
SANIMATRIX_SY+ Motrix Extensions for the HP-46

User's Manual and Quick Reference Guide

Written and programmed by Ángel M. Martin January 18th, 2021 This compilation revision 5.1.02

Copyright © 2012 – 2021 Ángel M. Martin

Acknowledgments.-

Documentation wise, this manual begs, steals and borrows from many other sources – in particular from the HP-41 Advantage Manual. Not so much from the CCD Manual but obviously that was how it all began – with the excellent implementation of the Array Functions by W&W GmbH.

Thanks to the following contributors must be given: Jean-Marc Baillard; Valentín Albillo; Eugenio Úbeda; Ulrich Deiters and Thomas Klemm. Original authors retain all copyrights and should be mentioned in writing by any party utilizing this material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow. Its breakpoints capability and MCODE trace console are a godsend to programmers. See <u>www.hp41.org</u>

Published under the GNU software licence agreement. No commercial use is allowed in any way, shape and form.

(c) Ángel M. Martin

TRBLE OF CONTENTS. - REVISION_SY.

1. Introduction: the SandMatrix 4

Preamble to latest revisions	6
Introduction	7
Logical next chapter after the SandMath	7
The many names of Dr. Who	8
What isn't included?	8
Function index at a glance.	9
Subfunctions in the Auxiliary FAT	11

2. Lower Page Functions in Detail

2.1.	SandMatrix 4 Group	

Alpha String Manipulation.	14
Function Launcher and Matrix keyboards	15
Functions in the header section	16
The main MATRX program	16

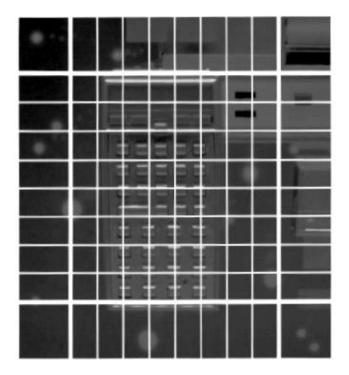
2.2. Matrix-101

21
22
23
25
26
27
28

2.3. Matrix Functions

Matrix Arithmetic	30.
Major Matrix Operations	31
LU Decomposition	32
Working with Complex Matrices	33
Using Functions with Complex Matrices	34
Appendix: Complex Matrix Determinants	38
Appendix. Complex Transposed Matrix.	40
Storing and Recalling Complex Elements	44
Other Matrix Functions ("Utilities")	45
Moving and Exchanging sections	46
Maxima and minima	46
Norms and Sums	46
Matrix Reductions	46
Appendix: Pascal and Random Matrices	49
Appendix: Matrix Minors.	50

3. Upper Page Functions in Detail


3.1. Advanced Matrix

The Enhanced Matrix Editor(s) New Matrix Utilities / housekeeping Finding elements / Driver for M*M Exponential of a Matrix Logarithm of a Matrix Square Root of a Matrix Square Root of a Matrix Appendix: Square root of a 2x2 matrix Matrix Integer Powers and Roots Lie Product Matrix Trace. Unitary Diagonal Sum of Diagonal/Crossed element products Transposing matrix elements Appendix: Matrix Pseudo-Inverse Matrix Polynomial	52 53 58 59 60 62 64 65 69 71 72 73 74 76
3.2. Polynomials and Linear Algebra.	
Eigenvectors and Eigenvalues Characteristic Polynomial SOLVE-based implementation Formula-based 3-Dimensional Case General n-dimensional case: Faddevv-Leverrier Jacobi method for Symmetric Matrices	78 79 80 82 84 86
3.3. Managing Polynomials	
Defining and Storing Polynomials Polynomial Arithmetic Swapping and Copying Polynomials Evaluating Polynomials and their Derivatives Appendix: Irreducible Polynomials over Z[X] Polynomial Root Finders Quartic Equation General case: Bairstow Method	88 90 92 93 95 97 98 99
3.4. Applications of Polynomials	
Equations for Curve Fitting programs Polynomial Interpolation Prime Factors Decomposition. Totient function Fitting data to Polynomials Orthogonal Polynomials From Poles to Zeros and back Partial Fractions Expansion Extra bonus: Polynomial Launchers	105 106 108 110 115 119 122 123

4. Geometry and Vector Analysis

4.1. Subfunctions, Catalog and Launchers	123
The "Last Function" functionality	124
4.2. Vector Analysis	
Verter Ctack Inclanantation	105
Vector Stack Implementation	125
Vector Operations	126
Table of Vector functions	130
Coordinate Transformation	131
Calculating 2D- and 3D-distances	132
Other Utility functions	141
N-dimensional Vector operations	142

Appendix "M" and END.	143

Note: Make sure that revision "R58" (or higher) of the Library#4 module is installed.

SandMatrix_4 Module – Revision "5Y+" Matrix Extensions for the HP-41 System.

0. Preamble to latest revisions.

The latest revision of the SandMatrix rounds up the module with subtle architectural enhancements, as well as a few additional new functions to complete the pack. Notable are the all-MCODE versions of polynomial evaluation and its derivatives, the new Orthogonal Polynomial functions, and the addition of the FOCAL examples from the manual now available to the user in the function set. Simplification of the code allowed for optimal allocation of the routines, freeing up space for the new additions.

Revision "M" of the SandMatrix included significant additions to its predecessor – both in contents as well as in what relates to its internal architecture. Short on the heels of revisions "K" and "L", the author figured out a way to enhance the original bank-switching implementation (based on HP-'s Advantage Module), adding support for the Hepax-based model to it; and thereby enabling the utilization of the second bank in the lower page for other purposes. This freed up a substantial amount of room that now hosts the **3D Vector Calculator** ROM almost in its entirety – using a secondary FAT and auxiliary function launchers like those present in the SandMath module.

The benefits are obvious: *all 3D Vector functions are now available within the SandMatrix*, saving a page in the calculator configuration ports. It also facilitated further consolidation of functions, removing the poor-man FOCAL implementation of the same capabilities from the SandMatrix. The net result is a much more capable module that now *includes all the main components of Algebra*: Vectors, Polynomials and Matrices.

The 3D-Vector functions can be executed by their names (using function " ΣV \$"), or using their indexes within the secondary FAT (using function " ΣV #"). These two functions are further connected to the main module function launcher ΣML using the ALPHA and USER keys respectively at its prompt. Note also that the " ΣML " prompt toggles cyclically amongst three personalities (or modes) upon repeated pressing of the Σ + key as follows: "M:_" for matrix functions, "P:_" for polynomial functions, and 'V:_" for vector functions. These refer to the dedicated keyboards as can be seen in the custom overlays shown later in the manual.

Because prompting functions cannot be easily located in secondary FATs, a few of the vector functions have also been placed in the main FAT of the module. These are **VRCL**, **VSTO**, **V**<>, and **VVIEW** – which use the prompt to select the register set needed in their operation. To make room for their entries, the non-prompting auxiliary functions (mainly dealing with ALPHA string management) have been relegated to the auxiliary FAT. The FOCAL programs that use them have also been modified accordingly to reflect the new arrangements.

Like it was the case in the Vectors ROM, the coordinate transformation and vector calculator programs **TR** and **VC** from the Advantage Pac have been re-written using the new 3D-Vectors functions included in the module – and included in the main FAT. User instructions and capabilities are identical, but its execution speed is largely faster, as they take advantage of the MCODE implementation of the underlying functions. Besides, a few other new geometry functions also went to the auxiliary FAT - completing the coordinate transformations and 2D/3D distances function set. They'll be described in section 4 of the manual.

Note that all these important additions required making some changes to the Library#4 – make sure you use revision "R58" or higher in conjunction with the SandMatrix revision "Y".

Note: Make sure that revision "R58" (or higher) of the Library#4 module is installed.

1. Introduction.

The release of the CCD Module by W&W in 1983 provided for the first time convenient and reliable tools for matrix algebra in the 41's platform. It was an MCODE quantum leap ahead, beyond the very many user programs written on the subject in the previous years. Looking back, it's clear that the "ARRAY FNS" was beyond a doubt an amazing landmark in the legacy of the 41 platform. So much so that rather than re-invent the wheel HP decided to use it almost in its entirety in the Advantage Pac, only enhancing it with the major matrix operations sorely missing in the CCD implementation (which incidentally were the subject of the majority of Matrix programs written for the CCD).

Perhaps because the relative tardiness of its appearance, with the HP-42S already on the horizon - or due to other factors like the HP-48S luring folks into RPL - the fact is that Matrix programs using the Advantage Pac functions were very few and in between. The demise of PPC and the newsletter wars that followed suit certainly didn't encourage the scene either, and the end result was slightly disappointing in terns of net results.

About 30 years later the SandMatrix picks up the gauntlet and compiles a collection of noteworthy programs and routines on Matrix and Polynomial algebra, with the specific criteria to be based on the CCD/Advantage function set – in an attempt to straighten the record and pay the due credit to that superb toolset that had been so underutilized.

1.1. The logical next chapter after the SandMath

In many respects previous revisions of the SandMatrix were very conventional. Back then there were no auxiliary FATs with sub-functions a la SandMath, and not even <u>a dedicated function launcher</u> with an *alternate keyboard*. All that is now completely changed and you can find all those ammenieties and a few more surprises in revisions "M,N, and Y". Many of the new routines are written in FOCAL, and the programs are typically large ones. Programming with the Matrix functions is more about Alpha strings and auxiliary data sets than concerning with data registers and to some extent even algorithmic strategy. Because they are FOCAL programs, they are slower than other areas - although the 41CL has blurred the lines separating MCODE and FOCAL in terms of speed.

In terms of its contents, it was clear from the beginning that it should be an extension to the SandMath. However, the dilemma was how to manage the dependencies: should it be a self-contained ROM or rely on functions from other modules? The former option implied including many auxiliary functions in the FAT's, taking precious entries and causing redundancy in the global scheme. The latter option however meant a potential loss of usability, since several modules were involved – the Library #4, the SandMath, AMC_OS/X, the Solve & Integrate ROM, the Polynomial ROM, etc.

The solution to this riddle came only with the latest revision of the SandMath 3x3, which added a third bank with Solve and Integrate – plus an important consolidation of functions in its auxiliary FAT. This really cleared things out for the SandMatrix, in that the only dependencies left are the Library#4 and the SandMath itself – for a total of only 8k "effective" footprint needed additionally (since the Library#4 is located in the otherwise reserved page-4).

So there you have it, the SandMatrix kind of replaces all previous versions of the "Advanced Matrix ROM", the "Matrix ROM", and the "Polynomial ROM" (not counting the one co-produced with JM Baillard). Also in this regard it's worth mentioning that the SandMatrix is totally independent from the "JMB_Matrix ROM", which doesn't use the Advantage function set at all.

1.2. The many names of Dr. Who.

The SandMatrix is the last incarnation of a series of different modules previously released that also dealt with Matrix and Polynomial algebra. Some of them were based on the Advantage itself, combining the matrix functions with other applications and thus followed the same bank-switching implementation: two pages, with two banks in the upper page. The differences amongst them were about what else (beyond the matrix set) they included – once you removed the less notorious content of the Advantage.

The table below illustrates this, showing the dependencies and choices made in all the predecessors of the SandMatrix.

Size	Main	Dependency	Requires	Notes	
8k + 12k	ALGEBRA	Advantage	n/a		
4k + 4k 12k	MATRIX_4k POLYN_4k	Advantage	n/a		
4k + 12k	MATRIX_4L4	Advantage	Lib#4		
12k + 4k	Adv_Matrix	POLYN_4k	n/a	Includes SOLVE/INTEG	
12k + 4k	Adv_Matrx4_I	POLYN_4L4	Lib#4	Includes SOLVE/INTEG	
12k	Adv_Matrix4_II	n/a SIROM (*)	Lib#4	Includes CURVE FIT (*) for EIGEN only	
16k	SandMatrix	SandMath	Lib#4	much improved! w/ Vectors and Polyn	

We sure have a much simpler situation now, glad to say we left all those behind.

What isn't included?'

When compared to the original Advantage Pac, the following functionality areas are not included in the SandMatrix – but in other dedicated modules (and in a superior implementation if I may add), as shown in the table below:

Section	In Module	Also Available in	Comments
Digital Functions	SandMath 4x4	Digit Pac	Includes 16C Emulator
Solve & Integrate	SandMath 4x4	Solve & Integrate ROM	Fully embedded
Curve Fitting	SandMath 4x4	AECROM	Fully embedded
Complex Operations	HP-41Z	-	Dedicated 8k ROM
Vectors / Coordinates	Now also included !	Vector Calculator ROM	Fully Embedded
Differential Equations	Diffeq ROM	Math Pac	Dedicated 8k ROM
Time Value of Money	SandMath 4x4	TVM Module	Fully embedded

Note: Make sure that revision "R58" (or higher) of the Library#4 module is installed

Function index at a glance.

#	Function	Description	Input	Output	Author
1	-SNDMTRX 4	Section Header	none	Displays "Order=?"	Ángel Martin
2	ΣML_	Matrix Function Launcher	Prompts for function	Executes Function	Ángel Martin
3	ΣDST_	Distance Functions Launcher	Prompts "PP PL LL PPL"	Executes function	Ángel Martin
4	ΣV#	Sub-Function Launcher	Prompts for index	Executes Function	Ángel Martin
5	ΣV\$_	Sub-Function Launcher	Prompts for name	Executes Function	Ángel Martin
6	"MATRX"	'Easy" Matrix Program	Driver for Major Matrix Ops.	Under prgm control	HP Co.
7	"TR"	Coordinate Transformation	Prompts for Data	Under prgm control	HP Co.
8	"VC"	Vector Calculator	Prompts "DP CP <) M UV"	Under prgm control	HP Co.
9	V<>	Vector Swap	Vector register in Memory	Swaps vector with with V1	Ángel Martin
10	VRCL	Vector Recall	Vector register in Memory	Recalls vector to V1	Ángel Martin
11	<u>vsто</u>	Vector Storage	Vector register in Memory	Stores V1 in Memory	Ángel Martin
12		Shows Vector Components	Vector register in Memory	, Shows vector components	Ángel Martin
13	V*VN	N-dimensional Dot product	Prompts for coeffs	Result in Matrix	Ángel Martin
14	-CCD MTRX	Checks for LU, Square Matrix	MNAME in Alpha	Displays "Running"	Ángel Martin
15	C<>C	Column exchange (k<>l)	kkk,III in X	Columns swapped	W&W GmbH
16	CMAX	Column Maximum	Col# in X, "OP1" in Alpha	Element value in X	W&W GmbH
17	CNRM	Column Norm	Col# in X, "OP1" in Alpha	Column norm in X	W&W GmbH
18	CSUM	Column Sum	"OP1,RES" in Alpha	Sum of Cols in RES matrix	W&W GmbH
19	DIM?	Matrix Dimension	"OP1" in Alpha	Dimension placed in X	W&W GmbH
20	FNRM	Frobenius Norm	"OP1" in Alpha	Value in X	W&W GmbH
21	l+	Increase row index	"OP1" in Alpha	increased i	НР Со.
22	I-	Decrease row index	"OP1" in Alpha	decreased i	HP Co.
23	J+	Increase column index	"OP1" in Alpha	increased j	HP Co.
24	J-	Decrease column index	"OP1" in Alpha	decreased j	НР Со.
25	M*M	Matrix Product	"OP1,OP2, RES" in Alpha	matrix product in RES	W&W GmbH
26	MAT*	element multiplication	value in X, "OP1,X" in Alpha	aij = aij * x	W&W GmbH
27	MAT+	addition of scalar	value in X, "OP1,X" in Alpha	aij = aij + x	W&W GmbH
28	MAT-	element substraction	value in X, "OP1,X" in Alpha	aij = aij - x	W&W GmbH
29	MAT/	Division by scalar	value in X, "OP1,X" in Alpha	aij = aij / x	W&W GmbH
30	MATDIM	Dimensions a matrix	mmm,nnn in X, "OP1" in Alpha	Matrix Dimensioned	W&W GmbH
31	MAX	Maximum element	"OP1" in Alpha	Element value in X	W&W GmbH
32	MAXAB	Absolute maximum	"OP1" in Alpha	Element value in X	W&W GmbH
33	MDET	Determinant	"OP1" in Alpha	Determinant in X	HP Co.
34 35	MIN MINV	Minimum element	"OP1" in Alpha "OP1" in Alpha	minimum element in X	W&W GmbH
35 36	MMOVE	Inverse Matrix	•	Matrix replaced w/ Inverse	HP Co.
30 37	MNAME	Moves part of a matrix Get current Mname to Alpha	l,j; k,l; b,m,n in XYZ none	Elements moved Matrix Name in Alpha	W&W GmbH W&W GmbH
38	MR	Recall element from pt	none	value in X	HP Co.
39	MRC+	Recall and advance in Column	"OP1" in Alpha	element in X, increased i	W&W GmbH
40	MRC-	Recall and back one in Column	"OP1" in Alpha	element in X, decreased i	W&W GmbH
41	MRIJ	Recall ij pointer of current	none	pointer in X	W&W GmbH
42	MRIJA	Recall ij pointer of Alpha	"OP1" in Alpha	pointer in X	W&W GmbH
43	MRR+	Recall and advance in Row	"OP1" in Alpha	element in X, increased j	W&W GmbH
44	MRR-	Recall and back one in Row	"OP1" in Alpha	element in X, decreased j	W&W GmbH
45	MS	Store element at pointer	value in X, OP1 in Alpha	Element stored	HP Co.
46	MSC+	Store and advance in Column	value in X, OP1 in Alpha	element stored, increased i	W&W GmbH
47	MSIJ	Sets pointer of current matrix	iii,jjj in X	pointer set	W&W GmbH
48	MSIJA	Sets points of Matrix in Alpha	iii,jjj in X; OP1 in Alpha	pointer set	W&W GmbH
49	MSR+	Store and advance in Row	value in X, OP1 in Alpha	element stored, increased j	W&W GmbH
50	MSWAP	Swapps part of a matrix	l,j; k,l; b,m,n in XYZ	Elements Swapped	W&W GmbH
51	MSYS	Linear Systems	"OP1,OP2, RES" in Alpha	Resolves Linear System	HP Co.

And without further ado, here's the list of functions included in the module:-

52	PIV	Sets pointer to pivot element	Col# in X, "OP1" in Alpha	Element value in X	W&W GmbH
53	R<>R	Row Exchange (k<>l)	kkk,III in X	Rows swapped	W&W GmbH
54	R>R?	Row comparison test	kkk,lll in X	skip line if false	W&W GmbH
55	RMAXAB	Absolute maximum	row# in X, OP1 in Alpha	element in X, pointer to ij	W&W GmbH
56	RNRM	Row Norm	"OP1" in Alpha	Row Norm in X	W&W GmbH
57	RSUM	Row Sum	"OP1,RES" in Alpha	sums of rows in RES matrix	W&W GmbH
58	SUM	Element Sum	"OP1" in Alpha	element sum in X	W&W GmbH
59	SUMAB	Absolute Values Sum	"OP1" in Alpha	element absolute sum in X	W&W GmbH
60	TRNPS	Transpose	"OP1" in Alpha	Matrix replaced w/ transposed	НР Со.
61	YC+C	Adds Y*Col(I) to Col(k)	value in Y, kkk.lll in X	column k changed	W&W GmbH
62	"MEDIT"	Matrix Editor	prompts for elements	Edits Matrix	НР Со.
63	"CMEDIT"	Complex Matrix Editor	prompts for coeffs	Edits Complex matrix	НР Со.
64	"CMDET"	Complex Matrix Determinant	MNAME in ALPHA	Up to degree 4	Ángel Martin
1	-ADV MATRIX	Section Header	none	Displays "Not Square"	Ángel Martin
2	CMR	Recall complex element	Complex i,j in X	Puts value in {Y,X}	Ángel Martin
3	CMS	Store Complex element	Complex i,j in X, value in {Z,Y}	Leaves pointer at (2i, 2j)	Ángel Martin
4	CMTRC	Complex Matrix Trace	Mname in ALPHA	Result in {X,Y}	Ángel Martin
5	<>J	Swaps indexes	iii,jjj in X	j,00i in X, i00j in LastX	Ángel Martin
6	IMC	Input Matrix by Columns	"OP1" in Alpha	Inputs elements by columns	Ángel Martin
7	IMR	Input Matrix by Rows	"OP1" in Alpha	Inputs elements by rows	Ángel Martin
8	LU?	Tests for LU-decomposed	MName in Alpha	YES/NO, Do if True.	Ángel Martin
9	M^1/N	p-th. root of a Matrix	"OP1" in Alpha, p in X	Matrix replaced by its root	Ángel Martin
10	M^2	Matrix Square	"OP1" in Alpha	Matrix replaced by [M][M]	Ángel Martin
11	MAT=	Copy Matrix	"OP1,RES" in Alpha	Copies matrix A into B	Ángel Martin
12	MATP	Driver for M*M	Driver for M*M	Under prgm control	Ángel Martin
13	MCON	Constant	"OP1" in Alpha, x in X	Makes all elements =x	Ángel Martin
14	MDPS	Diagonal Product Sum	"OP1" in Alpha	Sum of diagonal products	Ángel Martin
15	MEXP	Matrix Exponential	"OP1" in Alpha	Matrix replaced by exp(M)	Ángel Martin
16	MFIND	Element finder	"OP1" in Alpha, x in X	Element pointer if found	Ángel Martin
17	MIDN	Identity Matrix	"OP1" in Alpha	Makes it Identity Matrix	Ángel Martin
18	MLIE	Matrix Lie Product	"OP1,OP2,RES" in Alpha	[A][B] - [B][A]	Ángel Martin
19	MLN	Matrix Natural Log	"OP1" in Alpha	Matrix replaced by LN(M)	Ángel Martin
20	MPINV	Matrix Pseudo-Inverse	MName in Alpha	Pseudo-Inverse name in Alpha	Ángel Martin
21	MPOL	Matrix polynomial	Mname in Alpha, Cnt'l word in X	Calculates P([A])	Ángel Martin
22	MPWR	Matrix Integer Power	"OP1" in Alpha, N in X	Matrix replaced by [M]^INT(x)	Ángel Martin
23	MRDIM	Matrix Redimension	"OP1" in Alpha, dim in X	Matrix redimensioned	Ángel Martin
24	MSORT	Sorts matrix elements	"OP1" in Alpha	Matrix Elements sorted	Ángel Martin
25	MSQRT	Matrix Square Root	"OP1" in Alpha	Matrix replaced by SQRT([M])	Ángel Martin
26	MSZE?	Matriz Size	"OP1" in Alpha	Matrix size in X	Ángel Martin
27	MTRACE	Matrix Trace	"OP1" in Alpha	Trace in x	Ángel Martin
28	MXIJ	Exchanges element pointer	Pointer in matrix header	Returns new pointer to X	Ángel Martin
29	MZERO	Zeroes a Matrix	"OP1" in Alpha	All elements zeroed	R.D. Kendon
30	OMC	Output Matrix by Columns	"OP1" in Alpha	Shows elements by columns	Ángel Martin
31	OMR	Output Matrix by Rows	"OP1" in Alpha	Shows elements by rows	Ángel Martin
32	PMTM	Prompts for Matrix	"OP1" in Alpha	Prompts for complete Rows	Ángel Martin
33	SQR?	Tests for Square Matrix	MName in Alpha	YES/NO, Do if True.	Ángel Martin
34	ΣΙΊΊΙ	Sum of crossed products	"OP1" in Alpha	Σ[aij*aji] in X	Ángel Martin
35	-ADV POLYN	Section Header	none	Displays "Σ(ak*X^k)"	Ángel Martin
36	ΣΡΙΡΙ	Symmetric Polyn	Cnt'l word in X	Sums coeffs. Products	JM Baillard
37	BAIRS	Bairstow Method	Cntl word in Z, guesses in Y,X	shows results	JM Baillard
38	CHRPOL	Characteristic Polynomial	"OP1" in Alpha	Characteristic Pol Coefs/Roots	Ángel Martin
39	EIGEN	Eigen Values by SOLVE	Under prgm control	Eigen Values by Solve	Ángel Martin
40	EV3X3	Eigen values 3x3	Prompts Matrix Elements	Eigen Values by Formula	Ángel Martin
41	"LL3"	3D Line-to Line distance	Under prgm control	Result in X	Ángel Martin
42	"PL3"	3D Point-to-Line distance	Under prgm control	Result in X	Ángel Martin
43	"PPL3"	3D Point-to-Plane distance	Under prgm control	Result in X	Ángel Martin

44	MPT	Matrix Index prompt	Adds i,j and "=" to ALPHA	Prompts and waits	НР Со.
45	P+P	Polynomial Addition	Driver for PSUM w/CF 01	shows results	Ángel Martin
46	P-P	Polynomial Substraction	Driver for PSUM w/SF 01	shows results	Ángel Martin
47	P*P	Polynomial Multiplication	Driver for PPRD	shows results	Ángel Martin
48	P/P	Polynomial Division	Driver for PDIV	shows results	Ángel Martin
49	РСРҮ	Copy of Polynomial	from, to cntl words in Y,X	polynomial copied	JM Baillard
50	PDIV	Euclidean Division	cntl words in Y and X	cntl words remainder & result	JM Baillard
51	PEDIT	Polynomial Editor	cntl word in X	prompts for each coeff value	Ángel Martin
52	PFE	Partial Fraction Expansion	Under prgm control	see description to decode	JM Baillard
53	PMTP	Prompts for Polynomial	cntl word in X	prompts for complete list	Ángel Martin
54	POLFIT	Polynomial Fit	Under prgm control	calculates polynomial fit	Valentín Albillo
55	POLINT	Aitken Interpolation	Under prgm control	interpolation made	Ulrich Deiters
56	"POLZR"	From Poles to Coeffs	Under prgm control	shows Polynomial coeffs	Martin-Baillard
57	PPRD	Polynomial Product	cntl words in Z, Y, bbb in X	cntl word result in X	JM Baillard
58	PRMF	Prime Factors Decomposition	number in X	prime factors in XM Matrix	Ángel Martin
59	PROOT	Polynomial Roots	Under prgm control	Shows all roots	Ángel Martin
60	PSUM	Polynomial Sum	cntl words in Z, Y; bbb in X	cntl word result in X	JM Baillard
61	PVAL	Polynomial Evaluation	Cntl word in Y, x in X	Result in X	JM Baillard
62	PVIEW	Polinomial View	Cntl word in X	Sequential listing of coeffs	Ángel Martin
63	QUART	Quartic Equation Roots	coeffs in Stack (a4=1)	shows results	Martin-Baillard
64	"#EV"	Subroutine for EIGEN	Under prgm control	Under prgm control	Ángel Martin

Functions in **blue** are all in MCODE. Functions in black are MCODE entries to FOCAL programs.

I have adapted most of the FOCAL programs for optimal fit in the SandMatrix, but as you can see the original authors are always credited – including W&W for the array functions set, renamed here as **`-CCD MATRIX**". Many of the routines in this manual include the program listing; this provides an opportunity to see how the functions are used and of course adds completion to the documentation.

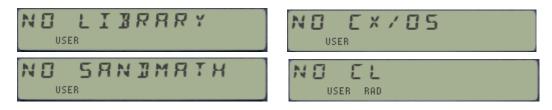
Sub-functions in the secondary FAT.

The Vector Calculator and remaining subfunctions come next. Note the three sections in the listing, with the second and third groups of auxiliary functions covering polynomials and other geometry applications. Note also the new **Matrix Catalogs** at the very end of the table.

#	Function	Description	Input	Output	Author
0	-V CALC	Section Header	Header none		Ángel Martin
1	A+V Vector addition Data in V1 and V2		Sum vector in V1	Ángel Martin	
2	A-V	Vector Subtraction	Data in V1 and V2	Difference vector in V1	Ángel Martin
3	A*V	Vector Dot Product	Data in V1 and V2	Result in X-reg	Ángel Martin
4	AXV	Vector Cross Product	Data in V1 and V2	Product vector in V1	Ángel Martin
5	A/V	Vector Division	Data in V1 and V2	Division vector in V1	Ángel Martin
6	EXSCR	Alpha Exchange	Vector in V2	Swapped with scratch	Ángel Martin
7	LASTV	Last Vector recall	none	V1 pushed to V2, LastV to V1	Ángel Martin
8	X*V	Multiplication by Scalar	Data in stack	Result in V1	Ángel Martin
9	V<>A	Swaps vector levels	Data in V1 and V2	Swaps vectors	Ángel Martin
10	VADST	Distance between vectors	Data in V1 and V2	Distance in X-reg	Ángel Martin
11	VANG	Angle between vectors	Data in V1 and V2	Angle in X-reg	Ángel Martin
12	VCHS	Negative vector	Vector in V1	Negative vector in V1	Ángel Martin
13	VENTER^	Enters V1 into V2 level	Vector in V1	Pushes V1 into V2	Ángel Martin
14	VIEWV	Views V1 vector coordinates	Vector in V1	Shows X:, Y:, Z: coordinates	Ángel Martin
15	VINV	Vector Inverse	Vector in V2	Inverse vector in V1	Ángel Martin
16	VMOD	Vector Modulus	Vector in V2	Modulus in X-reg	Ángel Martin
17	VNORM	Vector Norm	Vector in V2	Norm in X-reg	Ángel Martin
18	VUNIT	Unitary Vector	Vector in V2	V/ v in V1	Ángel Martin
19	V=0?	Conditional V1=0?	Vector in V2	YES/NO, Do if True.	Ángel Martin

(c) Ángel M. Martin

20	V=A?	Conditional V1=V2?	Data in V1 and V2	YES/NO, Do if True.	Ángel Martin
21	V#0?	Conditional V1#0?	Vector in V2	YES/NO, Do if True.	Ángel Martin
22	V#A?	Conditional V1#V2?	Data in V1 and V2	YES/NO, Do if True.	Ángel Martin
23	-AUX FNS	High Rollers Game	none	The game begins	Ross Cooling
24	^MROW	Input Row	"OP1" in Alpha, row# in x	Prompts for Row	Ángel Martin
25	ABSP	Alpha Back Space	Text in Alpha	Last chr deleted	W&W GmbH
26	AIP	Appends integer part	x in X	INT(x) appended to Alpha	Ángel Martin
27	ASWAP Alpha Swap "A,B" in Alpha		"B,A" in Alpha	Ángel Martin	
28	CLAC	CLA from Comma	Text in Alpha	Removed from left to comma	W&W GmbH
29	DTC	Delete Tiny Coefficients	Cntl word in X	Tiny coeffs deleted	Ángel Martin
30	DOTN	, N-dimensional Dot product	cnt'l words in Y,X	cnt'l word result in X	JM Baillard
31	I*J	Multiplies indexes	iii.jjj in X	Product i*j in X	Ángel Martin
32	I#J?	Are indexes the same?	iii,jjj in X	YES/NO, Do if True.	Ángel Martin
33	MTR	Matrix Subroutine	Under program control	Under program control	HP Co.
34	осх	Output x-th column	"OP1" in Alpha, Col# in X	Shows Col elements	Ángel Martin
35	ORX	Output x-th row	"OP1" in Alpha, Row# in X	Shows Row elements	Ángel Martin
36	PF>X	Prime Factors to Number	Matrix w/ Prime Facts in XMEM	Restores the original argument	Ángel Martin
37	PL2	2D Point-to-Line distance	Coordinates in Stack	Distance in X-reg	Ángel Martin
38	PP2	2D Point-to-Point distance	Coordinates in Stack	Distance in X-reg	Ángel Martin
39	ST<>A	ST<>A Swaps Alpha/Stack V1 in Stack, V2 in Alpha		V2 in Stack, V1 in Alpha	Ángel Martin
40	TOTNT	Totient Function	Argument in X	Result in X	Ángel Martin
41	-REV	Revision Message	none	Splash screen (!)	Nelson Crowle
42	?IRR	Irreducibility Criteria	Control word in X	Stops If irreducible, R04 has #	Ángel Martin
43	CROUT	Outputs Cubic Roots	Roots in Stack	Shows messages	Ángel Martin
44	СТ	Subroutine for "TR"	Under program control	See Advantage's manual	НР Со.
45	dPL	Polynomial 1 st . derivative	Cntl word in Y, x in X	P'(x) in X, argument in L	Ángel Martin
46	dPL2	Polynomial 2 nd . derivative	Cntl word in Y, x in X	P"(x) in X, argument in L	Ángel Martin
47	НМТ	Hermite Polynomials	N in Y, x in X	H(n, x) in X, argument in L	Ángel Martin
48	ITPL	Polynomial Primitive	Cntl word in Y, x in X	Integralin X, argument in L	Ángel Martin
49	LAG	Laguerre Polynomials	N in Y, x in X	H(n, x) in X, argument in L	Ángel Martin
50	LANX	Associated Laguerre Pols.	A in Y, N in Y, x in X	Result in X	Ángel Martin
51	LEG	Legendre Polynomials	N in Y, x in X	H(n, x) in X, argument in L	Ángel Martin
52	P4	Auxiliary Code for QUART	Coeffs. In stack, UF 00 status	Coeffs for CROOT	Ángel Martin
53	PSWP	Polynomial Swap	Control word in Y, new rg in X	Coeeficients Swapped	JM Baillard
54	CAT+_	Sub-function Catalog	Has hot keys	Lists/Launches functions	Ángel Martin
55	CMINOR	Complex Matrix Minor	MNAME in ALPHA, (I,j) in X	Result in ALPHA and (Y,X)	Ángel Martin
56	CMTRP	Complex Matrix Transpose	MNAME in ALPHA	Transposed Matrix	Ángel Martin
57	M^1/X	Matrix inverse Power	X in X, MNAme in ALPHA	Result in Matrix if convergence	Ángel Martin
58	MRND	Random Matrix	Dim in X, MName in ALPHA	Random Elements	Ángel Martin
59	MSQ2	2x2 Matrix Square Root	MNAME in Alpha	Square root replaces Matrix	Ángel Martin
60	MZDG	Matrix Zero Diagonal	"OP1" in Alpha	Clears the Diagonal Elements	Ángel Martin
61	PSCAL	Pascal Matrix	"OP1" in Alpha	Pascal elements	Ángel Martin
62	RMCAT	R-Matrix Catalog	Has hot keys: D,H,SST,SHF, R/S	Lists R-Matrices in RAM	Ángel Martin
63	YMCAT	Y-Matrix Catalog	Has hot keys: D,H,SST,SHF, R/S	Lists R-Matrices in RAM	Ángel Martin
64	@+	Append Element	Under program control	Used by MCEDIT and IMR	Ángel Martin
65	AIM	Anti-Identity Matrix	Matrix name in ALPHA	Unitary with zero diagonal	Ángel Martin
66	EQT	Display CurveFit Equation	Eq# in R00 (1-16)	Eq. displayed in Alpha	Ángel Martin
67	EV2X2	2x2 Matrix Eigenvalues	Matrix Name in ALPHA	Eigenvalues in Y,X	Ángel Martin


The function groups are distributed in both lower and upper pages, as follows:

• The lower page contains the general intro section plus the CCD Matrix set. Very much like the lower page of Advantage Pac minus the digital functions. It also hosts the auxiliary FAT, a necessity in order to have the subfunctions available to the FOCAL programs within the ROM. <u>The second bank</u> in the lower page contains the 3D Vector calculator functions, the execution tables for the three launchers, the code for the orthogonal polynomials, the Matrix CATAlogs,

and and the **EQT** function. Also there are the "return" snippets to support the Advantage-style bank-switching calls to the upper page.

 The upper page has the Advanced Matrix and Polynomial sections. Basically all new and additional to the Advantage Pac. Finally, <u>The second bank</u> in the upper page is practically identical to that in the Advantage, with a few changes made after removing the Digital functions as well. It mostly contains the MCODE for the CCD Matrix functions and the major matrix calculations (MSYS, MINV, MDET, TRNPS).

The SandMatrix checks for the presence of its dependencies, i.e. The Library#4 and the SandMath. Note that if the SandMath module is not plugged in the calculator a warning message is shown every time the calculator is switched on -- but not halting the polling points process, whereas if the Library#4 is missing or the machine is not a CX, the errors will halt it to avoid likely problems.

Note that there's also a punctual check for the CL board – needed to ensure the Y-registers existence if a matrix is to be stored in the CL-RAM area. This check is only performed within the affected functions, and not at initialization.

Summarizing, the SandMatrix is a complete algebra module not only with powerful Matrix capabilities (inherited and extended on its own), but also Vectors and Polynomial functions second to none in the HP-41 platform. Yet its FAT internal architecture and launcher menus should make its usage intuitive and easy to learn... hopefully you'd agree and have as much fun using it as I've had putting it together.

Xtra Bonus:- High Rollers Game.

There is a gigantic Easter egg included in the SandMatirx – hidden somewhere there's a rendition of the High Rollers game, so you can relax in between hard-thinking sessions of math, really! There was simply too much available space in the "new" bank of the lower page to leave it unused, so this 500+ bytes MCODE rendition of the game (written by Ross Cooling, see PPCJ V14N2 p31) was begging to be included. As to how to access it... the discovery is part of the enjoyment :-) Hint: ever wondered about those section header functions?...

Choose any combination from the available digits on the right which sum matches the target on the left, repeating until there's no more digits left (YOU WIN) or there aren't possible combinations (YOU LOSE). Use R/S to proceed, back-arrow to delete digits. The game will ask you to try again and will keep the count of the scores.

YOU ARE 0:2	EONT	INUE7	I:N 🛛
USER RAD	USER	1	

Note: Make sure that revision "R58" (or higher) of the Library#4 module is installed.

