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     HP-41 RECURSION MODULE QRG 

 

Recursion and Modular Math  
HP-41 Module 

 
Introduction and Credits. 

This HP-41 module provides a short collection of functions and routines about Recursion, Modular Math, 

and Numeric arithmetic field. The recursion section is based on T.W. van der Berg’s seminal article 

published in the PPCCJ – reproduced later in this manual. I added a few more examples using his 

method, optimized the code for a ROM layout and converted some of the housekeeping routines to 

MCODE for faster operation. 

The first thing to say is that the HP-41 reduced memory and limited programming capabilities are not 

well-suited for recursive code, and let’s not talk about its ultra-slow coconut CPU chip. Certainly, the SY-

41CL and DM-41X make the subject more palatable these days, as well as computer simulators like V41 

from Warren Furlow. Yet, it could be argued that other methods less demanding on resources are better 

on the HP-41 platform – and you’d be right, but the whole point of this module was to investigate the 

possibilities and document the results, even if they’re not earth-shattering. In fact, in its “NUMERICAL” 

section, the module also includes alternative MCODE functions for most of the recursive routines which, 

when compare to the recursive code, run circles around them and then some more. 

The “MODULAR MATH” section comprises a handful set of functions on the elusive and intriguing subject 

of modulus math. They are contributed by Greg McClure and Jean-marc Baillard. 

Finally, a couple of other programs deal with the calculation of decimal digits of pi and e. In particular the 

MCODE function MDOP written by Peter Platzer, is a remarkable implementation even if it requires Q-

RAM to hold the results, so dust off your HEPAX RAM for the task. 

 

Without further ado, here is a list of the functions in the Main FAT table. 

XROM# Function Description Author 

09.00 -RECURSION Section Header n/a 

09.01 1/N Harmonic Numbers Ángel Martin 

09.02 N^X Generic  Faulhaber's  Ángel Martin 

09.03 $B2 Begin procedure- 2D Ángel Martin 

09.04 $B3 Begin procedure - 3D Ángel Martin 

09.05 $E2 End procedure - 2D Ángel Martin 

09.06 $E3 End procedure - 3D Ángel Martin 

09.07 "$I2 Initialize pointers - 2D Ángel Martin 

09.08 "$I3 Initialize pointers - 3D Ángel Martin 

09.09 "ACKER Ackermann Function T.W. van der Berg 

09.10 "#ACK Procedure Subroutine T.W. van der Berg 

09.11 "CATN Catalan Numbers Ángel Martin 

09.12 "#CT Procedure Subroutine Ángel Martin 

09.13 "FACT Factorial T.W. van der Berg 

09.14 "#FCT Procedure Subroutine T.W. van der Berg 

09.15 "FIBO Fibonacci Numbers T.W. van der Berg 

file:///C:/HP-41/INFORMATICS/RECURSE/RECURSE_V2.xls%23RANGE!D3261
file:///C:/HP-41/INFORMATICS/RECURSE/RECURSE_V2.xls%23RANGE!D3261
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09.16 "#FIB Procedure Subroutine T.W. van der Berg 

09.17 "HANOI Hanoi Towers T.W. van der Berg 

09.18 "#DSC Disc subroutine T.W. van der Berg 

09.19 "#TWR Tower subroutine T.W. van der Berg 

09.20 "HARM Harmonic Numbers Ángel Martin 

09.21 "#HM Procedure Subroutine Ángel Martin 

09.22 "STIR Stirling Numbers Ángel Martin 

09.23 "COMB Binomial Coefficients Ángel Martin 

09.24 "#ST Procedure Subroutine Ángel Martin 

09.25 "PART Partitions T.W. van der Berg 

09.26 "#Q Procedure Subroutine T.W. van der Berg 

09.27 CLRTN Clear RTN stack Ángel Martin 

09.28 RTNE? Is RTN Stack Empty? (no levels) Doug Wilder 

09.29 RTNF? Is RTN Stack Full? (six levels used) Ángel Martin 

09.30 RTNS Get # of used RTN levels Ángel Martin 

09.31 XQ>GO Drop last RTN level Hakan Thörgren 

09.32 MANYDIGOFPI Section Header  n/a 

09.33 DGT Sum of mantissa digits Ángel Martin 

09.34 MREV Mantissa Digit Reversal Ángel Martin 

09.35 MDOP _ _ _"_ Many Digits of Pi Peter Platzer 

09.36 "PI000" pi to 1000 Decimal Places Ron Knapp 

09.37 "E2900" Compute e to 2900 Places Ron Knapp 

09.38 SKIP Skips one program line Erik Blake 

09.39 -NUMERICAL Section Header n/a 

09.40 APERY Apery Numbers Jean-Marc Baillard 

09.41 BELL Bell Numbers Ángel Martin 

09.42 BN2 Bernoulli Numbers Ángel Martin 

09.43 FIB Fibonacci Numbers Ángel Martin 

09.44 FIBI Inverse Fibonacci Ángel Martin 

09.45 MLN Multinomial Coefficient Jean-Marc Baillard 

09.46 FIB Sum of Fibonacci numbers Ángel Martin 

09.47 IFIB Sum of Inverse Fibonacci numbers Ángel Martin 

09.48 PHI Golden Ratio  ~1.61803398875 Ángel Martin 

09.49 BINETN Binet Formula for Integers Ángel Martin 

09.50 BINETX Binet Formula for Real arguments Ángel Martin 

09.51 -MODULARMTH Section Header n/a 

09.52 1/M Inverse Modulus Jean-Marc Baillard 

09.53 CONG Congruence Equation McClure-Martin 

09.54 GCD Greatest Common Denominator Ángel Martin 

09.55 LCM Least Minimum Multiple Ángel Martin 

09.56 M+ Modulus Addition Greg McClure 

09.57 M- Modulus Subtraction Greg McClure 

09.58 M* Modulus product Greg McClure 

09.59 M^ Modulus power Greg McClure 

09.60 M^2 Modulus Square power Greg McClure 

09.61 SQRTM Modulus Square Root Jean-Marc Baillard 

09.62 UV Auxiliary routine for 1/M Jean-Marc Baillard 

09.63 “ROUT Reads E2900 Results Ron Knapp 

 

file:///C:/HP-41/INFORMATICS/RECURSE/RECURSE_V2.xls%23RANGE!D3852
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Miscellaneous Number Functions 

The module includes a few short functions useful for numerical analysis, cryptography, and games.  

Function Description Input Output 

DGT Sum of mantissa digits Value in X Sum in X, x in LastX 

MREV Mantissa digit reversal Value in X Result in X, x in LastX 

PHI Golden Ratio n/a  in X, stack lifted 

BINETN Binet formula for integers n in X f(n) 

BINETX Binet formula for real values x in X f(x) 

 

They’re described below. 

 

•  MREV  performs a mantissa digit reversal of the value in X. The result is placed in X and the 

original number is saved in LastX. 

 

Example: reverse the mantissa digits of pi 

PI, MREV  => 4.562951413  (in FIX 9) 

 

•  DGT  sums all the mantissa digits of the value in X. The result is placed in X and the original 

number is saved in LastX. 

 

Example: sum the mantissa digits of pi: 

PI, DGT  => 40.00000000 

Example: The short routine below calculates the digital root of the number in X, simply using 

DGT repeated times until its result is a single-digit integer (i.e. less than 10).

01 LBL “DGRT” 

02 9 

03 *LBL 00 

04 DGT 

05 X>Y? 

06 GTO 00 

07 END

 

 

•  PHI  lifts the stack and places the golden ration in X,   =~ 1.618033989 

Note: this function is used as a 13-digit subroutine in the calculation of Fibonacci numbers with 

the Binet formula. 

 

 

• BINETN implements the well-known Binet formula for integer input values. The result is the n-th 

Fibonacci number obtained directly without any iterations. 

 

Example: Calculate f(9) 

 

9, XEQ “BINETN” =>   34.00000000 
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• BINETX implements an extension for non-integer real input values to calculate the interpolated 

Fibonacci numbers. This provides an easy expression for the determination that guarantees real 
values also for the interpolated Fibonacci numbers: 
 

                 

Example: Calculate f() 

PI, XEQ “BINETX” => 0.043896342 

 

In fact, this modified formula produces the real parts of the complex results obtained applying 

Binet’s formula directly with complex arguments – where the term -^-n clearly yields a result in 

the complex domain:  (-)^(-n) = exp(-n . ln (-)) 

Note: You can refer to the 41Z Module manual for the complex case, implemented in that module 

with the function ZFIB. 

See below the graphical representation of Binet(x) for arguments between [-5 . 5] 

 

 
 

Obviously, the values for integer arguments coincide with the natural Fibonacci number, since the 

term cos(n) is equal to +/- one. 

