03 235

 STO 00 236
 FS?C 00 237
 GTO 05 238
 CLX 239
 ENTER^ 240
 DSE 02 241
 FS? 00 242
 GTO 04 243
*LBL 11 244

 X<> IND 00 245
 RCL 04 246
 / 247
 FRC 248
 LASTX 249
 INT 250
 RCL 08 251
 * 252
 FRC 253
 LASTX 254
 INT 255
 ST+ IND 00 256
 RDN 257
 X<>Y 258
 RCL 05 259
 ST* T 260
 ST* Z 261
 * 262
 RCL 08 263
 * 264
 FRC 265
 X<>Y 266
 LASTX 267
 INT 268
 R^ 269
 + 270
 RCL 05 271
 - 272
 + 273
 X>0? 274
 ISG IND 00 275
 X>0? 276
 GTO 03 277
 RCL 05 278
 + 279
*LBL 03 280

 ISG 00 281
 GTO 11 282
 GTO “Q” 283
*LBL 04 284

© ÁNGEL M. MARTIN – MAY 2021 PAGE 31 OF 44

 HP-41 RECURSION MODULE QRG

 RCL 03 285
 STO 00 286
 RCL 10 287
 X^2 288
 3 289
 Y^X 290
 LASTX 291
 * 292
 STO 08 293
 CLX 294
*LBL 13 295

 RCL IND 00 296
 X<>Y 297
 RCL 04 298
 ST/ Z 299
 * 300
 ENTER^ 301
*LBL 02 302

 RCL 08 303
 ST/ Z 304
 MOD 305
 R^ 306
 INT 307
 LASTX 308
 FRC 309
 RDN 310
 + 311
 X<>Y 312
 INT 313
 RCL 04 314
 ST* T 315
 ST* Z 316
 * 317
 STO IND 00 318
 RDN 319
 ENTER^ 320
*LBL 03 321

 RCL 08 322
 ST/ Z 323
 MOD 324
 X<>Y 325
 INT 326
 ST+ IND 00 327
 RDN 328
 + 329

 ISG 00 330
 GTO 13 331
 114.013 332
 STO 00 333
 215 334
 STO 03 335
 CLX 336
*LBL 06 337

 RCL IND 03 338
 + 339
 RCL IND 00 340
 - 341
 0 342
 X<>Y 343
 X<0? 344
 X>0? 345
 GTO 02 346
 RCL 05 347
 + 348
 DSE Y 349
*LBL 02 350

 STO IND 00 351
 RDN 352
 DSE 03 353
 DSE 00 354
 GTO 06 355
 BEEP 356
 RTN 357

*LBL E 358

 SF 21 359
 CLA 360
 FIX 0 361
 14.114 362
 STO 00 363
 SF 29 364
 RCL IND 00 365
 ACX 366
 ADV 367
 CF 29 368
 ISG 00 369
*LBL 07 370

 XEQ 10 371
 ISG 00 372
 FS? 00 373
 RTN 374

 " " 375
 XEQ 10 376
 ADV 377
 CLA 378
 ISG 00 379
 GTO 07 380
 AVIEW 381
 RTN 382
*LBL 10 383

 RCL IND 00 384
 RCL 04 385
 / 386
 INT 387
 LASTX 388
 FRC 389
 RCL 04 390
 XEQ 12 391
 " " 392
 XEQ 12 393
 RTN 394
*LBL 12 395

 * 396
 RCL Y 397
 X=0? 398
 GTO 03 399
 LOG 400
 INT 401
*LBL 03 402
 RCL 09 403

 X<>Y 404
 X=Y? 405
 GTO 02 406
 - 407
 0 408
*LBL 14 409

 ARCL X 410
 DSE Y 411
 GTO 14 412
*LBL 02 413

 ARCL T 414
 ACA 415
 CLA 416
 END 417

© ÁNGEL M. MARTIN – MAY 2021 PAGE 32 OF 44

 HP-41 RECURSION MODULE QRG

Extended precision: E to 2,900 places. (by Ron Knapp, PPCCJ V9N1 p12)

This program is an abbreviated version designed to compute the decimal places of “e” to the greatest
possible limit allowed in an HP-41CV or an HP-41C with a Quad Memory module. The program does the

initialization including setting the SIZE to 294 data registers.

R01 shows the count-down number at all times. Originally this indicates the number of terms of the

series necessary to obtain the accuracy desired. The number of terms yet to be computed is
continuously displayed to allow the operator to know the progress of the computation. When the count-

down number reaches zero the execution can proceed to the readout (or printout) routine, which
displays 10 digits at a time, broken into two groups of five digits each, for easy reading. All leading and

ending zeros are shown.