2. Lower-Page Functions in detail

The first section groups the auxiliary functions used for ALPHA string management, plus some leftover functions that either didn't belong to the other categories or were added at latest stages of the development.

```
2.1. SNIMATRX"4
```

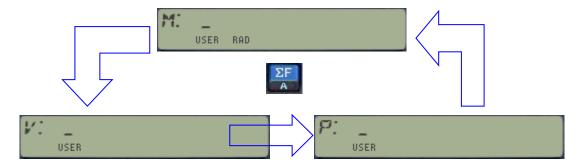
 5	Ν	B	М	R	Ţ	R	X	Ч	
	USEF	}				01			

2.1. Alpha String Management sub-functions

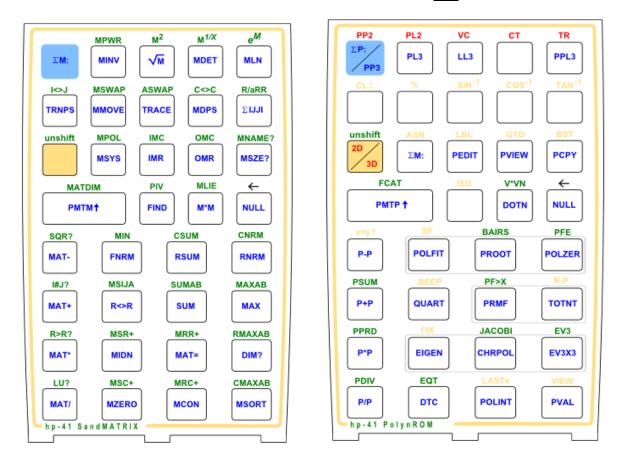
The use of the ALPHA register for Input/Output certainly isn't new in the 41 platform, but the utilization by the Matrix functions effectively turned it into a primary abstraction layer for programming; therefore the importance of auxiliary utilities like these.

Some of these functions are also included in the AMC_OSX Module – yet it appeared convenient not to add that module as another dependency (even if it's just a 4k footprint for its 4 banks), so here they are as well.

#	Function	Description	Input
1	ABSP	Alpha Back Space	Text in Alpha
2	AIP	Appends integer part	x in X
3	ASWAP	Alpha Swap	A,B in Alpha
4	CLAC	CLA from Comma	Text in Alpha
5	ST<>A	Exchanges Alpha and Stack	Values in Stack and Alpha registers


Note that already in revision "M" all these functions weren moved to the secondary FAT, and therefore you need to use the ΣV \$ or ΣV # launchers to execute them, or to enter them in a FOCAL program. See the sub-function table at the introduction section for details on their reference indexes.

- **ABSP** deletes the rightmost character in ALPHA equivalent to "back space" in manual mode.
- **AIP** was HP's answer to the need to append just the integer part of the number in X to Alpha not changing the FIX and radix settings. Note also that **AIP** appends the absolute value of the number, which is not the case with **ARCLI** or **AINT** from the CCD and AMC_OS/X modules.
- **ASWAP** handles comma-separated strings, exchanging the strings placed left and right of the *first* comma found in Alpha. Very handy to manage all those operations that have an input and output matrix names defined in ALPHA, separated by comma.
- **CLAC** deletes the contents of ALPHA located to the right of a comma (i.e. after the comma but not including it). It is adapted from **CLA-** in the CCD Module.
- **ST<>A** simply exchanges the contents of the stack and the <u>four</u> Alpha registers {M,N,O,P}. This is different from **V<>A**, in that only the three stack registers are swapped. **V<>A** is used in 3D-vector operations where one of the operands is stored in Alpha.


2.2. The Matrix function launcher and Keyboards.

It has become customary in the author's modules to always use function launchers to enhance the user interface, as the most convenient way to save key assignments. As expected, there is a function launcher in the SandMatrix that groups many of the most frequently used matrix functions; plus a few others thrown to the mix. All functions can be accessed from the "**M**: _" prompt, there is no need to make any key assignment other that for the main launcher itself.

This becomes active when you execute " ΣML " - the function launcher in run mode. When executed, it presents the "M:" prompts and awaits your next selection. Pressing [A] in turn activates the Vector prompt V:_, and pressing it a second time the Polynomial prompt P:_.

The following pictures of the Matrix and Polynomial Overlays show the available functions in the dedicated keyboards. Note that those with blue names (on the keys) are called using the main keys (ie. unshifted), and those in green (above the keys) require pressing the [SHIFT] key in the corresponding prompt. It also shows the **M**: launcher assigned to the Σ + key, as usual.

#	Function	Description	Input
1	"MATRX"	"Easy Matrix" Program	Driver for Major Matrix Ops.
2	ΣML_	Matrix Function Launcher	Prompts for function
3	ΣDST _	Distance Functions Launcher	Prompts "PP PL LL PPL"
4	ΣV#	Sub-Function Launcher	Prompts for index
5	ΣV\$_	Sub-Function Launcher	Prompts for name

2.3. Functions in the Header section.

MATRX is the main driver program provided in the Advantage Pac for the major matrix calculations (MDET, MINV, SIMEQ, TRNPS). Nice and easy, maybe the only one to use for users not needing any further functionality. **MTR** was part of the same program, but has been eliminated in this revision.

The following extract describing the use of MATRX is taken from the Advantage Pac manual – and it's included here for convenience and completeness. It's useful to revise the underlying concepts as well.

2.3.1 The Matrix Program

This chapter describes the matrix program, **MATRX** - the menu-driven, easy "user-friendly" way to use the most common matrix operations on a newly created matrix. To use **MATRX** you do not need to know how the calculator stores and treats matrices in its memory. The next chapter lists and defines every matrix function in the pac, including those called by **MATRX**. Using these functions on their own requires a more intimate knowledge of how and where the calculator stores matrices.

What this program can do.

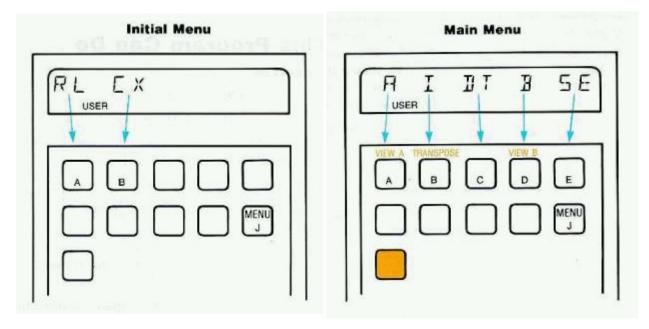
Consider the equations:

$$3.8 x_1 + 7.2 x_2 = 16.5$$

1.3 x₁ - 0.9 x₂ = -22.1

for which you must determine the values of x1 and x2. These equations can be expressed in matrix form as AX = B, where A is the coefficient matrix for the system, B is the column or constant matrix, and X is the solution or result matrix.

$$\mathbf{A} = \begin{bmatrix} 3.8 & 7.2 \\ 1.3 & -0.9 \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \text{ and } \mathbf{B} = \begin{bmatrix} 16.5 \\ -22.1 \end{bmatrix}$$


For such a matrix system, the **MATRX** program creates (dimensions) a square real and complex matrix, **A**, and a column matrix, **B**. You can then:

- Enter, change ('edit"), or just view elements in **A** and **B**.
- Invert A.
- Transpose **A** if **A** is real.
- Find the determinant of **A** if **A** is real.
- Solve the system of simultaneous equations by finding the solution to **AX** = **B**.

The size of your matrix is limited only by available memory (each real matrix requires one register plus one register for each element.) If you want to store more than one matrix, you will need to use the matrix function **MATDIM**, described in the next chapter. The **MATRX** program does not store or recall matrices; it works with a single square matrix A and a single column matrix B. When you enter new elements into A you destroy its old elements.

Instructions

MATRX has two menus to show you which key corresponds to which function. The initial menu you see is to select a real ox complex matrix: (picture on the left below)

After you make this selection, input the order of the matrix, and press R/S, you will see the main menu (picture on the right above). This menu shows you the choice of matrix operations you have in **MATRX**. Press [J] to recall this menu to the display at any time. This will not disturb the program in any way.

To clear the menu at any time press "Back Arrow". This shows you the contents of the X-register, but does not end the program. You can perform calculations, and then recall the menu by pressing [J]. (However you don't need to clear the program's display before performing calculations.)

- The program starts by asking you for a new matrix. It has you specify real vs. complex and the order (dimension) of a square matrix for A.
- The program does not clear previous matrix data, so previous data possible meaningless data will fill your new matrices A and B until you enter new values for their elements.
- Each element of a complex matrix has two values (a real part and an imaginary part) and requires four times as much memory to store as an element in a real matrix. The prompts for real parts x11, x12, etc. are "1:1=?", "1:2=?", etc. The prompts for complex parts x11+ i y11, x2+ i y22, etc. are "RE.1:1=?", "IM.1:1=?", etc.

Remarks

Alteration of the Original Matrix. The input matrix A is altered by the operations finding the inverse, the determinant, the transpose and the solution of the matrix equation. You can re-invert A⁻¹, and re-transpose A^T to restore the original form of A. However, if you have calculated the determinant or the solution matrix, then A is in its LU-decomposed form. To restore A, simply *invert it twice*. The LU-decomposition does not interfere with any subsequent **MATRX** operation except transposition and editing (do not attempt to edit an LU-decomposed matrix unless you intend to change *every* element). For more information on LU-decomposition, refer to "LU-Decomposition" in the next chapter ('Matrix Functions").

Matrix Storage. The **MATRX** program stores a matrix **A** starting in R0 of main memory; it is named "**R0**". Its column matrix **B** is stored after it, and the result matrix **X** overwrites **B**. Refer to the chapter "Matrix Functions' for an explanation of how matrices are named and stored, and how much room they need. **MATRX** cannot access any other matrices, with the exception of the previous **R0** and its corresponding column matrix.

Redefined Keys. This program uses local Alpha labels (as explained in the owner's manual for the HP-41) assigned to keys [A]-[E], [J], [a], [b], and [d]. These local assignments are overridden by any User-key assignments you might have made to these same keys, thereby defeating this program. Therefore be sure to clear any existing User-key assignments of these keys before using this program, and avoid redefining these keys in the future.

Example 1.

Given the system of equations at the beginning of this section, find the inverse, determinant and transpose of A, and then find the solution matrix of the equation AX = B

$$\begin{bmatrix} 3.8 & 7.2 \\ 1.3 & -0.9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 16.5 \\ -22.1 \end{bmatrix}$$

Keystrokes	Display	Comments
XEQ "MATRX"	"RL EX"	Starts the MATRX program
[A] (RL)	"ORJER=7"	Selects a real Matrix
2, R/S	"A I DI B SE"	Dimensions a 2x2 square matrix
[<mark>A</mark>]	" <u>f</u> <u>f</u> <u>=</u> a11?"	Enters the Editor and displays old value
3.8, R/S	" <i>{i</i> /	enters the new value for a11
7.2, R/S	" 2 : (<u>-</u> a21?″	
1.3, R/S	" ℤ.ℤ	
.9, CHS, R/S	"A I DI B SE"	enters a22 and returns main menu
[B] (I)	"R I DI B SE"	Inverts A
[SHIFT][A]	"(:/ <u>-</u> 0.0704"	Displays the current contents
R/S	"(г. 0.56эч"	of A after the inversion
R/S	"2:1= 0.10 17"	
R/S	"2:2 <u> 0</u> .2 9 7 3 "	
R/S	"A I DI B SE"	
[B] (I)	"A I DI B SE"	Re-inverts A ⁻¹ to the original
[<mark>SHIFT</mark>][B]	"A I DI B SE"	Transposes A
[<mark>SHIFT</mark>][A]	"(!= <u>38000</u> ″	Displays the current contents
R/S	"(2= (3000″	of A after the transposition
R/S	"2:1= 7.2000"	·
R/S	``2:2 <u>-</u> - 0.9 0 0 0 ″	
R/S	"A I DT B SE"	
[SHIFT][B]	"A I DI B SE"	Re-transposes A^{T} to the original A
[C] (DT)	"]ET=- (2.7800"	Det(A)
[D] (B)	" (j = b11?"	editor for B and displays old elements
16.5, Ŕ/S	" Z : { <u>=</u> b12?"	Enters the new value for b11
22.1, CHS, R/S	"A I DI B SE"	Enters b ₂₂ and returns main menu
[E] (SE)	"A I DI B SE"	Solves the system $AX = B$, placing X in B
[<mark>SHIFT</mark>] [D]	"(!=- !2887″	displays the solution matrix
R/S	"2:1= 8.2496"	· ·
R/S (or [J])	ზЯ I]]I]} 5Ε″	Exits the editor

Example 2. Find the inverse of the complex matrix:

 $\begin{bmatrix} 1+2i & 3+3i \\ 4+5i & 6+7i \end{bmatrix}$

Note that the original **MATRX** has been slightly edited in the SandMatrix so that the program sets the required SIZE if not enough registers are currently available to store the matrices – so you don't need to worry about that mundane detail. This example is also interesting because also shows how to make corrections to the data entered by mistake.

Keystrokes	Display	Comments
XEQ " MATRX "	"RL EX"	Starts the MTRX program
[B] (CX)	"ORJER=7"	Selects a complex Matrix
2, R/S	"A I DI B SE"	Dimensions a 2x2 complex matrix
[<mark>A</mark>], R/S	"RE (1= 7"	Enters the editor and displays old value
1, R/S	"IM () = 7"	ditto for the imaginary part
2, R/S	"RE (2= 7"	
3, R/S	"IM (2 = 7"	
4, R/S	"R E:2: (= - 7 "	Wrong entry! Should be 3, not 4
1,002, [A]	<i>"RE €2</i> = 3.000 <i>?"</i>	Moves editor back to x ₁₂
R/S	``IM <i>€2</i> = 4.000?″	The wrong imaginary part
3, R/S	"RE2:1= 7"	Correct value is entered for y ₁₂ . Proceed
4, R/S	"IM2:1= 7"	
5, R/S	"RE22= 7"	
6, R/S	"IM22= 7"	
7, R/S	• A I DI D SE"	Enters last element and returns main menu
[B] (I)	• A I DI D SE"	Inverts A
[<mark>SHIFT</mark>][A]	"RE (1=-0.9663"	Viewing A ⁻¹
R/S	"IM.1,1= Ø.1ЧБ (″	
R/S	"RE.1,2 = 0.4382"	
R/S	"IM. (,2 = − ∅. (∅ (″	
R.S	"R E.2, I = - 0.6 T H 2 "	
R/S	"IM.2, (=-0.0787"	
2.002, [A]	" <i>R E 2:2 :: - 0.2</i> 3 6 9 "	Displays x ₂₂ + i y ₂₂
R/S	"IM2:2 = -0.0225"	-
R/S (or [J])	"A I DI B SE"	Exits the editor

Other (more advanced) examples are available in the next sections of the manual, with the description of the individual matrix functions.

Note that if any of the element registers currently contains alpha data you'll get an ALPHA DATA error message during data entry. Simply clear the X register (using tha back arrow key) and continue with R/S.

See the program listing in next page for your reference.

1	*LBL "MATRX"		55
2	*LBL 00]	56
3	CF 02		57
4	SF 27		58
5	"RL CX"		59
6	PROMPT		60
7	GTO 00		61
8	*LBL B		62
9	SF 02]	63
10	*LBL A		64
11	PRDER		65
12	STOP		66
12	ABS		67
13	INT		68
15	ENTER^		69
16	FS? 02		70
17	+		71
18	STO 00		72
19	X^2		73
20	E		74
$\overline{21}$	+		75
22	SIZE?		76
23	X<>Y		77
24	X>Y?		78
25	PSIZE		79
26	E		80
27	E3/E+		81
28	RCL 00		82
29	*		83
30	"R"		84
31	MATDIM		85
32	GTO 01		86
33	RTN		87
34	*LBL "MTR"		88
35	*LBL J		89
36	*LBL 01		90
37	CF 08		91
38	SF 27		92
39 40	" A I DT B SE"		93
40 41	AVIEW <i>"R"</i>		94
42	STOP		95
43	GTO 01		96 07
44	*LBL 03		97 98
45	MDET		98 99
45 46	"DET="		100
47	ARCL X		100
48	PROMPT		101
49	GTO 01		102
50	*LBL a		103
50 51	SF 08		105
52	*LBL A		106
52 53	GTO 14		107
55 54			108
54	*LBL B		

55	MINV
56	GTO 01
57	*LBL C
58	FC? 02
59	GTO 03
60	XROM "CMDET"
61	Σ F# 032
62	(ZOUT)
63	STOP
64 65 [GTO 01
65	*LBL E
66	XEQ 02
67 68	ASTO X
69	<i>"R,"</i> ARCL X
70	MSYS
71	GTO 01
72	*LBL b
73	FC? 02
74	TRNPS
75	FC? 02
76	GTO 01
77	Σ V# 056
78	(CMTRP)
79	GTO 01
80	*LBL d
81	SF 08
82	*LBL D
83	XEQ 02
84	*LBL 14
85	SF 07
86	FS? 02
87	XROM "CMEDIT"
88	
20	XROM "MEDIT"
	*LBL 02
90	*LBL 02 DIM?
90 91	*LBL 02 DIM? INT
90 91 92	*LBL 02 DIM? INT ENTER^
90 91 92 93	*LBL 02 DIM? INT ENTER^ X^2
90 91 92 93 94	*LBL 02 DIM? INT ENTER^ X^2 E
 89 90 91 92 93 94 95 96 	*LBL 02 DIM? INT ENTER^ X^2 E +
90 91 92 93 94 95 96	*LBL 02 DIM? INT ENTER^ X^2 E + AINT
90 91 92 93 94 95 96 97	*LBL 02 DIM? INT ENTER^ X^2 E + AINT RDN
90 91 92 93 94 95 96 97 98	*LBL 02 DIM? INT ENTER^ X^2 E + AINT RDN SF 25
90 91 92 93 94 95 96 97	*LBL 02 DIM? INT ENTER^ X^2 E + AINT RDN
90 91 92 93 94 95 96 97 98 99	*LBL 02 DIM? INT ENTER^ X^2 E + AINT RDN SF 25 MATDIM
90 91 92 93 94 95 96 97 98 99 99	*LBL 02 DIM? INT ENTER^ X^2 E + AINT RDN SF 25 MATDIM FS?C 25
90 91 92 93 94 95 96 97 98 99 00 01 02 03	*LBL 02 DIM? INT ENTER^ X^2 E + AINT RDN SF 25 MATDIM FS?C 25 RTN R^ +
90 91 92 93 94 95 96 97 98 99 00 01 02 03 04	*LBL 02 DIM? INT ENTER^ X^2 E + AINT RDN SF 25 MATDIM FS?C 25 RTN R^
90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05	*LBL 02 DIM? INT ENTER^ X^2 E + AINT RDN SF 25 MATDIM FS?C 25 RTN R^ + E + E + E +
90 91 92 93 94 95 96 97 98 90 01 02 03 04 05 06	*LBL 02 DIM? INT ENTER^ X^2 E + AINT RDN SF 25 MATDIM FS?C 25 RTN R^ + E + E + PSIZE
90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05	*LBL 02 DIM? INT ENTER^ X^2 E + AINT RDN SF 25 MATDIM FS?C 25 RTN R^ + E + E + E +

2.2. MATRIX (0)

2.2.1. Setting up a matrix: Name, Storage, and Dimension

The first group of matrix functions are used to create, populate and store the matrices.

	Function	Description	Inputs
1	MATDIM	Dimensions a Matrix	Name in Alpha, dimensions in X
2	MNAME?	Returns name of current Matrix to Alpha	none
3	DIM?	Returns the dimension of Matrix	Name in Alpha
4	"MEDIT"	Matrix Editor	Name in Alpha
5	"CMEDIT"	Complex Matrix Editor	Name in Alpha

You can create, manipulate, and store real and complex matrices. The size and number of matrices is limited only by the amount of memory available in the calculator. If you have extended memory you can also store matrices there.

To create a matrix you must provide its name and dimensions. The function **MATDIM** uses the text in the Alpha register as its name, and the dimensions mmm.nnn in the X-register to create a matrix. It does not clear (zero) the elements of a new matrix in main memory, but retains the existing contents of the previous matrix or registers. *It does clear the elements of a new matrix in extended memory*. You then enter values- numeric or Alpha- into a matrix via the matrix editors.

Naming a Matrix

Use the Alpha register to specify matrix names. When specifying more than one name (as parameters for certain functions), separate them with commas. The name you give a matrix determines where it will be stored:

A matrix to be stored in main (non-extended) memory must be named **Rxxx**, where xxx is up to three digits. (You can drop leading zeros.) The matrix will be stored starting in Rxx. For example, **R007** is the same as **R7**, which would store this matrix header in R07. As a shortcut, if you specify matrix **R**, its name and location will be R0. A maximum square matrix size of 17x17 is possible in this modality.

A matrix to be stored in extended memory can be named with up to seven Alpha characters, excepting just the letter "X" (which is reserved to name the X-register) and the letter "R" followed by up to three digits (which is reserved to name the main memory arrays). You do not need to specify a file type; it will automatically be given one unique to matrices. A maximum square matrix size of 24x24 is possible in this modality.

For the SY-41CL there's a third option available that uses the *expanded memory* zone, which provides a storage space for additional 3,072 data registers (aka. the Y-Registers). To store your matrix in that area simply name it **Yxxx**, with the same conventions given for the standard main memory case. For example, using **Y525** will store the matrix elements starting at the 526th expanded register. Note that the expanded memory area allows for larger sizes – up to 55 x 55 square matrices !

Dimensioning a Matrix

Specify the dimensions of a new matrix as mmm.nnn, where m is the number of rows and n is the number of columns. You can drop leading zeros for m and trailing zeros for n. For a complex matrix, specify mmm.nnn as *twice* the number of rows and *twice t*he number of columns. (Refer to "Working with Complex Matrices"). A zero part defaults to a 1, so 0 is equivalent to 1.001, 3 to 3.00 1, and .023 to 1.023.

	1 2 3	$\begin{bmatrix} 1+i & 2+3i \end{bmatrix}$
	4 5 6	4+5i 6+7i
mm	m.nnn = 2.003	mmm.nnn = 4.004

- **MATDIM** Dimensions a new matrix or redimensions an existing one to the given dimensions. *Displaced elements are zeroed if an existing matrix is being enlarged.*
- **MNAME?** Returns the name of the current matrix to the Alpha register.
- **DIM?** Returns the dimensions mmm.nnn of the matrix specified in the Alpha register to the X-register. (A blank Alpha register specifies the current matrix.)

How a Matrix Is Stored

The elements of a matrix are stored in memory in order from left to right along each row, from the first row to the last. Each element occupies one data-storage register. A complex number requires four registers to store its parts.

Memory Space.- A matrix in main and expanded Y-memory occupies $(m \times n) + 1$ data storage registers, one register being used as a status header. A complex matrix uses $(2m \times 2n) + 1$ registers, where m is the number of rows and n is the number of columns in the complex matrix.

A matrix in extended X-memory has a file length of $(m \times n)$. $(2m \times 2n$ for a complex matrix). Two more X-mem registers are used for the header and the file name. Its file type is unique to matrices. Do not use the function **CLFL** with a matrix in extended memory: this destroys part of the file's header information. Instead, use **MZERO** - or **PURFL** to purge the entire matrix.

Changing Matrix Dimensions.- If you redimension a matrix to a different size, then the existing elements are reassigned to new elements according to the new dimensions. Extra old elements are lost; extra new elements take on the values already present in the new registers- except in extended memory, where new elements are set to zero.

Redimensioning 2 x 3 to 2 x 2 :	1 2 3	$\begin{bmatrix} 1 & 2 \end{bmatrix}$ lost

Redimensioning	2 x	3 to	2 x 4	

	1	4	5	-+	1	4	1	ost	
L	4	5	6	+	3	4	5	6	
Γ	1	2	3]		[1	2	3	4	
	4	5	6	+	5	6	?	?	

This is what happens each time you dimension a new matrix since the old elements from the previous current matrix remain until you change them.

Caution.- When **MATDIM** is used to redimension a matrix stored in extended memory, the position of the matrix pointer is not readjusted. If the pointer happened to be positioned to an element that is *outside* the new bounds of the redimensioned matrix, it must be repositioned to be *within* the new bounds by executing either MSIJ or MSIJA with valid indices before the pointer can be used again.

Existing matrices in extended memory cannot be redimensioned to completely fill extended memory. The maximum allowable size of a redimensioned matrix is one register less than the currently available extended memory. A new matrix can, however, be dimensioned to completely fill available extended memory.

Using the Matrix Editors

There are two matrix editors: **MEDIT** for real matrices and **CMEDIT** for complex matrices. They are otherwise quite similar. The matrix editors are used for three purposes:

- Entering new values into the elements of a matrix.
- Reviewing and changing (editing) the elements of a matrix, either in order or by "random access" of specific elements.
- Viewing (without being able to change) the elements of a matrix (flag 08 set).

When you execute MEDIT or CMEDIT, the editor displays element 1,1 of the matrix specified in the Alpha register or of the current matrix if the Alpha register is empty. Pressing R/S steps the display through the elements; for a complex matrix, each part of the complex element is shown separately.

Function	Display	Function	Display
MEDIT	1:1=1.0000?	CMEDIT	RE.1:1=1.0000?
R/S	1:2=2.0000?	R/S R/S	IM.1:1=1.0000? RE.1:2=2.0000?
1	1	:	:
R/S	(X-register)	R/S	(X-register)

The "?" at the end of the display line indicates that you can change that value. In effect, you are being asked whether this is the value you want. If you want to change the element you see, just enter the new value and press R/S. You do this for a brand new matrix as well as for correcting or altering a single value. If you press R/S without entering a new value, the current value remains unchanged.

Viewing without editing.- If you set flag 08, the editor will let you only view the elements, not change them. The display appears without the "?" at the end of the line. 1:1= 1.0000

If you have a printer attached while flag 08 is set, it will print out all the elements of the matrix without pausing.

Directly accessing any element.- You can directly access any specific element while the editor is active (and the User keyboard is also active). To access the element in the i-th row and the j-th column, enter iii.jjj and press [A]. (This is as in the MATRX program.) You can drop leading zeros in iii and trailing zeros in jjj. For a complex matrix, you can directly access the real part of element i, j. Then use R/S to access its imaginary part. You can drop leading zeros in the i-part and trailing zeros in the j-part. *A zero part defaults to a 1*.

Exiting the Editor.- To leave the editor before it has reached the last element, do either:

- Press []].
- Try to access a nonexistent element. For instance, in a 4 x 4 matrix, press 5 [A].

How to Specify a Matrix

Given the matrix multiplication operation AB = C, you know **A** and **B** and are looking for the product matrix, **C**. In performing this operation, the calculator must be given the identities of the existing matrices **A** and **B**, and also be told where to put the result matrix, **C**. (However, the result matrix can be the same as one of the input matrices.) All given matrices must al ready exist as named, dimensioned matrices. Naturally, only **A** and **B** must contain valid data.

Some functions use only one input matrix, and some functions automatically use one of the input matrices for output. So the minimum number of matrices to specify is one, and the maximum is three.

A matrix function checks the Alpha register for the names (that is, the locations) of the matrices it needs for input and output. Before executing that function, you should specify all needed parameters on one line in the Alpha register, separating each with a comma:

```
Alpha Register input matrix[,input matrix][,result matrix]
```

Scalar Operations.- Scalar input and output must be in the X-register, and so this location does not need to be specified unless the function in question can use *either* a scalar *or* a matrix for the same input parameter. To specify the X-register, use **X**.

For instance, **MATDIM** requires a scalar input and a matrix name, so you do not need to specify the X- register. On the other hand, the scalar arithmetic functions, such as **MAT+**, can use either two matrices or a scalar and a matrix for input. Therefore, you must specify **X** if you want to use it.

The Current Matrix.- The current matrix is the last one accessed (used) by a matrix operation. If the Alpha register is clear and you execute a matrix function that requires a matrix specification, the current matrix is used by default. (If there is no current matrix, "UNDEF ARRAY" results).

The result matrix of a matrix function becomes the current matrix following that operation. To find out the name of the current matrix, execute **MNAME?**. Its name is returned into the Alpha register, *overwriting* its previous contents.

Default Matrix Parameters.- If you don't specify any or all the matrices that a matrix function needs, then certain default parameters exist. (Default parameters are those automatically assumed if you don't specify them). The most common default you will probably use is the current matrix. If you don't specify a particular matrix name and the Alpha register is clear, then the default matrix is the current one.

For matrix operations requiring up to three matrix names in the Alpha register, the following table gives the conventions to interpret the parameters.

Alpha Register's Contents	Matrices Specified	
A,B,C	A, B, C	
A,B	А, В, В	
Α	Α, Α, Α	
A,,,B	А, А, В	
, А ,В	current, A, B	
, А	current, A, A	
"A	current, current, A	
X,A,B	X-reg, A, B	
Х,А	X-reg, A, A	
A,X	A, X-reg, A	
A,,,X	A, A, A (ignores X)	
X	X-reg, current, current	
(blank)	current, current, current	

Program Listings.-

02 SF 27 03 0 04 MSIJA 05*LBL A 06 CF 10 07 SF 25 08 MSIJ 09 FC?C 25 10 GTO 05 11*LBL 00 12 AOFF 13 MRIJ 14 FS? 10 15 GTO 05 16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 $>''?''$ 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06 05 DIM?	01*LBL "MEDIT"
04 MSIJA 05*LBL A 06 CF 10 07 SF 25 08 MSIJ 09 FC?C 25 10 GTO 05 11*LBL 00 12 AOFF 13 MRIJ 14 FS? 10 15 GTO 05 16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	02 SF 27
05*LBL A 06 CF 10 07 SF 25 08 MSJJ 09 FC?C 25 10 GTO 05 11*LBL 00 12 AOFF 13 MRJJ 14 FS? 10 15 GTO 05 16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	03 0
05*LBL A 06 CF 10 07 SF 25 08 MSJJ 09 FC?C 25 10 GTO 05 11*LBL 00 12 AOFF 13 MRJJ 14 FS? 10 15 GTO 05 16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	04 MSIJA
07 SF 25 08 MSIJ 09 FC?C 25 10 GTO 05 11*LBL 00 12 AOFF 13 MRIJ 14 FS? 10 15 GTO 05 16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
08 MSIJ 09 FC?C 25 10 GTO 05 11*LBL 00 12 AOFF 13 MRIJ 14 FS? 10 15 GTO 05 16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	06 CF 10
09 FC?C 25 10 GTO 05 11*LBL 00 12 AOFF 13 MRIJ 14 FS? 10 15 GTO 05 16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	07 SF 25
10 GTO 05 11*LBL 00 12 AOFF 13 MRIJ 14 FS? 10 15 GTO 05 16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	08 MSIJ
11*LBL 00 12 AOFF 13 MRIJ 14 FS? 10 15 GTO 05 16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	09 FC?C 25
12 AOFF 13 MRIJ 14 FS? 10 15 GTO 05 16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	10 GTO 05
13 MRIJ 14 FS? 10 15 GTO 05 16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X <> Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	11*LBL 00
14 FS? 10 15 GTO 05 16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	12 AOFF
14 FS? 10 15 GTO 05 16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	13 MRIJ
16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X <>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
16 CLA 17 MPT 18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X <>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	15 GTO 05
18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X <>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
18 MR 19 ARCL X 20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X <>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X < >Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
20 FS? 08 21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X < >Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	19 ARCL X
21 GTO 08 22 > "?" 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
22 >"?" 23 CF 23 24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
23 CF 23 24 PROMPT 25 MR 26 X <> Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
24 PROMPT 25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
25 MR 26 X<>Y 27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
27 X#Y? 28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	26 X<>Y
28 MS 29 ASTO X 30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
30 FS? 23 31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
31 MS 32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	29 ASTO X
32*LBL 09 33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
33 J+ 34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	31 MS
34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38* LBL J 39 GTO J 40 END 01* LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	32*LBL 09
34 GTO 00 35*LBL 08 36 PROMPT 37 GTO 09 38* LBL J 39 GTO J 40 END 01* LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
35*LBL 08 36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
36 PROMPT 37 GTO 09 38*LBL J 39 GTO J 40 END 01*LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
38* LBL J 39 GTO J 40 END 01* LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
38* LBL J 39 GTO J 40 END 01* LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
40 END 01* LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	
40 END 01* LBL "CMEDIT" 02 SF 27 03 CF 06 04*LBL 06	39 GTO J
02 SF 27 03 CF 06 04*LBL 06	40 END
02 SF 27 03 CF 06 04*LBL 06	01*LBL "CMEDIT"
03 CF 06 04*LBL 06	
04*LBL 06	

06 ODD? 07 GTO 00 08 FRC 09 I <> J 10 X = 1 ? 11 GTO 00 12 EVEN? 13 GTO 00 14 <i>"NOT CPX"</i> 15 PROMPT 16 MNAME? 17 GTO 06 18 SF 06 19 CF 10 20 CLST
21*LBL A
22 ST+ X 23 E 24 E3/E+ 25 -
26 SF 25 27 MSIJ
28 FC?C 25
29 GTO J
30*LBL 01
31 FS? 10 32 GTO J
33 XEQ 03
34 <i>"RE."</i>
35 XEQ 05
36 FS? 08 37 GTO 08
38 PROMPT
39 MS
40 FS? 06 41 GTO 08
42 J +
43 I +
44 MS 45 J-
46 I-
47*LBL 08
48 SF 21 49 FS? 08
50 AVIEW
51 XEQ 03
52 <i>"IM."</i>

53 I+ 54 XEQ 05 55 FS? 08 56 GTO 09 57 PROMPT 58 MSR+ 59 FS? 06 60 GTO 10 61 I- 62 CHS 63 MSC+ 64 GTO 10 65*LBL 09 66 AVIEW 67 J+ 68 FS? 06 69 GTO 01 70*LBL 10 71 FS? 10
71 FS? 10 72 GTO J
73 FC? 06 74]+
75 FC? 09 76 I-
77 GTO 01 78*LBL 03
79 MRIJ
80 E
81 E 3/E+ 82 +
83 2
84 /
85 RTN 86*1 BL 05
86*LBL 05 87 Σ V#
88 64
89 FC? 08
90 <i>>"?"</i> 91 RTN
92* LBL J
93 FS? 07
94 GTO 01
95 MNAME?
96 END

2.2.2.- Storing and Recalling Individual Matrix elements.

The matrix editor provides a method of storing and reviewing matrix elements. For programming, you can use the following functions to manipulate individual matrix elements. A specific element is identified by the value *iii.jjj* for its location in the i-th row of the j-th column. You can drop leading zeros in the i-index and trailing zeros in the j-index. The value of the pointer defines the *current element*.

Setting and recalling the Pointer

	Function	Description	Inputs
1	MSIJA	Sets element pointer of matrix in Alpha	Name in Alpha, iii,jjj in X-reg.
2	MSIJ	Sets element pointer of current matrix	iii,jjj in X-reg.
3	MRIJA	Recalls element pointer of Matrix in Alpha	Name in Alpha, iii,jjj in X-reg.
4	MRIJ	Recalls element pointer of current matrix	iii,jjj in X-reg.

The following functions increment and decrement the element pointer rowwise (iii) or column wise (jjj). If the end of a column is reached (with the i-index) or the end of a row is reached (with the j-index), then the index advances to the next larger or smaller column or row and sets flag 09. If the index advances beyond the size of the matrix, both flags 09 and 10 are set. These functions always either set or clear flags 09 and 10. If the conditions listed above don't occur, the flags are cleared every time the functions are executed.

Incrementing and Decrementing the Pointer

The following functions were not in the original CCD ARRAY FNS group, therefore are HP's:

	Function	Description	Inputs
5	I+	Increments iii pointer by one	None – uses current matrix pointer
6	I-	Decrements iii pointer by one	None – uses current matrix pointer
7	J+	Increments jjj pointer by one	None – uses current matrix pointer
8	J-	Decrements jjj pointer by one	None – uses current matrix pointer

Storing and Recalling the Element's Value. (alone or sequentially)

The following functions provide a faster, more automated alternative to adjusting the pointer value to access each element. These combine storing or recalling values and then incrementing or decrementing the i- or j-index, so that the pointer is automatically set to the next element.

	Function	Description	Inputs
9	MS	Stores value in X-reg into current element	Value in X-Reg
10	MR	Recalls current element to X-reg	None. Returns element to X-reg
11	MSC+	Stores value in X-reg to current element and	Value in X-reg.
		advances pointer to <i>next</i> element in column	
12	MSR+	Stores value in X-reg to current element and	Value in X-reg.
		advances pointer to <i>next</i> element in row	
13	MRC+	Recalls current element to X-reg and then	None.
		advances pointer to <i>next</i> element in column	Returns element value to X-reg
14	MRR+	Recalls current element to X-reg and then	None.
		advances pointer to <i>next</i> element in row	Returns element value to X-reg
15	MRC-	Recalls current element to X-reg and then	None.
		decrements pointer to <i>previous</i> in column	Returns element value to X-reg
16	MRR-	Recalls current element to X-reg and then	None.
		decrements pointer to <i>previous</i> one in row.	Returns element value to X-reg

When the end of a column or row is reached, the pointer's index advances to the next (or previous) column or row. If the pointer's index is moved beyond the boundaries of the matrix, it cannot be moved back using these functions. You must use **MSIJ** or **MSIJA**.

The following sequence of keystrokes will create the matrix **ABC** (in extended memory).

4.0.0	5	6	7
ABC =	8	9	10

Keystrokes	Display	Comments
ALPHA, "ABC", ALPHA 2.003, XEQ " MATDIM "	2.003	Dimensions matrix ABC in X-Mem.
0, XEQ " <mark>MSIJA</mark> "	0,000	Sets pointer to 1.001 position
5, XEQ " MSR+ "	5.000	Enters element and advances pointer to next column for next entry
6, XEQ " MSR +"	5.000	Ditto as above
7, XEQ " MSR +"	7.000	Pointer automatically moves to second row, also setting flag 09.
8, XEQ " <mark>MSR+</mark> "	8.0000	
9, XEQ " MSR +"	9.0000	
10, XEQ "MSR+"	10.0000	This sets both flags 09 and 10.
SF 08		This sets the editor to display only.
XEQ " MEDIT "	"(:1=5.0000"	
R/S	"(2=6.0000"	
R/S	"(3:10000/"	
R/S	"2:1=8.00000″	
R/S	"2:2 <u>-</u> 9.0 0 0 0 ″	
R/S	"2:3 ± 10.0000"	

Updated Matrix Editor: Row Input mode.