 

 

 

  

https://www.wolframalpha.com/input/?i=plot+fibonacci%28x%29+between+-5+and+5
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Number Theory Functions 

A set of numerical constants and series is also available in the module, some of them as a faster 

alternative of the recursive routines to showcase the MCODE advantage. 

Function Description Input Output 

APERY Apery Numbers Index n in C n-th. Apery number 

BELL Bell Numbers Index n in X n-th. Bell number 

BN2 Bernoulli Numbers Index n in X n-th. Bernoulli number 

FIB Fibonacci Numbers Index n in X n-th. Fibonacci number 

FIBI Inverse Fibonacci Index n in X n-th/ inverse Fibonacci 

MLN Multinomial Coefficient n in Y, k in X C(n,k) 

FIB Sum of Fibonacci Range n in X Sum[fib(n)] 

IFIB Sum of Inverse Fibonacci Range n in X Sum[1/fib(n)] 

1/N Harmonic Number n in X Result in X, n in LastX 

X^N Faulhaber formula n in Y, x in X Result in X, x in LastX 

 

•  1/N  calculates the Harmonic number of the argument in X, that is the sum of the reciprocals 

of the natural numbers (which excludes zero) lower and equal to n. It will be used in the calculation 

of the Kelvin functions and the Bessel functions of the second kind, K(n,x) and Y(n,x).  

               

 

 
 

 Example: calculate H(5) and H(25). 

5,  XEQ “1/N”   =>    

  25, XEQ “1/N”  =>    

 

•  N^X   Calculates a generalized value of the Faulhaber’s formula for integer values of x. – The 

few first integer values of x have explicit formulas for the result, but that’s not the case for a 

general value - which can also be non-integer. Obviously for x=-1 this function returns identical 

results than 1/N, albeit slower due to the additional complexity of the definition of the term. 

 

Example: Check the triangular (x=1) and pyramidal (x=2) formulas for n=10 – which are particular 
cases of the Faulhaber’s Formula, involving Binomial coefficients and Bernoulli’s numbers. See the 

link below for details: http://en.wikipedia.org/wiki/Faulhaber%27s_formula 

 
10, ENTER^, 1, XEQ “N^X”    =>   

10, ENTER^, 2, XEQ “N^X”    =>   
 

       

 

 

       

 

 

http://en.wikipedia.org/wiki/Faulhaber%27s_formula
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Apéry Numbers. {  APERY  }  (See JM Baillard’s reference page.) 

Named after the French mathematising Roger Apéry, (University of Caen in Normandy),  these numbers 

are defined by:  

 

The first few are:  1  5  73  1445  33001  ....    [ see Sloane's  A005259] 

These numbers may also be computed by the formula  An =  4F3 ( -n , -n , n+1 , n+1 ; 1 , 1 , 1 ; 1 )   

where  4F3 is a generalized hypergeometric function. 

These numbers grow very quickly so the MCODE function presents the result in ALPHA to allow for 

exponents larger than 99. The Mantissa is left in X and the exponent in Y. If the function is part of a 

running program no ALPHA output will be shown. 

Examples: 

41, XEQ “APERY” =>   

100, XEQ “APERY” =>   

329, XEQ “APERY” =>   

 

Note: In 1979, Apéry proved that zeta(3) is irrational. Since then, (3) is called Apéry's Constant. It has 

an approximate value of: 1.20205690315959428539 

 

 

 

Bell Numbers.   {  BELL  }      (See jm Baillard;s reference page) 

In combinatorial mathematics, the Bell numbers count the possible partitions of a set, i.e. the Bell 

number Bn counts the number of different ways to partition a set that has exactly n elements. 

Bell numbers are defined by the iterative sequence below: 

B(0) = 1  and   

B(n+1) = {k=0..n} Cn,k B(k)     if  n > 1  

 where Cnk = n! / [k!(n-k)!] are the binomial coefficients. 

 

Examples:  

10, XEQ “BELL”  =>  

89, XEQ “BELL”  =>  

  

http://hp41programs.yolasite.com/apery.php
http://hp41programs.yolasite.com/bell.php
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Bernoulli Numbers   {  BN2  }           (see JM Baillard reference page) 

The Bernoulli numbers could be computed by the relations: 

B(0) = 1 ;   

B(0) + Cn+1,1 B(1) +  Cn+1,2 B(2) + ...... +  Cn+1,n B(n) = 0    

where   Cnk = n! / [k!(n-k)!]  are the binomial coefficients 

If the convention B1=−1⁄2 is used, this sequence is also known as the first Bernoulli numbers; with the 

convention B1=+1⁄2 is known as the second Bernoulli numbers. Except for this one difference, the first 

and second Bernoulli numbers agree. Since Bn=0 for all odd n>1, and many formulas only involve even-

index Bernoulli numbers, some authors write Bn instead of B2n. 

Example: 

10, XEQ “BN2” =>   B(10) = 

Note however that this recurrence relation is unstable, and the results are quite inaccurate for large n. 

The generating function below is often used to avoid that: 

      

 

 

Multinomial Coefficients.  {  MLN  }        (See JM Baillard’s reference page.) 

Multinomial coefficients are an extension of the Binomial coefficient, using multiple indexes instead of 

two. For example, if “k” is the number of variables we have: 

P = ( n1 , n2 , ....... nk ) ! = n ! / ( n1! n2! ....... nk! ) ;  where  n = n1 + n2 + ...... + nk 

 

The function MLN expects the input values stored in data registers starting in R01, The number of 

variables “k” is entered in the stack’ X-register. 

Example: Calculate ( 76 , 107 , 112 , 184 ) ! 

16  STO 01   24  STO 02   41  STO 03   48  STO 04 

4   XEQ "MLN"    =>    P =  

 

  

http://hp41programs.yolasite.com/bernouilli.php
http://hp41programs.yolasite.com/multinomial.php
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Fibonacci Numbers   {  FIB  ,  FIBI  } 

These functions calculate the Fibonacci and the Fibonacci Inverse numbers using the well-known 

recurrent relationship: 

f(0) = 0  ,    

f(1) =  1  ;    

f(n) = f(n-2) +f(n-1) 

And the "Fibonacci Inverse" defined as  

f’(0) = 0 

f’(1) = 1 

f'(n) = 1/f('n-2) + 1/f'(n-1).  

Note that this is *not* the same as the inverse of Fibonacci, which would simply be 1/F(n) 

Examples: 

10, XEQ “FIB” =>  55.00000000 ;     LASTX, XEQ : FIBI”  =>  0.683299104 

25, XEQ “FIB” => 75,025.00000 ;     LASTX, XEQ “FIBI”  =>   0.707165965 

 

 

Sum of Fibonacci numbers   {  FIB  ,  FIBI  }      

Here we’re calculating the sum of the first n Fibonacci numbers, starting at f(0)=0 until f(n). 

An interesting fact is the sum of the first Fibonacci numbers with odd index up to f(2n−1) is the 2n-th. 

Fibonacci number, and the sum of the first Fibonacci numbers with even index up to f(2n) is the (2n+1)-

th. Fibonacci number minus 1: 

Moreover, the general expression below relates the sum to the sequence value: 

{0..n)F(n) = f(n+2)-1 

Example: 

15, XEQ “FIB”  => 

Verifying the formula above: 

17, XEQ “FIB”   => 

 

Example:  

 

15, XEQ “FIBI”  =>  
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Recursion on the HP-41   - by T.W. van der Berg (10079) 

From PPC Calculator Journal V11N9 - Nov/Dec 1984 

Here is my answer to your latest request for more input from the members: an article about recursion in 

the HP41. In a few examples I will make the method to implement recursive algorithms on the HP41 

clearer (there is an elegant way to do it). The examples in this article are: 

• Factorials 

• Fibonacci 

• Ackermann function 

• Towers of Hanoi 

• Partitions 

• Prefix, Infix and Postfix rotations 

• Harmonic Numbers 

• Stirling Numbers 

• Binomial Coefficient 

• Catalan Numbers 
 

In the future I hope to send more programs. - Happy recursive programming!    
           

Recursion on the HP-41 

A well-known example of recursion is the function for n factorial, n! 

n!  =  n*(n-1)!  If n>1 
     =  1  if n=1            Or written as an algorithm: 

 

Algorithm 1: Factorial 

Function FAC(n:natural) :natural; 

Begin 
If n=1  Then FACT:= 1 

   else  FACT:= n*FAC(n-1) 
End 

 

The job consists on translating this algorithm into HP41 language. The main problems are: 

• How to implement local variables (each call of FAC creates a new variable n); 

• How to handle the large amount of return addresses (the HP41 can only handle 6 levels of 

subroutine calls). 

A solution for the latter to problems is a memory stack. Each time you call FAC the current value of n is 

pushed onto the stack. The return address is also pushed onto the stack. 