Instructions:

XEQ “E2900” Will take around 25 minutes at TURBO50 speed !
XEQ “R” To see/Print the results

01 LBL “R” Readout results

02 FIX 0

03 CF 29

04 “2,”
05 AVIEW

06 4
07 ST+ 03
08 LBL 06

09 CLA

10 SF 01
11 RCL IND 03

12 E5
13 /

14 FRC

15 LASTX
16 INT
17 LBL 07

18 ENTER^
19 ENTER^

20 4

21 X<>T
22 X=0?

23 GTO 08
24 LOG

25 INT
26 –

27 0

28 X=Y?
29 GTO 09
30 LBL 08

31 ARCL X
32 DSE Y

33 GTO 08
34 LBL 09

35 ARCL Z
36 FC?C 01

37 GTO 10
38 “|- “ ; two spaces
39 R^

40 E5
41 *

42 GTO 07
43 LBL 10

44 AVIEW

45 ISG 03

46 GTO 06
47 END

© ÁNGEL M. MARTIN – MAY 2021 PAGE 33 OF 44

 HP-41 RECURSION MODULE QRG

Program listing. -

 *LBL "E2900" 1

 294 2
 PSIZE 3
 CF 01 4
 CF 02 5
 4.004 6
 STO 00 7
 1112 8
 STO 01 9
 E 10
 STO 03 11
 .293 12
 STO 03 13

*LBL e 14

 RCL 01 15
 ENTER^ 16
 VIEW X 17
 DSE 01 18
 E10 19
 X<>Y 20
 ISG Z 21
 *LBL 00 22

 RCL 01 23
 X<>Y 24
 * 25
 X>Y? 26
 GTO 01 27
 DSE 01 28
 GTO 00 29
 SF 01 30
 ENTER^ 31
 *LBL 01 32

 R^ 33
 LASTX 34
 X<>Y 35
 RCL 01 36
 3 37
 FC? 01 38
 DSE X 39
 *LBL 02 40

 + 41
 - 42
 E 43
 ENTER^ 44
 *LBL 03 45

 X<> L 46

 ST* Y 47
 X<> L 48
 ST+ Y 49
 ST+ L 50
 DSE Z 51
 GTO 03 52
 * 53
 + 54
 *LBL 04 55

 E5 56
 * 57
 ENTER^ 58
 R^ 59
 ST/ Z 60
 MOD 61
 X<>Y 62
 INT 63
 E5 64
 X>Y? 65
 GTO 05 66
 / 67
 INT 68
 E 69
 ST- 00 70
 X<>Y 71
 ST+ IND 00 72
 RDN 73
 ST+ 00 74
 CLX 75
 LASTX 76
 FRC 77
 E5 78
 * 79
 LASTX 80
 *LBL 05 81

 * 82
 X<> IND 00 83
 LASTX 84
 / 85
 INT 86
 ST+ Y 87
 X<> L 88
 FRC 89
 X<>Y 90
 E5 91
 ST* Z 92

 * 93
 ENTER^ 94
 R^ 95
 ST/ Z 96
 MOD 97
 LASTX 98
 RDN 99
 X<>Y 100
 INT 101
 ST+ IND 00 102
 CLX 103
 + 104
 + 105
 ISG 00 106
 GTO 04 107
 X<>Y 108
 / 109
 RND 110
 E 111
 ST- 00 112
 X<>Y 113
 ST+ IND 00 114
 R^ 115
 E-10 116
 * 117
 ST* 02 118
 RCL 02 119
 LASTX 120
 X>Y? 121
 SF 02 122
 FS? 02 123
 ST/ 02 124
 E-3 125
 RCL 00 126
 FRC 127
 FC?C 02 128
 + 129
 RCL 03 130
 X<Y? 131
 X<>Y 132
 RDN 133
 4 134
 + 135
 STO 00 136
 FC?C 01 137
 GTO e 138
 END 139

© ÁNGEL M. MARTIN – MAY 2021 PAGE 34 OF 44

 HP-41 RECURSION MODULE QRG

© ÁNGEL M. MARTIN – MAY 2021 PAGE 35 OF 44

 HP-41 RECURSION MODULE QRG

Appendix. A few MCODE Listings.

© ÁNGEL M. MARTIN – MAY 2021 PAGE 36 OF 44

 HP-41 RECURSION MODULE QRG

© ÁNGEL M. MARTIN – MAY 2021 PAGE 37 OF 44

 HP-41 RECURSION MODULE QRG

© ÁNGEL M. MARTIN – MAY 2021 PAGE 38 OF 44

 HP-41 RECURSION MODULE QRG

© ÁNGEL M. MARTIN – MAY 2021 PAGE 39 OF 44

 HP-41 RECURSION MODULE QRG

© ÁNGEL M. MARTIN – MAY 2021 PAGE 40 OF 44

 HP-41 RECURSION MODULE QRG

© ÁNGEL M. MARTIN – MAY 2021 PAGE 41 OF 44

 HP-41 RECURSION MODULE QRG

© ÁNGEL M. MARTIN – MAY 2021 PAGE 42 OF 44

 HP-41 RECURSION MODULE QRG

© ÁNGEL M. MARTIN – MAY 2021 PAGE 43 OF 44

 HP-41 RECURSION MODULE QRG

© ÁNGEL M. MARTIN – MAY 2021 PAGE 44 OF 44

 HP-41 RECURSION MODULE QRG

Library Subroutines called by the admin functions