Another, more effective way to enter the element values involves using **PMTM** (instead of **MEDIT**) to handle them "*one row at a time"*. This drastically speeds up the process, although some limitations apply:

- The maximum length for all values and the blank spaces in between them is 24 characters, as it uses the Alpha register to temporarily hold them.
- Decimal and negative values are supported in this mode, but values with exponential notation (i.e. 2.4 E23) cannot be entered using **PMTM**.

Here's the how the sequence would change using this approach:

<u>Kevstrokes</u>	Display	Comments
ALPHA, "ABC", ALPHA		
2.003, XEQ "MATDIM"	2.003	Dimensions matrix ABC in X-Mem.
XEQ " PMTM "	™ R (:″	prompts to enter the first row
5, ENTER^, 6, ENTER^, 7, R/S	`` <i>R ⊇:″</i>	prompts for the second row
8, ENTER^, 9, ENTER^, 10, R/S	5	done!

Function **PMTM** will be covered later in the manual, as part of the new functions section.

2.2.3.- Matrix Catalogs. Where is my stuff? { RMCAT , YMCAT }

The ability to use both X-Mem and standard data registers was a design crtiteria in the Array functions of the CCD Module. The reason was clearly to make the functionality available to plain HP-41C machines, without the X-Functions and X-Memory. This was proven to be the right decision, albeit it made the internal routines more complex since they needed to support two memory areas.

You can use CAT'4 (or EMDIR) to list all files in X-Mem, including the Matrix files of course. With the AMC_OS/X module plugged in the "M" type is shown in the LCD, indicating the Matrix type.

Until now, there was no way to enumerate the matrices "configured" in the standard registers – with matrix names "**Rxxx**" as described in the previous sections of the manual. Even if these were assumed to be more volatile than the X-Mem counterparts, it would have been very helpful to have a matrix catalog of some sort.

Support for the CL expanded memory adds another dimension to the same feature, and given the vast increase of available memory – and the fact that it is much less labile - it becomes even more important to know which matrices are already configured in the standard and Y-Registers.

New Matrix Catalogs

The SandMatrix includes two sub-functions to enumerate the matrices configured in the standard and CL register areas; **RMCAT** and **YMCAT** respectively. No input data is required, and the enumeration will sequentially show all matrices present in the corresponding zone. Like in the EMDIR case, both the matrix "name" and size will be shown in the display:

The listing can be stopped and resumed using the R/S key. Whilst stopped you can use the SST and BST keys to advance or backtrack the listing. Other hot keys are available to delete the matrix, enter its name to ALPHA, or decode the header register:

•	R/S	Switches between single-step or automated enumeration
---	-----	---

- [SHIFT] reverse or direct enumeration
- SST moves to next matrix if present
- BST moves to previous matrix if present
- [H] Decodes the header register
- [D] Deletes the matrix (asks for confirmation first)
- ENTER^ Enters the matrix name in ALPHA, ready to use all matrix functions.
- Back Arrow Exits the enumeration

Finally, if no matrices are found in that memory area the function will put up one of the info messages shown below, depending on the case:

I trust you'll agree this pair of functions is a welcome addition to the SandMatrix, well worth the price of admission and the extra code added to the project.

Appendix. Harmonic Determinants. { DNN , DN }

This section reflects the discussion started by Valentín Albillo on the HP-Museum forum. It's useful to showcase the capabilities of the CL_Y-Registers for very large size matrices.

Consider the determinant D(N) defined as follows:

3 1 1 ... 1 1 4 1 ... 1 1 1 5 ... 1 1 1 1 ... N+2

This type of determinants have an exact formula using the Harmonic function, H(N):

D(N) = (N+1)! . H(N)

The sum of harmonic series is thus: H(N) = D(N-1) / N!which surely would be one of the most inefficient ways to compute it ;-)

Using the CL_Y-Registers area, write a routine to compute D(N) – and verify the direct formula for the values N=11, 13, 30, 40 and N=55 - which will use 3,025 Y-Registers.

The routines are listed below. Both expect the order N in the X-register:

01 <u>LBL "DDN"</u> 02 RCL X 03 E3 04 /	17 SF 25 18 J+ 19 FS?C 25 20 GTO 00
05 + 06 "Y" - <i>matrix will start at RY-001</i> 07 MATDIM	21 MDET 22 END
07 MATDIM 08 1 09 MCON 10 CLX 11 MSIJA	01 <u>LBL "DN"</u> 02 E 03 + 04 HARM
12 2 13 <u>LBL 00</u> 14 E 15 + 16 MSC+	05 LASTX 06 FACT 07 * 08 END

And the table below shows the results from each approach:

Ν	D(N)	Time (@Turbo50)	Formula
11	1,486,442,880.0	1.8 sec	1,486,442,880.0
13	2.83465647 <mark>2</mark> E11	2.01 sec	2.834656474 E11
30	3.311538747 E34	11 sec	3.311538746 E34
40	1.439439902 E50	1 min 20 sec	1.439439902 E50
50	3.278748200 E75	2 min 30 sec	3.278748199 E75

Warning: *Remember that the CL is required to store a matrix in the Y-Registers area*. Otherwise you'll get the error message below:

2.3. M-FUNETIONS

 E	E	B	ļ	NI I	Ţ	R	Х	
	USEF	3						

This section briefly defines the matrix functions besides the dimensioning, storing, and recalling functions discussed above. Note that most of these functions are not meaningful for matrices containing Alpha data and that many of these functions are not meaningful for complex matrices. In any case. A complex matrix appears as a real matrix to all functions except **CMEDIT**. Refer to "Working with Complex Matrices'" for more information on using these functions with complex matrices.

2.3.1. Matrix Arithmetic

	Function	Description	Input
1	MAT+	Adds scalar or element to each element	A,B,C, or X,B,C in Alpha
2	MAT-	Subtracts scalar/element to each element	A,B,C, or X,B,C in Alpha
3	MAT*	Multiplies scalar/element to each element	A,B,C, or X,B,C in Alpha
4	MAT/	Divides each element by scalar or element	A,B,C, or X,B,C in Alpha
5	M*M	Calculates the true matrix product	A,B,C in Alpha

The matrix arithmetic functions provided are scalar addition, subtraction, multiplication, and division, as well as true matrix multiplication. The scalar arithmetic functions can use two matrices as operands, or one scalar and one matrix. When using two matrices, the matrices do not have to be of the same dimension, but the total number of elements in each must be the same. This also applies to the result matrix. (Note that the i-j notation below assumes that the dimensions of the matrices are the same. If this is not the case, the i-j notation does not apply.)

Matrix multiplication, on the other hand, calculates each new element by summing the products of the first matrix's row elements by the second's column elements. The number of columns in the first matrix must equal the number of rows in the second matrix. The result matrix must have the same number of rows as the first matrix and the same number of columns as the second matrix.

If there is a scalar operand, it must be in the X-register, and **X** must be specified in the Alpha register.

The input specifies matrix name A (or X), matrix name B (or X), result matrix C in Alpha register. The outputs are respectively:

$\begin{array}{l} c_{ij} = a_{ij} + x \text{ or} \\ c_{ij} = x + b_{ij} \text{ or} \\ c_{ij} = a_{ij} + b_{ij} \text{ for all } i, j \text{ in } C. \end{array}$	$\begin{array}{l} c_{ij} = \mathbf{a}_{ij} - \mathbf{x} \text{ or} \\ c_{ij} = \mathbf{x} - \mathbf{b}_{ij} \text{ or} \\ \mathbf{c}_{ij} = \mathbf{a}_{ij} - \mathbf{b}_{ij} \text{ for all } i, j \text{ in } \mathbf{C}. \end{array}$
$\begin{array}{l} c_{ij} = a_{ij} \times x \text{ or} \\ c_{ij} = x + b_{ij} \text{ or} \\ c_{ij} = a_{ij} \times b_{ij} \text{ for all } i, j \text{ in } C. \end{array}$	$\begin{array}{l} c_{ij} \ = \ a_{ij} \ \div \ x \ \text{or} \\ c_{ij} \ = \ x \ \div \ b_{ij} \ \text{or} \\ c_{ij} \ = \ a_{ij} \ \div \ b_{ij} \ \text{for all} \ i, \ j \ \text{in} \ C. \end{array}$

The true matrix multiplication calculates each new element i.j by multiplying the i-th. row in A by the j-th. column in B. The input is the three matrix names in Alpha where C must be different from the two operands A and B. The output is:

$$c_{ij} = \sum_{k=1}^{p} a_{ik} \times b_{kj}$$
, where A h

where A has p columns and B has p rows.

2.3.2. Major Matrix Operations.

The major matrix operations are: inversion, finding the determinant, transposition, and solving a system of linear equations.

	Function	Description	Input
1	MDET	Finds the Determinant of a square matrix	Matrix Name in Alpha
2	MINV	Inverts and replaces the square matrix	Matrix Name in Alpha
3	MSYS	Solves a system of linear equations	Matrix Name A. Name B in Alpha
4	MTRPS	Transposes and replaces the real matrix	Matrix name in Alpha

This is where the Advantage really took the original CCD implementation to its fulfillment, as the CCD was sorely lacking the major operations - no doubt due to the size constrains in a module that already had tons of other wonders and was packed bursting to its seams.

I recall the awe with which we used to run **MINV** and the other functions: just a single keystroke doing the same as all those intricate FOCAL programs did using Gaussian algorithms, element pivoting and row simplification... simply amazing back then. It was the ultimate Matrix function set, pretty much surpassing the HP-15C implementation in this area. If you're reading this now I suspect you probably had a similar experience too; but enough reminiscing and let's get on with the manual.

The output of these operations always replaces the original matrix with the result. Moreover, for **MDET** and **MSYS the** result matrix is placed in its LU-decomposed form, which makes it not suitable for some direct subsequent operations.

Note: You cannot transpose or change any element of a matrix A that has had its determinant found or has had its solution matrix found because **MDET** and **MSYS** transform the input matrix A into its LU-decomposed form. (Refer to "LU-Decomposition" for more information.) However, you can retrieve the original form of A from its decomposed form by inverting it twice (execute MINV twice). The LU-decomposition does not interfere with the calculations for **MINV**, **MSYS**, or **MDET**.

Example 1.

Find the determinant of the inverse of the transpose of the matrix : Storing it in Main Memory, starting in Register R0.

6	3	-2	
1	4	-3	
2	3	-1	

First make sure that the calculator SIZE is set at least to 10 to accommodate the elements plus the header register, typing XEQ "SIZE" 010. Next we begin by creating the matrix in main memory, using the name 'R0" in Alpha and the dimension in X:

ALPHA, "**R0**", ALPHA 3.003, XEQ "**MATDIM**"

Since the elements are all integer numbers, this is an ideal candidate for **PMTM**:

XEQ "**PMTM**", -> at the prompt "R1: _" we type: 6, ENTER^, 3, ENTER^, CHS, 2, R/S -> at the prompt "R2: _" we type: 1, ENTER^, 4, ENTER^, CHS, 3, R/S -> at the prompt "R3: _" we type: 2, ENTER^, 3, ENTER^, CHS, 1, R/S

And now the festival begins - type:

XEQ " TRNPS ",	R0 is transposed
XEQ " MINV ",	R0 (which was transposed) is inverted
XEQ " MDET "	-> 0.040 is the solution.

Note that if you had wanted to find the transpose of the original matrix after having found its determinant, you would have needed to invert the matrix twice to change the LU-decomposed form back to the original matrix.

LU-Decomposition

The *lower-upper (LU) decomposition* is an unrecognizably altered form of a matrix, often containing Alpha data. This transformation properly occurs in the process of finding the:

- Solution to a system of equations (MSYS; [SE] in the MATRX program).
- Determinant (MDET; [DT] in MATRX program).
- Inverse (MINV; [I] in MATRX program).

The first two of these operations convert the input matrix to its LU-decomposed form *and leave it there*, whereas inversion leaves the matrix in its inverted form. When you use functions that produce an LU-decomposed form, there are several things that you need to be aware of:

• You cannot **edit** an LU-decomposed matrix unless you edit every element. Also care must be exercised when **viewing** an LU-decomposed matrix. Certain operations can alter elements without your knowledge (refer to "Editing and Viewing an LU-Decomposed Matrix" below for more details).

• You cannot perform any operation that will modify the matrix (other than **MINV**) because the LU status of the matrix will be cleared and it will become unrecognizable. Operations that have this effect are: R<>R, C<>C, MS, MSR+, MSR-, MSC+, MSC-, MMOVE (intramatrix), MSWAP, and TRNPS.

• LU-decomposition destroys the original form of the matrix. So if you perform **MSYS** or **MDET** and then try to look at your input matrix (A in the **MATRX** program), *you will find only the altered, decomposed form.*

• You cannot calculate the transpose (**TRNPS**; [SHIFT][B] in **MATRX** program) of a matrix in LUdecomposed form. LU-decomposition *does not hinder the correct calculation of the inverse, determinant, or solution matrix*, since these operations require the LU-decomposition anyway.

Reversing the LU-Decomposition.- To restore a matrix to its original form from its decomposed form, simply *invert it twice* (in effect: find the inverse and then re-invert to the original). Naturally, for this to work the matrix must be invertible (non-singular). The result can differ slightly from the original due to rounding-off during operations.

Editing and Viewing an LU-Decomposed Matrix.- LU-decomposed matrices are stored in a different form than normal matrices:

- Certain elements contain alpha data. (or Non-normalized numbers to be precise)
- The matrix status register is modified to indicate that the matrix is in LU form.

Editing *any* element of the matrix will clear the LU-flag in the status register, which makes the matrix unrecognizable to the program. Because of this, if you edit one element, you must edit them all if you wish to use the matrix again. Note that the matrix will no longer be in LU-decomposed form after this action. You *can* view the contents of an LU-decomposed matrix by doing one of the following:

- From the **MATRX** main menu press [SHIFT][A] to view individual elements without modifying them.
- Set flag 08 before executing **MEDIT** or **CMEDIT**. This allows you to view the elements without modifying them.

Header Register X-ray. { LU? }

The graphic below shows the different fields in the Matrix header register (14 bytes in total):

13	12	11	10	9	8	7	6	5	4	3	2	1	0
"4"	Fil	le Ad	ldr	LU?	# of	Colu	mns	A	ctive	ij	Fi	le Si	ze

Note that a matrix file in X-mem has its type set to 4 (in leftmost byte), and that the matrix dimensions can be derived from the information in the file size field (nybbles 0,1,2) and the number of columns field (nybbles 6,7,8), whereby: Number of rows = File size / Number of Columns.

Lastly the pointer field stores the information on the current element as a counter starting from the first element (1) to the last (nxm). Given the length of this field it follows that a maximum of 4,096 elements (FFF) can be tracked, equivalent to a square matrix of dimensions 64×64 or any equivalent (m x n) combination.

You can use the function **LU**? to check whether a matrix is in its LU-decomposed form. It'll return YES/NO in Run mode, but in a program will halt the execution if true (i.e. it's decomposed).

Working with Complex Matrices.

When working with complex matrices it is most important to remember that, in the calculator, a complex matrix is simply a real matrix with four times as many elements. Only the **MATRX** program and the complex-matrix editor (**CMEDIT**) "recognize" a matrix as complex and treat its elements accordingly. All other functions treat the real and imaginary parts of the complex elements as separate real elements.

How Complex Elements are represented

In its internal representation a complex matrix has twice as many columns and twice as many rows as it "normally' would.

100 -200

100

200

The complex number 100 + 200i is stored as

		1	-2
1 + 2 <i>i</i>		2	1
3 - 4i	is stored as	3	4
		-4	3

The 2 x 1 complex matrix

There is one important exception to this scheme: for the column matrix (a vector) in a system of simultaneous equations.

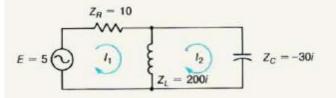
Solving Complex Simultaneous Equations.- The easiest way to work with complex matrices is to use the **MATRX** program. It automatically dimensions, input and output complex matrices. However, **MSYS** can solve more complicated systems of equations than **MATRX** can.

In addition, a complex result-matrix from the **MATRX** program cannot be used for many complexmatrix operations outside of MATRX. This is because **MATRX** will dimension a complex column matrix differently than $2m \times 2$. Instead, it uses the dimensions $2m \times 1$, in which the real and imaginary parts of a number become successive elements in a single column. This form has the advantage of saving memory and speeding up operations. The complex-matrix editor and **MSYS** can also use this $2m \times 1$ form, though they do not require it. This means you can use **MSYS** on a matrix system from **MATRX**. You can convert an existing $2m \times 2$ complex column matrix to the $2m \times 1$ form by transposing it, redimensioning it to $1 \times 2m$, then retransposing it. There is no easy way back.

Accessing Complex Elements.- If you use the complex-matrix editor (**CMEDIT** or the editor in the **MATRX** program), you can access complex elements as if they were actual complex numbers. Otherwise (such as when you use pointer-setting functions), you must access complex elements as real elements stored according to the 2m x 2n scheme given above.

Storage Space in Memory.- Since the dimensions required for a complex matrix are four times greater than the actual number of complex elements (an m X n complex matrix being dimensioned as 2m x 2n), realize that the number of registers a complex matrix occupies in memory is correspondingly four times greater than a real matrix with the same number of elements. In other words, think of a complex matrix's storage size in terms of its **MATDIM** or **DIM**? dimensions, not its number of complex elements.

Using Functions with Complex Matrices


Most matrix functions do not operate meaningfully on complex matrices: since they don't recognize the different parts of a complex number as a single number, the results returned are not what you would expect for complex entries.

Valid Complex Operations. Certain matrix functions work equally well with real and complex functions. Both the input and result matrices must be complex. These functions are:

- MSYS Solving simultaneous equations
- MINV Matrix inverse
- MAT+ Matrix add
- MAT- Matrix subtract
- MAT* Matrix scalar multiply, but only by a real scalar in X-reg.
- M*M Matrix multiplication

Example 2.

Engineering student A.C. Dimmer wants to analyze the electrical circuit shown below. The impedances of the components are indicated in complex form. Determine the complex representation of the currents i1 and i2

The system can be represented by the complex matrix equation: AX = B, or

-					
10 + 200i	-200i	I_1		5	
-200i	$\frac{-200i}{(200-30)i}$	I_2	-	0	

We'll use the individual matrix functions instead of **MATRX** program, already covered in the previous sections.

The main thing to sort out in this example is the dimension of the matrices involved. The coefficients matrix **A** is a 2 x 2 complex matrix, thus as per the previous paragraphs we will need (4x4 + 1) = 17 registers. The independent terms matrix **B** is a 2 x 1 complex matrix, thus will need (4x2 + 1) = 9 registers.

This makes for a total of 26 registers needed for the example; therefore we adjust the SIZE accordingly first typing: XEQ 'SIZE" 026.

Next we create the two matrices in main memory, starting at R00 and R17 respectively. Note the shortcut in the R0 name – dropped the zero.

ALPHA, " <mark>R</mark> ", ALPHA	ALPHA, "R17", ALPHA
4.004, XEQ " MATDIM "	4.002, XEQ " MATDIM "

The next step is entering the element values – using **CMEDIT** because that is the only editor capable of editing complex matrices, as we know.

[CMEDIT]	RE.1:1=	?	Complex-matrix editor.
10 R/S 200 R/S	RE.1:2=	?	Loads the real and
0 R/S 200 CHS R/S	RE.2:1=	?	imaginary parts of ele-
0 R/S 200 CHS R/S	RE.2:2=	?	ments into R0, the
0 R/S 170 R/S	- 170.0000		coefficient matrix (A).
ALPHA R17 ALPHA			Dimensions the col-
4.002 MATDIM	4.0020		umn matrix R17 to
			4×2 for 2 complex
			rows and 1 complex column. It needs 9 registers.
(CMEDIT)	RE.1:1=	?	Complex-matrix editor.
5 R/S 0 R/S 0 R/S 0 R/S	RE.2:1= 0.0000	?	Loads the real and imaginary parts of ele-
			ments into R17, the column matrix (B).

Finally it comes the time for the real work: using **MSYS** to solve the system, and **MCEDIT** again (in view-only mode) to review the results:

Keystrokes	Display	
ALPHA H.R 17 ALPHA	0.0000	Calculates the solution matrix (X) and loads it into R17 .
SF 08		Sets editor for view- only operation.
ALPHA R 17 ALPHA XEQ CMEDIT R/S R/S R/S	RE.1:1=0.0372 IM.1:1=0.1311 RE.2:1=0.0437 IM.2:1=0.1543	Displays the complex results for I_1 and I_2 , which are in R17 . If you have a printer at- tached and set flag 08 before executing CMEDIT , all elements will be printed out automatically.

The solution is:

$$\begin{bmatrix} I_1 \\ I_2 \end{bmatrix} = \begin{bmatrix} 0.0372 + 0.1311i \\ 0.0437 + 0.1543i \end{bmatrix}$$

As you can see this is an EE student's dream for circuit analysis – if this is in your area of interests you should check out the macro-program written by Ted Wadman, Chris Coffin and Robert Bloch as one of the proverbial three best examples of utilization of the Advantage Module.

The program is documented in its dedicated Grapevine booklet, available at:

http://www.hp41.org/LibView.cfm?Command=View&ItemID =523

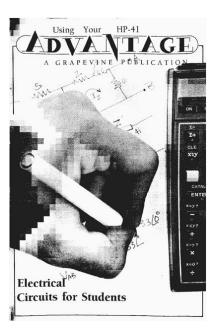
and for further convenience Jean-Francois Garnier put it in ROM module format, available at:

http://www.hp41.org/LibView.cfm?Command=View&ItemID =613

The module also contains the other two famous applications of yore:

- 1. "Electrical Circuits for Students",
- 2. "Statics for Students", and
- 3. "Computer Science on your HP-41" (a.k.a. the HP-16C Emulator).

Anybody curious enough to see what could be done with the Advantage is encouraged to check those out – you'll be rewarded.


The last example asks you to solve a set of six simultaneous equations with six unknown variables. This requires the use of **MSYS**, as the constant matrix *B is not a column matrix*.

Example 3.

Silas Farmer has the following record of sales of cabbage and broccoli for three different weeks. He knows the total weight of produce sold each week, the total price received each week, and the price per pound of each crop. The price of cabbage is \$0.24/kg and the price of broccoli is \$0.86/kg. Determine the weights of cabbage and broccoli he sold each week.

	Week-1	Week-2	Week-3
Combined Weight (kg)	274	233	331
Combined Value	\$130.32	\$112.96	\$151.36

The following set of linear equations describes the two unknowns (the weights of cabbage and broccoli) for all three weeks, where the first row of the constant matrix represents the weights of cabbage for the three weeks and the second row represents the weights of broccoli. Since the constant matrix is not a column matrix, you must use **MSYS** and not the **SE** function in the **MATRX** program.

F	-	E.		-	1	E .		1
1	1	<i>d</i> ₁₁	d ₁₂	d_{13}		274	233	331
0.24	0.86	d ₂₁	d ₂₂	d ₂₃		120.32	112.96	331 151.36

Where the subindices indicate the crop (1= broccoli, 2=cabbage), and the week (1,2,3), and the first row describes the weight equations, and the second the prices relationship.

Calling "FACTORS" the coefficients matrix and "LINKS" the constant matrix, we first create them by dimensioning in X-Memory as follows:

ALPHA, "FACTORS", ALPHA,	ALPHA, "LINKS", ALPHA,
2.002, XEQ " MATDIM "	2.003, XEQ "MATDIM"

Next we'll use **PMTM** to input all the element values. Note that even the "longest" row has 20 characters (including the separator blanks), which is below the limits of the ALPHA register length, of 24 characters max.

With "FACTORS" in Alpha we type:

XEQ "**PMTM**" -> at the prompt "R1: _" we type: 1, ENTER^, 1, R/S -> at the prompt "R2: _" we type: 0, [,], 2, 4, ENTER^, 0, [,], 8, 6, R/S

With "LINKS" in Alpha we type:

XEQ "**PMTM**" -> at the prompt "R1: _" we type: 2,7,4, ENTER^, 2,3,3, ENTER^, 3,3,3, R/S -> at the prompt "R2: _" we type: 1,2,0,[,],3,2, ENTER^, 1,1,2,[,],9,6, ENTER^, 1,5,1,[,],3,6, R/S

All set up we simply execute **MSYS** to obtain the solutions sought for:

ALPHA, "FACTORS,LINKS", ALPHA XEQ "**MSYS**"

	Week-1	Week-2	Week-3
Cabbage Weight (kg)	186	141	215
Broccoli Weight (kg)	88	92	116

Note: using **OMR** (or **OMC**) to output the elements of the matrix B you can see how the results are all *integer values* – which speaks of the accuracy of the internal operations, taking advantage of the 13-digit math routines available in the OS for MCODE.

Note also that with these programs the integer results are shown without any zeros after the decimal point, regardless of the current display settings (FIX or otherwise).

OMR and **OMC** are extension functions – pretty much like **PMTM** is - and will be described in detail in chapter 3.

Appendix. Complex Matrix Determinants. { CMTRC , CMDET }

The programs below are a first-pass successful attempt at calculating Complex Matrix determinants up to order 4. The Complex Matrix is to be stored using the SandMatrix convention - which is identical to the HP-41 Advantage's. With this convention each complex number is represented by four elements in the complex matrix - refer to the manuals for details.

 Ra11
 -Ia11
 Ra12
 -Ia12
 Ra13
 -Ia13

 Ia11
 Ra11
 Ia12
 Ra12
 Ia13
 Ra13

 Ra21
 -Ia21
 Ra22
 -Ia22
 Ra23
 -Ia23

 Ia21
 Ra21
 Ia22
 Ra22
 Ia23
 Ra23

 Ra31
 -Ia31
 Ra32
 -Ia32
 Ra33
 -Ia33

 Ia31
 Ra231
 Ia32
 Ra32
 Ia33
 Ra33
 example for 3x3 case

The SandMatrix comes well-equipped with routines to calculate the trace and integer powers of a matrix (**MTRACE**, **M^2** and **MPWR**), therefore it lends itself rather nicely to the direct formulas using those elements, as described at: <u>https://en.wikipedia.org/wiki/Determinant</u>

$$\det(A) = \left((\operatorname{tr} A)^2 - \operatorname{tr}(A^2)\right)/2,$$

 $\det(A) = \left((\operatorname{tr} A)^3 - 3\operatorname{tr} A \operatorname{tr}(A^2) + 2\operatorname{tr}(A^3)\right)/6,$
 $\det(A) = \left((\operatorname{tr} A)^4 - 6\operatorname{tr}(A^2)(\operatorname{tr} A)^2 + 3(\operatorname{tr}(A^2))^2 + 8\operatorname{tr}(A^3) \operatorname{tr} A - 6\operatorname{tr}(A^4)\right)/24.$

The complex matrix won't be altered in any way, as all operations are made on a scratch copy. It can be stored in X-Mem, CL_Y -Mem, or standard data registers area. The easiest way to enter the matrix is by using the **CMEDIT** routine - which expects the matrix name in ALPHA. It expects the matrix already created, using 2n x 2n as dimension - with "n" being the order.

If you place it in the standard registers area, be aware that data registers R00, R01 are used by the routine **MPWR** for scratch. Additionally, data register R02 is used to store the Matrix Name (thus it can't exceed 6 characters).

As you can see there are numerous 41Z functions - used for the complex arithmetic using the Complex Stack. This has the additional advantage that doesn't require additional data registers, be that standard or CL Y-RAM.

Example.- Calculate the determinant of the 4x4 Complex Matrix:

 $\begin{vmatrix} 1+i & 2+2i & 3+3i & 4+4i \\ 0 & 1 & -3-3i & -4-4i \\ -1+i & 1-i & 1 & i \\ -i & -1+i & 1 & 0 \end{vmatrix}$ Solution: det = -62-8i

 $\underline{https://www.wolframalpha.com/input/?i=det(\%7B\%7B1\%2Bi,+2\%2B2i,+3\%2B3i,+4\%2B4i\%7D,+\%7B,+1,+3-3i,+-4-4i\%7D,+\%7B-1\%2Bi,+1-i,+1,+i\%7D,+\%7B-i,+-1\%2Bi,+1,+0\%7D\%7D) }$

The program is slow in non-turbo settings- there are lots of moving pars behind the scene, despite the straight-forward program listing. Using TURBO_50 the 4x4 determinant is obtained in 5 seconds approx.

The accuracy for integer matrices holds up nicely, giving exact integer real and imaginary parts in the solution.

Program Listing.

1	LBL "CMTR"		58	ŀ	next row
2	XEQ 11		59	MRC+	get elem a21
	-				get elem d21
3	ZAVIEW		60 61	LBL 00	point at a21
				-	point at a31
5	LBL 02	Order-2	62	J+	point at a32
6	ASTO 02		63	J+	point at a33
7	XEQ 11	tr(A)	64	MRC+	recall a33 and increase column
8	DIM?	get dimansic	65	+	add to partial result
9	INT	#COL	66	FC? 09	last element?
10	2		67	GTO 00	no, fetch next
11	/	halved	68	RCL Z	real part to X
12	RDN	move away	69	MNAME?	tr(A^3)
13	GTO IND T	redirect	70	RTN	tr(A).tr(A^3)
14	LBL 02	Order-2	71	LBL 04	Order-4
15	Z^2	tr(A)^2	72	ZRPL^	fills Z-stack
16	XEQ 12	tr(A^2)	73	XEQ 13	tr(A).tr(A^3)
17	Z-	tr(a)^2 - tr(A	74	Z*	tr(A)
18	2		75	8	tr(A)^2
19	GTO 05	exit	76	ST* Z	
20	LBL 03	Order-3	77	*	
21	Z^3	tr(A)^3	78	Z⇔W	tr(A)
22	LASTZ		79	Z^2	tr(A)^2
23	XEQ 12	tr(A^2)	80	6	
24	Z*		81	ST* Z	
25	3		82	*	
26	ST* Z		83	XEQ 12	tr(A^2)
27	*		84	Z*	6. tr(A)^2 . tr(A^2)
28	Z-		85	LASTZ	tr(A^2)
29	XEQ 13	tr(A^3)	86	ZRDN	puts it in level "V"
30	2		87	Z-	8.tr(A).tr(A^3) - 6. tr(A)^2 . tr(A^2)
31	ST* Z		88	Z⇔W	tr(A)
32	*		89	Z^2	
33	Z+		90	Z^2	tr(A)^4
34	6		91	Z+	tr(A)^4 - 6. tr(A)^2 . tr(A^2) + 8.tr(A).tr(A^3)
35	GTO 05	exit	92	ZRUP	tr(A^2)
36	LBL 10		93	Z^2	tr(A^2)^2
37	ZENTER^		94	3	
38	CLA		95	ST* Z	
39	ARCL 02		96	*	
40	" -,#"		97	Z+	3.tr(A^2)^2 + tr(A)^4 - 6. tr(A)^2 . tr(A^2) + 8.tr(A).tr(A^3)
41	MAT=	copy to scrat	98	ZENTER^	
42	"#"	scratch matri	99	M^2	fourth power
43	RTN		100	XEQ 11	tr(A^4) = -160(1-i)
44	LBL 13		101	6	
45	XEQ 10		102	ST* Z	
46	3		103	*	6.tr(A^4)
47	MPWR	cube power	104	Z-	$3.tr(A^2)^2 + tr(A)^4 - 6.tr(A)^2 .tr(A^2) + 8.tr(A).tr(A^3) - 6.tr(A^4)$
48	GTO 11	tr(A^3) = -75	105	24	
49	LBL 12		106	LBL 05	exit
50	XEQ 10		107	ST/Z	clean up afterwards
51	M^2	squared	108	/	·
52	LBL 11	tr(A^2)	100	ZAVIEW	
53	MTRACE	u(ri 2)	110	"#"	
54	2		110	PURFL	
55	2	real part	111	CLA	
56	1	a.k.a. 1001	112	ARCL 02	
	MELLA				
57	MSIJA	select first ele	114	END	

Update: Complex (n x n) Matrix Determinants. { **CDMET** }

What follows is a more powerful approach to the calculation of the determinant without restriction of the complex matrix dimension, other than the available memory of course. This new approach is not only more powerful but it also has the advantages of less execution time and shorter program length, a winner by all accounts.

The beauty of this approach is that we'll put the characteristic polynomials coefficients to work bigtime to obtain the matrix determinant (independent tern). So **CMDET** works uses an iterative method to calculate the coefficients, given the fact that the determinant is the last coefficient of said characteristic polynomial with an order-dependent changed sign:

 $P(h) = \sum_{k=0}^{n} c_{n-k} h^k$, and: $\det(A) = (-1)^n . c_n$,

i.e. the coefficient of the independent term. The program will leave the original matrix unchanged and its name in ALPHA upon completion.

It's worth mentioning that the same iterative approach is also used by the **CHRPOL** routine to calculate the Characteristic Polynomial and its roots (i.e. the Matrix Eigenvalues); although in the CHRPOL implementation the coefficient of the independent term is obtained via **MDET** – which is pretty sensible for the real matrix case of course.

Note: You can refer to the Complex Matrix ROM manual for an extended version of this routine that exploits this method to its full extent to also calculates the inverse of a complex $n \times n$ matrix – along with the complete complex characteristic polynomial of course.

Register, Flags, etc.

Data registers $\{R00 - R01\}$ are used in main memory.

Only user flag 7 is used to signal when the routine is called from the main MATRX program..

Two auxiliary matrices are needed, each of the same size of the original one – therefore the maximum complex matrix size is n = 7 in X-Memory, (for a total of 588 X-mem registers), and n = 15 in the CL Y-Memory (for a total of 2,700 Y-registers). This limitation stems from the MCODE function M*M, which cannot have the result matrix equal to any of the operands (i.e. it's not an in-place multiplication). But I'm not complaining, *since it does support complex matrices* as well as real ones!

<u>Acknowledgment</u>- Many thanks to Valentín Albillo for piquing my curiosity with his powerful and elegant implementation of the same algorithms on the HP-71, described with numerous examples and insights in the article posted here:

HP Article VA047 - Boldly Going -Eigenvalues and Friends

Program listing.

			4C CT* 7		
01*LBL "CM			46 ST* Z		
02 FC?C 07	` called from MATRX?		47 ST* Y		
03 GTO 10	` yes, divert		48*LBL 04		
04 " <i>R,="</i>	`no, uses data regs		49 RDN		
05 MAT=			50 "#"		
06 MNAME?			51 PURFL		
07*LBL 10			52 <i>"P"</i>		
08 ASTO 01			53 PURFL		
09 <i>>",P</i> "	'aux. matrix		54 ΣV#	'sub-routine?	
10 MAT=	` m ake equal	F	55 GTO 04	'yes, skip	
11 DIM?	-		56 ΣF#		
12 "#"	`aux. matrix		57 32		
13 MATDIM			<u>58*LBL 04</u>		
14 FRC			59 CLA		
15 2			60 ARCL 01		
16 /			61 RTN		
17 LASTX			62*LBL 02		
18 +			63 2.002		
19 STO 00			64 +		
20 CF 21			65 SF 25		
21*LBL 00			66 MSIJA		
22 VIEW 00			67 RDN		
23 XEQ 01			68 FC?C 25		
24 <i>"#"</i>			69 RTN		
25 <mark>MIDN</mark>			70 I-		
26 <i>"X,#,#</i> "			71 CHS		
27 MAT*			72 MSC+		
28 X<>Y			73]-		
29 "#"			74 CHS		
30.			75 MSR+		
31 XEQ 02			76 MRIJ		
32 <i>"P,#,#"</i>			77 GTO 02		
33 MAT+			78 RTN		
34 CLA			79*LBL 01		
35 ARCL 01			80 <i>"P"</i>		
36 <i>>",#,P</i> "			81 CMTRC		
37 M*M			82 RCL 00		
38 ISG 00			83 INT		
39 GTO 00			84 E		
40 XEQ 01			85 -		
41 RCL 00			86 CHS		
42 ODD?			87 ST/ Z		
43 GTO 04			88 /		
44 CLX			89 END		
45 - E					

Appendix. Complex Transposed Matrix. { CTRNP , ZTRNP }

Also missing from the original Advantage was a way to transpose a complex matrix; a fact that is duly corrected here with the routines below. Two solutions are offered, one following an element-based approach to illustrate the concept, and another using a block approach – faster and with fewer progam steps / byte count.

For a complex element pointer (i,j) the relationship with the individual marix pointers holding the four real and imaginary parts are as follows:

$$C(i,j) = [(2i-1, 2j-1); (2i-1, 2j) \\ (2i, 2j-1); (2i, 2j)]$$

- The element-based approach will simply do a cursory scan of the matrix, swapping the complex element with pointer (i.j) with its transposed one, (j,i), letting the real matrix pointers be determined by the relationships above. It also includes two subroutines for complex element recall and storage, **CMR** and **CMS** that can be used independently, entering with the complex pointer in X and the matrix name in ALPHA.
- The block-based approach takes advantage of the **MMOVE** function, applied to the fourelement block as per the complex values storage convention. This requires just n x m iterations, whereas the previous approach needs 2n x 2m repeats of the single-element copying. Also no need to worry about the matrix pointers, MMOVE will take care of that for us.
- In either case one auxiliary matrix is required to perfrom the task, which will be purged on completion leaving the (now transposed) matrix name in ALPHA. Neither of the two approaches requires data registers, but the first one uses flags 00 and 01.