Translation of algorithm 1: 

1) Define a stack (in the data register area of the calculator) 

2) Define two stack pointers (sp1, sp2). Sp1 points to n; sp2 points to the return address. (It is 

much easier to work with two stack pointers) 

3) Translate all statements in algorithm 1. 

This will require two FOCAL programs, a CALLING program and a CALLED subroutine. The calling 

program initializes the stack pointers and repeatedly calls the procedure subroutine until the algorithm 

reaches the final boundary condition. The called subroutine should not be executed by itself, since it lacks 

the proper initialization pointer and stack definitions.   
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We’ll start with the called subroutine, which implements the algorithm using HP41 instructions. You can 
NOT run this program. You always need another program to call the subroutine and to initialize the 
stack pointers sp1 and sp2. Below are both #FCT (called program) and the calling program for LBL “#FCT” 
 

Called Routine  Comment 

LBL “#FCT”  function FAC 

ISG 01   begin 
NOP   
ISG 02   ( 
NOP   sp1:=sp1*2 
STO IND 01  sp2;=sp2+2 
CLA   sp1^:=n 
X<>M   sp2:=RTN 
X<> a   ) 
X<> M   
ASTO IND 02   

1 
X=Y?   if n=1 then FAC:=1 
GTO “END”  
-  
XEQ “#FCT”  Else:  
RCL IND 01  FAC:=FAC(n-1)*n 
* 
LBL “END”  end 
CLA 
ARCL IND 02  
X<> M   RTN:=sp2^ 

X<> a   sp2:=sp2-2 
X<> M   sp1:=sp1-2 
DSE 02   ) 
NOP 
DSE 01 
NOP 
RTN 
 
Driver Program  Comment 

LBL “FACT”  Calling program 

10.00002  initialize stack pointers 
STO 01   the stack starts at R10 
11,00002 
STO 02 
DSE 01   sp1:=8.00002 
NOP 
DSE 02   sp2:=9.00002 
NOP 
“ENTER N” 
PROMPT 
XEQ “#FCT” 
END 

 
 

Instructions: Result:   Example:  Display 

1) XEQ “FACT” ENTER N  XEQ “FACT” =>  

2) n, R/S  n!   5, R/S  =>   


The essential point of #FCT is the implementation of the statements ‘begin’ and ‘end’. Note the 
symmetry: “begin” = “end” ^-1 (i.e LBL “END” is the reverse sequence of steps defined in the “begin’ 

section of the code inscribed in the rectangle, therefore it basically undoes it in preparation for the next 
iteration - execution of the #FCT function). 

 

As you see #FCT keeps calling itself while the argument is greater than 1. Each iteration u 

ses two data registers to save the pointers, therefore this scheme produces the following arrangement: 

 

R10 n1 sp1=10 
R11 RTN1 sp2=11 

R12 n2 sp1=12 
R13 RTN2 sp2=13 

R14 n3 sp1=14 
R15 RTN3 sp2=15 

R16 … sp1= 
R16 … sp2= 
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A few comments are in order. 
 

Note that sp1 is a BCD number (the current value of n) but sp2 is a binary number since the return 
addresses are in hex. This is handled by the ASTO/ARCL instructions storing and recalling the contents of 

the “a” register holding the upper half of the HP-41 RTN stack. Register M is just an intermediate location 

needed for the transaction in-between “a” and the data registers holding all its different iterations. 
 

CLA  clears M 
X<> M   stores n in M, clears X 

X<> a  clears “a”, saves RTN in X 
X<> M  moves RTN to M, brings n back to X 

ASTO IND 02 saves RTN in data register  

 
All this dancing around is required to avoid the data normalization that occurs when using STO/RCL 

instructions, which you’d normally tend to utilize when having to copy data between register “a” and the 
data registers: 

 

RCL  a 
STO IND 02 

 
 

 
Which would’ve been more intuitive – but alas, we need to use ALPHA data instead, which means using 

the M register and ASTO instead of STO.  (We could have used non-normalizing functions such as 

PEEKR/POKER but that’s another story entirely and would have required a capable additional module). 
 

Remarkably, only the “a’ register needs to be backed-up since it’s the one getting overflowed (capacity 
exceeded). The last three return addresses held in register “b” will be managed by the O/S itself, pushed 

into the “a” register as the number of subroutine levels increases. Another subtle effect of the method is 

that only one subroutine level is ever used in the “ä” register, which is backed-up at every iteration so 
there’s no time for it to accumulate multiple levels (up to three). This has a small drawback though, 

because the backup also happens even when there’s no data in “ä” – that is three data registers are used 
without a real strict need for it. Indeed, a small price to pay for the sake of an scalable algorithm. 

 

It’s worth noting that each iteration is adding one more RTN address to the stack (all pointing at the 
same program step after the XEQ “#FCT” instruction!), and that when finally when the term n=1 is 

reached, all the additions will be run sequentially, decreasing the RTN stack one at a time and executing 
the ending part of the program (LBL END”) the same number of times.  

 
 

Note that the RECURSE module implements this approach in an optimized way. First, the sp1 pointer is 

held in N(6) and sp2 is held in M(5), freeing so R01 and R02, and the memory stack starts in data 
register R01 instead of R10. Secondly, it includes dedicated MCODE functions for the begin: and end: 

procedures, including two subroutines for the backup and restore of the RTN stack – replacing the X<> 
steps in the FOCAL counterpart. Thus, [LVUP] copies the “a” register in the indirect location pointed at by 

M (moves it one level up), and [LVDN] recalls it from said location into “a” (moves it one level down).  

 
There are two sets of MCODE functions for the begin:/end: housekeeping. The first set $BEG2 / $END2 

used for routines that need two stack pointers (such as FACT), and $BEG3 / $END3 for those routines 
that employ two indexes and therefore need three stack pointers – more about this later. 

 
 

Stack 

“a” 

Data 

Reg 

Stack 

“a” 

Data 

Reg 

ALPHA

“M” 
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A few more examples not part of the original article are included in the RECURSE module: 

 

Algorithm 1.2:  Harmonic numbers. 

Definition of Harmonic numbers as a recurrent expression: 

H(0)=  0 

H(n) = H(n-1)+1/n   n>1 

 

XEQ “HARM”  => 

10, R/S  =>`  

 

 

Algorithm 1.3:  Catalan numbers 

Named after the Belgian mathematician Eugene Charles Catalan, they’re defined as: 

 

And they satisfy the following recurrence relation implemented here: 

 Cn+1 = Cn (4n-2)/(n+1) ,  n>1 

 

XEQ “CATN” =>  

7, R/S  =>  

 

 

Algorithm 1.4: Stirling numbers of the 1st  kind 

Stirling numbers of the first kind S(n, k) are defined by the following recurrence relation:  

S(n, 0) = 0 ;   

S(n, k) = S(n-1, k-1) - (n-1) S(n-1, k) ,    1 <= k <= n  

 

XEQ “STIR”  =>  

6, ENTER^, 3, R/S => 

12, ENTER^, 7, R/S  => 
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Algorithm 1.5: Binomial Coefficient 

Commonly, a binomial coefficient is indexed by a pair of integers n ≥ k ≥ 0. It is the coefficient of the 

x^k term in the polynomial expansion of the binomial power (1 + x)^n, and is given by the formula: 

        

Arranging the numbers in successive rows for n = 0 , 1 , 2 ,…  gives a triangular array called Pascal's 

triangle, satisfying the recurrence relation used in this implementation:  

C(n,k) = C(n-1,k-1) + C(n-1, k) 

 

XEQ “COMB”  =>  

6, ENTER^, 3, R/S => 

R/S   =>  

13, ENTER^, 5, R/S =>    (takes a *very* long time)    

              

Note: obviously speed is not this method’s forte. If you need a more practical solution you’re encouraged 

to check the implementation of the Combinations function available in the SandMath and in a few other 

math modules. 
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Algorithm 2:  Fibonacci numbers. 

Definition of Fibonacci numbers: 

 
F(0) = 0 

F(1) = 1 

F(n) = F(n-1) + F(n-2)  ; if n>1 
 

Function FIB(n:natural) :natural ; 
Begin 

If n<= 1 then FIB:=n 

   Else  FIB:=FIB(n-1)+FIC(n-2) 
End. 

 
Which has been implemented in the corresponding pair of FOCAL programs shown below. 