1	LBL "ZTRNP"	FROM	21	MMOVE	
2	" -,#"	FROM,TO	22	X<>Y	2i,2j
3	DIM?		23	MSIJA	position element in from matrix
4	I<>J	transpose dimension	24	R^	complex pointer (i,j)
5	ASWAP	TO,FROM	25	J+	test the location for bounds
6	MATDIM		26	FS? 10	out of matrix?
7	ASWAP	FROM,TO	27	GTO 02	yes, exit
8	1,001	complex pointer	28	FS? 09	out of rows?
9	LBL 01	prepare prameters	29	INT	yes, integer
10	ENTER^	i,j	30	1.001	offset factor
11	ST+ X	2i,2j	31	FC? 09	within rows?
12	ENTER^		32	FRC	yes, fractional
13	I<>J	2j,2i	33	+	update complex pointer
14	1,001		34	GTO 01	do next block
15	ST- Z	(2i-1),(2j-1) in Z	35	LBL 02	
16	-	(2j-1),(2I-1)	36	ASWAP	
17	Х<>Ү		37	MAT=	copies result & redims matrix
18	R^	i,j	38	PURFL	purges TO
19	ST+ X	2i,2j	39	MNAME?	FROM
20	Х<>Ү		40	END	85 bytes

Program listing – Block approach.

1	LBL "CTRNP"	FROM	32	GTO 01	next complex element
2	" -,#"	FROM,TO	33	LBL "CMR"	X holds (i,j)
3	DIM?		34	ENTER^	complex (i,j)
4	<>J	transpose dimension	35	ST+ X	2i,2j
5	ASWAP	TO,FROM	36	MSIJA	
6	MATDIM		37	RDN	
7	ASWAP	FROM,TO	38	MRR-	Re(aij)
8	1,001	complex pointer	39	MRR+	Im(aij)
9	CF 00		40	X<>Y	leaves pointer at (2i,2j)
10	LBL 01		41	RTN	
11	CF 01		42	LBL "CMS"	X holds (j,i)
12	XEQ "CMR"		43	ST+ X	2j,2i
13	J+		44	MSIJA	
14	FS? 09		45	RDN	
15	SF 01		46	MS	Re(aij)
16	FS? 10		47	J-	
17	SF 00		48	I-	
18	ASWAP	FROM,TO	49	MSC+	
19	RCL Z	i,j	50	X<>Y	Im(aij)
20	 <>]	j,i	51	MSR+	
21	XEQ "CMS"		52	CHS	-Im(aij)
22	ASWAP	TO,FROM	53	I-	
23	FS? 00		54	MS	
24	GTO 02		55	RTN	
25	RCL Z		56	LBL 02	
26	FS? 01		57	ASWAP	TO,FROM
27	INT	next complex row	58	MAT=	
28	1,001		59	PURFL	purges TO
29	FC? 01	ran out of columns?	60	MNAME?	FROM
30	FRC	next complex column	61	END	142 bytes
31	+	update complex pointer			

Program listing - Element-based approach

This method can be of further use if the Conjugate Transpose needs to be calculated. To that effect all that would be needed are the instructions { X<>Y, CHS, X<>Y } right after step 20 to negate the imagnary parts – with no impact to the CMR and CMS sub-routines.

Example.- Transpose the 3x3 complex matrix shown below and use **CMEDIT** to review the result.

	[1+13	2 - 15	7-11]
A=	[4-i2	6+i9	-8+i4]
	[-3-17	3+12	-1+i6]

Example of a Complex 3 x 4 Matrix in all its glory:							
Ra11	-la11	Ra12	-la12	Ra13	-la13	Ra14	-la14
la11	Ra11	la12	Ra12	la13	Ra13	la14	Ra14
Ra21	-la21	Ra22	-la22	Ra23	-la23	Ra24	-la24
la21	Ra21	la22	Ra22	la23	Ra23	la24	Ra24
Ra31	-la31	Ra32	-la32	Ra33	-la33	Ra34	-la34
la31	Ra31	la32	Ra32	la33	Ra33	la34	Ra34

Update: Storing and Recalling Complex Matrix Elements. { **CMS** , **CMR** }

Revision "5Y+" includes MCODE versions of the **CMS** and **CMR** routines to store and recall complex matrix elements. This may sound like a fairly trivial feat given that all required STO/RCL components are already implemented in MCODE, but because of the way the MCODE were originally written (a direct inheritance from the CCD module) it wasn't possible to chain them without running out of CPU registers, including the RTN address stack.

So a couple of tricks were needed to pull this off, most notably stack register T was needed as scratch – and therefore should not be used when CMS/CMR are used in upir programs or manual calculation. This is not a very limiting restriction (usually T is normally overwritten by natural occurrences, such as ENTERing new values in the stack) but you should bear it in mind for advanced cases.

Note that this limitation does not affect all other Matrix functions, such as MSIJ, MR, MS, J+, etc. And that in manual more CMR will show the complex value on the display:

Stack usage for **CMR** and **CMS**

The table below summarizes the Input/Output assumptions for these functions. Note that contrary to their real-matrix counterparts MR and MS, the complex versions require the complex pointer in the X-Register. This pointer will be saved in LastX so you can retrieve it in case it's needed for further operations.

Register	C	1S	C	1R
	Input	Output	Input	Output
X	Cpx. Pointer	Re(z)	Cpx. Pointer	Re(z)
Y	Re(z)	Im(z)	-	Im(z)
Z	Im(z)	0	-	Y
Т	-	0	-	Z
L	-	Cpx. Pointer	-	Cpx. Pointer

With this convention you can chain Recall/Storage actions easily, forr instance the sequence of instructions below will copy complex element z(1,2) into z(2,1):

1,002, CMR, LASTX, I<>J, CMS

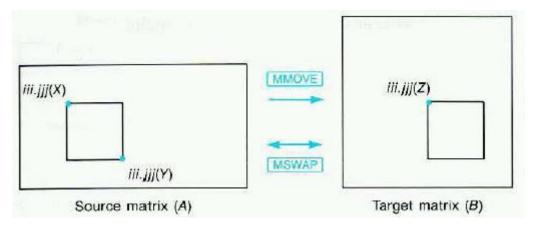
Finally, note that

- CMR and CMS have been promoted to the Main FAT in the upper page of the module. They
 traded places with two little-used routines (MRND and PSCAL), which now reside in the
 auxiliary FAT for subfunctions. Be aware of the XROM numbers displacement in your FOCAL
 programs
- If there's a data error condition (UNDEFined Array, END of Array, etc.) the register T will contain a non-normalized number of the form: "F|000000ADDR|000". You should disregard this value.
- Upon successful execution, the complex pointer (i,j) will remain selected in the matrix on completion of the action, which is the same as saying that the real pointer (2i,2j) will be active.

Cpx(i,j) = [(2i-1, 2j-1); (2i-1, 2j)(2i, 2j-1); (2i, 2j)]

2.3.3.- Other Matrix Functions ("Utilities")

The remaining matrix functions, also called utilities, are those for copying and exchanging parts of matrices, and miscellaneous, extra arithmetic functions: finding sums, norms, maxima, and minima, and matrix reduction.


Moving and Exchanging Matrix Sections.

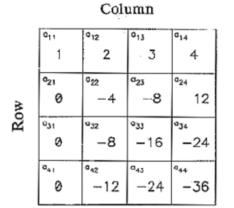
	Function	Description	Input
1	C<>C	Exchange columns k and l in a matrix	Name in Alpha, kkk.lll in X-reg
2	R<>R	Exchange Rows k and I in a matrix	Name in Alpha, kkk.lll in X-reg
3	MMOVE	Matrix Move	Names in Alpha, Pointers in stack
4	MSWAP	Matrix Swap	Names in Alpha, Pointers in stack

MMOVE and **MSWAP** Copies or Exchanges the submatrix defined by pointers in the source matrix to the area defined by one pointer in the target matrix. The inputs require both matrix names in Alpha separated by a comma, plus the pointers in the stack as follows:

in X-reg: *iii.jjj* for A's initial element; in Y-reg: *iii.jjj* for A's final element; in Z-reg: *iii.jjj* for B's initial element.

When executing **MMOVE** and **MSWAP** if **A** and **B** are the same matrix and the source submatrix overlaps the target submatrix, the elements are processed in the following order: reverse column order (last to first) and reverse element order (last to first) within each column.

When an input of the form iii.jjj is expected in the X-register, a zero value for either the i-part or the jpart is interpreted as 1. (Zero alone equals 1.001.) This is true for the iii.ijj-values that MMOVE and MSWAP expect in the X- and Z-registers, but *not for the pointer value in the Y-register*.

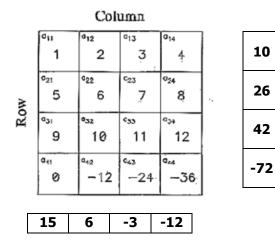

For the Y-register input, a zero value for the i-part is interpreted as m, the last row, while a zero value for the j-part is interpreted as n, the last column. This convention facilitates easy copying (or exchanging) of entire matrices because simply by clearing the stack (**CLST**) or entering three zeros you specify the elements 1.001 (X) and mmm.nnn (Y) for the first matrix and element 1.001 (Z) for the second matrix, thus defining two entire matrices.

For example, in a 4×5 matrix:	Y-Register	Pointer Value
	0.000	4.005
	3.000	3.005
	0.003	4.003

	Function	Description	Input / Output
5	MAX	Finds the maximum element in matrix.	Matrix Name in Alpha.
		Sets element pointer to it.	Outputs element value to X-reg
6	MIN	Finds the minimum element in matrix.	Matrix Name in Alpha
		Sets element pointer to it.	Outputs element value to X-reg
7	MAXAB	Like MAX but in absolute value. Sets	Matrix Name in Alpha
		element point to it.	Outputs element value to X-reg
8	CMAXAB	Finds maximum absolute value in k-	Matrix name in Alpha, kkk in X-reg.
		th. column. Sets element pointer to it.	Outputs element value to X-reg
9	RMAXAB	Finds maximum absolute value in k-th.	Matrix name in Alpha, kkk in X-reg.
		row. Sets element pointer to it.	Outputs element value to X-reg

Miscellaneous Arithmetic Functions: Maxima and Minima

Examples. Calculate the different maxima and minima for the following matrix:


Function	Result Pointer	Result value
MAX	a14	12
MAXAB	a44	36
CMAXAB	a43	24
RMAXAB	a24	12
MIN	a44	-36

Miscellaneous Arithmetic functions: Norms and Sums

	Function	Description	Input / Output	
10	CNRM	Column Norm. Finds the largest sum	Matrix name in Alpha.	
		of the absolute values of the elements	Outputs column norm to X-reg.	
		in each column of matrix.	Sets pointer to first element of column.	
11	FNRM	Frobenius Norm. Calculates the square	Matrix name in Alpha.	
		root of the sum of the squares of all	Outputs Frobenius norm into X-reg	
		elements in matrix.		
12	RNRM	Row Norm. Finds the largest sum of	Matrix name in Alpha.	
		the absolute values of the elements in	Outputs row norm to X-reg.	
		each row of matrix.	Sets pointer to first element of row.	
13	SUM	Sums all elements in matrix.	Matrix name in Alpha.	
			Outputs the sum to X-reg	
14	SUMAB	Sums absolute values of all elements	Matrix name in Alpha	
		in matrix.	Outputs the sum to X-reg	
15	CSUM	Finds the sum of each column and	Matrix name , result matrix name	
		stores them in a result vector.	(Vector) in Alpha. (*)	
16	RSUM	Finds the sum of each row and stores	Matrix name , result matrix name	
		the sums in a result vector.	(Vector) in Alpha. (*)	

(*) For **CSUM** and **RSUM** the number of elements in the result matrix (vector) must equal the number of columns/rows in the input matrix.

Examples. Calculate the Colum and Rows Sums for the matrix below, using the names "RSUM" and "CSUM" for the result matrices.

The result matrices (vectors) are located at the bottom and right of the original matrix.

Note that those must have been created previously using MATDIM, or otherwise the "UNDEF ARRAY" will be shown.

Miscellaneous Arithmetic functions: Matrix Reductions

	Function	Description	Input / Output			
17	YC+C	Multiplies each element in column k of	Matrix name in Alpha, kkk.lll in X-reg,			
		matrix by value in Y-ref. and adds it to	y in Y-reg.			
		corresponding element in column l	It changes the elements in column I			
18	PIV	Finds the pivot value in column k, that	Matrix Name in Alpha, kkk in X-reg			
		is the maximum absolute value of an				
		element on or below the diagonal.				
19	R>R?	Compares elements in rows k and l. If	Matrix name in Alpha, kkk.lll in X-reg			
		(and only if) the first non-equal	Outputs "YES" if first non-equal			
		element in k is greater than its	element in row k is greater than			
		corresponding element in I, then the			element in row I. "NO" in all other case.	
		comparison is positive for the "do if				
		true" rule of programming.				

<u>Examples.-</u> Calculate the pivot element under the second column and compare the first and third rows for the matrix below.

	Column					
	011	a ₁₂	^a 13	0 ₁₄		
	1	2	3	4		
	0 ₂₁	a22	c23	0 ₂₄		
Row	5	6	.7	8		
R	a ²¹	°32	¢33	434		
	9	10	11	12		
	041	a ₁₂	C43	a.4		
	0	-12	∝3 −24	°₄ —36		

Input	Function	Pointer	Output
2	PIVOT	a42	12
1,003	R>R?		"NO″

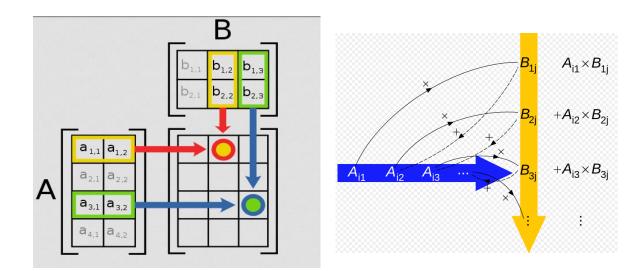
Both **PIV** and **YC+C** are vestigial from the CCD "-ARRAY FNS" group, and arguably not very useful now that the major matrix operations are also available.

The last two functions are not operating on a matrix, but are auxiliary for the FOCAL programs:

	Function	Description	Input / Output
20	AIP	Appends the absolute value of the	Value in X.
		integer part of the number in X to the	
		contents of the Alpha register.	
21	MPT	Appends a matrix prompt "rrr.ccc=" to	rrr.ccc in X-reg
		the contents of the Alpha register	_
		(dropping leading zeros in each part)	

Note that **AIP** and **AINT** in the SandMath are very similar – but **AINT** won't take the absolute value. This fact is useful to append integer values to alpha without decimal numbers, but respecting the sign.

Note that MPT in the SandMatrix is an enhanced version written in MCODE - that replaces the mini-FOCAL program used in the Advantage.


Example. Calculate the Row, Column and Frobenius norms for the matrix

$$A = \begin{bmatrix} 3 & 5 & 7 \\ 2 & 6 & 4 \\ 0 & 2 & 8 \end{bmatrix}, \qquad ||A||_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2}$$

 $\|A\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m |a_{ij}|$, which is simply the maximum absolute column sum of the matrix. $\|A\|_{\infty} = \max_{1 \leq i \leq m} \sum_{i=1}^n |a_{ij}|,$ which is simply the maximum absolute row sum of the matrix

= 19 = 15 = 14,38749457 The results are: Row Norm Column Norm Frobenius Norm

The Frobenius norm will come very handy for some programs in Chapter-3 as convergence criteria, and to determine whether two matrices are "equivalent" in reduction algorithms.

Appendix. Pascal and Random matrices. { PSCAL , MRND }

In mathematics, particularly matrix theory and combinatory, the Pascal matrix is an infinite matrix containing the binomial coefficients as its elements. There are three ways to achieve this: as either an upper-triangular matrix, a lower-triangular matrix, or a symmetric matrix. The 5×5 truncation of these is shown below.

$$S_5 = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & 3 & 6 & 10 & 15 \\ 1 & 4 & 10 & 20 & 35 \\ 1 & 5 & 15 & 35 & 70 \end{pmatrix}$$

The elements of the symmetric Pascal matrix are the binomial coefficients, i.e.

$$S_{ij} = \binom{n}{r} = \frac{n!}{r!(n-r)!}, \text{ where } n = i+j, \quad r=i.$$

in other words, see the relationships for the general term and the matrix trace below:

$$S_{ij} = {}_{i+j}\mathbf{C}_i = \frac{(i+j)!}{(i)!(j)!}. \qquad \operatorname{tr}(S_n) = \sum_{i=1}^n \frac{[2(i-1)]!}{[(i-1)!]^2} = \sum_{k=0}^{n-1} \frac{(2k)!}{(k!)^2}$$

Random matrices are implemented in the SandMatrix using a time-based seed, applying a pseudorandom algorithm on it and then summing the digits of the mantissa to come up with an integer number. It is furthermore rounded to the current display settings, thus you can limit the values as required. Functions **SEEDT**, **RAND**, and **DGT** in the SandMath, are used.

See the program listings below. For the Pascal matrix, function **NCR** in the SandMath calculates each element value. Note how the subindices are tweaked to return ones in the first row and column – a nice trick courtesy of JM Baillard.

1	LBL "PSCAL"	MNAME in Alpha	1	LBL "MRND"	MNAME in Alpha
2	0		2	0	
3	MSIJA	set pointer to 1:1	3	MSIJA	set pointer to 1:1
4	LBL 00 <	1	3	SEEDT	time-based seed
5	MRIJ	recall pointer	4	LBL 00	
6	INT	i	6	RAND	random number
7	MRIJ	recall pointer	7	RND	current settings
8	FRC	O,jjj	8	ΣDGT	sum of digits
9	I<>J	j	9	MSR+	store element
10	+	l+j	10	FC? 10	end of matrix?
11	2		11	GTO 00	no, loop back
12	-	i+j-2	12	END	yes, done
13	MRIJ	recall pointer			
14	INT	i			
15	Ε				
16	-	i-1			
17	NCR	C(i+j-2; i-1)			
18	MSR+				
19	FC?10	end of matrix?			
20	GTO 00	no, loop back			
21	END	yes, done			

Appendix.- Matrix Minors. { MINOR , CMINOR }

In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing one or more of its rows or columns. Minors obtained by removing just one row and one column from square matrices (first minors) are required for calculating matrix cofactors, which in turn are useful for computing both the determinant and inverse of square matrices.

If A is a square matrix, then the minor of the entry in the i-th row and j-th column (also called the (i,j) minor, or a first minor[1]) is the determinant of the submatrix formed by deleting the i-th row and j-th column. This number is often denoted Mi,j. The (i,j) cofactor is obtained by multiplying the minor by $(-1)^{i+j}$.

$$i = 1 \qquad j = 2 \qquad j = 3$$

$$i = 1 \qquad \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \qquad \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Two programs are included, one for Real matrices (not limited in order, courtesy of **MDET**) and another for Complex Matrices – only up to degree 5, due to on the restriction imposed by **CMDET**. The programs are a good example of utilization of the utility functions C <> C, R <> R, and **MMOVE**.

1	LBL "MINOR"		28	MNAME?	
2	LBL 01		29	RTN	
3	ASTO 01	MNAME	30	GTO 01	
4	STO 00	i,j pointer	31	LBL 02	
5	" -,#1"		32	INT	j
6	MAT=	scratch copy	33	ENTER^	
7	DIM?		34	DSE X	j-1
8	1,001		35	X=0?	
9	-	one order less	36	RTN	don't bother if j=1
10	"#2"		37	X<>Y	
11	MATDIM	scratch sub-array	38	ENTER^	
12	MZERO	clear it	39	ENTER^	
13	"#1"		40	 <>]	0,00(j-1)
14	RCL 00		41	E	
15	<>J	i,j pointer	42	-	
16	SF 00		43	+	j,00(j-1)
17	XEQ 02		44	LBL 00	
18	RCL 00		45	FS? 00	
19	CF 00		46	C<>C	bubble left column
20	XEQ 02		47	FC? 00	
21	CLST		48	R<>R	bubble up row
22	2,002		49	1.001	offset
23	"#1,#2"		50	-	k,00(k-1)
24	MMOVE		51	DSE Y	j=j-1
25	PURFL		52	GTO 00	
26	CLA		53	END	
27	MDET				

Program listing.- Real Matrix Minors

1	LBL "CMINOR"		33	ST+ X	2i,2j
2	LBL 01		34	STO 02	
3	STO 00		35	XEQ 03	
4	ASTO 01		36	RCL02	2i,2j
5	" -,#1"		37	1,001	
6	MAT=	scratch copy	38	-	(2i-1),(2j-1)
7	DIM?		39	LBL 03	
8	2,002		40	RCL 00	i,j
9	-	one order less	41	FS? 00	
10	"#2"		42	<>J	
11	MATDIM	scratch sub-array	43	INT	
12	MZERO	clear it	44	DSE X	discard first column
13	"#1"		45	X=0?	
14	RCL 00		46	RTN	don't bother if j=1
15	CF 00	do the rows	47	X<>Y	
16	XEQ 02		48	INT	
17	RCL 00		49	ENTER^	
18	<>J	i,j pointer	50	ENTER^	
19	SF 00	do the columns	51	2	
20	XEQ 02		52	-	
21	CLST		53	<>J	
22	3,003		54	+	k,00(k-2)
23	"#1,#2"		55	LBL 00	
24	MMOVE		56	FS? 00	
25	PURFL		57	C<>C	bubble left column
26	CLA		58	FC? 00	
27	XROM "CMDET		59	R<>R	bubble up row
28	CLA		60	2.002	offset
29	ARCL01		61	-	k,00(k-2)
30	RTN		62	DSE Y	j=j-1
31	GTO 01		63	GTO 00	
32	LBL 02		64	END	

Program listing: Complex Matrix Minors.

Example: Calculate all element minors for the example matrix used in the Complex Transposed dexample:

	[1+13	2-15	7-11	1
A=	[4-i2	6+i9	-8+i4]
	[-3-17	3+12	-1+16]

You need to provide the matrix name in ALPHA and *the complex pointer value in* X - i.e. from 1,001 to 3,003 in this example. Also remember that the 41Z Module needs to be plugged for the complex determinat calculation.

The solutions are:

	-28+J31	-44-J18	-29+J71
Minors:	5+J6	9+J49	38+J10
	-47-J9	-46-J2	-19+J51

3. Upper-Page Functions in detail

This chapter is all above and beyond the matrix functionality present in the Advantage Pac – a true extension of its capabilities into new and often uncharted territories.

A.I. AIV MATRIX

3.1. The Enhanced Matrix Editor(s)

Often the most tedious part of a matrix calculation becomes the data entry for the input matrices and the review of the results. With this in mind the SandMatrix includes convenient alternatives to **MEDIT**, the "standard" Matrix Editor from the Advantage, seen in the previous chapter. There are as follows:

	Function	Description	Input / Output
1	РМТМ	Prompt Matrix by Rows	Matrix name in Alpha
2	IMR	Input Matrix by Rows	Matrix name in Alpha
3	IMC	Input Matrix by Columns	Matrix name in Alpha
4	OMR	Output Matrix by Rows	Matrix name in Alpha
5	OMC	Output Matrix by Column	Matrix name in Alpha
6	OXC	Output Column k	Matrix name in Alpha, kkk in X-reg
7	OXR	Output Row k	Matrix name in Alpha, kkk in X-reg

Of all these, the most remarkable one is of course **PMTM** – which expedites element data entry to the maximum possible on the 41 platform, almost as if it were a full-fledge editor in a graphical screen. The idea is to use the Alpha register as repository for all the elements, separating the individual values by spaces (entered using the **ENTER**^ key). The data input is terminated by pressing R/S.

The back-arrow key is always active to correct a wrong entry, and will terminate the function if Alpha is completely cleared. **PMTM** allows for negative and decimal numbers to be entered, thus the **CHS** and **RADIX** keys are also active during the data entry prompt. Furthermore, the logic will only allow one occurrence of these per each element within the prompt string.

PMTM knows how many rows should be input (it is part of the matrix dimension), thus the prompts will continue to appear until the last row is completed. A row counter is added to the prompt to indicate the current row being edited.

If you enter fewer elements in the prompt than existing columns, the remaining elements will be left unchanged and the execution will end. Conversely, if you enter more elements in the prompt than existing columns, those exceeding the quota (the extra ones) will simply be ignored.

The two limitations of PMTM are as follows:

- A maximum length of 24 characters is possible during the prompt. This includes the blank separators, the comma (radix), and the negative signs if present.
- No support for the Exponential format is implemented (EEX). You need to use any of the other editors if your element values require such types of data.

Obviously, this makes **PMTM** the ideal choice for matrices containing integer numbers as elements – but not exclusively so as it can also be used for other values (real-numbers) as long as the two conditions above are respected.

At the heart of **PMTM** there is the function **^MROW** ("Enter Matrix Row"), responsible for the presentation of the prompt in Alpha and accepting the keyboard inputs there to make up the string (or list) with all values. It also provides the logic of actions for the control keys, like ENTER[^], Back arrow, R/S, etc.

^MROW is called in a loop as many times as rows exist in the matrix, while **ANUMDL** (in the SandMath) is used every iteration (each time a row is being processed) to "extract" the individual element data from the global string in the prompt.

Below is the program listing for **PMTM**, and as you can see it's just a sweet & short driver for **^MROW** that also takes advantage of the auxiliary functions in the SandMatrix.

1	LBL "PMTM"	
2	0	
3	MSIJA	position pointer to 1.1
4	LBL 01 <	
5	MRIJ	recall pointer
6	INT	row number
7	^MROW	prompts for string
8	CF 22	default reset
9	LBL 00 🤶	separate elements
10	ANUMDL	
11	FC?C 22	last one reached?
12	GTO 02	yes, exit
13	MSR+	store element
14	FC? 09	end of row?
15	GTO 00 ———	no, do next element
16	FC? 10	end of matrix?
17	GTO 01	no, do next row
18	LBL 02 🔶	
19	MNAME?	recall Mname
20	END	done.

^MROW is available as a sub-function listed within the aux CATalog – and rightfully so. Note that even if **PMTM** is not strictly an MCODE function, de-facto it is a hybrid one, and therefore it's denoted in blue color all throughout this manual. If **PMTM** is the beauty then **^MROW** is the beast. If you're interested you can peruse the MCODE listings for it in appendix "M".

Below are two examples of the lists being edited, for the first two rows of a given matrix:

The built-in logic allows for just one negative sign and one radix character per each value entry.

Note that **^MROW** is also used by **PMTP**, the "Polynomial Input" function, which has a very parallel structure to **PMTM** and is used to enter the coefficients of a polynomial into data registers. It will be covered in the polynomial section later on.

The remaining routines in this section all deal with Input and Output of the matrix elements, depending on whether it's done following the Row or Column sequence, as well as **OXR** and **OXC**, two sub-functions (i.e. they require ΣF \$ to launch) to only view one specific row or column.

They are very much equivalent to **MEDIT** in many aspects, although the symbol "**a**" is used in the prompts. They are slightly faster and offer the added convenient feature: when the matrix is not LU decomposed, for *integer element values* the zeros after the decimal point are not shown in the prompt – regardless of the current display settings (FIX or otherwise). This makes for a clearer UI.

The program listing is shown below; note how the different entry points set the appropriate subset of user flags, and that they all share the main section for the actual element input and review.

1	LBL "OMR"		35	FS? 04	LU decomposed?
2	0	clears F0-F7	36	GTO XX	synthetic jump (!)
3	GTO 05		37	INT?	integer?
4	LBL "OMC"		38	AINT	yes, append IP
5	2	sets F1	39	FRC?	fractional?
6	GTO 05		40	ARCL X	yes, append all
7	LBL "IMR"		41	FC? 00	view only?
8	E	sets FO	42	AVIEW	yes, show it
9	GTO 05 🔶		43	FC? 00	view only?
10	LBL "IMC"		44	GTO 02	yes, skip editing
11	3	sets F0 & F1	45	" -?"	append "?"
12	LBL 05 🔶		46	PROMPT	show current value
13	XEQ 06	check status	47	MS	store new value
14	CLX		48	LBL 02 🔶	
15	MSIJA	resets pointer to 1:1	49	FC? 01	by column?
16	GTO 00	go to first element	50	J+	yes, next column
17	LBL "OXC"		51	FS? 01	by row?
18	E1	sets F1 & F3	52	l+	yes, increase row
19	GTO 04		53	E1	F10
20	LBL "OXR"		54	FS? 03	by row?
21	8	sets F3	55	DSE X	yes, F9
22	LBL 04 🔶		56	FC? IND X	end of matrix/row?
23	XEQ 06	check status	57	GTO 00	no, next element
24	RDN	colum/row number	58	MNAME?	yes, recall Mname
25	INT	just in case	59	RTN	done.
26	E3/E+	1,00x	60	LBL 06	
27	FC? 01	row?	61	X<>F	set case lags
28	I<>J	yes, transpose	62	SF 25	prepare test
29	MSIJA	set pointer to row/col	63	LU?	is LU decomposed?
30	LBL 00 🔶		64	NOP	will clear F25 if so
31	"a"	element symbol	65	FC?C 25	was it LU?
32	MRIJ	recall index	66	SF 04	yes, flag this fact
33	MP	prompt index=	67	END	and return
34	MR	recal value			

Other pointer utilities included are listed in the table below; they are used in many of the FOCAL programs described in the following sections.

	Function	Description	Input / Output
8	^MROW	Prompts the list and controls input	Element values as Alpha List
9	I<>J	Swaps iii and jjj in X (also does E3/ for integers)	iii.jjj in X-reg. Index swapped to jjj.iii
10	I#J?	Tests whether iii is different from jjj	iii.jjj in X. YES/NO, do if true.
11	SQR?	Tests for Square Matrices	MNAME in Alpha. YES/NO, do if True
12	MFIND	Finds an element in a given matrix and sets element pointer to it	Element value in X-reg Outputs the pointer iii/jjj to X-reg

3.2. New Matrix Math functions.

3.3.1. Utility / housekeeping functions: rounding the capabilities.

This group comes very handy for the handling and management of intermediate steps required as part of more complex algorithms. As a rule, the functions work for matrices stored either in main memory or in X-memory. Only **MATP** and **MAT=** create new matrices; all other functions expect them to be already dimensioned.

	Function	Description	Input / Output
1	MAT=	Creates & Makes matrix B equal to A:	Matrix names in Alpha: "A,B".
		B = A	Matrix A must already exist.
2	MATP	Driver for M*M operation	Under program control. Creates both
		Prompts for element values	matrices on the fly.
3	MCON	Matrix from a constant	Matrix name in Alpha, constant in X-reg
		Makes aij = x, i=1,2,m; j=1,2,n	Makes all matrix elements equal to x
4	MFIND	Finds an element within a matrix	Matrix Name in Alpha, element in X-reg.
			Returns pointer to X and set to element.
5	MIDN	Makes identity Matrix	Matrix name in Alpha. (must exist)
		Makes aii =1 and aij=0 for i#j	
6	MRDIM	Re-dimensions Matrix (properly)	Matrix name in Alpha, dimension in X.
		It keeps existing elements in place.	Output is a new matrix (adds ' to name)
7	MSORT	Sorts all elements within a matrix	Matrix Name in Alpha. Reorders
			elements in ascending order.
8	MSZE?	Calculates the Matrix size	Matrix name in Alpha.
		Size = $m \times n$	Output is placed into X-reg.
9	MZERO	Zeroes (clears) all elements in matrix	Matrix name in Alpha
		Makes aij = 0, i=1,2m; j=1,2,n	All elements are set to zero.
10	MZDG	Zeroes (clears) the diagonal elements	Matrix name in Alpha: "A".
		in matrix (makes aii = 0 , i= 1, 2m)	The diagonal is zeroed.

A few remarks on each of these functions follow, as well as the program listings.

MAT copies an existing matrix into another, with names in Alpha. Prior to doing the bulk element copy, it redimensions the target matrix to be the same as the source one. *It is however not required that the target matrix already exist* – it will be created if not already there.

MCON does a simple thing: converts the value in the X-Reg into a matrix with all elements equal to this value. This is useful in some calculations and for matrix manipulations. See the simple program listings for these routines below;

1	LBL "MAT="	"A,B" expected in Alpha	1	LBL "MCON"	MNAME in Alpha
2	DIM?	dimension	2	MZERO	clear all elements
3	ASWAP	swap Alpha	3	RDN	get constant back to X
4	MATDIM	re-dimension target	4	"X"	prepare alpha string
5	ASWAP	undo the swap	5	MAT+	add x to all elements
6	CLST	prepare pointers	6	MNAME?	recall MNAME to Alpha
7	MMOVE	move all elements	7	END	done
8	END	done			

MZERO is the unsung hero behind other routines – as the proper way to clear a matrix file, since **CLFL** cannot be used because it also clears the header register (it was meant for Data files). Use it safely for matrices in main and x-memory. **MZERO** is implemente entirely in MCODE.

A related function is **MZDG**, which only deletes the diagonal elements. It can be used to construct an anti-Identity matrix, applying it to a all-ones matrix - created using the three-step sequence: { 1, **MCON**, **MZDG** }. These matrices have the interesting (unproven) property that their determinants obey the expression:

 $Det [AI(nxn)] = (-1)^{(n-1)} . (n-1)$

MSORT uses an auxiliary matrix in main memory ("**R0**") where **RGSORT** (from the SandMath) is applied to; then data are copied back to the original matrix. It also checks for available registers, adjusting the calculator SIZE if necessary. The contents of those ($n \times m + 1$) data registers will be lost.

1	LBL "MSORT"	MName in Alpha	1	LBL "MZERO"	MNAME in Alpha
2	SIZE?	current SIZE	2	DIM?	get dimension
3	MSZE?	matrix size	3	SF 25	
4	E		4	PURFL	purge file
5	+	plus one	5	FC?C 25	was in main mem
6	X>Y?	is it larger?	6	GTO 01	jump over
7	PSIZE	yes, adjust size	7	MATDIM	re-create file
8	" -,R"	prepare Alpha string	8	RTN	done
9	MAT=	make matrix R0 equal	9	LBL 01 🔶	
10	MSZE?	its size again	10	ANUM	get first reg from title
11	E3/E+	prepare control word	11	ENTER^	copy in Y-reg
12	RGSORT	sort registers	12	MSZE?	get matrix size
13	ASWAP	swap alpha	13	+	add to first reg
14	CLST	prepare pointers	14	E3/3+	prepare index format
15	MMOVE	move all elements	15	+	add to first reg
16	MNAME?	recall original name	16	CLRGX	clear registers
17	END	done	17	END	done

MSZE? has a new MCODE implementation in this revision – directly reading the matrix header register. Its functionality is equivalent to **FLSIZE** for matrices stored in X-mem – and of course it also does the equivalent for matrices stored in main memory. **MSZE?** is implemented entirely in MCODE.

1	MSZE?	Header	A616	OBF	"?"	
2	MSZE?	Header	A617	005	"E"	Matrix Size?
3	MSZE?	Header	A618	01A	"Z"	
4	MSZE?	Header	A619	013	"S"	
5	MSZE?	Header	A61A	00D	"M"	Ángel Martin
6	MSZE?	MSZE?	A61B	379	PORT DEP:	Jumps to Bank_2
7	MSZE?		A61C	03C	XQ	adds "4" to [XS]
8			A61D	1D9	->A5D9	[LNCH0]
9	valid for main and >	(-mem	A61E	388	<parameter></parameter>	<u>B788</u>
10	the proper way to a	lo it!	A61F	00B	JNC +01	
11			A620	100	ENROM1	restore bank-1
12	MSZE?		A621	0B0	C=N ALL	header register
13	MSZE?		A622	106	A=C S&X	
14	MSZE?		A623	17D	?NC GO	[BIN-BCD] plus [RCL]
15	MSZE?		A624	0C6	->315F	[<u>ATOX20]</u>

MIDN is a good example of a sorely missing function: the majority of matrix algorithms involve identity matrices, one way or another, so having a routine that does the job becomes rather important. **MIDN** *is implemented entirely in MCODE*.

The code follows a *single-element approach*, storing ones in the main diagonal after zeroing the matrix first. This is faster and more convenient that block-based methods, even if they don't require scratch matrices for intermediate calculations. See the example below courtesy of Thomas Klemm:

1	LBL "MIDN"	MNAME in Alpha	1	LBL "IDN2"	
2	MZERO	clear all elements	2	DIM?	current dimension
3	0		3	ENTER^	push it to Y
4	MSIJA	set pointer to 1:1	4	INT	n
5	E	element value	5	MATDIM	row matrix, n x 1
6	LBL 00 <		6	E	
7	MSC+	store and increase I	7	MCON	all ones
8	FC? 09	end of row?	8	X⇔Y	n
9	J+	yes, next row	9	+	n+1
10	FC? 10	end of matrix?	10	LASTX	n
11	GTO 00	no, next element	11	(o)	0,00n
12	END	yes, done	12	+	(n+1),00n
			13	MATDIM	
horter an	d faster, even if mo	ore pedestrian	14	TRNPS	
			15	X<>Y	original n x n
			16	MATDIM	bach to shape
			17	END	done

Of all these functions perhaps **MRDIM** needs further explanation. Contrary to **MATDIM**, a proper re-dimensioning should respect the elements in the re-dimensioned matrix that held the same position in the original one. **MRDIM** does this, deleting the discarded elements when the redimensioned submatrix is smaller than the original, and completing the new one with zeroes when it is bigger (supermatrix). It always starts with a11 (no random origin is possible).

1	LBL "MRDIM"	MNAME in Alpha	16	X<>Y	min(j1,j2)
2	DIM?	get dimension	17	RCL Z	
3	Х<>Ү	new dimension to X	18	INT	min (I)
4	ASTO T	temporary safekeep	19	+	min (I), min(j)
5	"]-" "	add tilde	20	0	
6	MATDIM	create new matrix	21	STO Z	prepare pointers
7	CLA		22	ASTO T	temporary safekeep
8	ARCL T	MNAME	23	"[-,"	
9	X>Y?		24	ARCL T	MNAME
10	X<>Y	min(i1,i2)	25	"/-' "	prepare Alpha string
11	STO Z	keep in Z	26	MMOVE	copy elements
12	FRC		27	PURFL	purge original file
13	Х<>Ү		28	MNAME?	recall name to Alpha
14	FRC		29	END	done
15	X>Y?				

A logical enhancement to this routine would be to change the matrix name back to its original one, removing the tilde. This can be done in two ways:

- 1. creating a new matrix file and copying it over once again, or (preferable)
- 2. using **RENMFL** (in the AMC_OS/X module) to rename the X-mem file

Finding an element within a Matrix { MFIND } - plus an easy-driver for M*M

MFIND will search a given matrix looking for an element that equals the value in the X-register. If it is found it returns its location pointer to the X-reg (and leaves the pointer set to it). If it's not found, it returns -1 to X and the pointer is outside the matrix.

You can further use this result adding the conditional test function "X >= 0?" (available in the SandMath) right after **MFIND** - which in a program will skip a line if the element wasn't found.

MATP is nothing more than a user-friendly driver program to automate the complete matrix product procedure, without any need to dimension the result matrix in advance. The routine will guide you step-by-step thru the complete sequence, including the element data input and output.

Note that in **MATP** I have chosen **PMTM** to enter the element data values – therefore it's somehow limited by the same constraints described before, ie. total length in Alpha and no support for the EEX key.

1	LBL "MFIND"	MNAME in Alpha	1	LBL "MATP"	
2	0		2	"DIM1=?"	M1 dimension
3	MSIJA	sets pointer to 1:1	3	PROMPT	prompt for it
4	LBL 05 🔶		4	"M1"	matrix name - M1
5	RDN	target value to X-reg	5	MATDIM	create matrix in X-mem
6	MR	recall element	6	PMTM	input elements
7	X=Y?	equal?	7	"DIM2=?"	M2 dimension
8	GTO 02	yes, exit	8	PROMPT	prompt for it
9	J+	no, increase column	9	"M2"	matrix name - M2
10	FC? 10	end of matrix?	10	MATDIM	create matrix in X-mem
11	GTO 05	no, next element	11	PMTM	input elements
12	RDN	target value to X-reg	12	DIM?	
13	CLX		13	FRC	# of columns for M2
14	-		14	"M1"	
15	E	put -1 in X	15	DIM?	
16	GTO 00	exit	16	INT	# of rows for M1
17	LBL 02		17	+	cresult matrix dimension
18	RDN		18	"M*"	matrix name - M*
19	CLX		19	MATDIM	create matrix in X-mem
20	MRIJA		20	" -M1,M2,"	prepare Alpha string
21	LBL 00 🔶		21	2	
22	END	done	22	AROT	
			23	M*M	matrix product
			24	ASHF	remove acratch
			25	OMR	output values
			26	END	done

Below are the program listings for your perusal.

3.2.2. New Math functions.- Completing the core function set.

	Function	Description	Input / Output
9	M^1/X	Brute-force Matrix X-th Root	Matrix name in Alpha, order in X
		$A = \exp(1/x * Ln[A])$	The result matrix replaces the input
10	M^2	Square power of a square Matrix	Matrix name in Alpha
		$A = [A]^2 = [A].[A]$	The result matrix replaces the input
11	MDPS	Matrix Diagonal Product Sum	Matrix name in Alpha.
		$MDPS = \Sigma[aii*aii+1], i=1,2n$	Output is result in X-reg
12	MEXP	Exponential of a Matrix	Matrix name in Alpha.
		$A = \exp(A)$	The result matrix replaces the input.
13	MLIE	Matrix Lie Product	Matrix names in Alpha: "A,B,C"
		C = AB - BA	Result matrix C must be different.
14	MLN	Matrix Logarithm	Matrix name in Alpha.
		A= Ln (A)	The result matrix replaces the input.
	MPOL	Matrix Polynomial.	Matrix name in Alpha, control word in X
		$P(A) = \Sigma ak [A]^k$	Output is matrix "P" in X-Mem
15	MPWR	Matrix Power of integer order	Matrix name in Alpha, order in X-reg.
		$A = A^{x}$	The result matrix replaces the input.
16	MSQRT	Matrix Square Root	Matrix name in Alpha.
		A = sqrt(A)	The result matrix replaces the input.
17	MTRACE	Calculates the Trace of a Square	Matrix name in Alpha.
		Matrix: Trace = Σ aii, i= 1, 2,m	Output is put into W-reg.
18	R/aRR	Row division by diagonal element	Matrix name in Alpha, row kkk in X-reg
		akj = akj / akk , j= 1,1,n	All row elements divided by akk
19	ΣΙJJΙ	Sum of crossed-elements products	Matrix name in Alpha
		SCEP = $\Sigma[\Sigma(aij * aji)]$	Output is put in X-reg.

The next group includes advanced application areas in "core" matrix math.

Some algorithms used impose some restrictions to the matrices. These are generally not checked by the programs, thus in some instances there won't converge to a solution. Suffice it to say that the programs are not foolproof, and assume the user has a general understanding of the subjects – so they won't be used foolishly.

Matrix Exponential { MEXP }

In mathematics, the matrix exponential is a matrix function on square matrices analogous to the ordinary exponential function. Let **X** be an $n \times n$ real or complex matrix. The exponential of **X**, denoted by e^{X} or exp(X), is the $n \times n$ matrix given by the power series

$$e^X = \sum_{k=0}^{\infty} \frac{1}{k!} X^k$$

where X^0 is the identity matrix, **I**. The above series always converges, so the exponential of **X** is well-defined. Note that if **X** is a 1×1 matrix the matrix exponential of **X** is a 1×1 matrix consisting of the ordinary exponential of the single element of **X**.

Finding reliable and accurate methods to compute the matrix exponential is difficult, and this is still a topic of considerable current research in mathematics and numerical analysis. The SandMath uses a direct approach, so no claims of discovering new algorithms.

$$\exp(A) = I + A + A^2/2! + A^3/3! + \dots + A^k/k! + \dots$$

The program adds new terms until their contribution is negligible, i.e. it results in the same matrix after addng it. This by itself poses an interesting question: how to check whether two matrices are the same? Obviously doing it element-to-element would be a long and impractical method. The alternative is to use the matrix Frobenius norm as a surrogate criterion; assuming that *for very similar matrices*, they'll be equal when they have the same norm.

There's no saying to the execution time or whether the calculator numeric range will be exceeded in the attempt – so you can expect several iterations until it converges. The matrix norm will be displayed after each iteration, so you'll have an indication of the progress made comparing two consecutive values.

Logarithm of a Matrix { MLN }

In mathematics, a logarithm of a matrix is another matrix such that the matrix exponential of the latter matrix equals the original matrix. It is thus a generalization of the scalar logarithm and in some sense an inverse function of the matrix exponential. Not all matrices have a logarithm and those matrices that do have a logarithm may have more than one logarithm. Furthermore, many real matrices only have complex logarithms – making it so even more challenging.

The SandMatrix uses the following algorithm:

If ||A - I|| < 1, the logarithm of a n x n matrix **A** is defined by the series expansion:

 $Ln(A) = (A - I) - (A - I)^{2/2} + (A - I)^{3/3} - (A - I)^{4/4} + \dots$ where I is the identity matrix.

Example 1- Calculate the exponential of the matrix **A** given below, and then calculate its logarithm to see how the result matrix compares to the original.

	[[1	2	3]
A =	[0]	1	2]
	[1	3	2]]

The first part of the assignment is rather simple: Executing MEXP results in the following matrix:

	[[19.45828375	63.15030507	66.98787675]
exp(A) =	[8.534640269	32.26024414	33.27906416]
	[16.63953207	58.45323648	61.70173665]]

However trying to calculate the logarithm will not work, because $exp(\mathbf{A})$ doesn't satisfy the requirement: $Det[exp(\mathbf{A})-I] = -52,95249156$; therefore trying **MLN** on it will eventually reach an "OUT OF RANGE" condition.

Example 2.- Calculate the Logarithm of the following matrix:

	[[1.2	0.1	0.3]
A =	[0.1	0.8	0.1]
	[0.1	0.2	0.9]]

In this example, || A - I || = 0.5099... < 1, thus the program will work.

The result matrix after executing **MLN** is as follows:

 $Ln(\mathbf{A}) = \begin{bmatrix} 0.167083396 & 0.069577923 & 0.287707999 \end{bmatrix} \\ \begin{bmatrix} 0.097783005 & -0.240971674 & 0.103424021 \end{bmatrix} \\ \begin{bmatrix} 0.086500972 & 0.235053124 & -0.131906636 \end{bmatrix} \end{bmatrix}$

(c) Ángel M. Martin

So we see that unfortunately the logarithm is not a trivial exercise. The programs are listed below,
note the combination of both exponential and logarithm into a single program, with flag 01 controlling
the case.

1	LBL "MLN"		44	LBL 02	
2	SF 01	exp flag	45	VIEW 00	
3	GTO 00	1,5,5	46	"#,"	
4	LBL "MEXP"		47	ARCL 01	
5	CF 01	LN flag	48	"/-,P"	
6	LBL 00		49	M*M	
7	SQR?	square?	50	"P,#"	
8	LU?	yes but LU?	51	CLST	
9	-ADV MATRX	not square, show error	52	MMOVE	
10	ASTO 01		53	RCL 02	
11	"[-,^"		54	FC? 01	exp?
12	MAT=	safekeeping copy	55	FACT	to be used as divisor
13	DIM?	get dimension	56	FC? 01	exp?
14	"P"		57	GTO 04	
15	MATDIM	auxiliary matrix	58	ENTER^	
16	"#,"		59	ENTER^	
17	MATDIM	auxiliary matrix	60	E	to be used as divisor
18	MIDN		61	+	
19	ARCL 01		62	СНЅҮХ	
20	FS? 01	LN?	63	LBL 04 🔶	
21	ASWAP	yes, swap names	64	"P,X"	
22	" -,^"		65	MAT/	divide by scalar
23	FS? 01	LN?	66	ABSP	remove "X"
24	MAT-		67	" -^,^"	prepare new string
25	FC? 01	exp?	68	MAT=	safekeeping copy
26	MAT+		69	E	
27	"^,"		70	ST+ 02	increase term index
28	FNRM	initial norm	71	"A, "	
29	STO 00	store in ROO	72	FNRM	new frobenius norm
30	FC? 01	exp?	73	X<> 00	swao with old norm
31	CLA		74	RCL 00	recall new again
32	ARCL 01		75	X#Y?	are the different?
33	FC? 01	exp?	76	GTO 02	yes, keep at it
34	GTO 04		77	ARCL 01	no, we're done
35	MAT=		78	MAT=	
36	CLAC		79	PURFL	purges "^"
37	ABSP		80	"P,#"	
38	LBL 04 🔶		81	PURFL	purges "P"
39	" -,#"		82	ASWAP	
40	CLST		83	PURFL	purges "#"
41	MMOVE		84	MNAME?	recalls name to Alpha
42	2		85	END	
43	STO 02				

Remarks.- The program is relatively short but hefty in data requirements: three auxiliary matrices are created and used during the calculations, meaning that the total numbers of registers needed (including the original matrix) is: 4 x dim (A)

Note also that the convergence is based on equal Frobenius norms of two consecutive iterations, and that the comparison is made using the full 9 decimal digits (see instruction "X#Y?" in line 75). A rounded comparison would result in shorter execution times, but it wouldn't be as accurate.

As usual, these routines could result in "ALPHA DATA" if the matrix is in LU decomposed form.

Square root of a Matrix { MSQRT }

In mathematics, the square root of a matrix extends the notion of square root from numbers to matrices. A matrix **B** is said to be a square root of **A** if the matrix product **BB** is equal to **A**.

Just as with the real numbers, a real matrix may fail to have a real square root, but have a square root with complex-valued entries. In general, a matrix can have many square roots, however, a positive-semidefinite matrix M (that satisfy that $x * M x \ge 0$ for all x in Rⁿ) has precisely one positive-semidefinite square root, which can be called its principal square root.

Computing the matrix square root in the SandMatrix uses a modification of the Denman-Beavers iteration. Let Y0 = A and Z0 = I, where I is the n × n identity matrix. The iteration is defined by

$$Y_{k+1} = \frac{1}{2}(Y_k + Z_k^{-1}),$$

$$Z_{k+1} = \frac{1}{2}(Z_k + Y_k^{-1}).$$

Convergence is not guaranteed, even for matrices that do have square roots, but if the process converges, the matrix Yk converges quadratically to a square root $A^{1/2}$, while Zk converges to its inverse, $A^{-1/2}$

Contrary to the exponential and logarithm programs, the square root convergence is checked using the rounded values of the norms for two consecutive iterations. You can set FIX 9 for maximum accuracy (and longest run time – not a problem on V41 and on the 41CL of course).

Example 1. Find a square root of the 3rd. order Hilbert matrix:

	[[1	1/2	1/3]
A =	[1/2	1/3	1/4]
	[1/3	1/4	1/5]]

We'll use **IMR** to input the element values (as **PMTM** is not really suitable for this example). Previously we need to create the matrix, as follows:

ALPHA, "HILB3", ALPHA 3.003, XEQ "**MATDIM**"

Once all elements are entered, we execute **MSQRT**, which shows the norms of the different iterations. Let's assume we set the calculator in FIX 9 for the maximum accuracy available; then the result matrix is as follows:

Final Frobenius norm = 1,238278374

	[[0,917390290	0,345469265	0,197600714]
$Sqrt(\mathbf{A}) =$	[0,345469265	0,374984280	0,270871020]
	[0,197600714	0,270871020	0,295943995]]

Squaring the result matrix again (you can use **M^2** for that) we can check the accuracy:

[[0,999999999	0,4999999999	0,333333333]
$[Sqr(A)]^2 = [0,500000000]$	0,3333333333	0,250000000]
[0,333333333	0,249999999	0,20000000]]

which isn't bad at all for a 33 years old calculator indeed...

Example 2.- Find a square root of the 4×4 matrix below, and check the accuracy by squaring it back.

 $A = \begin{vmatrix} 56 & 97 & 17 & 89 \\ 33 & -68 & -42 & 5 \\ -206 & -48 & -34 & -104 \\ -39 & 92 & 27 & 30 \end{vmatrix}$

Using FIX 4 and **PMTM** for the data input (nice integer values), the result is as follows:

 $SQRT(A) = \begin{vmatrix} 8.0000 & 6.0000 & 1.0000 & 7.0000 \\ -7.0000 & -1.0001 & -8.0000 & 3.0000 \\ -8.0001 & 6.0000 & 8.0000 & -6.0000 \\ 6.0000 & 7.0000 & 7.0000 & 3.0000 \end{vmatrix}$

which is exact to 4 decimal places save a couple of *ulps* here and there.

The program listing is shown below. Note the relatively short program, but here too the data requirements are equally hefty as three auxiliary matrices are required, for a total of $4 \times \dim(\mathbf{A})$ registers needed either in main or X-memory (including the original matrix).

1	LBL "MSQRT"		30	X=YR?	are they equal>
2	SQR?	square?	31	SF 00	yes, flag this fact
3	LU?	yes but LU?	32	X=YR?	are they equal>
4	-ADV MATRX	not square, show error	33	GTO 02	yes, jump over
5	CF 00		34	CLA	no, keep at it
6	FNRM	initial norm	35	ARCL 01	
7	STO 00	store it in R00	36	" -,#"	prepare Alpha string
8	ASTO 01	matrix name to R01	37	MINV	invert matrix
9	DIM?	dimension to X-reg	38	MAT=	copy in auxiliary
10	"P"		39	MINV	undo the inversion
11	MATDIM	auxiliary matrix P	40	"Q.#,Q"	
12	"Q"		41	MINV	invert auxiliary
13	MATDIM	auxiliary matrix Q	42	MAT+	sum it to partial result
14	MIDN		43	"Q,X"	
15	LBL 00		44	2	
16	"Q,#"		45	MAT/	divide by scalar 2
17	MINV		46	LBL 02 🔶	
18	MAT=	auxiliary matrix #	47	"P,"	
19	CLA		48	ARCL 01	
20	ARCL 01		49	MAT=	
21	" -,#,P"		50	FC? 00	were norms equal?
22	MAT+		51	GTO 00	no, next iteration
23	"P,X"		52	PURFL	purge P
24	2		53	"Q"	
25	MAT/		54	PURFL	purge Q
26	FNRM	Frobenius norm	55	"#"	
27	VIEW X	show progress	56	PURFL	purge #
28	X<> 00	swao with old norm	57	MNAME?	matrix name to Alpha
29	RCL 00	recall new one again	58	END	done

As usual, this routine will result in "ALPHA DATA" if the matrix is in LU decomposed form.

Appendix.- Square root of a 2x2 Matrix. { MSQ2 }

A square root of a 2x2 matrix **M** is another 2x2 matrix **R** such that $\mathbf{M} = \mathbf{R}^2$, where \mathbf{R}^2 stands for the matrix product of **R** with itself. In many cases, such a matrix R can be obtained by an explicit formula. Let

$$M = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right)$$

where A, B, C, and D may be real or complex numbers. Furthermore, let $\tau = A + D$ be the trace of **M**, and $\delta = (AD - BC)$ be its determinant. Let s be such that $s^2 = \delta$, and t be such that $t^2 = \tau + 2s$. That is,

$$s = \pm \sqrt{\delta}$$
 $t = \pm \sqrt{\tau + 2s}$

Then, if $t \neq 0$, a square root of **M** is:

$_{P} = 1$	(A + s	B	
$R = \frac{1}{t}$	$\left(\right)$	C	D+s	J

There it is, directly without doing any iterations or finding inverses. <u>Your assignment</u> now is to write a short program to calculate the square root of a 2x2 matrix applying the formula above.- Go ahead and try your hand at it ... or cheat and look below.-

1	LBL "SQRT2"	MNAME in Alpha	15	ARCL T	recall MNAME
2	" -,#"	Prepare Alpha string	16	"/-,"	prepare string
3	MAT=	create scratch	17	ARCL T	" <i>M,</i> #, <i>M</i> ,#"
4	ASWAP	bring to hot spot	18	ST+ X	2s
5	MDET	determinant	19	MTRACE	tr
6	ABS	asolute value	20	+	tr + 2s
7	SQRT	S	21	SQRT	t
8	MIDN		22	MAT+	[A] = [A] + s[I]
9	R^	get s to X-reg	23	",X,"	
10	ASWAP	"M,#"	24	MAT/	[A] = [A] / t
11	ASTO T	save MNAME in T	25	"#"	
12	"X,,"		26	PURFL	get rid of scratch
13	MAT*	# = s #	27	MNAME?	MNAME to Alpha
14	CLA		28	END	done

<u>Note</u>,- Not as trivial as you may think because the LU decomposition performing the determinant will conflict with other functions needed. Therefore, one scratch matrix should be used here as well.

Example: calculate one square root of the matrix given below and compare its square power to it.

$$A = \begin{pmatrix} 8 & -2 \\ 6 & 1 \end{pmatrix} = \begin{pmatrix} \frac{8 \pm 2\sqrt{5}}{2 \pm \sqrt{5}} & \frac{-2}{2 \pm \sqrt{5}} \\ \frac{6}{2 \pm \sqrt{5}} & \frac{1 \pm 2\sqrt{5}}{2 \pm \sqrt{5}} \\ \frac{2 \pm \sqrt{5}}{2 \pm \sqrt{5}} & \frac{1 \pm 2\sqrt{5}}{2 \pm \sqrt{5}} \end{pmatrix}^{2}.$$

or numerically: **sqr(A)** = [[2.944271912 -0.472135955]
[1.416407865 1.291796068]]

Matrix Integer Powers and Roots. { M^2 , MPWR , M^1/X }

This application will be dealt with using a relatively brute force approach, in that the powers will be computed by successive application of the matrix multiplication; therefore the restriction to integer powers.

MPWR calculates the general case n, whilst M^2 is used to square a matrix (i.e. n=2). The first requires the matrix name in Alpha and the exponent in the X-register, whereas for the second only the matrix name in Alpha is needed.

The exponent may also be a negative integer. For that case the inverse matrix is calculated first, and the positive integer power is used for it. Lastly, for n=0 the result is the identity matrix of course.

A feeble attempt is also made for the integer roots calculation: the sub-function M^1/X will attempt to calculate the x-th. root of a matrix using the general expression:

 $[A]^{\Lambda^{1/x}} = \exp[1/x \cdot Ln(A]],$ which is only valid when abs(||A-I||) < 1

Despite the inherent limitations of these programs they are interesting examples of extension of the "native" matrix function set, and therefore their inclusion in the SandMatrix.

Example1. Calculate the 7-th. power of the matrix below:

	[[1	4	9]
A =	[3	5	7]
	[2	1	8]]

R	<i>1:</i> USE	(B	Ч	3 -	PRGM
R	2: USE	3	5	7_	PRGM
R	3: USE	2	1	8 -	PRGM

Type XEQ "**MPWR**", and the result is:

	[[7851276	8652584	31076204]
A ⁷ =	[8911228	9823060	35267932]
	[5829472	6422156	23076808]]

Example 2. Calculate the 5th. root of matrix A below, then compare its 5th power to the original matrix.

	[[1.2	0.1	0.3]
A =	[0.1	0.8	0.1]
	[0.1	0.2	0.9]]

R 1: USER	1,2 ,1 ,3	PRGM
₽2:, USER	1,8,1_	PRGM
ЯЗ:, USER	1,2,9_	PRGM

The results are as follows:

A ^{1/5} =	[[1,034632528	0,015156701	0,057916477]
	[0,019601835	0,953558110	0,020490861]
	[0,017823781	0,045426856	0,974937998]]
[A ^{1/5}] ⁵ =	[[1,199999994	0,10000000	0,300000000]
	= [0,10000000	0,80000000	0,100000000]
	[0,100000000	0,20000000	0,900000000]]

Program listing for **MPWR**, **M^2** and **M^1/X**.

1	LBL "MPWR"	MNAME in Alpha	1	LBL "M^2"	MNAME in Alpha
2	SQR?	square?	2	SQR?	square?
3	LU?	yes but LU?	3	LU?	yes but LU?
4	-ADV MATRX	not square, show error	4	-ADV MATRX	not square, show error
5	-CCD MATRX	no, show "RUNNING"	5	-CCD MATRX	no, show 'Running"
6	X<>Y	power index to X-reg	6	ASTO L	
7	INT	make integer	7	DIM?	dimension to X-reg
8	X#0?	is it zero?	8	"[-,"	
9	GTO 01	no, skip over	9	ARCL L	
10	MIDN	yes, make identity	10	" -,P"	"M,M,P"
11	RTN	done.	11	ASWAP	"M,P,M""
12	LBL 01 🔶		12	ASWAP	"P,M,M"
13	X<0?	is it negative?	13	MATDIM	auxiliary P
14	MINV	yes, invert matrix	14	ASWAP	"M,M,P"
15	ABS		15	M*M	matrix product
16	E		16	CLAC	"M,M,"
17	-	n-1	17	CLAC	"M,"
18	X=0?	was n=1?	18	" -P"	"M,P"
19	RTN	yes, we're done	19	ASWAP	"P,M"
20	STO 00	store in ROO	20	MAT=	result to M
21	ASTO 01	store Mname in R01	21	PURFL	purge P
22	" -,#"		22	MNAME?	MNAME to Alpha
23	MAT=	copy to aux matrix #	23	END	done
24	DIM?	get dimansion			
25	"P"				
26	MATDIM	auxiliary matrix P			
27	LBL 00 🔶	prepare alpha string	1	LBL "M^1/X"	MNAME in Alpha
28	"#,"	"#,"	2	1/X	
29	ARCL 01	"#,MNAME"	3	STO 05	store in R05
30	" -,P"	"#,MNAME,P"	4	MLN	matrix logarithm
31	M*M	matrix product	5	RCL 05	
32	VIEW 00	show current index	6	"/-,X"	prepare Alpha string
33	"P,#"		7	ASWAP	swap string
34	CLST		8	MAT*	scalar multiplication
35	MMOVE	copy result to #	9	MNAME?	recall MNAME
36	DSE 00	decrement index	10	MEXP	exponential
37	GTO 00	loop back if not ready	11	END	done
38	"#,"	"#,"			
39	ARCL 01	"#,MNAME"			
40	MAT=	copy result to #			
41	PURFL	purge #			
42	"P"				
43	PURFL	purge P			
44	MNAME?	recal MNAME to Alpha			
45	END	done.			

<u>Remarks:</u>- Both **MPWR** and **M^2** need one auxiliary matrix (**P**) to temporarily place the results of the matrix product – Additionally; **MPWR** needs a second auxiliary matrix (**#**) as well.

An alternative listing for M^1/X that includes a convergency check is shown in next page. Note how the calculations to check for the condition are a taxing step, in that it requires a scratch matrix to calculate its norm. On the positive side though, it'll spare us the wait for a non-convergent process that would take much longer until it's apparent so. So after some consideration the longer version is now in the module.

1	LBL "M^1/X"	MNAME in Alpha	19	Ε	
2	1/X	1/n	20	X>Y?	meets condition?
3	STO 05	save it in R05	21	GTO 00	yes, go on
4	SQR?	square?	22	"#"	no
5	LU?	yes but LU?	23	PURFL	get rid of scratch
6	-ADV MATRX	not square, show error	24	"DIVRGNT"	
7	-CCD MATRX	show "RUNNING"	25	PROMPT	show error message
8	ASTO 01	save MNAME in R01	26	LBL 00 🔶	
9	DIM?	dimansion to X-reg	27	CLA	
10	"#"	scratch matrix	28	ARCL 01	MNAME to Alpha
11	MATDIM		29	MLN	matrix logarithm
12	MIDN	make it Identity	30	RCL 05	1/n
13	CLA		31	" -,X"	prepare string
14	ARCL 01	MNAME to Alpha	32	ASWAP	
15	" -,#,#"	prepare string	33	MAT*	element multiplication
16	MAT-	intermediate result	34	MNAME?	MNAME to Alpha
17	ASWAP		35	MEXP	exponential matrix
18	FRNM	get its norm	36	END	done

The scratch matrix is removed in case there is divergence, or reused to calculate the logarithm if not – thus at least it's not all a waste of time. If there is no convergence (and you have nothing else to do) you may still go ahead and hit R/S after the error message to see how the precision factor keeps increasing until the "OUT OF RANGE" condition.

A general-purpose algorithm for the p-th. root $\{ M^1/N \}$

The principal p-th root of a non-singular matrix A (det A # 0) may be computed by the algorithm:

M0 = A; $Mk+1 = Mk . \{ (2.I + (p-2) Mk) (I + (p-1) Mk)^{(-1)} \}^p$

X0 = I; $Xk+1 = Xk (2.I + (p-2) Mk)^{-1} . (I + (p-1) Mk)$

where I is the Identity matrix

 $\begin{array}{ll} Mk \ \ tends \ to \ \ I \\ Xk \ \ tends \ to \ \ A^1/p \ \ as \ k \ tends \ to \ infinity \\ \end{array}$

The convergence is also quadratic if A has no negative real eigenvalue.

Implementing this algorithm requires $*six^*$ scratch matrices, mostly due to the fact that the matrix product M^*M requires the result matrix to be different from both factors. The total byte count is low but the memory requirement is a hefty toll because of this.

[Z] = I + (p-1).Mk, and: [Y] = 2.I + (p-2).Mk

and using these the algorithm becomes:

The listing below shows the program included in the module. Note that in addition to those six scratch matrices, the function **MPWR** uses another two, which brings the total count to *eight scratch matrices*. This makes this approach only valid for small order matrices, as the total memory requirement will be 8 times the size of the original matrix.

If the original matrix is in the data registers area, then the maximum order is 8x8 with the 8 auxiliary matrices stored in the X-Mem section. - Admittedly a little crazy, but it's better than nothing.

01	LBL "M^1/N"	•	42	"T,I,T"	
02	ASTO 02	MNAME	43	MAT+	[T] = 2.1 + (p-2).[#]
03	STO 03	p	44	"T,S,I"	
04	"[-,#"		45	M*M	
05	MAT=	[#] = [A]	46	"1"	
06	DIM?	n,n	47	RCL 03	
07	"^"		48	MPWR	
08	MATDIM		49	"#,I,S"	
09	MIDN	[^] =	50	M*M	
10	"1"		51	"S,#"	
11	MATDIM		52	MAT=	
12	"S"		53	"T"	
13	MATDIM		54	MINV	
14	"T"		55	"^,T,I"	
15	MATDIM		56	M*M	
16	"Z"		57	"I,Z,^"	
17	MATDIM"		58	M*M	
18	E		59	"#"	
19	STO 04	FNRM	60	FNRM	
20	LBL 00		61	VIEW X	
21	" "		62	X⇔04	
22	MIDN		63	RCL 04	
23	RCL 03	p	64	X#Y?	
24	E		65	GTO 00	
25	-	p-1	66	"^,"	
26	"X,#,S"		67	ARCL 02	
27	MAT*	[S] = (p-1).[#]	68	MAT=	
28	"S,I,S"		69	PURFL	
29	MAT+	[S]= I + (p-1).[#]	70	"Z"	
30	"S,Z"		71	PURFL	
31	MAT=	[Z] = [S]	72	"T"	
32	"S"		73	PURFL	
33	MINV	[S]= [S]^-1	74	"S"	
34	RCL 03	p	75	PURFL	
35	2		76	"["	
36	-	p-2	77	PURFL	
37	"X,#,T"		78	"#"	
38	MAT*	[T] = (p-2).[#]	79	PURFL	
39	2		80	CLA	
40	"X,I,I"		81	ARCL 02	
41	MAT*	[1] = 2.1	82	END	197 BYTES

Note: The character "#" represents the standard HP-41 symbol denoting "not equal to", ASCII value 29. It's not the same one used in MPWR, which is the ASCII value 35, the "hash" or pound sign.

Lie Product of two Matrices. { MLIE }

The lie product is defined as the resulting matrix obtained from the difference between the right and left multiplications of the matrices; or in equation form:

$$Lie(A,B) = -Lie(B,A) = AB - BA$$

Example.- Calculate the Lie product for matrices:

	[[1	2	4]			[[1	4	1]
A =	[3	5	7]	and:	B =	[5	9	2]
	[7	9	8]]			[6	5	3]

The results are:

Alpha, "A,B,C", Alpha XEQ " MLIE "	->	Lie(A,B) = [[15 [24 [58	11 19 85	-23] -65] -34]]
ALPHA. "B,A,C", ALPHA XEQ " MLIE "	->	Lie (B,A) = [-24	-11 -19 -85	23] 65] 34]]

The program listing is shown on the left. Note the usage of the scratch matrix "#" to temporarily hold the result of the two matrix products (always the same limitation imposed by M*M), and the extensive usage of the alpha string management functions, like **ASWAP** – necessary to deal with the three matrix names in the string.

In fact **SWAP** exchanges the contents of the Alpha register around the *first comma* character encountered; which makes it so interesting in this case.

1	LBL "MLIE"	"OP1, OP2, RES" in Alpha	15	ARCL 00	"RES,#,RES"
2	XEQ 00	calculate [OP1][OP2]	16	MAT-	
3	ST⇔A	complete string to stack	17	"#"	
4	MNAME?	RES	18	PURFL	purge #
5	ASTO 00		19	MNAME?	
6	ST⇔A	restores complete string	20	RTN	done
7	CLAC	"OP1,OP2,"	21	LBL 00	
8	ABSP	"OP1,OP2"	22	DIM?	get dimension
9	ASWAP	"OP2,OP1"	23	ASWAP	"OP2, RES, OP1"
10	"[-,#"	"OP1,OP2,#"	24	ASWAP	"RES, OP1, OP2"
11	XEQ 00	calculate [OP2][OP1]	25	MATDIM	create RES
12	CLA		26	ASWAP	"OP1, OP2, RES"
13	ARCL 00	"RES"	27	M*M	matrix product
14	"[-,"#,"	"RES,#"	28	END	return

Matrix Trace and remaining functions. { MTRACE }

In linear algebra, the trace of an n-by-n square matrix A is defined to be the sum of the elements on the main diagonal (the diagonal from the upper left to the lower right) of A, i.e.,

$$\operatorname{tr}(A) = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii}$$

where aii represents the entry on the i-th row and i-th column of A. The trace of a matrix is the sum of the (complex) eigenvalues, and it is invariant with respect to a change of basis. Note that the trace is only defined for a square matrix (i.e., $n \times n$).

Some of the properties of the trace are quite interesting and useful for other calculations, like eigenvalues and even determinants. In particular one could use the relationship that defines the trace of a product of matrices:

$$\operatorname{tr}(X^{\mathrm{T}}Y) = \operatorname{tr}(XY^{\mathrm{T}}) = \operatorname{tr}(Y^{\mathrm{T}}X) = \operatorname{tr}(YX^{\mathrm{T}}) = \sum_{i,j} X_{i,j}Y_{i,j}.$$

If we use an identity matrix in place of Y on the equation above it's clear that: $tr(A) = SUM \{[A] \circ [i]\},\$ where the "o" symbol denotes the Hadamard or entry-wise product - as obtained by MAT*.

The program in the SandMath however uses a direct approach, summing the elements in the diagonal – it's faster and doesn't require any auxiliary matrix to hold intermediate results.

Eigenvalues relationships.

The trace of a matrix is intricately related to its eigenvalues. In contrast with the determinant (which is the product of its eigenvalues); if A is a square n-by-n matrix with real or complex entries and if $\lambda 1, ..., \lambda n$ are the eigenvalues of A (listed according to their algebraic multiplicities), then

$$\operatorname{tr}(A) = \sum_{i} \lambda_{i}.$$
 $\operatorname{det}(A) = \prod_{i} \lambda_{i}.$

Another powerful property relates the trace to the determinant of the exponential of a matrix, as follows: (Jacobi's formula):

$$\det(e^A) = e^{\operatorname{tr}(A)} \; .$$

MTRACE uses a single-element approach, basically adding all the elements in the principal diagonal. For small to mid-size matrices this is faster than a block-approach, redimensioning and transposing the matrix such as the one sketched below (courtesy of Thomas Klemm):

Note that as of revision "Y" **MTRACE** is an MCODE function. Here's the sweet and short equivalent FOCAL program listing, compared side-by-side to a block-approach alternative implementation – which also requires a scratch matrix if one wishes to keep the original matrix unchanged, as well as some additional steps for Alpha housekeeping.

|* |. |. Note how in the alternative approach function **SUM** is used, which removes the need to calculate the last step of the sketch. Regardless, it's bigger and takes longer execution time, even without the test for square matrix condition.

1	LBL "MTRACE"	MNAME in Alpha	1	LBL "TRACE2"	
2	SQR? square?		2	" -,#"	prepare Alpha string
3	LU?	yes but LU?	3	MAT=	make scratch
4	-ADV MATRX	not square, show error	4	ASWAP	place in hot spot
5	0	initial sum value	5	DIM?	gets its dimensions
6	MSIJA	sets pointer to 1:1	6	E	
7	LBL 05 <		7	K>J	0,001
8	MRR+	recall element	8	+	
9	+	add to partial result	9	MATDIM	add one more column
10	FC? 09	end of row	10	TRNPS	transpose it
11	l+	no, next row	11	INT	
12	FC? 10	end of matrix?	12	MATDIM	make it a column matrix
13	GTO 05	no, next element	13	SUM	summ all elements
14	END	done	14	PURFL	purge scratch
			15	ASWAP	bring focus to original
			16	CLAC	alpha housekeeping
			17	ABSP	to erase all tracks
			18	END	

Row Division by Diagonal element. (Diagonal Unitary) { R/aRR }

This function is used to modify the values of all elements, dividing each row by its diagonal element; that is: aij = aij / aii, j=1,2,... n

In effect the result matrix has all its diagonal elements equal to 1 (i.e. diagonal is unitary). This type of calculation is useful for row simplification steps in matrix reductions; more like a vestigial function from when the major matrix operations were not available (i.e. the CCD days, pre-Advantage Pac).

1	LBL "R/aRR"	MNAME in Alpha	19	RDN	discard product
2	SQR?	square?	20	FC? 09	end of row?
3	LU?	yes but LU?	21	GTO 00	no, get next element
4	-ADV MATRX	not square, show error	22	FS? 10	end of matrix?
5	0		23	GTO 02	yes, exit
6	MSIJA	set pointer to 1:1	24	MRIJ	recall pointer
7	LBL 01		25	ENTER^	
8	MR	recall diag element	26	INT	
9	1/X	inverse value	27	ENTER^	
10	X<>Y	pointer to X	28	k>J	does E3/ if integer
11	MSIJ	set pointer	29	+	j,00j
12	Х<>Ү	value back to X-reg	30	MSIJ	set pointer
13	ENTER^		31	X<>Y	
14	ENTER^	fill stack w/ value	32	GTO 01	next row
15	LBL 00		33	LBL 02 🔶	
16	MR	recall element	34	DIM?	get dimansion
17	*	multiply	35	END	end
18	MSR+	store and increase column			

Transposing elements with { MXIJ }

A new function is included to facilitate the elmenet transposition. **MXIJ** exchanges the row and column of the selected element, returning the new selected element pointer to the X-Register. The matrix can be non-square, but an error message will show if the "transposed" pointer does not exist. Note that there's no need to recall the current pointer first.

The function does the equivalent to the following FOCL snippet: { MRIJ, I <> J, MSIJ }, which is simple enough but having it as a single function allows simplified FOCAL programs. See for example the routines below to make a matrix symmetric (using the upper triangular part), and to swap the upper and lower triangular parts of a square matrix.