 

LBL “#FIB”  function FIB 

ISG 01   begin procedure 

NOP 
ISG 02 

NOP 
STO IND 01 

CLA 

X<> M 
X<> a 

ASTO IND 02 
1   if n<=1 then FIB:=n 

X<>Y 

X<>Y? 
GTO 01 

- 
CHS   else: 

XEQ “#FIB”  FIB:=FIC(n-1)+FIB(n-2) 
X<>  IND 01 

2 

- 
XEQ “#FB”  else: 

RCL IND 01  FIB:=FIC(n-1)+FIB(n-2) 
 

+ 
LBL 01   end procedure 

CLA 

ARCL 02 
X<>  M 

X<>  a 

X<>  M 
DSE 02 

NOP 
DSE 01 
NOP 

RTN 

 

LBL “FIBO”  Calling program for #FB 

8.0002   init stack pointers 
STO 01   sp1 will start at 10 

9,0002 
STO 02   sp2 will start at 11 

“ENTER N” 

PROMPT  prompts for index 
XEQ “#FIB”  compute F(n) 

END 

 

Note the simplification in the calling program compared with the factorial case: the pointers are given 
directly, also there’s no need for a global label to “END”. Those were explicit there for didactical purposes 

only. 
 

Note as well that two calls to the recursive function #FIB are needed for each iteration; one for n-1 and 
another for n-2. 

 
Instructions:  Results:  Example:  Display: 

1) XEQ “FIBO”  ENTER N  XEQ “FIBO” =>   

2) N, R/S  F(n)   5, R/S  =>   5  
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Algorithm 3:  Ackerman function. 

The Ackerman function is defined as:  A(m,n)  = n+1   , m=0 

       = A(m-1, 1)  , n=0 
       = A(m-1, A(m. n-1)) , m>0 , n>0    

 

This is different from the previous examples on several accounts. For starters, we’re now dealing with 
two indexes, therefore will need to add a third pointer, sp3, and the corresponding data registers in the 

stack. The function has been Implemented with the following program: (warning: very slow!) 
 

LABEL #ACK”  function ACKER 

ISG 01   begin procedure 
NOP    

ISG O2   ( 
NOP   sp1:=sp1+3 

ISG 03   sp2:=sp2+3 

NOP   sp3:=sp3+3 
STO IND 01 

X<>Y 
STO IND 02 

CLA 
X<>  M 

X<>  a 

X<>  M 
ASTO IND 03 

X=0?   If m=0 then  
GTO 00   ACKER:=n+1 

X<>Y   if n=0 then 

X=0?   ACKER:=ACKER(m-1, 1) 
GTO 01 

1   ACKER:= 
-   ACK(m-1, ACK(m, n-1)) 

XEQ “#ACK” 
RCL IND 02 

1 

- 
X<>Y 

XEQ “#ACK”  compute A(m-1, x) 
GTO 02 
LBL 00   ACKER:=n+1 

X<>Y 

1 
+ 

GTO 02 
LBL 01   ACKER:=ACKER(m-1, 1) 

X<>Y 
1 

- 
1 

XEQ “#ACK” 
LBL 02   end procedure 

CLA  
ARCL IND 03 

X<>  M 
X<>  a 

X<>  M 

DSE 03 
NOP 

DSE 02 
NOP 

DSE 01 

NOP 
RTN 

 

LBL “ACKER” 

7.00003   the stack starts at R10 
STO 01   sp1:=7.00003 

8.00003   sp2:=8.00003 

STO 02   sp3:=9.00003 
9.00003 

STO 03 
“ENTER M^N”  input indexes 

PROMPT 

XEQ “#ACK”  compute A(m,n) 
END 

 
Three calls to the recursive function #ACK are needed for each iteration, which contributes to 

the slowness of the program – about 45-50 seconds on V41 with TURBO mode (!) 

 
Instructions:  Results:  Example:          Display 

XEQ “ACKER”  ENTER M^N  XEQ “ACKER”   =>  
M, ENTER^, n, R/S A(m,n)    3, ENTER, 2, R/S =>   
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Algorithm 4:  Towers of Hanoi.   

Repeated here is the article published in PPCCJ V8N3 p22. 

 
Given three pegs (A, B, and C), N discs of varying size stacked in order of size (large on the 

bottom, small on the top) on peg A. 

 
Problem: In the smallest number of moves, one disc at a time, in such a way that a disc is never 

placed on the top of a smaller one, move the N discs (similarly stacked) from peg A to pag B. 
 

Algorithm: Two sections are involved: 

MDISC(A, B):    moves a disc from peg A to peg B. 
MTOWER(A, B, C, N) :  moves a tower of N discs from peg A to peg B via peg C 

 
Procedure MTOWER(var A,B,C :peg ; N  :natural ) ; 

Begin 

    If N=1 then  MDISC(A, B) 
    Else  MTOWER(A, B, C, N-1) 

            MDISC(A, B) 
            MTOWER(C, B, A, N-1) 

End.  
 

Here’s the FOCAL code that implements this procedure. As expected, this example is more 

complex than the previous ones so it has a more demanding resource utilization, such as data 
register usage. 

 

LBL “#MTWR”  procedure MTOWER 

ISG 00   begin 

NOP 
CLA 

X<>  M 
X<>  a 

X<>  M 
ASTO IND 00 

X<>Y   MTWR(A,B,C,N) 

DSE  T 
XEQ “#MTWR” 

ISG  T 
NOP 

X<>  Z 

CLA   end 
ARCL IND 00 

X<>  M 
X<>  a 

X<>  M 
DSE  00 

NOP 

RTN 
 

LBL “#MDSC”  procedure MDISC 

STO 06   save stack 

RND 

STO 05 

RDN 
STO 04 

RDN 
RCL IND 04 

RCL IND 05 
RCL IND 06 

DSE  Y 

NOP   moves disc from peg A 
X<>  IND Z  to peg B 

X<>  IND Y 
X<>  IND Z 

ISG  Z 

NOP 
STO  IND 06 

RDN 
STO  IND 05 

RDN 
STO  IND 04 

RDN 

RCL 04 
RCL O5 

RCL 06 
X<>  L   swap (X, L) 

“PEG A:”  display peg A 
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AVIEW 

RDN 
RCL 01 

XEQ 01 
“PEG B:”  display peg B 

AVIEW 

RDN 
RCL 02 

XEQ 01 
“PEG C:”  display peg C 

AVIEW 

RDN 
RCL 03 

XEQ 01 
ADV   layout instructions 

CLD 
X<>  L   swap (X, L) 
LBL 01   display a peg 

ISG  X 

NOP 
DSE  X 

RTN 
LBL 02 

VIEW  IND X 
ISG X 

GTO 02 
RTN 

 

LBL “HANOI”  calling program 

FIX 0 

“ENTER N” 
PROMPT 

RCL  X 
RCL  X 

10 

STO 00 

DSE  00 

NOP 
+ 

STO 02 
* 

STO 03 

RDN 
RCL 01 

1 
- 

 E3 

/ 
+ 

ST+  01   R01 :=  
LASTX   R01+(9+2N)/1000 

+ 
ST+  02   R02 :=  

LASTX   R02+(9+4N)/1000 

+ 
ST+  03   R03 :=   

RDN   R03+(9+4N)/1000 
RCL 01 

1 
LBL 00 

STO  IND Y 
ISG  X 

NOP 
ISG  Y 

GTO 00 

R^ 
1 

2   T = N 
3   Z = pointer to R01 (A) 

XEQ “#MTWR”  Y = pointer to R02 (B) 

END   X = pointer to R03 I 

 
Memory usage: 

 
R00 : stack pointer   R10 to R(10+N-1) :  stack 

R01 : pointer to peg A   R(10+N) to R(10+2N-1) : peg A 

R02 : pointer to peg B   R(10+2N) to R(10+3N-1) : peg B 
R03 :  pointer to peg C   R(10+3N) to R(10+4N-1) : peg C 

 
Notice the implementation of ‘var’ in procedure MTOWER. If a call by reference is used (denoted by 

var) then use pointers to the variables. (you can find more about call by reference or call by value in 

books about software engineering). 
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Instructions:  Results   
XEQ “HANOI”  ENTER N 

N, R/S   PEG A: 
   Sequence of numbers 

   PEG B: 

   Sequence of numbers, … etc. 
 

The sequence of numbers are the numbers of the discs. Disc 1 is the smallest disc. Disc N is the largest 
disc. Each time a disc is moved from a peg to another peg the contents of each peg is displayed (peg 

A, peg B, peg C). 
 

Example:  Display: 

XEQ “HANOI”  ENTER N  
5 , R/S    
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Algorithm 5:  Partitions.   

You can write a positive integer m as a sum of positive terms ( 0 < term <= n )  

 
6 = 1 + 1 + 1 + 1 +1 +1  

   = 2 + 1 + 1 + 1 +1 

   = 2 + 2 + 1 + 1 
   = 2 + 2 + 2 

   = 3 + 1 + 1 + 1 
   = 3 + 2 + 1  

   = 3 + 3 

   = 4 + 1 +1 
   = 4 + 2 

   = 5 + 1 
   = 6   

 

The number of partitions Q(m, n) is the number of different ways the number can be written as sum of 
terms, thus Q(6, 6) = 11 

 
Algorithm: 

 
Function Q(m, n : natural) :natural  ; 

begin 

    if n=1 or m=1 then Q: = 1 
    else 

       begin 
 If m<n then Q: = 1 + Q(m, m-1) 

  Else Q:= Q(m, n-1) + Q(m-n, n) 

       end 
end 

And shown below is the program that implements it. This one more standard as it uses the same 
structures as those seen in the examples before HANOI., now with three stack pointers because of the 

existence of two numeric inputs, m and n 
 

 

LBL “#Q”  function  Q 

ISG 00   begin 
NOP 

ISG 01 

NOP 
ISG 02 

NOP 
STO IND  02 

X<>Y 

STO  IND 01 
CLA 

X<>  M 
X<>  a 

X<>  M 

ASTO IND 00  if m=1 or n=1 X<>Y 
X=Y?   then Q=1 

GTO 00 

X<>  Z   if m<=n then 
RDN   Q:=Q(m,m-1)+1 

X<=Y? 
GTO 01 

X<>Y   Q(m,n-1)+Q(m,n-1) 

1 
- 

XEQ #Q”  compute Q(m,n-1) 
X<>  IND 01 

RCL  IND 02 
ST-  Y 

XEQ “#Q”  compute Q(m,m-1) 

1 
+ 
LBL 00   end 

CLA 

ARCL  IND 00 
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X<>  M 

X<>  a 
X<>  M 

DSE  02 
NOP 

DSE  01 

NOP 
DSE 00 

NOP 
RTN 

 

LBL “PART”  calling program 

7,00003 
STO 00 

8,00003   can also use { 1 +} 
STO 01 

9.00003 

STO 02 
“ENTER M^N” 

PROMPT 
XEQ #Q” 

END 

 
 

Instructions:  Result:   Example:  Display: 
XEQ “PART”  “ENTER M^N”  XEQ “PART”  

m ENTER n, R/S  Q(m,n)   6 ENTER^6, R/S 

 

 

 
   

       

 

 

Modifications made in the RECURSE module. 

The algorithms reviewed have a similar structure that have been implemented as common subroutines 

shared by all of them, as shows below: 

- Initialization of pointer values  $I2, $I3 

- Begin of the procedure   $BEG2, $BEG3 

- Math on the partial results   within each program 

- Ending of the procedure.  $END2, $END3 

You can set User flag F10 to see the register numbers used to store the partial results.  
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 Routine listing. 

Even if in the module the routines are in MCODE a translation to FOCAL is provided below for your 
convenience. Note how we use the ALPHA registers M,N,O to hold the data register pointers sp1, sp2, 

and sp3 instead of R00, R01, R02.  
 
 

23 *LBL “$I2” 

 02   “N=?” 
 03   PROMPT 
 04   -2.00002 
 05   STO M 
 06    E 
23 + 
23 STO N 
23 RDN 

 10   RTN 
 

 11  *LBL “$I3” 

 12   “N^K=?” 
 13   PROMPT 
 14   -3.00003 
 15   STO  M 
 16    E 
 17   + 
 18   STO  N 
 19    E 
 20   + 
 21   STO  O 
 22   RDN 
 23   END 

 
 
 
 
 

01 LBL “$END3” 

02 DSE  O(7) 
03 NOP 

04 LBL  “$END2” 

05 DSE  N(6) 
06 NOP 
07 XEQ “LVDN” 
08 DSE  M(5) 
09 NOP  
10 RTN 

 

11 LBL “$BEG3” 

12 ISG  O(7) 
13 NOP 
14 STO IND 7(O) 
15 X<>Y 

16 LBL  “$BEG2” 

17 ISG  N(6) 
18 NOP 

19 STO IND N(6) 
20 ISG M(5) 
21 NOP 

22 LBL “LVDN” 

23 CLA 
24 ARCL 02 
25 X<>  M 
26 X<>  a 
27 X<>  M 
28 RTN 

 

29 LBL “LVUP” 

30 CLA 
31 ARCL  IND 00 
32 X<>  M 
33 X<>  a 
34 X<>  M 
35 END 
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RTN Stack Functions 
 

The table below summarizes the RTN stack functions included in the module: 

 
Function Description Input Output 

CLRTN Clear RTN stack RTN Stack contents Erases pending addresses 

RTNE? Is RTN Stack Empty? (no levels) RTN Stack contents Yes if L=0 

RTNF? Is RTN Stack Full? (six levels used) RTN Stack contents Yes if L=6 

RTNS Get # of used RTN levels RTN Stack contents Number in X, stack lifted 

XQ>GO Drop first RTN level RTN Stack contents Last addr removed 

 
None of the recursion routines described before make use of these functions but nevertheless they’re 
related to the same subject, thus their inclusion in the module. They provide enhanced control of the  

program flow, so your routines can become more powerful and flexible. 
 

 

Background information: 
 

The OS has provision for up to six levels of subroutines; that is your FOCAL programs can have up to five 

chained XEQ calls to other programs or subroutines. The program pointer (PC) and the first two pending 

return addresses are stored in status registers b(12), the third is stored as two halves on each register, 

and the remaining three in status register a(11). 

b(12): 

R 3 A D R 2 A D R 1 P C N T  

13 12 11 10 9 8 7 6 5 4 3 2 1 0  

a(11): 

A D R 6 A D R 5 A D R 4 A D  

13 12 11 10 9 8 7 6 5 4 3 2 1 0  

 

Getting Information on Subroutine Levels usage. 

 

• RTNS  returns the number of pending RTN levels to the X register. Obviously, the result will be 

zero if executed in manual mode, as no pending subroutines exist. The stack is lifted. 

 

• CLRTN clears all return addresses in the RTN stack. It does not alter the current program pointer 

so it’s safe to use in a running program. 

 

• RTNE? and RTNF? are used to check whether the RTN stack is empty (no levels) or full (six 

levels used). They behave like the standard test functions in the calculator, returning YES/NO 

and skipping a line in a running program if the condition is false. 

 

• XQ>GO  removes one pending routine address off the RTN stack and shifts the rest one level 

down. No output to X is produced.  
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Let’s see a few examples of utilization.  
 

The diagram below is taken from the HP-41CX manual, Vol. II page 302. It shows an example of six 
RTN stack levels utilization by a main program calling six subroutines – not the only way to get there 

but certainly a clear one. 

 

 
 
Example1:  

 
Using RTN? Is a good way to control whether an information message should be displayed. This 

situation arises frequently when using a FOCAL routine both as its own function or as a subroutine of 
another larger program, when displaying the partial result isn’t desired.  

 

LBL “SUBRTN” 
. . . 

. . . 
“MESSAGE” 

RTN? 

RTN 
PROMPT 

END 
 

Example2:  
 

RTNF? provides a control safety check to prevent RTN Stack overflowing. Simply add it before the XEQ 

instructions and SKIP the XEQ call if the result is affirmative: 
 

. . .   
 . . .  

RTNF? 

SKIP 
XEQ “XYZ” 

. . . 

. . . 

  
Example3:   

 

XQ>GO is the best way to cancel a pending return, very useful in cases when the called subroutine 
has encountered either an error condition or a game-changer result; calling this function will cancel the 

return to the calling point. 
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Modular Math     (by Greg McClure and JM Baillard) 
The following description was written by Greg, taken from the GJM ROM manual. 

For those acquainted with modular math, the following modulus functions are provided: 

 

• M+ performs Z+Y MOD X.  It works for values up to 10 digits and takes into consideration the 

sign of the values.  M+ handles differently signed parameters.  It is in MCODE and uses 13-

digit math, making it much faster. 

• M- performs Z-Y MOD X.  The same comments apply as in M+. 

• M* performs Z*Y MOD X.  The same comments apply as in M+ and M-. 

• M^2 performs Y^2 MOD X.  It really uses much of the same code as M*, it is actually doing a 

Y*Y MOD Z. 

With the above MCODE routines, the following FOCAL functions taken from Jean-Marc Baillard run 

much quicker… 

• 1/M performs 1/Y MOD X.  This function may or may not have an answer.  Remember, the 

definition is “Return the value that, when multiplied by Y MOD X yields 1”.  This value may not 

exist.  The function will stop with “DATA ERROR” if this is the case. 

• SQRTM performs SQRT(Y) MOD X.  This function will return either 0 (no solution) or the 

control number of the registers containing the answers.  Remember, the definition is “Return 

the value that, when multiplied by itself, returns Y MOD X”.  So if 1.002 is returned to X then 

the answers are in R1 and R2.  They should be considered as dual answers, that is, +R1, -R1, 

+R2, and –R2 (that would be 4 answers). 