01	LBL "MSYM"	Make Symmetric	01	LBL "MU <l"< th=""><th>Swau Upper/Lower</th></l"<>	Swau Upper/Lower
02	,		02	,	
03	MSIJA	1,001	03	MSIJA	1,001
04	LBL 01 <	ROW loop	04	LBL 01 <	ROW loop
05	MRIJ	i,00j	05	MRU	i,00j
06	INT	i	06	INT	i
07	loj –	0,00i	07	(o)	0,00i
08	LASTX	i	08	LASTX	i
09	+	i,00i	09	+	i,00i
10	MSIJ	diag element	10	MSIJ	diag element
11	J+	next column	11	J+	next column
12	FC? 10	all columns done?	12	FC? 10	all columns done?
13	RTN		13	RTN	
14	LBL 00 <	ROW loop	14	LBL 00 <	ROW loop
15	MR	aij	15	MR	aij
16	MXU	j,00i	16	MXU	j,00i
17	X⇔Y	aij	17	RDN	
18	MS		18	MR	aji
19	MXIJ	i,00j	19	X<>Y	aij
20	J+	next column	20	MS	aji = aij
21	FC? 09	row end?	21	MXU	i,00j
22	GTO 00	no, next element	22	X<>Z	aij
23	GT0 01	YES, do next column	23	MS	aij = aji
24	END	yes, done.	24	J+	ai,(j+1)
			25	FC? 09	row end?
te how the elements in the diagonal		26	GTO 00	no, next element	
e excluded from the exchange.		27	GTO 01	no, do next column	
			28	END	yes, done.

MXIJ is now used in a re-written version of **\SigmaIJJI**, featuring shorter code and faster execution:

01	LBL "SIJJI	15	LBL 00 <
02	,	16	MR
03	MSIJA	17	MXIJ
04	LBL 01	18	RDN
05	MRU	19	MR
06	INT	20	•
07	Koj	21	+
08	LASTX	22	MXIJ
09	+	23	J+
10	MSIJ	24	RDN
11	RDN	25	FC? 09
12	J+	26	GTO 00
13	FS? 10	27	GTO 01
14	RTN	28	END

Appendix: Moore-Penrose Matrix Pseudo-Inverse { MPINV }

In mathematics, and in particular linear algebra, a pseudoinverse A+ of a matrix A is a generalization of the inverse matrix. The most widely known type of matrix pseudoinverse is the Moore–Penrose pseudoinverse, which was independently described by E. H. Moore in 1920, Arne Bjerhammar in 1951 and Roger Penrose in 1955.

For A in $\{M\}(m,n;K)$, a pseudoinverse of A is defined as a matrix A⁺ in $\{M\}(n,m;K)$ satisfying all of the following four criteria:

$A A^+A = A$	$(AA^+$ need not be the general identity matrix,);
$A^{+}A A^{+} = A^{+}$	$(A^+$ is a weak inverse for the multiplicative semigroup);
$(AA+)* = AA^+$	$(AA^+$ is Hermitian); and
$(A^+A)^* = A^+A$	(A ⁺ A is also Hermitian).

The pseudoinverse exists and is unique: for any matrix A, there is precisely one matrix A⁺ that satisfies the four properties of the definition. A matrix satisfying the first condition of the definition is known as a generalized inverse. If the matrix also satisfies the second definition, it is called a generalized reflexive inverse. Generalized inverses always exist but are not in general unique. Uniqueness is a consequence of the last two conditions.

The SandMatrix uses the iterative method known as Ben-Israel & Cohen, defined by the following recurrence expression:

$$A_{i+1} = 2A_i - A_i A A_i,$$

This recursion produces a sequence converging quadratically to the pseudoinverse of A if it is started with an appropriate A0 satisfying [A0][A] = (A0 A)*. The choice A0 = α A* (where 0 < α < 2/ σ ^2(A), with σ (A) denoting the largest singular value of A) has been argued not to be competitive to other methods (like Greville's), because even for moderately ill-conditioned matrices it takes a long time before Ai enters the region of quadratic convergence. However, if started with A0 already close to the Moore–Penrose pseudoinverse and A0 A= (A0 A)*, for example A0:= [(A*A+ δ I)⁻¹] A*, convergence is fast (quadratic).

The SandMatrix uses the trace of the matrix product $A.A^T$ instead – which has shown stable convergence, even if finicky. Like always, the use of the 41CL in turbo mode or a good PC emulator is most recommended.

 $A_0 = \mu A^T$ where $A^T = \text{transposed of A, and } 0 < \mu <= 2 / \text{Trace}(A \cdot A^T)$

Example: verify that the pseudo inverse of the 3x4 matrix:

A =	$\begin{bmatrix} 1 & 1 & 4 & 2 \\ 0 & 1 & 2 & 3 \end{bmatrix}$,	is the 4x3 matrix : $A^+ = (1/112)$.	[[-21 [7	-
	[3267]]			[49 [-35	-

The FOCAL program is listed below for your reference – you'll be surprised to know that after some lengthy conversion of FOCAL code into MCODE the necessary room was freed up in the main bank of module to include it. With just 55 program steps the code is relatively short but it requires two auxiliary matrices for the calculations, besides the result matrix.

As always, the most limiting step is the **M*****M** instruction that requires the result matrix to be different from both operands. Note how all the control strings in Alpha drive the operations, and that the default conventions are mostly followed – with a couple of exceptions, like program line #30.

The auxiliary matrices [P] and [Q] are purged upon completion, but the result matrix [M+] does not overwrite the initial one, so both will remain in memory.

01	LBL "MPINV"		24	LBL 01 <
02	ASTO 01		25	XEQ 00
03	" -,+"		26	" +.#,%""
04	MAT=		27	M*M
05	DIM?	mxn	28	"+"
06	INT	m	29	MAT+
07	ю	0,00m	30	"+,%,+"
08	LASTX	m	31	MAT-
09	+	m x m	32	FNRM
10	"#"		33	X<> 00
11	MATDIM		34	RCL- (00)
12	"+"		35	ABS
13	TRNPS		36	VIEW X
14	XEQ 00		37	E-7
15	"#"		38	X<=Y?
16	MTRACE		39	GTO 01
17	"+,X,+"		40	"#"
18	MAT/		41	PURFL
19	FNRM		42	"%"
20	STO 00		43	PURFL
21	DIM?	n x m	44	MNAME?
22	"%"		45	RTN
23	MATDIM		46	LBL 00
			47	CLA
			48	ARCL 01
4 _{k+1} = 2	2 A _k - A _k A A _k with	$A_0 = \mu A A'$	49	" -,+,#"
			50	M*M
			51	END

The instruction RCL- (00) is from the SandMath module, and can be replaced by the pair: { RCL 00, - }

The convergence factor (in line 37) is chosen to be 1e-7 - feel free to change it to a more stringent or a looser one depending on the matrix. The deltas between the matrix norms of the successive iterations will be displayed until the final one is obtained.

The Pseudo-Inverse matrix name is left in Alpha, ready for **OMR**, **OMC**, or your favorite matrix editor program. The final matrix name is formed by adding the plus sign "+" to the original matrix name.

Warning: The program will leave the pseudo-inverse matrix in X-Memory, regardless of where the original matrix is stored. The reason being the naming convention, which makes the pseude-inverse name not valid for the Standard or CL-registers areas.

Sum of Diagonal / Crossed Elements products. { MPDS , $\Sigma IJJI$ }

Other two functions directly related to the eigenvalues are **MDPS** and **\SigmaIJJI**. They compute sums of element pair multiplication, either for those in the diagonal (aii * akk); or for "crossed" (i.e. opposite) ones, (aij * aji), with i#j – excluding the diagonal.

Armed with these functions the characteristic polynomial of a 3 x 3 matrix can be expressed very succinctly – as we'll see in Chapter 4 of the manual.

Example. Calculate the trace and the sums of diagonal and crossed elements for the matrix below:

-2	2	-4	Tr(A) = -2 + 1 - 1 = -2
-1	1	3	MDPS = (-2*1) - (1*1) + (2*1) = -1
2	0	-1	$\Sigma aij aji = -2 * 1 - 4 * 2 + 3 * 0 = -10$

Program listings – easy does it, element-wise.

1	LBL " S IJJI"	MNAME in Alpha	1	LBL "MDPS"	MNAME in Alpha
2	SQR?	square?	2	SQR?	square?
3	LU?	yes but LU?	3	LU?	yes but LU?
4	-ADV MATRX	not square, show error	4	-ADV MATRX	not square, show error
5	DIM?	dimension to X-reg	5	CF 00	default case
6	INT	n	6	DIM?	dimension to X-reg
7	E		7	3	
8	-	n-1	8	X<=Y?	is i >= 3?
9	E3/E+	1,00(n-1)	9	SF 00	flag case
10	CLA		10	0	initial sum
11	STO M		11	MSIJA	set pointer to 1:1
12	LBL 00 <	7	12	LBL 06 <	
13	RCL M	k,00(n-1)	13	MRR+	recall element
14	Ε		14	FS? 09	end of row?
15	E3/E+	1,001	15	GTO 00	yes, juom out
16	+	(k+1),00n	16	l+	no, increase row
17	STO N		17	MR	recall element
18	LBL 01 <		18	•	multiply
19	RCL M	k,00(n-1)	19	+	add to partial sum
20	INT	k	20	FC? 10	end of matrix?
21	RCL N	(k+1),00n	21	GTO 06	no, do next row
22	INT	k+1	22	LBL 00 <table-cell-columns></table-cell-columns>	
23	loj –	does E3/ for integers	23	FC? 00	order >3?
24	+	(k+1),00(n+k+1)	24	RDN	yes, get result to X-reg
25	MSIJ	sel pointer	25	FC?C 00	order >3?
26	MR	recall element	26	RTN	yes, done.
27	X<>Y		27	0	
28	loj –	does E3/ for integers	28	MSIJ	set pointer to 1:1
29	MSU	set pointer	29	RDN	ann to X-reg
30	RDN		30	MR	aoo
31	MR	recall element	31	•	a00 * ann
32	•	multiply them	32	+	add to the sum
33	ST+ O	add to partial sum	33	END	done
34	ISG N	increase row			
35	GTO 01	next element in row			
36	ISG M	increase colum			
37	GTO 00	next colum			
38	RCL O	partial sum to X-reg			
39	MNAME?	recall mname to Alpha			
40	END	done			

Matrix Polynomial { MPOL }

MPOL was a last-minute addition to the ROM, which somehow combines both matrix and polynomial algebra. Use it to calculate a matrix polynomial P(A) - not to be confused with a polynomial matrix - based on an existing **square** matrix [A] and a polynomial P(x).

P(A) is the result matrix calculated replacing the real variable x with [A], using the polynomial coefficients to multiply the different matrix powers as per the order of the polynomial terms. As it's the case all throughout polynomials, Honer's method proves very useful to reduce all the matrix powers to matrix multiplications – with considerable execution time reduction and simplification of the code.

Example.- Calculate P{A) for the following matrix and polynomial:

$$P(x) = 2 x^{4} - x^{3} + 3 x^{2} - 4 x + 5; \text{ and:}$$

$$A = \begin{bmatrix} 4 & 2 & 3 \\ 3 & 2 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 4 \end{bmatrix}$$

This is also a good example to become familiar with the editor and input routines available in the SandMatrix. First we'll create and populate the matrix using the **<u>Matrix Editor</u>** input functionality – very recommended for integer elements, as follows:

ALPHA, "A", ALPHA, 3,003, XEQ "MATDIM" creates the matrix in X-Mem, then:

XEQ "PMTM" -> at the prompt "R1: _" we type: 4, ENTER^, 2, ENTER^, 3, R/S -> at the prompt "R2: _" we type: 3, ENTER^, 2, ENTER^, 5, R/S -> at the prompt "R3: _" we type: 2, ENTER^, 1, ENTER^, 4, R/S

The Matrix has been completely input using "batches" (or lists) including all elements of each row simultaneously – this is an advantageous way to handle them that results in faster and less error-prone method, not based on a single-element prompt.

Note how pressing ENTER $^$ during this process results into a blank space in the display separating each of the elements, and that the sequence is terminated pressing R/S. Upon completion the matrix elements are stored in the Matrix file in extended memory.

The analogous function for the polynomial is **PMTP**, which requires the control word in x - a number of the form **bbb.eee**, denoting the beginning and ending registers that contain the polynomial coefficients. In this case:

2.006, XEQ "**PMTP**" -> at the prompt "R2: _" we type: 2, ENTER^, CHS, 1, ENTER^, 3, ENTER^, CHS, 4, ENTER^, 5, R/S

Note how in this case the function knows there's no more "rows" to add, and also that negative values are easily input using the CHS key. Upon completion the coefficients are stored in registers R01 to R05.

The last step is executing **MPOL** itself. To do that we place the matrix name in Alpha and the polynomial control word in X, then call **MPOL**. The resulting P(A) is stored in a new matrix named "**P**" - also located in an XM file - therefore [A] is not overwritten. Note however that this will overwrite [P] if it already exists. In this case we have:

P(A) = [[3548 1887 4705] [3727 1987 4962] [2539 1351 3385]] The result matrix name is placed in ALPHA when the execution ends, so you can directly use any matrix editor routine (like **OMR**) to review its elements. Note how **OMR** *will display integer values without any zeros after the decimal point, regardless of the current FIX settings.* Set flag 21 to stop the display of each individual element.

In addition to the result matrix P(A), **MPOL** also requires an auxiliary matrix for intermediate calculations. The matrix file "#" is temporarily created during the execution for this purpose, and deleted upon completion of the program. While this is transparent to the user you may want to remember this fact due to the extended memory needed to allow for it – with a total of $3 \times (n^2 + 2)$ registers used (including the file headers).

The last point to remember about **MPOL** is that it uses data registers R00 and R01 – which therefore *should not be used to store the polynomial coefficients*.

- R00 has the polynomial control word and is used as counter for the loop execution
- R01 has the matrix name. It's left unchanged.

Warning: if you use data registers to store the matrix (with "Rxxx"" name in ALPHA) make sure that the register range does not overlap with the polynomial coefficients.

Below you can see the program listing for **MPOL** – not a long program, albeit not as short as a simple polynomial evaluation for real variables. Note the use of function **I#J?** to check for square matrix, as well as the "shortcut" **-ADV MTRX** that puts the error message "*NOT SQUARE*" in the display and terminates the execution.

01	LBL "MPOL"	Mname in Alpha	23	"P,"	
02	SQR?	is it square?	24	ARCL 01	
03	LU?	LU form?	25	"/-,#"	"P,A,#"
04	-ADV MTRX	no, prompt error	26	M*M	
05	-CCD MTRX	shows 'RUNNING"	27	"#,P"	
06	E-3	cnt'l word in X	28	CLST	
07	-		29	MMOVE	
08	STO 00		30	ISG 00	next index
09	ASTO 01	saves Mname in R01	31	GTO 00	loop back
10	DIM?	dimensions	32	XEQ 02	
11	"P"		33	PURFL	purge auxiliary mat
12	MATDIM	creates scratch	34	MNAME?	bring result name
13	"#"		35	RTN	
14	MATDIM	creates scratch	36	LBL 02	
15	"X, "		37	"#"	
16	ARCL 01		38	MIDN	
17	",P"	"X,A,P"	39	"X,#,#"	
18	RCL IND 00		40	RCL IND 00	next coeff
19	MAT*	initial value	41	MAT*	
20	ISG 00	next index	42	"#,P,P"	
21	LBL 00		43	MAT+	add it to partial result
22	XEQ 02		44	END	

The auxiliary matrix "#" is needed because unfortunately **M*****M** does not allow the result product matrix to be the same as any of the multiplication factors. Not ideal, but at least we double-use it for other intermediate calculations as well (identity matrix products), killing two birds with the same stone.

This concludes the core matrix sections; it's time now to embark into the fascinating journey of characteristic polynomials and eigenvalues, as a prelude to the advanced polynomial chapter.

4. Polynomials and Linear Algebra

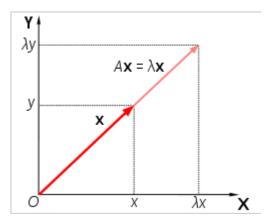
4.1. AIV POLYN

-817	POLYN	
USER	01	

Linear algebra is the branch of mathematics concerning vector spaces, as well as linear mappings between such spaces. Such an investigation is initially motivated by a system of linear equations in several unknowns. Such equations are naturally represented using the formalism of matrices and vectors.

	Function	Description	Input / Output
1	CHRPOL	Characteristic Polynomial	Under prgm control
2 EIGEN Eigen Values by SOLVE Under prgm control		Under prgm control	
3	EV2X2	Eigen values 2x2	Subroutine mode
4 EV3X3 Eigen values 3x3 Prompts Matrix Elements		Prompts Matrix Elements	
5	JACOBI	Symmetrical Eigenvalues	Under prgm control

4.1. Eigenvectors and Eigenvaules.


An eigenvector of a square matrix **A** is a non-zero vector $\boldsymbol{\nu}$ that, when the matrix is multiplied by $\boldsymbol{\nu}$, yields a constant multiple of v, the multiplier being commonly denoted by λ . That is:

$$Av = \lambda v$$

The number λ is called the eigenvalue of $\boldsymbol{\mathsf{A}}$ corresponding to $\boldsymbol{\textit{\nu}}$

In analytic geometry, for example, a three-element vector may be seen as an arrow in three-dimensional space starting at the origin. In that case, an eigenvector of a 3×3 matrix v is an arrow whose direction is either preserved or exactly reversed after multiplication by A.

The corresponding eigenvalue determines how the length of the arrow is changed by the operation, and whether its direction is reversed or not, determined by whether the eigenvalue is negative or positive.

A vector with three elements may represent a point in three-dimensional space, relative to some Cartesian coordinate system. It helps to think of such a vector as the tip of an arrow whose tail is at the origin of the coordinate system. In this case, the condition "u is parallel to v" means that the two arrows lie on the same straight line, and may differ only in length and direction along that line.

If we multiply any square matrix A with n rows and n columns by such a vector v, the result will be another vector w = A v, also with n rows and one column. That is,

$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} \text{is mapped to} \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} A_{1,1} & A_{1,2} & \dots & A_{1,n} \\ A_{2,1} & A_{2,2} & \dots & A_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n,1} & A_{n,2} & \dots & A_{n,n} \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$$

where, for each index i,

$$w_i = A_{i,1}v_1 + A_{i,2}v_2 + \dots + A_{i,n}v_n = \sum_{j=1}^n A_{i,j}v_j$$

In general, if v is not all zeros, the vectors v and A v will not be parallel. When they are parallel (that is, when there is some real number λ such that A v = λ v) we say that v is an eigenvector of A. In that case, the scale factor λ is said to be the eigenvalue corresponding to that eigenvector.

In particular, multiplication by a 3×3 matrix [A] may change both the direction and the magnitude of an arrow v in three-dimensional space. However, if v is an eigenvector of A with eigenvalue λ , the operation may only change its length, and either keep its direction or flip it (make the arrow point in the exact opposite direction). Specifically, the length of the arrow will increase if $|\lambda| > 1$, remain the same if $|\lambda| = 1$, and decrease it if $|\lambda| < 1$. Moreover, the direction will be precisely the same if $\lambda > 0$, and flipped if $\lambda < 0$. If $\lambda = 0$, then the length of the arrow becomes zero.

4.1.1. Eigenvalues and eigenvectors of matrices: Characteristic Polynomial.

The eigenvalue equation for a matrix A is:

which is equivalent to

$Av - \lambda v = 0, \tag{2}$	$A - \lambda I$	v = 0,
-------------------------------	-----------------	--------

where **I** is the n x n identity matrix. It is a fundamental result of linear algebra that an equation $\mathbf{M} \mathbf{v} = \mathbf{0}$ has a non-zero solution \mathbf{v} if, and only if, the determinant det(M) of the matrix **M** is zero. It follows that the eigenvalues of **A** are precisely the real numbers λ that satisfy the equation

$$\det(A - \lambda I) = 0$$

The left-hand side of this equation can be seen to be a polynomial function of the variable λ . The degree of this polynomial is n, the order of the matrix. Its coefficients depend on the entries of **A**, except that its term of degree n is always $(-1)^n \lambda^n$. This polynomial is called the characteristic polynomial of **A**; and the above equation is called the characteristic equation (or, less often, the secular equation) of **A**.

4.1.2. Additional properties of eigenvalues

The trace of A, $tr{A}$, defined as the sum of its diagonal elements, is also the sum of all eigenvalues, and the determinant of A, $det{A}$ is the product of all its eigenvalues:

$$\operatorname{tr}(A) = \sum_{i=1}^n a_{ii} = \sum_{i=1}^n \lambda_i \quad \det(A) = \prod_{i=1}^n \lambda_i$$

These properties are all that's needed to calculate the egenvalues of a 2x2 matrix, as the solutions of the quadratic eqution: $\lambda^2 - \lambda tr(A) + det(A) = 0$. See the routine below for details:

01 LBL "EV2X2"	; Expects the Matrix name in ALPHA
02 E	; second degree coefficient
03 MTRACE	; matrix trace
04 CHS	; first degree coefficient
05 MDET	; this will leave the matrix in its LU form
06 QROOT	; quadratic equation roos (in the SandMath)
07 END	; done – it doesn't get any simpler than that!

4.1.3 SOLVE-based Implementation. { EIGEN }

In addition to **EV2X2** there are other three programs in the SandMatrix that calculate eigenvalues. The first one is aptly named **EIGEN**, and is a brute-force approach using the direct definition of the eigenvalue given above. What makes it interesting is the direct application of SOLVE (of **FROOT** in the SandMath) plus the combination of matrix functions to calculate the secular equation to solve for.

EIGEN can be used in manual mode (with guided prompts and data entry – or in a subroutine. In manual mode it creates a matrix named " \mathbb{EV} " in X-mem. and will prompt for the elements data. In subroutine mode it'll take the matrix name from Alpha.

The function is "aware" of whether it's being run in RUN or PROGRAM mode, so that the data entry is omitted during a program execution. There's no need to remember to set user flags or clear it for manual mode, saving one FAT entry for a subroutine as well.

The program checks that the matrix is square and not in LU-decomposed form – presenting error and warning messages respectively. For LU-decomposed matrices you can double-invert them "on the spot" (assuming they're invertible) and keep going just pressing R/S.

NOT SOUARE	LU FORM
USER	USER

The selection of the interval [a,b] plays an important role in finding the solution – obviously the closer to the actual value the faster it'll find it. Remember also that the accuracy is determined by the display settings on the calculator, so FIX 9 will provide for both the most accurate and longest execution time.

Example. Find one eigenvalue for the matrix A below using the subroutine mode.

	3	1	5^{-}	1
A =	$\begin{bmatrix} 3\\ 3\\ 4 \end{bmatrix}$	3	1	
	4	6	4	

Keystrokes	Display	Result
ALPHA, " EV3 ", ALPHA 3.003, XEQ" MATDIM " XEQ " PMTM " 3, ENTER^, 1, ENTER^, 5, R/S 3, ENTER^, 3, ENTER^, 1, R/S 4, ENTER^, 6, ENTER^, 4, R/S	X-reg contents 3.0 0 3 "R (: _ " "R 2: _ " "R 3: _ " 5.0 0 0 0	MNAME is in Alpha Creates matrix in X-Mem Prompts for the first row second row third row
XEQ " EIGEN " R/S 5, R/S 15, R/S	"□ R I E R = 7" "L □ ' V.= 7" "H I ' V.= 7" flying goose "E V = 10,000000"	press R/S to use the Matrix in ALPHA Prompts for lower bound Higher bound FROOT is working on it ev found (in FIX 5).

Note that if you entered a value for the "*ORDER?*" question the program proceeds to create a new matrix and prompt for all its elements. If you want to use the matrix in ALPHA just press "R/S"

The original matrix is not modified in any way but note that an auxiliary matrix is created for the calculations. This scratch matrix "#" is not purged automatically from X-Mem, you'll have to do that after you're done calculating as many eigenvalues as you need.

Below is the program listing for **EIGEN**. Note how the equation to solve already requires an auxiliary FAT entry, **#EV** – since a global label is always needed by **FROOT**. (You can refer to the SandMath manual if you need to refresh your understanding of FROOT and FINTG)

1	LBL "EIGEN"		23	"HI V'=?"	
2	FS? 06	subroutine mode?	24	PROMPT	prompt upper bound
3	GTO 01	yes, skip data entry	25	-CCD MATRX	show "RUNNING"
4	-SNDMATRX 4	prompts "ORDER=?"	26	"#EV"	
5	STOP		27	FROOT	Solve for Ev (!)
6	Ε		28	TONE 4	found!
7	E3/E+	1,001	29	"EV="	
8	*	n,00n	30	ARCL X	
9	"EV"	hard-coded name	31	PROMPT	display result
10	MATDIM	create square matrix	32	GTO 00	next guess
11	IMR	input elements	33	LBL "#EV"	subroutine
12	LBL 01 🔶		34	"#"	
13	ASTO 00	save MNAME in R00	35	MIDN	make matrix identity
14	SQR?	not square?	36	"X"	
15	LU?	LU decomposed?	37	MAT*	multiply it by scalar guess
16	-ADV MATRX	show error	38	"#,"	
17	DIM?	dimensions	39	ARCL 00	prepare Aplha string
18	"#"	scratch matrix	40	" -,#"	
19	MATDIM	as identity one	41	MAT-	calculate the eigen matrix
20	LBL 00 🔶 🔶	1	42	MDET	get its determinant
21	"LOW V'=?"		43	END	return
22	PROMPT	prompt lower bound			

EIGEN works for N-dimensional orders. In that regard its execution time (provided that a decent initial guess is given) compares favorably to that of **CHRPOL**, the other program that calculates eigenvalues. The difference of course is that **CHRPOL** obtains *all the eigen values* simultaneously, whilst **EIGEN** does it one at a time.

When compared to other approaches, the program listed above is *almost minimalistic* – that's its real benefit and the reason that justifies its inclusion in the SandMatrix module. However relying on **FROOT** is clearly not a robust approach to calculate eigenvalues - The calculation of the characteristic polynomial using dedicated methods is a necessity.

4.1.4. 3-Dimensional case. { EV3X3 }

Let's start with the particular case n = 3. In this scenario there are simple formulas to calculate the characteristic polynomial, which make the calculations simpler and faster. The formulas are derived from the properties of the characteristic polynomial. Let's enumerate the most important ones.

The polynomial pA(x) is monic (its leading coefficient is 1) and its degree is n. The most important fact about the characteristic polynomial was already mentioned in the motivational paragraph: the eigenvalues of A are precisely the roots of pA(x). The coefficients of the characteristic polynomial are all polynomial expressions in the entries of the matrix. In particular its constant coefficient pA(0) is $det(-A) = (-1)^n det(A)$, and the coefficient of $x^n(n-1)$ is tr(-A) = -tr(A), where tr(A) is the matrix trace of **A**. For a 2×2 matrix A, the characteristic polynomial is therefore given by:

$$\det(A) - \operatorname{tr}(A)\lambda + \lambda^2,$$

For a 3×3 matrix, the formula specifies the characteristic polynomial to be

$$\det(A) - c_2\lambda + \operatorname{tr}(A)\lambda^2 - \lambda^3 \,.$$

where **c2** is the sum of the principal minors of the matrix =

$$\frac{1}{2} \left((\mathrm{tr} A)^2 - \mathrm{tr} (A^2) \right)$$

Given the above definitions it is clear now why functions **MDPS** and **\SigmaIJJI** will be helpful to obtain the coefficients of the characteristic polynomial for n=3. In effect, when using those functions the formulas change as follows: **c2** = (**MDPS** - **\SigmaIJJI**)

For the manual mode (not as subroutine), two choices are offered: 1) to use the matrix in ALPHA or create a new one, and 2) to see the coefficients of the polynomial before calculating its roots (i.e. the eigenvalues). Note that these will only take [Y] / [N] as valid inputs.

Example 1. Calculate the eigenvalues for **A**, with aij = ij

Solution: pA(x) = 3.25E-8 x3 - 60 x2 - 66 x + 1 = 0

Example 2. Calculate the eigenvalues for **A**, with aij = 1,2,3...9

Solution: pA(x) = 2.7426E-9 x3 - 18 x2 - 15 x = 0

x1= 16,1168 x2 = -1,1168 x3 = 2,89100E-9

It is therefore a relatively easy exercise to write a program to deal with this case, as shown in the program listing in next page.

1	LBL "EV3X3"		36	+	
2	CF 06	clear subroutine flag	37	X#Y?	
3	"EV"		38	GTO 01	wrong key
4	Ε		39	3	choice accepted
5	E3/E+	1,001	40	LBL 05 <	coefficientes loop
6	3		41	"b("	
7	•	3,003	42	AIP	
8	MATDIM		43	"[-)="	
9	IMR	enter elements	44	ARCL IND X	
10	GTO 06		45	PROMPT	
11	LBL "3EV"		46	Ε	
12	SF 06	set subroutine flag	47	-	
13	LBL 06 \prec 🚽		48	X<0?	last one?
14	-CCD MATRX	show "RUNNING"	49	GTO 11	yes, jump over
15	MTRACE	calculates tr(A)	50	GTO 05	no, get next one
16	CHS	change sign	51	LBL 11	proceed with roots
17	STO 02	save it in RO2	52	Ε	fill stack with coeffs
18	MDPS	get the sum of minors	53	RCL 02	
19	STO 01	as a combination	54	RCL 01	
20	ΣIJJI	of functions into R01	55	RCL 00	
21	ST- 01		56	CROOT	calculate roots
22	MDET	calculate determinant	57	FS?C 06	was subroutine?
23	CHS	change sign	58	RTN	yes, end
24	STO 00		59	"X="	show results
25	FS? 06	subroutine mode?	60	ARCL Z	always a real one
26	GTO 11	yes, skip prompting	61	PROMPT	
27	CF 21		62	FC? 43	complex?
28	"CFS? Y/N"	offer choice	63	GTO 01	no, skip prompting
29	AVIEW		64	X<> Z	yes, clear Z
30	LBL 01	decode the Y/N input	65	CLX	
31	GETKEY		66	X<> Z	
32	41		67	LBL 01 <	
33	X=Y?		68	QROUT	show other two roots
34	GTO 11	choice rejected	69	END	done
35	30				

Program remarks.-

- Like **EIGEN** before, this function behaves differently in RUN and Program modes skipping the data entry part during a program execution. Note that in manual mode **EV3X3** will create a matrix named "EV" if you answer "Y" to the "NEW? Y/N" question, but that in program mode it will work with *any* 3x3 matrix which name is in Alpha. This is compatible with **EIGEN** in its subroutine mode as well.
- It's also important to remark that *the used matrix cannot be in LU form* otherwhise the **MDET** function will return an error.
- The three roots are obtained using the SandMath function **CROOT**, an all-MCODE implementation of the Cardano-Vieta formulas. Function **QROUT** is also used to display them.

4.1.5 General case: N-dimensional general matrix. { CHRPOL }

The original **CHRPOL** - as it appeared in previous versions of the SandMatrix - was written by Eugenio Úbeda (as published in the UPLE), and later on adapted to the SandMatrix. Note however that it didn't make use of any advanced Matrix function. It was a user-friendly program; providing step-by-step guidance for the data entry and didn't require any set-up preparation (like creating matrices) prior to the execution.

In this version **CHRPOL** has been re-written from the ground up, really taking advantage of the powerful matrix function set. It is a much-improved solution, about twice as fast and with half the (comparable) code - It however now requires you to first create the matrix and input its elements.

Algorithmically it still uses the same modification of the Leverrier-Faddeev method to determine the coefficients of the characteristic equation of the n x n matrix; which roots are the eigenvalues of the matrix. It also employs the matrix trace in the process. The coefficients are calculated using the iterations:

b1 = -tr (B1), with B1 = the original matrix, and <math>bk = -tr (Bk) / k, with Bk = A(Bk-1 + bk-1 I), k=2,... n

The program works for orders n between 3 and 14. The case n=2 has a trivial solution [given by b2=1, b1=tr(A), and b0 = -det(A)]; therefore doesn't need to be included.

Example. Obtain the characteristic polynomial for the matrix A given below:

	[[1	-0.69	0.28]
A =	[-0.69	1	0.18]
	[0.28	0.18	1]]

Keystrokes	Display	Result
ALPHA , "AA", ALPHA	current X-reg	Matrix name in Alpha
3.003 , XEQ "MATDIM"	3.0 0 3 ·	Creates matrix in X-Mem
XEQ "IMR"	"@ ((= 7"	Prompts for data, also
1, R/S	"a (2 = 7"	showing current values
0.69, CHS, R/S	"⊡ (∃ = 7″	-
0.28, R/S	"@2,(= 7"	
0.69, CHS, R/S	"a2,2 = 7"	
1, R/S	"a2,3= 7″	
0.18, R/S	"ω∃,(± 7″	
0.28, R/S	"a3,2 = 7"	
0.18, R/S	"o_3,3 = 7"	Last element
1, R/S	1.000	
XEQ "CHRPOL"	"RUNNING"	scrolls in the display, then
-	"Σ(⊡КЖХ↗К〉″	Reminder of convention
(*) set F21	"a= ("	(round) Coefficient of x^3
if you want AVIEW	"a2=-3"	(round) Coefficient of x^2
to stop each time	"a (=2.4 (3 (00"	Coefficient of x
	°₀∅ <u>=</u> -∅.∃Ч∃5Ч8″	First coef (independent term).
	"RUNNING'	Scrolls in the display, then
	"X=0,180390390"	First eigenvalue
R/S	"X = 1, 12 (568609"	Second eigenvalue
-	"X= (698238062"	Third and last.

See the program code below in its entire splendor -

Remarks: Two auxiliary matrices are used, but the original matrix is left unaltered. The first part of the program (up to line 60) calculates the coefficients of the characteristic polynomial – and displays them for informational purposes. It then transfers the execution to the root finder routines. Note that for cases n=3 and n=4 we take advantage of the dedicated functions **CROOT** (in the SandMath) and **QUART**, which results in a much faster execution than the general case using **RTSN**.

1	LBL "CHRPOL"	MNAME in Alpha	55	STO 01	it's monic (!)
2	SQR?	is it square?	55	E3/E+	1.001
3	LU?	yes, but LU form?	56	+	1.00(n+1) - cnt'l word
4	-ADV MATRX	not square, show error	57	"#"	
5	ASTO 01	MNAME	58	PURFL	
6	-CCD MATRIX	shows 'RUNNING"	59	"P"	
7	" -,P"		60	PURFL	
8	MAT=	B = A	61	PVIEW	for information
9	ASWAP		62	-CCD MATRIX	shows 'RUNNING"
10	DIM?	n,00n	63	PDEG	new destination
11	INT	n	64	STO 00	as expected by RTSN
12	STO 00		65	4	
13	Ε		66	X>=Y?	n<=4?
14	+	n+1	67	GTO 04	yes, particular case
15	MDET	determinant	68	CLX	no, general case
16	RCL 00		69	E	no, general case
17	CHSYX	independent term	70	+	n+1
18	STO IND Y	stored in Rn+1	71	E6	
19	ASWAP		71	/	0,000/00(n+1)
20	MAT=	avoids LU issues	72	3	build the "from,to"
20	DIM?		73	E3/E+	1.003
22	"#"	auxiliary array	74	+	1.003/00(n+1)
22	# MATDIM		75	REGMOVE	as expected by RTSN
		0.00=	76		as expected by RTSN
24	FRC	0,00n		RTSN	
25	2	2.00	78	GTO 00	go to EXIT
26	+	2,00n	79		
27	STO 00		80	X#Y?	n#4?
28	CF 21	not halting VIEW	81	GTO 03	-
29	LBL 00		82	RCL 02	a3
30	VIEW 00	shows index	83	RCL 03	a2
31	"#"		84	RCL 04	a1
32	MIDN	[#] = [1]	85	RCL 05	a0
33	"P"		86	QUART	
34	MTRACE	tr (B)	87	GTO 00	go to EXIT
35	RCL 00		88	LBL 03 🔶	
36	INT	k+1	89	RCL 01	а3
37	Ε		90	RCL 02	a2
38	-	k	91	RCL 03	a1
39	1		92	RCL 04	aO
40	CHS		93	CROOT	
41	STO IND 00	pk = -tr (B) / k	94	"X="	
42	"X,#,#"		95	ARCL Z	
43	MAT*	[#] = pk [I]	96	PROMPT	real root
44	"P,#,#"		97	FC? 43	is RAD on?
45	MAT+	[#] = [B] + p[I]	98	GTO 01	yes, complex roots
46	CLA		99	X<> Z	no, real roots
47	ARCL 01		100	CLX	so we clear Z
48	" -,#,P"		100	X<> Z	
49	M*M	B= A (B - p I)	101		
50	ISG 00	ייק טווי כ	102	QROUT	output roots
51	GTO 00		103		
52	DIM?	n,00n	104	MNAME?	bring MNAME back
22		0,00n		END	done
53	FRC	0.00n	106		

Particular case: Symmetric Matrices { JACOBI } - Moved to Advntg_MATH Module

For symmetric matrices the Jacobi algorithm provides a faster method. **JACOBI** was written by Valentín Albillo, and published in PPCTN, V1N3 (October 1980). I've only slightly adapted it to the SandMatrix, but basically remains the same as originally written. The paragraphs below are directly taken from the above reference to explain its workings.

This program computes all eigenvalues of a real symmetric matrix up to 22 x 22. It uses the Jacobi method, which annihilates in turn selected off-diagonal elements of the given matrix **A** using elementary orthogonal transformations in an iterative fashion, until all off-diagonal elements are zero when rounded to a given number of decimal places. Then the diagonal values are the eigenvalues of the final matrix.

The method explained. The Jacobi method does not attempt to solve the characteristic equation for its roots. It is based in the fact that a n x n symmetric matrix has exactly n real eigenvalues. Given **A**, another matrix **S** can be found so that: **S A S**^T = **D** is a diagonal matrix, whose elements are the eigenvalues of **A**.

The Jacobi method starts from the original matrix **A** and keeps on annihilating selected off-diagonal elements, performing elementary rotations. Let's single out an off-diagonal element, say a_{pq} , and annihilate it using an elementary rotation. The transformation R is defined as follows:

 $Rpp = \cos z; Rpq = \sin z; Rqp = -\sin z; Rqq = \cos z$ Rii = 1; Rpk = Riq = Rik = 0;for i#p,q and k#p,q

Let's now denote: $\mathbf{B} = \mathbf{R}^{\mathsf{T}} \mathbf{A} \mathbf{R}$, which elements are as follows:

 $bip = aip \cos z - aiq \sin z$ $biq = aip \sin z + aiq \cos z$ $bik = aik ; \quad \text{where } i, k \ \# p, q$ $bpp = app \cos^2 z + aqq \sin^2 z - 2 \text{ apq } \sin z \cos z$ $bqq = app \sin^2 z + aqq \cos^2 z + 2 apq \sin z \cos z$ $bpq = 0, \quad \text{and the remaining elements are symmetric.}$ where: $\sin z = w / \operatorname{sqrt}(2(1 + \operatorname{sqrt}(1 - w^2))), \text{ and } \cos z = \operatorname{sqrt}(1 - \sin^2 z)$ with: $L = -apq, \quad M = (app - aqq) / 2, \text{ and } w = L \operatorname{sign}(M) / \operatorname{sqrt}(M^2 + L^2)$

This is iterated using a strategy for selecting each non-diagonal element in turn, until all non-diagonal elements are zero when rounded to a specific number of decimal places. When this is so, the diagonal contains the eigenvalues.

Program remarks. The accuracy and running times are display settings-dependent, however the computed eigenvalues are very often more accurate that it'd appear; for instance, using FIX 5 it's quite possible to have eigenvalues accurate to 8 decimal digits. The program is written to be as fast as possible and to occupy the minumim amount of program memory; the matrix is stored taking into account its symmetry, so that all elements are stored only once (as aji = aij). For a nxn matrix minimum size is [$\frac{1}{2}$ ($n^2 + n$) + 7].

	[[25	-41	10	-6]
A =	[-41	68	-17	10]
	[10	-17	5	-3]
	[-6	10	-3	2]]
	A =	A = [-41 [10	A = [-41 68 [10 -17	$A = \begin{bmatrix} 25 & -41 & 10 \\ -41 & 68 & -17 \\ 10 & -17 & 5 \\ -6 & 10 & -3 \end{bmatrix}$

Keystrokes	Display	Result
XEQ " JACOBI " 4, R/S 25, R/S 41, CHS, R/S 10, R/S	°ОRЈЕR=?″ °α (1=?″ °α (2=?″ °α (3=?″ °α (4=?″	Prompts for dimension Data entry starts
6, CHS, R/S 68, R/S 17, CHS, R/S 10, R/S 5, R/S	[™] а 2:2 :: 7 ″ [™] а 2:3 :: 7 ″ [™] а 2:3 :: 7 ″ [™] а 3:3 :: 7 ″ [™] а 3:3 :: 7 ″	Note how the symmetric elements are skipped
3, CHS, R/S 2, R/S 5, R/S	™⊒ Ч.Ч = ?″ ™PREE.= ?″ ™RUNNING″ ™X = 0.0 3302″	input the last element Asks for precision Scrolling on the display
R/S R/S R/S	"X = 98,52 70" "X = 1,18609" "X = 0,25920"	After a while ~ 2.5 m in normal 41 the four ev's are displayed.

Example. Repeat the same case but using **CHRPOL**, to obtain the polynomial and its roots.

Keystrokes	Display	Result
ALPHA, "AA", ALPHA 4.004, XEQ " MATDIM " XEQ " PMTM " 25, ENTER^, CHS, 41, ENTER^	current X-reg 닉곕 십 닉 까尺 〔 _ ″	Matrix name in Alpha Creates mtrix in X-Mem prompts for row-1
10, ENTER, CHS, 6, R/S CHS, 41, ENTER^, 68, ENTER^	<i>™R 2</i> : _ ″	prompte for row-2
CHS 17, ENTER^, 10, R/S 10, ENTER^, CHS, 17, ENTER^	" <i>R 3</i> : _ "	prompts for row-3
5, ENTER^, CHS, 3, R/S CHS, 6, ENTER^, 10, ENTER^,	<i>"RЧ</i> :_"	prompts for row-4
CHS, 3, ENTER [^] , 2, R/S	°R⊔NNIN5″	Corolling on the display
XEQ " CHRPOL " R/S	`Σ< щ K ж X 7 K > ″	Scrolling on the display Reminder of convention
140	"o 4 = ("	Coefficient of x^4
	"a==- (00"	Coefficient of x^3
	"aZ= 146"	Coefficient of x^2
	"ω (=-35"	Coefficient of x
	" <u>o</u> 0: (00000"	First coef. (independent term)
	"RUNNING"	Scrolling on the display
	"× 1=98,52 170"	Frst root
R/S	** <i>2=</i> ,18609″	Second root
R/S	××∃=0,259/9″	Third root
R/S	"X 4 <u>=</u> 0,0 = = 0 2 "	Fourth and last root.

The solution is: $Chr(A) = x^4 - 100 x^3 + 146 x^2 - 35 x + 1$ with roots shown in the text above.

4.2.- Managing Polynomials.

The remaing of this chapter is about polynomials. Let's first cover those functions used to manage the data entry and output for them, polynomial math and some handy utilities used in the other programs.

	Function	Description	Input / Output	
7	DTC	Deleting Tiny Coefficients	Control word in X	
8	P+P	Polynomial Sum	Driver for PSUM	
9	P-P	Polynomial Subtraction	Driver for PSUM	
10	P*P	Product of Polynomials	Driver for PPRD	
11	P/P	Division of Polynomials	Driver for PDIV	
12	PCPY	Polynomial Copy	Control word in X-reg, destination in Y	
13	PDIV	Euclidean Division	Control words in Y- and X-regs	
14	PEDIT	Edits Polynomial Coefficients	Control word in X-Reg	
15	PMTP	Prompts for Coeffs in Alpha List	Control word in X-Reg	
16	PPRD	Polynomial Multiplication	Control words in Y- and X-regs	
17	PSUM	Polynomial Addition & Subtraction	Control words in Y- and X-regs	
18	PVAL	Polynomial Evaluation	Control word in Y, argument in X	
19	PVIEW	Views Polynomial Coefficients	Control word in X-Reg	

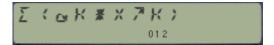
4.2.1. Defining and Storing Polynomials.

A polynomial is an expression of the form

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0,$$

where a(n)#0

Or, more concisely:


$$\sum_{i=0}^{n} a_i x^i$$

Polynomials can only be stored in main memory (ie. not as X-mem files), thus the way to handle them will be by a *control word* of the form **bbb.eee**, which denotes the beginning and end registers that hold the polynomial coefficients, a(i)

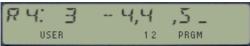
The coefficients are stored starting with the *highest order term first* (ie. x^n) in register bbb, and ending with the *zero-th term last,* stored in register eee. It follows that the degree of a polynomial n verifies: n = (eee -bbb).

For instance, the control word **1,007** represents a polynomial of degree 6, which coefficients are stored as follows: a(6) in R01, a(5) in R02, a(4) in R03, a(3) in R04, a(2) in R05, a(1) in R06 and a(0) in R07.

The Polynomial Editor. There are three functions available in the SandMatrix to enter and review polynomials in the calculator. The main one is **PEDIT**, which takes the input from the control word in the X-register and sequentially prompts for each coefficient value. The first thing it does is present a reminder of the convention used, relating the subindex to the power of the variable for each term:

A nice feature is that it'll check for available data registers to complete all the storage, re-adjusting the calculator SIZE if necessary. **PEDIT** does not use any data registers itself.

Note that **PEDIT** includes in the prompts the current value held in the corresponding data register, so you don't need to type a new one if it's already correct. Alternatively you can use **PVIEW** to review the coefficients without any editing capabilities. In this mode the prompts don't have the question mark at the end, which indicates the value cannot be changed from the program.



You can control wether PVIEW stops after each prompt or does the complete listing without stopping by setting or clearing the user flag 21. Note also that if the coefficient is an integer value it will not display the zeroes after the decimal point – in both editi and review modes.

A faster alternative for data entry is **PMPT** – the *polynomial prompt*. This one does for polynomials what **PMTM** did for matrices: the data entry is done as a list in Alpha, containing the values of all coefficients at once.

This is obviously limited by the total length available in the Alpha register (24 characters), including the blank spaces that separate each entry, and the minus signs for negative values. The two leftmost characters in the prompt indicate the first data register used to sore the coefficients (not the row# as in the Matrix case). These characters are not part of the final list, and therefore aren't included in the total count.

Another restriction of **PMTP** is that values cannot be expressed in exponential form (using EEX), which key is ignored during the process. You *can* use negative and decimal values as the CHS and [,] (radix) keys are active. Obviously the back arrow key is always active to correct wrong entries.

1	LBL "PEDIT"		27	"]-="	
2	SF 08	flags mode	28	RCL IND Y	append current value
3	ENTER^	copies cntl word to Y	29	FRC?	has fractional part?
4	<>J	swaps bbb and eee	30	ARCL X	yes, append as is
5	E		31	INT?	integer
6	+		32	AINT	yes, append IP only
7	SIZE?	current size	33	FC? 00	editable?
8	X<>Y		34	AVIEW	no, show already
9	X>Y?	not enough?	35	FC? 08	editable?
10	PSIZE	adjust size	36	GTO 02	no, next coeff
11	RDN		37	LBL 00	
12	RDN	cntl word to X-reg	38	"/-?"	append "?"
13	GTO 00	skip over	39	CF 22	reset data entry flag
14	LBL "PVIEW"		40	PROMPT	
15	CF 00	flags mode	41	FC? 22	value entered?
16	LBL 00		42	GTO 02	no, next coeff
17	-ADV POLYN	shows convention	43	STO IND Z	yes, store it
18	PSE		44	RDN	discard entry
19	ENTER^	copies cntl word to Y	45	LBL 02 🔶	
20	PDEG	polyn degree	46	DSE X	decrement counter
21	X<>Y	cntl word to X-reg	47	NOP	
22	STO L	saves it in L	48	ISG Y	increment register
23	X<>Y	degree to X-reg	49	GTO 01	next register
24	LBL 01		50	LASTX	get control word
25	"a"		51	END	done
26	AIP	append index			

4.2.2. Polynomial Arithmetic { PSUM , PPRD , PDIV }

The arithmetic functions provide convenient functionality for the basic operations: addition, subtraction, multiplication and eucliedean division. A distinction is made between the three base routines (**PSUM**, **PPRD**, and **PDIV** written by JM Baillard), and the four user-friendly drivers that automate the element data entry and work out all the details behind the scenes.

For the first group, beside the element data entry, the control words for each operand polynomial and the result are typically input in the X-, Y- and Z-registers of the stack. As follows:

Operation	Addition, Subtraction, Multiplication	Euclidean Division	Сору
Input	bbb.eee1 in Z bbb.eee2 in Y 1st. Reg of result in X	bbb.eee of dividend in Y bbb.eee of divisor in Y	bbb.eee of source in Y bbb or destination in X
Output	bbb.eee of result in X	bbb.eee of reminder in Y bbb.eee of quotient in X	bbb.eee or result in X

Because registers R00 to R03 are used internally, they cannot be used to hold the polynomial coefficients. (ie. all control words must start at bbb = 4 at least). Note also that none of the register ranges should overlap. In addition, for the Euclidean Division the original polynomials *are overwritten* with the results (quotient and reminder).

then there are only 2 other polynomials q(x) and r(x) such that: a = b.q + r, with deg(r) < deg(b). Note that **PDIV** does not work if deg(a) < deg(b), but in this case q=0 and r=a.

Example 1.- Find the result of the polynomial product of a(x) * b(x), where:

$$a(x) = 2.x^5 + 5.x^4 - 21.x^3 + 23.x^2 + 3.x + 5$$
 and $b(x) = 2.x^2 - 3.x + 1$

We'll use $\mathbf{P*P}$ for convenience. It'll automatically store the coefficients of the operand polynomial in registers {R04 to R09} and in registers {R10 to R12} respectively. The result polynomial will be stored starting with register R20, leaving the operand polynomials untouched.

The solution is: $p(x) = 4 \cdot x^7 + 4 \cdot x^6 - 55 \cdot x^5 + 114 \cdot x^4 - 84 \cdot x^3 + 24 \cdot x^2 - 12 \cdot x + 5$

Example 2.- Find the quotient and reminder for the <u>polynomial division</u> a(x) / b(x), where::

 $a(x) = 2.x^{5} + 5.x^{4} - 21.x^{3} + 23.x^{2} + 3.x + 5$ and $b(x) = 2.x^{2} - 3.x + 1$

We'll use **P/P** for convenience. It'll store the dividend coefficients in registers {R04 to R09} and the divisor's in registers {R10 to R12}. Note that in this case the coefficients are already there – as entered in the previous example, so you just have to press R/S during the process.

The solutions are displayed sequentially, starting with the quotient first. The indices convention message " $\Sigma(aK*X^K)$ " is shown prior to the enumeration of each result polynomial. After completion, the control word for the reminder is left in X, and the control word for the quatient is saved in R00.

The solutions are: $q(x) = x^3 + 4 \cdot x^2 - 5 \cdot x + 2$ and $r(x) = 14 \cdot x + 3$

Example 3.- Calculate the <u>addition and subtraction</u> of the polynomials a(x) and b(x) below:

$$a(x) = 2.x^3 + 4.x^2 + 5.x + 6$$
 and $b(x) = 2.x^3 - 3.x^2 + 7.x + 1$

We'll use P+P and P-P for convenience. It'll automatically store the coefficients of the operand polynomials in registers {R04 to R07} and in registers {R08 to R11} respectively. The result polynomial will be stored starting with register R12, leaving the operand polynomials untouched. After completion, the control word for the result is left in X

The solutions are: $a(x) + b(x) = 4 \cdot x^3 + x^2 + 12 \cdot x + 7$ $a(x) - b(x) = 7 \cdot x^2 - 2 \cdot x + 5$

LBL "P*P" 1 32 LBL 10 2 CF 01 33 "N#1?" order P1 3 GTO 00 34 PROMPT n1 4 LBL "P/P" 35 4 SF 01 5 36 + 6 LBL 00 E3/E+ 1,00(n+4) -37 7 XEQ 10 3 combined data entry 38 8 FC? 01 product? 4,00(n+4) 39 + GTO 00 STO 00 9 yes, go there 40 10 RND division 41 PEDIT 11 **PDIV** 42 XEQ 05 adjust index 12 X<>Y reminder cntl word 43 ENTER^ push stack 13 **STO 00** 44 "N#2?' order P2 store 45 PROMPT 14 X<>Y n2 **PVIEW** show quotient 15 46 n2+eee1 + 47 |<>J 0,00(n2+eee1) 16 X<> 00 17 GTO 02 48 + (eee1+1),00(eee1+n2) 18 LBL 00 multiplication 49 PEDIT 19 PPRD 50 **RCL 00** bbb.eee1 bbb.eee2 20 GTO 02 51 X<>Y LBL "P+P" LBL 05 21 52 ENTER^ 22 CF 01 53 bbb.eee2 |<>J eee.bbb2 23 GTO 01 54 INT 24 LBL "P-P 55 eee2 25 SF 01 Ε 56 eee2+1 26 LBL 01 -57 + combined data entry 58 END 27 **XEO 10 PSUM** 28 29 LBL 02 -30 **PVIEW** show result (reminder) 31 RTN done

Below you can see the program listing for the four arithmetic driver routines.

4.2.3. Deleting Coefficients and Moving Polynomials { DTC , PCPY , PSWP }

The functions in this section perform the following housekeeping chores:

- Copy a polynomial from a source to a destination location,
- Swap polynomial coefficcients between two locations, and
- Delete small coefficients (below 1E-7), which typically appear due to rounding errors in the intermediate operations. This has a cumulative effect that can alter the final result if not corrected.

In revision "N" of the SandMatrix both **PCPY** and **PSWP** are implemented as MCODE functions – faster and more flexible, as they allow overlapped ranges of data registers. **PCPY** is located in the main FAT but **PSWP** is incuded in the secondary FAT, thus you must use one of the launchers to execute it.

These functions require the polynomial control word bbb.eee in Y, and the new 1st. register address in X. The new control word is left in X upon completion. Only the control word in X is required as input for **DTC**.

The three small routines below were written by JM Baillard. You can see the program listings for these; always a beauty to behold JM's mastery of the RPN stack.

1	LBL "PCPY"		1	LBL "PVAL"	cnt'l word in X
2	RCL Y	bbb.eee1	2	0	
3	E3		3	LBL 14	
4	*		4	RCL Y	
5	INT		5	*	
6	I<>J	does E3/ for integers	6	RCL IND Z	
7	SIGN	puts bbb.eee in L	7	*	
8	RDN		8	ISG Z	
9	ENTER^		9	GTO 14	
10	ENTER^		10	X<>Y	
11	LBL 06 🔶		11	SIGN	
12	CLX		12	RDN	
13	RCL IND L		13	END	
14	STO IND Y				
15	ISG Y				
16	CLX		1	LBL "DTC"	cnt'l word in X
17	ISG L		2	LBL 05	
18	GTO 06		3	RCL IND X	
19	CLX		4	ABS	
20	SIGN		5	E-7	threshold value
21	-		6	X <y?< td=""><td></td></y?<>	
22	I<>J		7	GTO 06	
23	+		8	X<> Z	
24	X<>Y		9	ISG X	
25	FRC		10	GTO 05	
26	ISG X		11	E	
27	INT		12	ST- Y	drecrease Y
28	E5		13	0	
29	1		14	STO IND Z	overwrite w/ zero
30	+		15	LBL 06 🔶	
31	END		16	X<> Z	cnt'l word to X
			17	END	

When using the FOCAL program above be careful that the register ranges for both polynomials do not overlap.

4.2.4. Polynomial Evaluation. 1st & 2nd derivatives. { PVAL , dPL , dPL2 }

Calculating derivatives and integrals of polynomial functions is particularly simple. For the polynomial function P(x) on the left below the derivative with respect to x and the indefinite integral are shown in the center and right formulas respectively:

$$\sum_{i=0}^{n} a_i x^i \qquad \sum_{i=1}^{n} a_i i x^{i-1} \qquad \sum_{i=0}^{n} \frac{a_i}{i+1} x^{i+1} + c.$$

The subject of Polynomial evaluation is as old as the HP calculators are – surely you remember examples provided in the HP-25 manual and even earlier models. It's no surprise then that it's found its way to the SandMatrix, with the added bonus of morphing into an all-MCODE implementation, which has been extended to include the evaluation of the first and second derivatives as well.

The evaluation leaves the result value in X and the argument in LastX – but the control word is maintained in the Y-register for convenience. Let's see a few examples to clarify:

Example. Evaluate the Polynomial and the first two derivatives for P(x) below at points x=2 and x=-3

$$P(x) = 5 x^5 + 4 x^4 + 3 x^3 + 2 x^2 + x + 1$$

Using **PMTP** to enter the coefficients in { R01, R06 }, we type as follows:

1.006, XEQ "**PMTP**" => "R €7" " 5, ENTER^, 4, ENTER^, 3, ENTER^, 2, ENTER^, 1, ENTER^, 1, R/S

The control word is left in X, therefore just type the point of evaluation and the required function names as shown below:

2, XEQ " PVA L" RDN, 3, CHS, XEQ " PVAL "	=> 259,000000 => -956,000000
RDN, 2, ∑V\$	=> 573,000000 => 1.663,000000
RDN, 2, 2 V\$	=> 1.032,000000 => -2.318,000000

You can *verify the obtained results* using the analytical expressions for P'(x) and P''(x);

 $P'(x) = 25 x^{4} + 16 x^{3} + 9 x^{2} + 4 x + 1$ $P''(x) = 100 x^{3} + 48 x^{2} + 18 x + 4$

simply enter their coefficients in memory and use **PVAL** and **dPL** as appropriate. For example, evaluating P'(x) and its first derivative at x=2:

7.011, XEQ "**PMTP**", {25, ENTER^, 16, ENTER^, 9, ENTER^, 4, ENTER^, 1}, R/S 2, XEQ "**PVAL**" => 573,000000 RDN, 2, Σ**V\$** "DPL" => 1.032,000000

And finally, closing the circle of derivatives we enter P''(x) in memory:

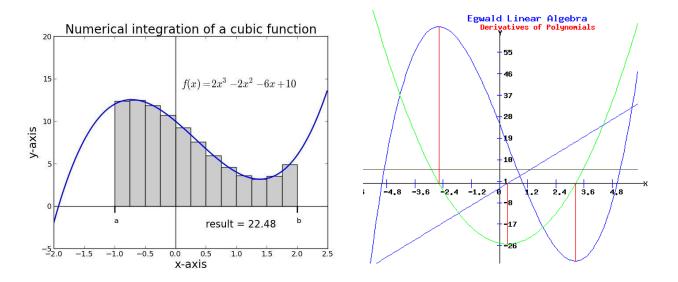
12.015, XEQ "**PMTP**", {100, ENTER^, 48, ENTER^, 18, ENTER^, 4 }, R/S 2, XEQ "**PVAL**" => 1.032,000000

Polynomial Integral and Evaluation { ITPL , PVAL }

But wait, there's more: **PVAL** can also *evaluate the primitive polynomial*, i.e. calculating the integral between zero and the evaluation point of the original polynomial. Simply change the sign of the control word in Y so it's negative to trigger this mode.

If you prefer a dedicated function, the entry **ITPL**, is also available for this purpose that uses the control word in its standard form (i.e. positive value). You can choose which way to use as preferred.

Example 1: Calculate the integral of $Q(x) = x^2 + 3x - 7$ in the interval [0, 2]


First we enter the coefficients in registers { R09 - R11 } using **PMTP** as usual, then we type:

9.011, CHS, 2, PVAL	=> -5,333333333333333333333333333333333333
9,011, 2, Σ <mark>V\$</mark> "ITPL"	=> -5,333333334

obtained in a blazing fast short time that sure beats the heck out of INTEG / FINTG approach.

Example 2: Calculate the integral between -1 and 2 for $P(x) = 2.x^3 - 2.x^2 - 6.x + 10$

First we introduce the coefficients in the data registers of choice using **PMTM** as before. Then we'll modify the integration limits to take advantage if **ITPL**, thus we can write:

The figure on the left shows the polynomial in question, with an approximation done using trapezoidal rule's rectangles amounting to 22.48 in that example.

The figure on the right shows a book example of a cubic polynomial and its first & second derivatives (parabola and straight line), and even the third derivative (constant line) – here all have real roots but that's clearly not always the case. Note how the roots of a function correspond to the points where the derivative ot its primitive polynomial is zero, i.e. their local minimum/maximum – as we know well from function theory.

Appendix.- Polynomial Real Roots

There's much to be said about simple functions like these, that when implemented in MCODE provide maximum speed and convenience. As an exercise, you're encouraged to write a polynomial **real** root-finder routine using Newton's (left) or Halley's (right) methods for the successive approximations to the roots. Programming them for polynomials should become a near-trivial task using the functions described above.

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \qquad x_{n+1} = x_n - \frac{2f(x_n)f'(x_n)}{2[f'(x_n)]^2 - f(x_n)f''(x_n)}$$

The program below is taken from JM Baillard's web pages, a perfect example of the applicability of the evaluation functions. It solves the equation $p(x) = a0.x^n + a1.x^{n-1} + ... + an-1.x + an = 0$, provided all roots are real.

The coefficients { a0 , a1 , , an-1 , an } are to be stored into contiguous registers Rbb thru Ree. Starting with an initial guess x0 , the Newton's formula is applied until | p(xk)/p'(xk) | is smaller than 10-9 (line 24). Then, p is replaced by p/(x-r) (lines 32 to 39) and the root is stored into Ree.

The process is repeated until all roots are found (polynomial deflation). Finally, the roots are in registers {Rbb+1,, Ree}, (i.e. the original coefficients are overwritten) - and the control word is left in X upon completion.

01	LBL "PLR"	11	RCL 01	21	SIGN	31	CLX	11 1	SG 04
02	STO 01	12	dPL	22	/	32	IBL02		GTO 01
03	X<>Y	13	STO 02	23	ABS	33	RCL 01		RCL 00
04	STO 00	14	X<> L	24	E-9	34	*	45 r 44 [
05	STO 03	<mark>15</mark>	PVAL	25	X <y?< td=""><td>35</td><td>ST+ IND 02</td><td>44 6</td><td></td></y?<>	35	ST+ IND 02	44 6	
06	STO 04	16	RCL 02	26	GTO 01	36	RCLIND 02	45 -	
07	ISG 04	17	/	27	E-3	37	ISG 02	40 (47 E	-
08	LBL 01	18	ST- 01	28	ST- 03	38	GTO 02	4/ 0	
09	VIEW 01	19	RCL 01	29	RCL 03	39	RCL 01		
10	RCL 03	20	X=0?	30	STO 02	40	STO IND 02		

Example: Find all the roots of $P(x) = 2.x^5 + 3.x^4 - 35.x^3 - 10.x^2 + 128.x - 74$

For example storing the coefficients in $\{R05 - R10\}$ and if we choose x0 = 1

5.010 ENTER[^], 1, XEQ "**PLR**" -> the successive approximations are displayed and finally: => 6.010

the control number of the solutions in {R06 - R10}

RCL 06 => -4.373739462 RCL 07 => -2.455070118 RCL 08 => 2.984066207 RCL 09 => 1.641131729 RCL 10 => 0.703611645

For more examples and other programs to cover non-real roots see Jean'Marc's pages located at: <u>http://hp41programs.yolasite.com/polynomials.php</u>

4.2.5. Polynomials over Integer field: Cohn's irreducibility criterion.

If F is a field, a non-constant polynomial is irreducible over F if its coefficients belong to F and it cannot be factored into the product of two non-constant polynomials with coefficients in F.

Arthur Cohn's irreducibility criterion is a sufficient condition for a polynomial to be irreducible in Z[x] — that is, for it to be unfactorable into the product of lower-degree polynomials with integer coefficients.

The criterion is often stated as follows: If a prime number p is expressed in base 10 as

$$p = a_m 10^m + a_{m-1} 10^{m-1} + \dots + a_1 10 + a_0$$

where $0 \le ak \le 9$, then the polynomial formed with the same factors below is irreducible in Z[x]:

$$f(x) = a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0$$

?IRR is a peculiar function, in that the irreducibility is tested by "brute force", using a sequence of integers looking for a prime number result. If found, the polynomial is irreducible, but if not found within the range of the calculator then there's no conclusive determination. So this is a glorified example of the trial and errortechnique, so to speak.

1	LBL " COHN"	bbb.eee in X
2	STO M	save control word
3	RGMAX	get maximum coefficient
4	X<=0?	should be >0
5	LN	DATA ERRROR if not
6	STO N	save maximum
7	LBL 00 <	
8	ISG N	next integer
9	NOP	
10	RCL M	get control word
11	RCL N	get test point
12	PVAL	evaluate
13	PRIME?	is it prime?
14	CLX	yes, clear X
15	X#0?	found it?
16	GTO 00	no, loop back
17	RCL N	yes, recall integer
18	END	done.

Using functions from the SandMath makes programming this criterium a simple affair, see the program listing on the left with functions **RGMAX** and **PVAL** doing all the heavy-lifting for you, and of course function **PRIME?** finally testing the results for primality.

A restriction of this method is that all coefficients must be positive, and obviously the independent term a0 not null.

Example1: $p(x) = 2 x^4 + 3 x^2 + 5 x + 1$, **?IRR** returns n=6, which result p(6) = 2,731 is a prime

Example2: $p(x) = 2 x^6 + 3 x^5 + 4 x^3 + 5 x^2 + 2 x + 1$, **?IRR** returns n=8, which result p(8) = 624,977 is a prime

4.3. Polynomial Root Finders.

Once upon a time there was a program called **POLYN** available in HP's infamous MATH PAC. That program was capable of calculating the roots of a polynomial up to degree *five*, which perhaps back then when it first came out could be regarded as a remarkable affair – but by today standards certainly isn't much to write home about.

	Function	Description	Input / Output
1	QUART	Solution of Quartic Equation	Polynomial coeffs in Memory
2	PROOT	Polynomial Roots	Prompts for all data
3	RTSN	Subroutine mode of PROOT	Polynomial coeffs in Memory
4	BRSTW	Quadratic Factors - Bairstow method	Cnt'l word in X-reg

The SandMatrix picks up where the SandMath left things off, providing functions to calculate the roots of the quadratic and cubic equations, ie. polynomials of degrees 2 and 3. The next step would then be a Quartic equation, or polynomial of degree 4.

4.3.1. Quartic Equation solutions. { QUART }

QUART solves the equation $x^4+a.x^3+b.x^2+c.x+d=0$

If you have a polynomial not in monic form (which leading coefficient is not 1), simply divide all the equation by this coefficient. With this convention we can use the stack registers $\{T,Z,Y,X\}$ to hold the coefficients a, b, c, and d – which provides a convenient method for data input.

The method used can be summarized as follows:

First, the term in x^3 is removed by a change of argument, leading to:

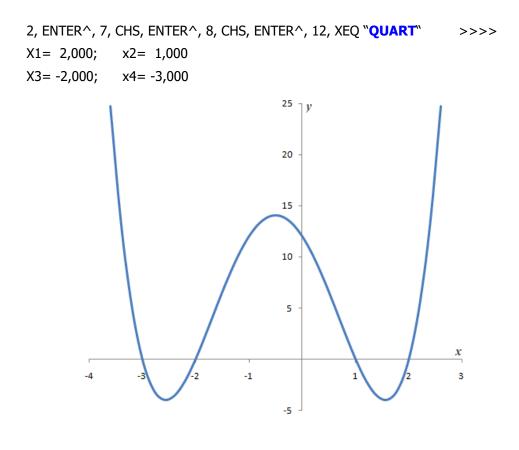
 $x^4+p.x^2+q.x+r=0$ (E')

Then, the resolvant $z^3+p.z^2/2+(p^2-4r).z/16-q^2/64=0$ is solved by **CROOT,** and if we call z_1 , z_2 , and z_3 the 3 roots of this equation, the zeros of (E') are:

$$\begin{aligned} \mathbf{x} &= \mathbf{z}_1^{1/2} \quad \text{sign}(-\mathbf{q}) + /- (\mathbf{z}_2^{1/2} + \mathbf{z}_3^{1/2}); \\ \mathbf{x} &= -(\mathbf{z}_1^{1/2}) \quad \text{sign}(-\mathbf{q}) + /- (\mathbf{z}_2^{1/2} - \mathbf{z}_3^{1/2}) \end{aligned}$$

Note that **QUART** uses the Alpha for data storage, but <u>no data registers</u> at all.

The program does the data output automatically, presenting the roots as either real or complex conjugated. This is done using the status of flags 01 and 02 as appropriate – but the user needs not to concern him or herself with the decoding rules. The output uses function **ZOUT** from the SandMath, which shows "J" to denote the imaginary unit "i"


Example 1: Solve x⁴ - 2.x³ - 35.x² + 36.x + 180 = 0
-2 ENTER[^], -35 ENTER[^] 36 ENTER[^], 180, XEQ "QUART" >>>>
X1=6,000, X2=3,000
X3=-2,000 X4=-5,000

Example 2: Solve $x^4 - 5.x^3 + 11.x^2 - 189.x + 522 = 0$ -5, ENTER^, 11, ENTER^, -189, ENTER^, 522, XEQ "QUART" >>>> Z= -2 + J5,000 X3= 3,000, X4= 6,000

In this and next example, note how true integer values (up to the 9th. digit) don't display zeros after the decimal point, a much clearer display with added informational value.

Example 3: Solve $x^4 - 8.x^3 + 26.x^2 - 168.x + 1305 = 0$ -8, ENTER[^], 26, ENTER[^], -168, ENTER[^], 1305, XEQ "QUART" >>>> Z= -2 + J5,000 Z= 6 + J3,000

Example 4: Calculate the roots of the polynomial: $Q(x) = x^4 + 2x^3 - 7x^2 - 8x + 12$ which plot is shown below.

Example 5: Solve $x^4 + x^3 + x^2 + x + 1 = 0$ Simply type: 1, ENTER^, ENTER^, ENTER^, QUART, >>> Z= 0.309 + J0.951 , R/S Z= -0.809 + J0.588

4.3.2. General case: degree N. { PROOT , BAIRS }

Given a polynomial P,

$$P(z) = \sum_{i=0}^{n} a_i z^{n-i}, \quad a_0 = 1, \quad a_n \neq 0$$

This method is based on quadratic factorizations, that is finding Q(x) - one quotient polynomial of degree two, plus R(x), a reminder polynomial of degree one - reducing the original degree by 2 and thereby changing the expression as follows:

P(z) = P''(z) Q(z) + R(z); with $P''(z) = [\Sigma bi z^n-i]$, i=2,1...(n-2)

This will then be repeated until the reduced polynomial P''(x) reaches degree one or two/.

Let $Q(x) = x^2 + px + q$; and R(x) = rx + s

Then the reduced polynomial coefficients are given by

 $bi = a(i-2) - p b(i-1) - q b(i-2); \quad i = 2, 3, ..., (n+2)$ (1)

and we have the following expressions for the coefficients of the reminder:

$$r = b(n+1)$$

 $s = b(n+2) + p b(n+1)$ (2)

clearly with both r and s depending on the p,q values – formally expressed as: r=r(p,q) and s=s(p,q).

The problem is thus obtaining the coefficients p,q of such a quotient polynomial that **would cancel the reminder** (i.e. that make r=0 and s=0. This is accomplished by using an iterative approach, starting with some initial guesses for them (p0, q0), iterating until there is no change in two consecutive values,

r'(p,q) + r = 0; or: r'(p,q) = -rs'(p,q) + s = 0; or: s'(p,q) = -s

Expressing it using their partial derivarives it results:

dp $(\delta r/\delta p)$ + dq $(\delta r/\delta q)$ = -r dq $(\delta s/\delta p)$ + dq $(\delta s/\delta q)$ = -s

Using the relationships (1) above, we can formally obtain the partial derivatives using the coefficients of the original polynomial, ai. The problem will then be equivalent to solving a system of 2 linear equations with two unknowns, dp and dq.

From equation (1) above it follows:

 $\delta bi/\delta p = ci = -b(i-1) - p c(i-1) - q c(i-2);$ i = 2,3...,(n+2) $\delta bi/\delta q = c(i-1)$

Making use of equation (2) to apply it for i=n we have <u>as final expression</u>

c(n+1) dp + cn dq = -b(n+1)-q cn dp + [c(n+1) + p cn] dq = -[b(n+2) + p b(n+1)] (3) Starting with (p0=0,5; q0=0,5) as initial guesses we'll obtain **dp** and **dq** for each pair of values (p,q). With them we adjust the previous guess, so that the new corrected values for p and q are

$$\begin{array}{l} p' = p + \, \boldsymbol{dp} \\ q' = q + \, \boldsymbol{dq} \end{array}$$

This will be repeated until the precision factor " ϵ " is smaller than the convergence criteria; The precision factor is calculated as follows:

 $\varepsilon = [abs(dp) + abs(dq)] / [abs(p) + abs (q)]$

The program dimensions and populates matrices **[RS]** and **[CN]** to hold the current values of p,q and the coefficients Cn respectively:

- **[RS**] is the column matrix, of dimension (2x1).
- **[CN]** is the coefficients matrix, of dimension (2x2).

The linear system is solved as many times as iterations needed to establish the convergence. With each factorization the program obtains two roots. This is repeated for, until all roots have been found.

Program Details.

In manual (RUN) mode **PROOT** prompts first for the order n (ie. the degree) and for each of the coefficients sequentially. It then presents the option to store the roots into a matrix in X-Mem. To use it you just have to press "Y" at the prompt below:

All roots are stored in matrix [**ROOTS**], of dimension $(n \times 2)$ - with the first column holding the real parts and the second the imaginary parts of each root (assumed complex).

The global label **PROOT** is also meant to be used in subroutines for program execution. It expects the degree stored in R00, and the coefficients stored in registers R03 until R(3+n). Registers R01 and R02 are used internally and cannot be used for your data. In subroutine mode the roots will always be stored in the matrix [**ROOTS**].

Example 1. Find the five roots of the polynomial below

$$P(x) = 2.x^5 + 7.x^4 + 20.x^3 + 81.x^2 + 190.x + 150$$

Keystrokes	Display	<u>Result</u>
XEQ "PROOT"	"ORIĖR=7	Prompts for the degree
5, R/S	``Σ〈≧Κ業XアK〉″	Reminder of convention
	"o5= 7"	prompts for coeffs, showing current
2, R/S	" <u>o</u> Ч= ?"	
7, R/S	"a∃= 7.	
20, R/S	"o2= 7"	
81, R/S	"o (= ?"	
190, R/S	"oØ= 7	
150, R/S	"ST07 Y/N"	prompts for storage option
"Y"	"RUNNING"	

At this point the different precision factors are shown, which shoud be decreasing as the iterations converge towards the solutions – and this repeated as many times at quadratic factors are needed.

The solutions are shown below (in FIX 5):

Z=-2,00000+J1,00000 and its conjugate (not shown) Z=1,00000+J3,00000 and its conjugate (not shown) Z=-1,50000

And the matrix [**ROOTS**] is left in X-Mem, with 5 rows and two columns, as follows:

 $[\mathbf{ROOTS}] = \begin{bmatrix} [-2 & 1 &] \\ [-2 & -1 &] \\ [& 1 & 3 &] \\ [& 1 & -3 &] \\ [& -1.5 & 0 &]] \end{bmatrix}$

To be sure it isn't the fastest method in town (typically 5-6 iterations are needed, each iteration takes a bout one full minute at normal speeds), but it's applicable to any degree and stores the results in a matrix – which makes it very useful as a general-purpose approach.