 

Where is M/ ?  Well actually this is the congruence function (if AX = B MOD C then X = B/A MOD C).  

The CONG function solves AX=B MOD C, expecting A in Z, B in Y, and modulus C in X.  This may or 

may not yield an answer (for example 2X = 3 MOD 10 has no solutions), so it is possible that the 

function will stop with a DATA ERROR.  If it doesn’t, then X will contain the primary answer, and Y will 

contain the value that can be added or subtracted any integer number of times for the other answers.  

For example, to solve 2X = 4 MOD 10, do: 

  2, ENTER^, 4, ENTER^, 10, XEQ “CONG”  ;  

the result is X = 2, Y = 5.  This means the solution set is {…, -8, -3, 2, 7, 12, 17 …}. 

The Alpha register is used, so it will be cleared if a solution is found.  If not, then synthetic registers M, 

N, and O will contain the reduced A, B, and C (a GCD is performed on A, B, and C before 1/M is 

performed and this is saved in M, N, and O). This may be useful in determining why the DATA ERROR 

occurred.  BTW I have listed Ángel Martin as a co-author, since he did much of the grunt work to help 

determine the method of solution needed.  Once I read all the info, applying 1/M, GCD, and M* was 

a simple matter. 
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Program listing 

 
The FOCAL routines are listed in the next couple of pages for your reference. 

 
 

01  LBL “1/M” 

02   RAD 
03   E 

04  XROM “UV” 
05  STO Z 

06  FRC 

07  X#0? 
08  GTO 00 

09  RDN 
10  FRC 

11  X=0? 

12  GTO 01 
13 *LBL 00 

14  CLX 
15  LN 
16 *LBL 01 

17  CLX 

18  RCL 02 
19  ABS 

20  MOD 
21  END 

 
 

 

 
 

01 LBL “UV” auxiliary subroutine 

02 STO 00 

03 CLX 

04 STO 02 
05 STO 03 

06 E 
07 STO 01 

08 STO 04 
09 * 

10 + 
11 LBL 01 

12 STO  T 
13 MOD 

14 ST-  Y 

15 X<>  Z 
16 / 

17 RCL 01 
18 X<>  02 

19 STO 01 
20 X<>Y 

21 * 
22 ST-  02 

23 CLX 

24 RCL 03 
25 X<>  04 

26 STO 03 
27 LASTX 

28 * 
29 ST-  04 

30 RDN 

31 X#0? 
32 GTO 01 

33 X<>Y 
34 ST/  00 

35 RCL 03 

36 RCL 01 
37 RCL 00 

38 ST*  Z 
39 * 

40 END 
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01 LBL “SQRTM” 

02 STO  Z 
03 2 
04  / 
05 INT 
06 X<>  Z 
07 MOD 
08 0 
09 STO 00 
10 SF  10 
11 *LBL 01 

12 CLX 
13 RCL  Z 
14 ST*  X 
15 LASTX 
16 MOD 
17 X#Y? 

18 GTO 02 
19 X<>  T 
20 ISG  00 
21 CLX 
22 STO IND 00 
23 *LBL 02 

24 DSE  Z 
25 GTO 01 
26 FS?C 10 
27 GTO 01 
28 RCL 00 
29  E3 
30  / 
31 X#0? 
32 ISG  X 
33 END 

 
 

 1 LBL "M^" 

2 SIGN 
3 STO 00 
4 RDN 
5 STO 02 
6 X<>Y 
7 STO 01 
8 GTO 03 
9 *LBL 01 

10 2 
11 MOD 
12 X#0? 
13 GTO 02 
14 LASTX 
15 ST/  02 
16 RCL 01 
17 R^ 

18 M^2 
19 STO 01 
20 GTO 03 
21 *LBL 02 

22 ST-  02 
23 RCL 00 
24 RCL 01 
25 R^ 
26 M^2 
27 STO 00 
28 *LBL 03 

29 LASTX 
30 RCL 02 
31 X#0? 
32 GTO 01 
33 RCL 00 
34 END 

 
 

01 LBL  “CONG”  

02 STO  M(5) 
03 RDN 
04 STO  N(6) 
05 RDN 
06 STO  O(7) 
07 RCL  M(5) 
08 GCD 
09 RCL  N(6) 
10 GCD 
11 ST/  M(5) 

12 ST/  N(6) 
13 ST/  O(7) 
14 RCL O(7) 
15 RCL M(5) 
16 1/M 
17 RCL N(6) 
18 RCL M(5) 
19 M* 
20 RCL M(5) 
21 CLA 
22 X<>Y 
23 END 
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Many Digits of Pi.       (by Peter Platzer, MoHPC Forum) 
 
The module includes the remarkable and impressive MCODE implementation of the Spigot algorithm by 

Peter Platzer, published in the Museum of HP Calculators forum. His description is available in the 

appendix, but here are the highlights: 
 

The code asks for three inputs: The page where the MLDL ram starts to use, the number of digits and 
the base b to use (max = 5 for 5 digits at a time). One can set Flag 0 and the calc will stop at each 

group of digits and wait for a key to be pressed, otherwise it just keeps calculating … 

 
Setting Flag 1 will store the found digits in the same compressed format – each group of up to 5 digits 

is stored in 2 words, with the right nibble converted to hex. They are stored in reversed order though 
 

In manual execution the function prompts for the number of digits to calculate (limited to 1999 by the 

prompt) and the destination page where to store them. This needs to be a q-RAM page to allow writes 
into it. The maximum number of digits is 4095 – which will fill up the page in its entirety. 

 
The screens below show an example to calculate 1,046 digits to be stored in page B: 

 

      ….  

 
In an unmodified HP-41 it delivers 1,160 digits in about 9 hours  3,600 digits in about 4 days , and 

4,915 digits in about 8 days. The chart below shows a comparison with the previous record-holding 
approaches described in the article. 
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Extended precision: Pi to 1,000 places.  (by Ron Knapp, PPCCJ V8N6 p69) 
 
“Compute the first 1,000 decimal digits of Pi in less than 11 hours, 30 minutes”. That was the friendly 

challenge put out by the PPC ‘Journal”, especially to members of the TI Personal Calculator Club, 

approximately a year ago. This challenge was repeated in the “Calcu-letter” of Popular Science 
Magazine, July 1981. 

 
Up to the present time, I have heard of no serious attempts to eclipse this record. So,-- I decided to 

improve my own program. The program listed below computes Pi to 1,000 decimal places in just 8 

hours, 30 minutes. 
 

Ed. note: with 2x machines, and some will run Faster, (fastest reported so far was Emett Ingram (17) 
at 2.8x) a 4 hour, 1,000 digit Pi program is the state of the PPC art. How long will it be before someone 
places 100,000 digits of Pi on a cassette? A printer on the HP-IL would take nearly 45 minutes to print 
it on 70 feet of paper at 20 digits per line, 2 lines per second. 
 
 
 

The first 1.000 decimal places of Pi contains 93 0s, 116 1s, 103 2s, 102 3s, 93 4s, 97 5s, 94 6s, 95 7s, 

101 8s, and 106 9s. Below is "3 dot" followed by the first 1,000 decimals of Pi. 

 

3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6 4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7 5 1 0 5 8 2 0 9 

7 4 9 4 4 5 9 2 3 0 7 8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6 2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7 9 8 2 1 4 8 0 8 6 5 1 3 2 

8 2 3 0 6 6 4 7 0 9 3 8 4 4 6 0 9 5 5 0 5 8 2 2 3 1 7 2 5 3 5 9 4 0 8 1 2 8 4 8 1 1 1 7 4 5 0 2 8 4 1 0 2 7 0 1 9 

3 8 5 2 1 1 0 5 5 5 9 6 4 4 6 2 2 9 4 8 9 5 4 9 3 0 3 8 1 9 6 4 4 2 8 8 1 0 9 7 5 6 6 5 9 3 3 4 4 6 1 2 8 4 7 5 6 

4 8 2 3 3 7 8 6 7 8 3 1 6 5 2 7 1 2 0 1 9 0 9 1 4 5 6 4 8 5 6 6 9 2 3 4 6 0 3 4 8 6 1 0 4 5 4 3 2 6 6 4 8 2 1 3 3 

9 3 6 0 7 2 6 0 2 4 9 1 4 1 2 7 3 7 2 4 5 8 7 0 0 6 6 0 6 3 1 5 5 8 8 1 7 4 8 8 1 5 2 0 9 2 0 9 6 2 8 2 9 2 5 4 0 

9 1 7 1 5 3 6 4 3 6 7 8 9 2 5 9 0 3 6 0 0 1 1 3 3 0 5 3 0 5 4 8 8 2 0 4 6 6 5 2 1 3 8 4 1 4 6 9 5 1 9 4 1 5 1 1 6 

0 9 4 3 3 0 5 7 2 7 0 3 6 5 7 5 9 5 9 1 9 5 3 0 9 2 1 8 6 1 1 7 3 8 1 9 3 2 6 1 1 7 9 3 1 0 5 1 1 8 5 4 8 0 7 4 4 

6 2 3 7 9 9 6 2 7 4 9 5 6 7 3 5 1 8 8 5 7 5 2 7 2 4 8 9 1 2 2 7 9 3 8 1 8 3 0 1 1 9 4 9 1 2 9 8 3 3 6 7 3 3 6 2 4 

4 0 6 5 6 6 4 3 0 8 6 0 2 1 3 9 4 9 4 6 3 9 5 2 2 4 7 3 7 1 9 0 7 0 2 1 7 9 8 6 0 9 4 3 7 0 2 7 7 0 5 3 9 2 1 7 1 

7 6 2 9 3 1 7 6 7 5 2 3 8 4 6 7 4 8 1 8 4 6 7 6 6 9 4 0 5 1 3 2 0 0 0 5 6 8 1 2 7 1 4 5 2 6 3 5 6 0 8 2 7 7 8 5 7 

7 1 3 4 2 7 5 7 7 8 9 6 0 9 1 7 3 6 3 7 1 7 8 7 2 1 4 6 8 4 4 0 9 0 1 2 2 4 9 5 3 4 3 0 1 4 6 5 4 9 5 8 5 3 7 1 0 

5 0 7 9 2 2 7 9 6 8 9 2 5 8 9 2 3 5 4 2 0 1 9 9 5 6 1 1 2 1 2 9 0 2 1 9 6 0 8 6 4 0 3 4 4 1 8 1 5 9 8 1 3 6 2 9 7 

7 4 7 7 1 3 0 9 9 6 0 5 1 8 7 0 7 2 1 1 3 4 9 9 9 9 9 9 8 3 7 2 9 7 8 0 4 9 9 5 1 0 5 9 7 3 1 7 3 2 8 1 6 0 9 6 3 

1 8 5 9 5 0 2 4 4 5 9 4 5 5 3 4 6 9 0 8 3 0 2 6 4 2 5 2 2 3 0 8 2 5 3 3 4 4 6 8 5 0 3 5 2 6 1 9 3 1 1 8 8 1 7 1 0 

1 0 0 0 3 1 3 7 8 3 8 7 5 2 8 8 6 5 8 7 5 3 3 2 0 8 3 8 1 4 2 0 6 1 7 1 7 7 6 6 9 1 4 7 3 0 3 5 9 8 2 5 3 4 9 0 4 

2 8 7 5 5 4 6 8 7 3 1 1 5 9 5 6 2 8 6 3 8 8 2 3 5 3 7 8 7 5 9 3 7 5 1 9 5 7 7 8 1 8 5 7 7 8 0 5 3 2 1 7 1 2 2 6 8 

0 6 6 1 3 0 0 1 9 2 7 8 7 6 6 1 1 1 9 5 9 0 9 2 1 6 4 2 0 1 9 8 9 
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Program listing.- 

 

 *LBL "PIE3" 1 

 *LBL A 2 

  " PI -?-" 3 
  AVIEW 4 
  CLRG 5 
  FIX 3 6 
  4 7 
  STO 09 8 
   E5 9 
  ST/ Y 10 
  STO 04 11 
  X^2 12 
  STO 05 13 
  X<>Y 14 
  427 15 
  + 16 
  STO 02 17 
  239 18 
  X^2 19 
  STO 07 20 
  LASTX 21 
   E2 22 
  * 23 
  STO 13 24 
  RDN 25 
  X^2 26 
  STO 08 27 
  94 E-5 28 
  STO 11 29 
  14.0139 30 
  STO 12 31 
  25 32 
  STO 10 33 
 *LBL 00 34 

  RCL 11 35 
  ST+ 12 36 
  RCL 12 37 
  RND 38 
  STO 00 39 
  RCL 07 40 
  RCL 02 41 
  INT 42 
  ENTER^ 43 
  ST* Z 44 
  2 45 
  - 46 

  ST- Z 47 
  * 48 
  RCL 10 49 
  * 50 
  STO 06 51 
  CLX 52 
  STO 01 53 
  X<>Y 54 
  RCL 13 55 
  * 56 
  ENTER^ 57 
  GTO 02 58 
 *LBL 01 59 

  RCL 06 60 
  ST/ Z 61 
  MOD 62 
  X<>Y 63 
  INT 64 
  X<>Y 65 
  RCL 04 66 
  ST* Z 67 
  * 68 
  ENTER^ 69 
 *LBL 02 70 

  RCL 06 71 
  ST/ Z 72 
  MOD 73 
  STO 03 74 
  RDN 75 
  INT 76 
  + 77 
  RCL 05 78 
  ST- Y 79 
  X<>Y 80 
  RCL IND 00 81 
  + 82 
  X>0? 83 
  ISG 01 84 
 *LBL 03 85 

  X<0? 86 
  + 87 
  RCL 01 88 
  RCL 04 89 
  ST/ Z 90 
  * 91 
  ENTER^ 92 

 *LBL 02 93 

  RCL 08 94 
  ST/ Z 95 
  MOD 96 
  R^ 97 
  INT 98 
  LASTX 99 
 FRC 100 
 RDN 101 
 + 102 
 X<>Y 103 
 INT 104 
 RCL 04 105 
 ST* T 106 
 ST* Z 107 
 * 108 
 STO IND 00 109 
 RDN 110 
 ENTER^ 111 
*LBL 03 112 

 RCL 08 113 
 ST/ Z 114 
 MOD 115 
 X<>Y 116 
 INT 117 
 ST+ IND 00 118 
 RDN 119 
 + 120 
 STO 01 121 
 RCL 03 122 
 RCL 04 123 
 * 124 
 ENTER^ 125 
 ISG 00 126 
 GTO 01 127 
 DSE 02 128 
 GTO 00 129 
 4096 E-7 130 
 STO 08 131 
 1439.00006 132 
 STO 02 133 
 837 E-6 134 
 STO 11 135 
 115.115 136 
 STO 12 137 
 80 138 
 STO 13 139 
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 5 E6 140 
 STO 07 141 
 .75 142 
 STO 06 143 

*LBL “Q” 144 

 RCL 11 145 
 ST+ 12 146 
 RCL 12 147 
 RND 148 
 STO 00 149 
 STO 03 150 
 SF 00 151 
*LBL 05 152 

 RCL 02 153 
 INT 154 
 ENTER^ 155 
 ENTER^ 156 
*LBL 02 157 

 2 158 
 - 159 
 ST* Z 160 
 RCL 10 161 
 ST* Z 162 
 X<>Y 163 
 * 164 
 2 165 
 ST- L 166 
 CLX 167 
 LASTX 168 
 ST* T 169 
 ST- Y 170 
 RDN 171 
 * 172 
 R^ 173 
 ST+ T 174 
 X^2 175 
 R^ 176 
 + 177 
 + 178 
 FC? 00 179 
 GTO 02 180 
 RCL 13 181 
 * 182 
 3 183 
 DSE 02 184 
 GTO 03 185 
*LBL 02 186 

 RCL 07 187 

 * 188 
 RCL 06 189 
*LBL 03 190 

 X<>Y 191 
 RDN 192 
 / 193 
 STO 01 194 
 CLX 195 
 R^ 196 
 ENTER^ 197 
 GTO 09 198 
*LBL 08 199 

 RCL 01 200 
 ST/ Z 201 
 MOD 202 
 X<>Y 203 
 INT 204 
 X<>Y 205 
 RCL 04 206 
 ST* Z 207 
 * 208 
 ENTER^ 209 
*LBL 09 210 

 RCL 01 211 
 ST/ Z 212 
 MOD 213 
 RDN 214 
 INT 215 
 + 216 
 RCL IND 00 217 
 - 218 
 X>0? 219 
 GTO 02 220 
 DSE 00 221 
*LBL 03 222 

 DSE IND 00 223 
 ISG 00 224 
 RCL 05 225 
 + 226 
*LBL 02 227 

 STO IND 00 228 
 R^ 229 
 RCL 04 230 
 * 231 
 ENTER^ 232 
 ISG 00 233 
 GTO 08 234 
 RCL 03 235 

 STO 00 236 
 FS?C 00 237 
 GTO 05 238 
 CLX 239 
 ENTER^ 240 
 DSE 02 241 
 FS? 00 242 
 GTO 04 243 
*LBL 11 244 

 X<> IND 00 245 
 RCL 04 246 
 / 247 
 FRC 248 
 LASTX 249 
 INT 250 
 RCL 08 251 
 * 252 
 FRC 253 
 LASTX 254 
 INT 255 
 ST+ IND 00 256 
 RDN 257 
 X<>Y 258 
 RCL 05 259 
 ST* T 260 
 ST* Z 261 
 * 262 
 RCL 08 263 
 * 264 
 FRC 265 
 X<>Y 266 
 LASTX 267 
 INT 268 
 R^ 269 
 + 270 
 RCL 05 271 
 - 272 
 + 273 
 X>0? 274 
 ISG IND 00 275 
 X>0? 276 
 GTO 03 277 
 RCL 05 278 
 + 279 
*LBL 03 280 

 ISG 00 281 
 GTO 11 282 
 GTO “Q” 283 
*LBL 04 284 
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 RCL 03 285 
 STO 00 286 
 RCL 10 287 
 X^2 288 
 3 289 
 Y^X 290 
 LASTX 291 
 * 292 
 STO 08 293 
 CLX 294 
*LBL 13 295 

 RCL IND 00 296 
 X<>Y 297 
 RCL 04 298 
 ST/ Z 299 
 * 300 
 ENTER^ 301 
*LBL 02 302 

 RCL 08 303 
 ST/ Z 304 
 MOD 305 
 R^ 306 
 INT 307 
 LASTX 308 
 FRC 309 
 RDN 310 
 + 311 
 X<>Y 312 
 INT 313 
 RCL 04 314 
 ST* T 315 
 ST* Z 316 
 * 317 
 STO IND 00 318 
 RDN 319 
 ENTER^ 320 
*LBL 03 321 

 RCL 08 322 
 ST/ Z 323 
 MOD 324 
 X<>Y 325 
 INT 326 
 ST+ IND 00 327 
 RDN 328 
 + 329 

 ISG 00 330 
 GTO 13 331 
 114.013 332 
 STO 00 333 
 215 334 
 STO 03 335 
 CLX 336 
*LBL 06 337 

 RCL IND 03 338 
 + 339 
 RCL IND 00 340 
 - 341 
 0 342 
 X<>Y 343 
 X<0? 344 
 X>0? 345 
 GTO 02 346 
 RCL 05 347 
 + 348 
 DSE Y 349 
*LBL 02 350 

 STO IND 00 351 
 RDN 352 
 DSE 03 353 
 DSE 00 354 
 GTO 06 355 
 BEEP 356 
 RTN 357 

*LBL E 358 

 SF 21 359 
 CLA 360 
 FIX 0 361 
 14.114 362 
 STO 00 363 
 SF 29 364 
 RCL IND 00 365 
 ACX 366 
 ADV 367 
 CF 29 368 
 ISG 00 369 
*LBL 07 370 

 XEQ 10 371 
 ISG 00 372 
 FS? 00 373 
 RTN 374 

 " " 375 
 XEQ 10 376 
 ADV 377 
 CLA 378 
 ISG 00 379 
 GTO 07 380 
 AVIEW 381 
 RTN 382 
*LBL 10 383 

 RCL IND 00 384 
 RCL 04 385 
 / 386 
 INT 387 
 LASTX 388 
 FRC 389 
 RCL 04 390 
 XEQ 12 391 
 " " 392 
 XEQ 12 393 
 RTN 394 
*LBL 12 395 

 * 396 
 RCL Y 397 
 X=0? 398 
 GTO 03 399 
 LOG 400 
 INT 401 
*LBL 03 402 
 RCL 09 403 

 X<>Y 404 
 X=Y? 405 
 GTO 02 406 
 - 407 
 0 408 
*LBL 14 409 

 ARCL X 410 
 DSE Y 411 
 GTO 14 412 
*LBL 02 413 

 ARCL T 414 
 ACA 415 
 CLA 416 
 END 417 
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Extended precision: E to 2,900 places.  (by Ron Knapp, PPCCJ V9N1 p12) 

This program is an abbreviated version designed to compute the decimal places of “e” to the greatest 
possible limit allowed in an HP-41CV or an HP-41C with a Quad Memory module. The program does the 

initialization including setting the SIZE to 294 data registers. 
 

R01 shows the count-down number at all times. Originally this indicates the number of terms of the 

series necessary to obtain the accuracy desired. The number of terms yet to be computed is 
continuously displayed to allow the operator to know the progress of the computation. When the count-

down number reaches zero the execution can proceed to the readout (or printout) routine, which 
displays 10 digits at a time, broken into two groups of five digits each, for easy reading. All leading and 

ending zeros are shown. 

 
 

Instructions: 
 

XEQ “E2900”   Will take around 25 minutes at TURBO50 speed ! 
XEQ “R”    To see/Print the results 

 

 
 

01 LBL “R” Readout results 

02 FIX 0 

03 CF 29 

04 “2,” 
05 AVIEW 

06 4 
07 ST+  03 
08 LBL 06 

09 CLA 

10 SF 01 
11 RCL IND 03 

12  E5 
13  / 

14 FRC 

15 LASTX 
16 INT 
17 LBL 07 

18 ENTER^ 
19 ENTER^ 

20 4 

21 X<>T 
22 X=0? 

23 GTO 08 
24 LOG 

25 INT 
26 – 

27 0 

28 X=Y? 
29 GTO 09 
30 LBL 08 

31 ARCL X 
32 DSE  Y 

33 GTO 08 
34 LBL 09 

35 ARCL  Z 
36 FC?C 01 

37 GTO 10 
38 “|-  “  ; two spaces 
39 R^ 

40  E5 
41 * 

42 GTO 07 
43 LBL 10 

44 AVIEW 

45 ISG 03 

46 GTO 06 
47 END 
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Program listing. - 

 

 *LBL "E2900" 1 

 294 2 
 PSIZE 3 
 CF 01 4 
 CF 02 5 
 4.004 6 
 STO 00 7 
 1112 8 
 STO 01 9 
  E 10 
 STO 03 11 
 .293 12 
 STO 03 13 

*LBL e 14 

  RCL 01 15 
  ENTER^ 16 
  VIEW X 17 
  DSE 01 18 
   E10 19 
  X<>Y 20 
  ISG Z 21 
 *LBL 00 22 

  RCL 01 23 
  X<>Y 24 
  * 25 
  X>Y? 26 
  GTO 01 27 
  DSE 01 28 
  GTO 00 29 
  SF 01 30 
  ENTER^ 31 
 *LBL 01 32 

  R^ 33 
  LASTX 34 
  X<>Y 35 
  RCL 01 36 
  3 37 
  FC? 01 38 
  DSE X 39 
 *LBL 02 40 

  + 41 
  - 42 
   E 43 
  ENTER^ 44 
 *LBL 03 45 

  X<> L 46 

  ST* Y 47 
  X<> L 48 
  ST+ Y 49 
  ST+ L 50 
  DSE Z 51 
  GTO 03 52 
  * 53 
  + 54 
 *LBL 04 55 

   E5 56 
  * 57 
  ENTER^ 58 
  R^ 59 
  ST/ Z 60 
  MOD 61 
  X<>Y 62 
  INT 63 
   E5 64 
  X>Y? 65 
  GTO 05 66 
  / 67 
  INT 68 
   E 69 
  ST- 00 70 
  X<>Y 71 
  ST+ IND 00 72 
  RDN 73 
  ST+ 00 74 
  CLX 75 
  LASTX 76 
  FRC 77 
   E5 78 
  * 79 
  LASTX 80 
 *LBL 05 81 

  * 82 
  X<> IND 00 83 
  LASTX 84 
  / 85 
  INT 86 
  ST+ Y 87 
  X<> L 88 
  FRC 89 
  X<>Y 90 
   E5 91 
  ST* Z 92 

  * 93 
  ENTER^ 94 
  R^ 95 
  ST/ Z 96 
  MOD 97 
  LASTX 98 
  RDN 99 
  X<>Y 100 
  INT 101 
  ST+ IND 00 102 
  CLX 103 
  + 104 
  + 105 
  ISG 00 106 
  GTO 04 107 
  X<>Y 108 
  / 109 
  RND 110 
   E 111 
 ST- 00 112 
 X<>Y 113 
 ST+ IND 00 114 
 R^ 115 
  E-10 116 
 * 117 
 ST* 02 118 
 RCL 02 119 
 LASTX 120 
 X>Y? 121 
 SF 02 122 
 FS? 02 123 
 ST/ 02 124 
  E-3 125 
 RCL 00 126 
 FRC 127 
 FC?C 02 128 
 + 129 
 RCL 03 130 
 X<Y? 131 
 X<>Y 132 
 RDN 133 
 4 134 
 + 135 
 STO 00 136 
 FC?C 01 137 
 GTO e 138 
 END 139 
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Appendix. A few MCODE Listings. 
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Library Subroutines called by the admin functions 
 
 

 
 

 
 

 
 

 