Program listing.-

1	*LBL "PROO	T ″	35 GTO 07	69	*LBL 98
2	RAD		36 *LBL "RTS″	70	RCL 00
3	Σ F#	?RTN	37 CF 01	71	4
4	GTO 00		38 *LBL 07	72	+
5	SF 01		39 RCL 00	73	SIZE?
6	SIZE?		40 2	74	E
7	?ORDER		41 I<>J	75	-
8	STOP		42 +	76	I<>J
9	INT		43 <i>"ROOTS"</i>	77	+
10	ABS		44 MATDIM	78	CLRGX
11	X=0?	Zero?	45 PURFL	79	INT
12	1/X`	abort	46 MATDIM	80	RCL X
13	STO Z		47 ,	81	RCL 00
14	ST+ X		48 MSIJA	82	+
15	9		49 *LBL 00	83	I<>J
16	+		50 RUNNING	84	+
17	X>Y?		51 "CN"	85	STO M
18	PSIZE		52 E	86	3.1
19	RCL Z		53 E3/E+	87	STO N
20	STO 00		54 ST+ X	88	*LBL 09
21	3		55 MATDIM	89	RCL M
22	+		56 <i>"RS"</i>	90	RCL IND X
23	E3/E+		57 INT	91	RCL 02
24	2		58 MATDIM	92	*
25	+		59 *LBL 97	93	ISG Y
26	PEDIT		60 2	94	
27	CF 21		61 RCL 00	95	RCL IND Y
28	"STO? Y/N"		62 X=Y?	96	RCL 01
29	AVIEW		63 GTO 92	97	*
30	Σ F#		64 X=1?	98	+
31	94	Y/N?	65 GTO 91	99	CHS
32	CLX		66 ,5	100	RCL IND N
33	X#0?		67 STO 01	101	+
34	GTO 00		68 STO 02	102	ISG Y

(c) Ángel M. Martin

103 "" 160 MSDA 218 *LBL 92 104 STO IND Y 161 RDN 219 RCL 03 105 ISGN 162 MSR+ 220 RCL 04 106 ISGN 163 DSE Y 221 RCL 05 107 GTO 09 164 "" 222 XEQ 02 108 %C" 165 RCL IND Y 223 FCC 01 108 MSDA 167 RCL 02 225 GTO 3 110 MSDA 167 RCL 02 226 GTO 48 113 6 170 MSR+ 228 GTO 48 114 + 171 LASTX 229 GTO 48 114 + 171 LASTX 229 GTO 48 114 + 171 LASTX 228 GTO 48 114 + 171 LASTX 229 GTO 48 115 RCL IND X 172 / 230 QCOUT 116 CHS 176 MSR+ 233<					
104 STO IND Y 161 RDN 219 RCL 03 105 ISG N 162 MSR+ 220 RCL 04 106 ISG M 163 DSE Y 221 RCL 05 107 GTO 09 164 "" 222 XEQ 02 108 "ZS" 165 RCL IND Y 223 FCC 01 109 166 MSR+ 224 RTN 110 MSDA 167 RCL 02 225 GTO 1 111 RCL 01 168 CHS 226 GTO 08 112 ST+ X 169 * 227 GROOT 113 6 170 MSR+ 230 QROUT 114 + 171 LST 230 QROUT 116 CHS 173 RCL 01 231 STO 8 118 RCL IND Y 175 + 233 RCL 7 120 MSC+ 177 >/SS' 236 X=07 122 * 179 MNAME7 237 <td>103</td> <td></td> <td>160</td> <td>MSIJA</td> <td>218 *LBL 92</td>	103		160	MSIJA	218 *LBL 92
105 ISG N 162 MSR+ 220 RCL 05 106 ISG M 163 DSE Y 221 RCL 05 108 "SS" 165 RCL IND Y 222 XEQ 02 108 "SS" 165 RCL IND Y 223 FCC 01 109 . 166 MSR+ 224 FCT 01 110 MSLA 167 RCL 02 225 GT 03 112 ST+X 169 * 227 QROOT 113 6 170 MSR+ 228 GT 048 114 + 171 LASTX 229 GT 048 115 RCL IND X 172 / 230 QROUT 116 CHS 173 RCL 01 231 STOP 117 DSE Y 174 * 233 *ILB 08 120 MSC+ 177 %S" 235 RCL Z 121 RCL 01 178 MSVS 235 RCL Z 122 * 179 %S" 235	104	STO IND Y	161	RDN	
106 ISG M 163 DSE Y 221 FCL 05 107 GTO 09 164 "" 222 XEQ 02 108 "25" 165 RCL IND Y 223 FCC 01 109 . 166 MSR+ 224 RTN 110 MSIJA 167 RCL 02 225 GTO 3 111 RCL 00 168 CHS 226 "LBL 02 112 STL X 169 * 227 GROOT 113 6 170 MSR+ 228 GTO 03 114 + 171 LASTX 229 GTO 04 115 RCL IND X 172 / 230 ROUT 116 CHS 173 RCL 01 231 STOP 117 DSE Y 174 * 233 "INN 118 RCL IND X 172 / 233 KCL Z 121 RCL 01 178 MSH+ 234 CF 02 122 * 179 MMAMEP 233					
107 GTO 09 164 "" 222 $xEC_0 2$ 108 "KS" 165 RCLIND Y 223 FC2C 01 109 . 166 MSR+ 224 RTN 110 MSLA 167 RCL 02 225 GTO 1 111 RCL 00 168 CHS 226 GTO 05 112 ST+ X 169 * 227 QROOT 113 6 170 MSR+ 228 GTO 08 114 + 171 LASTX 229 GTO 08 115 RCL IND X 172 / 230 QROUT 116 GHS * 173 RCL 01 231 STOP 117 DSE Y 174 * 233 RU Z 120 MSC+ 177 S'KS" 236 XCL Z 121 RCL 01 178 MSYS 236 XCL Z 122 * 179 MNAME? 233 ''''''''''''''''''''''''''''''''''''					
108 76.7 165 RCL IND Y 223 FCC 0 I 109 . 166 MSR+ 224 RTN 110 MSIJA 167 RCL 02 225 GTO J 111 RCL 00 168 CHS 225 GTO J 111 RCL 00 168 CHS 225 GTO J 113 6 170 MSR+ 227 GROOT 114 + 171 LASTX 229 GTO J8 115 RCL IND X 172 / 230 GROUT 116 CHS 173 RCL 01 231 STOP 117 DSE Y 174 * 233 #LB<08		ISG M	163		221 RCL 05
108 $\gamma SS''$ 165 RCL IND Y 223 $\Gamma CC 01$ 109 166 MSR+ 224 RTN 111 RCL 00 168 CHS 225 GTO J 111 RCL 00 168 CHS 225 GTO J 113 6 170 MSR+ 228 FS7 01 114 + 171 LASTX 290 QROUT 116 CHS 173 RCL 01 231 STOP 117 DSE Y 174 * 233 *LBL 08 119 CHS 176 MSR+ 234 RTN 118 RCL IND Y 175 + 233 *LBL 08 120 MSC+ 177 ×/S'' 235 RCL Z 121 RCL 01 178 MSYS 235 RCL Z 122 * 179 MNAME? 237 SF 02 123 #SCL 00 183 ST+01 241 RDN 124 MSC+ 181 MSIA 239 </td <td>107</td> <td>GTO 09</td> <td>164</td> <td></td> <td>222 XEO 02</td>	107	GTO 09	164		222 XEO 02
100					
110 MSIJA 167 RCL 02 225 GTO J 111 RCL 00 168 CHS 226 "HEL 02 112 ST+X 169 * 227 GROOT 113 6 170 MSR+ 228 FS7 01 114 + 171 LASTX 229 GROOT 116 CHS 173 RCL 01 231 STOP 116 CHS 173 RCL 01 233 STOP 119 CHS 176 MSR+ 233 *ILE 08 120 MSC+ 177 > ${}^{\prime}{}_{$					
111 RCL 00 168 CHS 226 $*LBL 02$ 112 ST+X 169 * 227 QROOT 113 6 170 MSR+ 228 FS7 01 114 + 171 LASTX 229 GT0 08 115 RCL IND X 172 / 230 QROUT 116 CHS 173 RCL 01 231 STOP 117 DSE Y 174 * 233 *LBL 08 119 CHS 176 MSC+ 233 *LBL 08 119 CHS 176 MSC+ 233 *LBL 08 124 MSC+ 177 >"MAME? 233 STO 2 123 + 180 , 233 SF0 2 124 MSC+ 181 MSIA 239 ?ROC75" 125 6 182 MRR+ 240 MRIA 126 RCL 00 183 ST+ 02 243 FS7 C02 127 + 184 MRR+ 241 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
112 ST+ X 169 * 227 QROOT 113 6 170 MSR+ 228 FS7 01 114 + 171 LASTX 229 GT0 08 115 RCL IND X 172 / 230 QROUT 116 CHS 173 RCL 01 231 STOP 117 DSE Y 174 * 232 RTN 118 RCL IND Y 175 + 233 *LB 08 120 MSC+ 177 */.85" 235 RCL Z 121 RCL 01 178 MSYS 236 X=0? 122 * 179 MNAME? 238 RDN 124 MSC+ 181 MSIA 239 <i>ROOTS</i> " 125 6 182 MRR+ 240 MRIJA 124 MSC+ 184 MRR+ 241 RDN 127 + 184 MRR+ 243 FS7C 02 128 RCL 00 183 ST+01 246 MSC	110	MSIJA	167	RCL 02	225 GTO J
112 ST+ X 169 * 227 QROOT 113 6 170 MSR+ 228 FS7 01 114 + 171 LASTX 229 GT0 08 115 RCL IND X 172 / 230 QROUT 116 CHS 173 RCL 01 231 STOP 117 DSE Y 174 * 232 RTN 118 RCL IND Y 175 + 233 *LB 08 120 MSC+ 177 */.85" 235 RCL Z 121 RCL 01 178 MSYS 236 X=0? 122 * 179 MNAME? 238 RDN 124 MSC+ 181 MSIA 239 <i>ROOTS</i> " 125 6 182 MRR+ 240 MRIJA 124 MSC+ 184 MRR+ 241 RDN 127 + 184 MRR+ 243 FS7C 02 128 RCL 00 183 ST+01 246 MSC	111	RCL 00	168	CHS	
113 6 170 MSR+ 228 FS7 01 114 + 171 LASTX 229 GT0 08 115 RCL IND X 172 / 230 QROUT 116 CCL IND X 173 RCL 01 231 STOP 117 DSE Y 174 * 232 RTN 118 RCL IND Y 175 + 233 *LBL 08 119 CHS 176 MSR+ 234 CF 02 221 RCL 01 178 MSYS 235 RCL Z 121 RCL 01 178 MSYS 235 RCL Z 122 * 179 MNAME? 237 SF 02 123 + 180 , 238 RDN N 124 MSC+ 181 MSTA 239 "ROOTS" 125 6 182 MRR+ 240 MRIDA 126 RCL 00 183 ST+02 244 GTO 00 127 + 184 MRR+ 24					
114 + 171 LASTX 229 GTO 08 115 RCL IND X 172 / 230 QROUT 116 CHS 173 RCL 01 231 STOP 117 DSE Y 174 * 232 RTN 118 RCL IND Y 175 + 233 *LBL 08 119 CHS 176 MSR+ 233 KEL 08 120 MSC+ 177 >'/RS'' 235 RCL 7 121 RCL 01 178 MSYS 236 X-07 122 * 179 MNAME? 237 SF 02 SF 02 123 + 180 , 238 RDN N 124 MSC+ 181 MSIA 239 70075'' 125 6 182 MRR+ 240 MRIA 127 + 184 MST 243 FS7C 02 128 LASTX 185 ST+02 245 K<>Y 129 ST+X 186 SUMAB 244 <					
115 RCL IND X 172 / 220 QROUT 116 CHS 173 RCL 01 231 STOP 117 DSE Y 174 * 233 STOP 118 RCL IND Y 175 + 233 STOP 119 CHS 176 MSR+ 233 STOP 120 MSC+ 177 >'',RS'' 235 RCL Z 121 RCL 01 178 MSYS 236 X=07 123 + 180 MSYS 236 X=07 124 MSC+ 181 MSIA 239 ''''''''''''''''''''''''''''''''''''					228 FS? 01
115 RCL IND X 172 / 230 QROUT 116 CHS 173 RCL 01 231 STOP 117 DSE Y 174 * 232 RTN 118 RCL IND Y 175 + 233 *ELB 08 120 MSC+ 177 >",KS" 235 RCL Z 121 RCL 01 178 MSYS 236 X=0? 123 + 180 , 238 RDN 124 MSC+ 181 MSIDA 239 "ROOTS" 125 6 182 MRR+ 230 "ROOTS" 124 MSC+ 181 MSIDA 239 "ROOTS" 125 6 182 MRR+ 240 MRUA 126 RCL 00 183 ST+0 241 RDN 127 + 184 MRR+ 242 MSC+ 128 LASTX 185 SUMAB 244 GT 00 129 ST+X 186 SUMAB 244 MS	114	+	171	LASTX	229 GTO 08
116 CHS 173 RCL 01 231 STOP 117 DSE Y 174 * 232 STOP 118 RCL IND Y 175 + 233 *LBL 08 119 CHS 176 MSR+ 233 *LL 08 120 MSC+ 177 >",RS" 235 RCL Z 121 RCL 01 178 MSYS 236 X=07 123 + 180 , 237 SF 02 124 MSC+ 181 MSIS 238 RDN 125 6 182 MRR+ 240 MRIJA 126 RCL 00 183 ST+01 241 RDN 127 + 184 MRR+ 240 MSC+ 128 LASTX 185 ST+02 243 FS7C 02 129 ST+X 186 SUMAB 244 MSC+ 121 187 RCL 02 247 RTN 133 + 190 ABS 246 MSC+	115	RCL IND X	172	/	
117 DSE Y 174 * 222 RTN 118 RCL IND Y 175 + 233 "ELB 08 119 CHS 176 MSC+ 233 "ELB 08 120 MSC+ 177 >",RS" 235 RCL Z 121 RCL 01 178 MSYS 235 RCL Z 123 + 180 , 238 RDN 124 MSC+ 181 MSIJA 239 "ROOTS" 125 6 182 MRR+ 240 MRLIA 126 RCL 00 183 ST+01 241 RDN 127 + 184 MRR+ 240 MSC+ 128 LASTX 185 SUMAB 243 FS7C 02 129 ST+X 186 SUMAB 244 GTO 00 130 4 187 RCL 01 245 X< <y< td=""> 131 + 188 ABS 246 MSC+ 131 + 188 RCL 02 207 RTN<td></td><td></td><td></td><td></td><td></td></y<>					
118 RCL IND Y 175 + 233 *IBL 08 119 CHS 176 MSR+ 234 CF 02 120 MSC+ 177 >",RS" 235 RCL Z 121 RCL 01 178 MSYS 236 X=0? 122 * 179 MNAME? 237 SF 02 123 + 180 , 238 RDN 124 MSC+ 181 MSIJA 239 "ROOTS" 125 6 182 MRR+ 240 MRIJA 126 RCL 00 183 ST+01 241 RDN 127 + 184 MRR+ 242 MSC+ 128 LASTX 185 ST+02 243 FS7 02 129 ST+X 186 SUMAB 244 GT0 00 130 4 187 RCL 01 245 X<>Y 133 + 190 ABS 248 MSC+ 134 STO M 191 + 249 MSR+					
121 RCL 01 178 MSYS 236 X=07 122 * 179 MNAME? 237 SF 02 123 + 180 , 238 RDN 124 MSC+ 181 MSLA 239 $ROOTS''$ 125 6 182 MR+ 240 MRLJA 126 RCL 00 183 ST+01 241 RDN 127 + 184 MR+ 242 MSC+ 128 LASTX 185 ST+02 243 FS7C 02 29 ST+X 186 SUMAB 244 GTO 00 130 4 187 RCL 01 245 X<<>Y 131 + 188 ABS 246 MSC+ 132 I 190 ABS 248 *LBL 00 134 STO M 191 + 249 MSR+ 135 RCL 00 192 / 250 I- 136 STA 193 VIEW X 251 X<>Y	11/	DSE F			232 RTN
121 RCL 01 178 MSYS 236 X=07 122 * 179 MNAME? 237 SF 02 123 + 180 , 238 RDN 124 MSC+ 181 MSLA 239 $ROOTS''$ 125 6 182 MR+ 240 MRLJA 126 RCL 00 183 ST+01 241 RDN 127 + 184 MR+ 242 MSC+ 128 LASTX 185 ST+02 243 FS7C 02 29 ST+X 186 SUMAB 244 GTO 00 130 4 187 RCL 01 245 X<<>Y 131 + 188 ABS 246 MSC+ 132 I 190 ABS 248 *LBL 00 134 STO M 191 + 249 MSR+ 135 RCL 00 192 / 250 I- 136 STA 193 VIEW X 251 X<>Y	118	RCL IND Y	175	+	233 *LBL 08
121 RCL 01 178 MSYS 236 X=07 122 * 179 MNAME? 237 SF 02 123 + 180 , 238 RDN 124 MSC+ 181 MSLA 239 $ROOTS''$ 125 6 182 MR+ 240 MRLJA 126 RCL 00 183 ST+01 241 RDN 127 + 184 MR+ 242 MSC+ 128 LASTX 185 ST+02 243 FS7C 02 29 ST+X 186 SUMAB 244 GTO 00 130 4 187 RCL 01 245 X<<>Y 131 + 188 ABS 246 MSC+ 132 I 190 ABS 248 *LBL 00 134 STO M 191 + 249 MSR+ 135 RCL 00 192 / 250 I- 136 STA 193 VIEW X 251 X<>Y	119	CHS	176	MSR+	
121 RCL 01 178 MSYS 236 X=07 122 * 179 MNAME? 237 SF 02 123 + 180 , 238 RDN 124 MSC+ 181 MSLA 239 $ROOTS''$ 125 6 182 MR+ 240 MRLJA 126 RCL 00 183 ST+01 241 RDN 127 + 184 MR+ 242 MSC+ 128 LASTX 185 ST+02 243 FS7C 02 29 ST+X 186 SUMAB 244 GTO 00 130 4 187 RCL 01 245 X<<>Y 131 + 188 ABS 246 MSC+ 132 I 190 ABS 248 *LBL 00 134 STO M 191 + 249 MSR+ 135 RCL 00 192 / 250 I- 136 STA 193 VIEW X 251 X<>Y	120	MSC+			
122 * 179 MNAME? 237 SF 02 123 + 180 , 238 RDN 124 MSC+ 181 MSIA 239 ROOTS" 125 6 182 MR+ 240 MRLIA 126 RCL 00 183 ST+01 241 RDN 127 + 184 MR+ 242 MSC+ 128 LASTX 185 ST+02 243 FS7C 02 129 ST+X 186 SUMAB 244 GT0 00 130 4 187 RCL 01 245 X<<>Y 131 + 188 ABS 246 MSC+ 132 I IS7 RTN 250 I- 133 + 190 ABS 248 *IBL 00 134 STO M 191 + 250 I- 135 RCL 00 192 / 250 I- 136 ST+X 193 VIEW X 251 X<>Y					235 RCL Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					236 X=0?
124 MSC+ 181 MSIA 238 RDN 124 MSC+ 181 MSIA 239 <i>ROOTS"</i> 125 6 182 MRR+ 240 MRLIA 126 RCL 00 183 ST+ 01 241 RDN 127 + 184 MRR+ 242 MSC+ 128 LASTX 185 ST+ 02 243 FS7C 02 129 ST+ X 186 SUMAB 244 GTO 00 130 4 187 RCL 01 245 X<<>Y 131 + 188 ABS 246 MSC+ 132 I IS9 RCL 02 247 RTN 133 + 190 ABS 248 *LBL 00 134 STO M 191 + 250 I- 135 RCL 00 192 / 250 I- 136 ST+ X 193 VIEW X 251 X<<>Y 137 7.1 194 RND 255 RTN <	122	*	179	MNAME?	
124 MSC+ 181 MSIJA 239 RR0075" 125 6 182 MRR+ 240 MRIJA 126 RCL 00 183 ST+ 01 241 RDN 127 + 184 MRR+ 242 MSC+ 128 LASTX 185 ST+ 02 243 FS7C 02 129 ST+ X 186 SUMAB 244 GTO 00 30 4 187 RCL 01 245 X<>Y 131 + 188 ABS 246 MSC+ 132 I<>> 189 RCL 02 247 RTN 133 + 190 ABS 248 *LBL 00 134 STO M 191 + 249 MSR+ 135 RCL 00 192 / 250 I- 137 7.1 194 RND 251 X<>Y 138 + 195 X#07 253 CHS 140 LBL 10 197 E 254 MSR+	123	+	180		
125 6 182 MR+ 240 MR1JA 126 RCL 00 183 ST+ 01 241 RDN 127 + 184 MR+ 241 RDN 128 LASTX 185 ST+ 01 241 RDN 129 ST+ X 186 SUMAB 244 MSC+ 130 4 187 RCL 01 245 X<>Y 131 + 188 ABS 246 MSC+ 132 I<>> 189 RCL 02 247 RTN 133 + 190 ABS 248 *LBL 00 134 STO M 191 + 249 MSC+ 135 RCL 00 192 / 250 I- 136 ST AX 193 VIEW X 251 X<>Y 137 7.1 194 RDD 252 MSC+ 139 STO N 196 GTO 98 254 MSR+ 141 RCL N 198 RCL 01 255 RTN <td></td> <td></td> <td></td> <td>/ MGTIA</td> <td></td>				/ MGTIA	
126 RCL 00 183 ST+ 01 2410 MRLMA 127 + 184 MRR+ 242 MSC+ 128 LASTX 185 ST+ 02 243 FS7C 02 130 4 187 RCL 01 245 MSC+ 131 + 188 ABS 246 MSC+ 131 + 188 RSS 246 MSC+ 131 + 188 RSS 246 MSC+ 132 I I 189 RCL 02 247 RTN 133 + 190 ABS 248 *LBL 00 134 STO M 191 + 249 MSR+ 135 RCL 00 192 / 250 I- 247 136 ST+ X 193 VIEW X 251 X <>Y 137 7.1 194 RND 252 MSC+ 138 + 195 X#07 253 CHS 141 RCL N 198 RCL 01 255 RTN					239 <i>"ROOTS"</i>
126RCL 00183ST+ 01241RDN127+184MRR+242MSC+128LASTX185ST+ 02243FS7C 02129ST+ X186SUMAB244GTO 001304187RCL 01245X<>Y131+188ABS246MSC+132I<>>II240MSC+133+190ABS244#LBL 00134STO M191+249MSR+135RCL 00192/250I-136ST+ X193VIEW X251X<>Y1377.1194RND252MSC+138+195X#07252MSC+139STO N196GTO 98253CHS141RCL N198RCL 01256*LBL 91142RCL IND X199RCL 02257RCL 04144*201XEQ 02258RCL 03144*2035261"ROO7="143RCL 02200TONE 2257RCL 04144*201XEQ 02258RCL 04144*201XEQ 02258RCL 03144*201SC 00259/145ISG Y202RCL 00259/146**2035261"ROO7="147 </td <td></td> <td></td> <td></td> <td></td> <td>240 MRIJA</td>					240 MRIJA
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	126	RCL 00	183	ST+ 01	
128 LASTX 185 ST+ 02 243 FS7C 02 129 ST+ X 186 SUMAB 244 GTO 00 130 4 187 RCL 01 245 X< <y< td=""> 131 + 188 ABS 246 MSC+ 132 I I 189 RCL 02 247 RTN 133 + 190 ABS 246 MSC+ 133 T 190 ABS 246 MSC+ 135 RCL 00 192 / 250 I- - 136 ST+ X 193 VIEW X 251 X<>Y 137 7.1 194 RND 251 X<>Y 138 STO N 196 GTO 98 254 MSR+ 140 LBL 10 197 E 255 RTN</y<>	127	+	184	MRR+	
129 ST+ X 186 SUMAB 243 GTO 00 130 4 187 RCL 01 245 X<>Y 131 + 188 ABS 246 MSC+ 132 I I 189 RCL 02 247 RTN 133 + 190 ABS 248 *tLB 00 134 STO M 191 + 249 MSC+ 135 RCL 00 192 / 250 I- 136 ST+ X 193 VIEW X 251 X<>Y 137 7.1 194 RND 252 MSC+ 138 + 195 X#0? 253 CHS 139 STO N 196 GTO 98 253 CHS 141 RCL NN 199 RCL 01 255 RTN 142 RCL IND X 199 RCL 02 257 RCL 04 144 * 201 XEQ 02 258 RCL 03 144 * 201 XEQ 02 258 RCL 04 <td></td> <td></td> <td></td> <td></td> <td></td>					
1304187RCL 01 $24+5$ X<>Y131+188ABS246MSC+132I<>J189RCL 02247RTN133+190ABS248*LBL 00134STO M191+249MSR+135RCL 00192/250I-136ST+ X193VIEW X251X<>Y1377.1194RND251X<>Y138+195X#0?253CHS139STO N196GTO 98254MSR+141RCL N198RCL 01255RTN141RCL 02200TONE 2257RCL 04144*201XEQ 02258RCL 03144*201XEQ 02258RCL 03145ISG Y202RCL 00259/146""2035260CHS147RCL IND Y204+261"ROOT="148STO IND N2053262FS? 01149RCL 01206 E3/E+ 263GTO 00149RCL 01206 E3/E+ 263GTO 00149RCL 01206 E3/E+ 264ARCL X150*207+264RCL X151+208RCL 00265PROMPT152RCL IND M209E267*LBL 00 <td></td> <td></td> <td></td> <td></td> <td>243 FS?C 02</td>					243 FS?C 02
1304187RCL 01245 $X <> Y$ 131+188ABS246MSC+132I $<>>$ 189RCL 02247RTN133+190ABS248*LBL 00134STO M191+249MSR+135RCL 00192/250I-136ST+ X193VIEW X250I-136ST+ X193VIEW X251X<>Y1377.1194RND252MSC+138+195X#0?253GHS139STO N196GTO 98254MSR+140LBL 10197E255RTN141RCL N198RCL 01256*LBL 91142RCL IND X199RCL 02257RCL 04144*201XEQ 02258RCL 03143RCL 02200TONE 2258RCL 03144*201XEQ 02258RCL 03145ISG Y202RCL 00259/146**2035260CHS147RCL IND Y204+261"RCOT="148STO IND N2053265FS7 01150*207+264ARCL X151+208RCL 00265RNM152RCL IND M209E267*LBL 00<					244 GTO 00
131 + 188 ABS 246 MSC+ 132 I 189 RCL 02 247 RTN 133 + 190 ABS 248 *LBL 00 134 STO M 191 + 249 MSC+ 135 RCL 00 192 / 250 I- 136 ST+X 193 VIEW X 251 X<>Y 137 7.1 194 RND 252 MSC+ 138 + 195 X#0? 252 MSC+ 139 STO N 196 GTO 98 253 CHS 140 LBL 10 197 E 255 RTN 141 RCL ND X 199 RCL 02 257 RCL 03 144 * 201 XEQ 02 258 RCL 03 144 * 201 XEQ 02 258 RCL 03 144 * 201 XEQ 02 259 / 144 * 201 XEQ 02 258 RCL 03	130	4	187	RCL 01	
132 I $<>$ J 189 RCL 02 247 RTN 133 + 190 ABS 248 *LBL 00 134 STO M 191 + 249 MSR+ 135 RCL 00 192 / 250 I- 136 ST+X 193 VIEW X 250 I- 137 7.1 194 RND 252 MSC+ 138 + 195 X#07 252 MSC+ 139 STO N 196 GTO 98 253 CHS 140 LBL 10 197 E 255 RTN 141 RCL N 198 RCL 01 256 *LB 191 142 RCL IND X 199 RCL 02 257 RCL 04 144 * 201 XEQ 02 258 RCL 03 144 * 202 RCL 00 259 / 144 * 203 5 260 CHS 147 RCL IND Y 204 + 263 GTO 00		+	188		
133+190ABS248*LBL 00134STO M191+249MSR+135RCL 00192/250I-136ST+ X193VIEW X251X<>Y1377.1194RND252MSC+139STO N196GTO 98253CHS140LBL 10197E255RTN141RCL NN198RCL 01256*LBL 91142RCL IND X199RCL 02256*LBL 91144*201XEQ 02258RCL 03144*201XEQ 02259/145ISG Y202RCL 00259/146rm2035260CHS147RCL IND Y204+261"ROOT="148STO IND N2053262FS? 01149RCL 01206 E3/E+ 263GTO 00150*207+264ARCL X151+208RCL 00265PROMPT152RCL IND M209E266RTN153+210-267*LBL 00154CHS211E6268 $\Sigma V \#$ 155STO IND Y212/26925156ISG M213+270>"5"157GTO 10214REGMOVE271MRIJA <tr< td=""><td></td><td></td><td></td><td></td><td></td></tr<>					
133 + 190 ABS 248 *LBL 00 134 STO M 191 + 249 MSR+ 135 RCL 00 192 / 250 I- 136 ST+X 193 VIEW X 251 X<>Y 137 7.1 194 RND 252 MSC+ 138 + 195 X#0? 253 CHS 139 STO N 196 GTO 98 253 CHS 140 LBL 10 197 E 255 RTN 141 RCL N 198 RCL 01 255 RTN 142 RCL IND X 199 RCL 02 257 RCL 04 144 * 201 XEQ 02 258 RCL 03 144 * 201 XEQ 02 258 RCL 04 144 * 201 XEQ 02 258 RCL 03 144 * 201 XEQ 02 258 RCL 04 144 * 201 XEQ 02 258 RCL 04 <td></td> <td></td> <td></td> <td></td> <td>247 RTN</td>					247 RTN
134STO M191+249MSR+135RCL 00192/250I-136ST+ X193VIEW X251X<>Y1377.1194RND252MSC+138+195X#0?253CHS139STO N196GTO 98254MSR+140LBL 10197E255RTN141RCL N198RCL 01256*LBL 91142RCL IND X199RCL 02257RCL 04144*201XEQ 02258RCL 03144*201XEQ 02258RCL 03144*201XEQ 02259/145ISG Y202RCL 00256CHS146""2035260CHS147RCL IND Y204+261"ROOT="148STO IND N2053262F57 01149RCL 01206E3/E+263GTO 00150*207+264ARCL X150*207+265PROMPT151+208RCL 00266RTN152RCL IND M209E266RTN154CHS211E6268 $\SigmaV#$ 155STO IND Y212/269 $Z5$ 156ISG M213+270>'S''157 <td></td> <td></td> <td></td> <td></td> <td>248 *IBL00</td>					248 *IBL00
135RCL 00192/249MSR+136ST+ X193VIEW X250I-1377.1194RND252MSC+138+195X#0?253CHS139STO N196GTO 98253CHS140LBL 10197E255RTN141RCL N198RCL 01256*LBL 91142RCL IND X199RCL 02257RCL 04143RCL 02200TONE 2258RCL 03144*201XEQ 02258RCL 03144*2035260CHS146""2035260CHS147RCL IND Y204+261"ROOT="148STO IND N2053262FS? 01149RCL 01206E3/E+263GTO 00149RCL 01206E3/E+263GTO 00151+208RCL 00265PROMPT152RCL IND M209E267*LBL 00154CHS211E6268 $\Sigma V \#$ 155STO IND Y212/26925156ISG M213+270>"S"157GTO 10214REGMOVE271MRIJA158"C/V"2152272RDN159,216ST-00273MSC+ <td>134</td> <td>STO M</td> <td>191</td> <td>+</td> <td></td>	134	STO M	191	+	
136ST+ X193VIEW X250IP1377.1194RND251X<>Y138+195X#0?253CHS139STO N196GTO 98254MSC+140LBL 10197E255RTN141RCL N198RCL 01256*LBL 91142RCL IND X199RCL 02257RCL 04144*201XEQ 02258RCL 03145ISG Y202RCL 00260CHS146""2035260CHS147RCL IND Y204+261" $ROOT="$ "148STO IND N2053262FS? 01149RCL 01206E3/E+263GTO 00150*207+264ARCL X151+208RCL 00265PROMPT152RCL IND M209E266RTN153+210-267*LBL 00153+210-269Z5154CHS211E6268 $2V#$ 155STO IND Y212/269Z5156ISG M213+270>"5"157GTO 10214REGMOVE271MRLJA158"C/"2152272RDN159,216ST-00273MSC+ <td></td> <td></td> <td></td> <td></td> <td></td>					
137 7.1 194 RND 251 $X < Y$ 138 + 195 $X # 0?$ 252 $MSC +$ 139 STO N 196 GTO 98 254 $MSR +$ 140 LBL 10 197 E 255 RTN 141 RCL N 198 RCL 01 256 $*LBL 91$ 142 RCL IND X 199 RCL 02 257 RCL 04 143 RCL 02 200 TONE 2 258 RCL 03 144 * 201 XEQ 02 258 RCL 03 144 * 203 5 260 CHS 146 "" 203 5 260 CHS 147 RCL IND Y 204 + 263 $GTO 00$ 148 STO IND N 205 3 262 $FS7 01$ 148 STO IND N 206 $E3/E+$ 263 $GTO 00$ 150 * 207 + 264 $ARCL X$ 152 RCL I				-	250 I -
137 7.1 194 RND 252 MSC+ 138 + 195 X#0? 253 CHS 139 STO N 196 GTO 98 254 MSR+ 140 LBL 10 197 E 255 RTN 141 RCL N 198 RCL 01 256 *LBL 91 142 RCL IND X 199 RCL 02 257 RCL 04 144 * 201 XEQ 02 258 RCL 03 144 * 201 XEQ 02 259 / 144 * 203 5 260 CHS 144 * 203 5 261 "ROOT=" 146 *** 207 + 263 GTO 00 146 STO IND N 205 3 262 FS? 01 148 STO IND N 205 3 262 FS? 01 150 * 207 + 264 ARCL X 151 + 208 RCL 00 265 PROMPT					251 X<>Y
138+195 $X\#0?$ 253CHS139STO N196GTO 98254MSR +140LBL 10197E255RTN141RCL N198RCL 01256*LBL 91142RCL IND X199RCL 02257RCL 04143RCL 02200TONE 2258RCL 03144*201XEQ 02258RCL 03145ISG Y202RCL 00259/146""2035260CHS147RCL IND Y204+261"ROOT="148STO IND N2053262FS? 01149RCL 01206E3/E+263GTO 00150*207+264ARCL X151+208RCL 00265PROMPT152RCL IND M209E266RTN153+210-267*LBL 00154CHS211E6268 $\SigmaV\#$ 155STO IND Y212/269 25 156ISG M213+270>"S"157GTO 10214REGMOVE271MRIJA159,216ST-00273MSC+					
139STO N196GTO 98253CHS140LBL 10197E255RTN141RCL N198RCL 01256*LBL 91142RCL IND X199RCL 02257RCL 04143RCL 02200TONE 2258RCL 03144*201XEQ 02258RCL 03144*201XEQ 02259/146""2035260CHS147RCL IND Y204+261"ROOT="148STO IND N2053262FS7 01149RCL 01206E3/E+263GTO 00150*207+264ARCL X151+208RCL 00266RTN152RCL IND M209E267*LBL 00153+210-267*LBL 00154CHS211E6268 $\SigmaV#$ 155STO IND Y212/269Z5156ISG M213+270>"S"157GTO 10214REGMOVE271MRIJA158"CN"2152272RDN159,216ST-00273MSC+	138	+	195	X#0?	
140LBL 10197E234MSR+141RCL N198RCL 01255RTN142RCL IND X199RCL 02256 $*LBL 91$ 143RCL 02200TONE 2257RCL 04144*201XEQ 02258RCL 03145ISG Y202RCL 00259/146""2035260CHS147RCL IND Y204+261"ROOT="148STO IND N2053262FS? 01149RCL 01206E3/E+263GTO 00149RCL 01206E3/E+264ARCL X150*207+264ARCL X151+208RCL 00265PROMPT152RCL IND M209E266RTN153+210-267*LBL 00154CHS211E6268 $\Sigma V \#$ 155STO IND Y212/26925156ISG M213+270>"5"157GTO 10214REGMOVE271MRIJA158"C/V"2152272RDN159,216ST-00273MSC+		STO N	196	GTO 98	
141RCL N198RCL 01255RIN142RCL IND X199RCL 02256 $*LBL 91$ 143RCL 02200TONE 2257RCL 04144*201XEQ 02258RCL 03145ISG Y202RCL 00259/146""2035260CHS147RCL IND Y204+261"ROOT="148STO IND N2053262FS? 01149RCL 01206E3/E+263GTO 00149RCL 01206E3/E+264ARCL X150*207+264ARCL X151+208RCL 00265PROMPT153+210-267*LBL 00153+210-267*LBL 00154CHS211E6268 $\SigmaV\#$ 155STO IND Y212/269 25 156ISG M213+270>"S"157GTO 10214REGMOVE271MRIJA159,216ST-00273MSC+					
141RCL N198RCL 01256 $*LBL 91$ 142RCL IND X199RCL 02200TONE 2257RCL 04143RCL 02200TONE 2258RCL 03144*201XEQ 02259/144*2035260CHS146""2035260CHS147RCL IND Y204+263GTO 00148STO IND N2053262FS? 01149RCL 01206 E3/E+ 263GTO 00149RCL 01206 E3/E+ 263GTO 00150*207+264ARCL X151+208RCL 00265PROMPT152RCL IND M209E266RTN153+210-267*LBL 00154CHS211E6268 $\Sigma V \#$ 155STO IND Y212/26925156ISG M213+270>"S"157GTO 10214REGMOVE271MRIJA158"CV"2152272RDN159,216ST-00273MSC+					255 RTN
142RCL IND X199RCL 02257RCL 04143RCL 02200TONE 2258RCL 03144*201XEQ 02259/145ISG Y202RCL 00260CHS146""2035260CHS147RCL IND Y204+261"ROOT="148STO IND N2053262FS? 01149RCL 01206 E3/E+ 263GTO 00150*207+264ARCL X151+208RCL 00265PROMPT152RCL IND M209E266RTN153+210-267*LBL 00153+210-267*LBL 00154CHS211E6268 $\SigmaV#$ 155STO IND Y212/269 25 ABSP156ISG M213+270>"S"157GTO 10214REGMOVE271MRIJA158"C/V"2152272RDN159,216ST- 00273MSC+	141	RCL N			
143RCL 02200TONE 2257RCL 04144*201XEQ 02258RCL 03145ISG Y202RCL 00259/146""2035260CHS147RCL IND Y204+261"ROOT="148STO IND N2053262FS? 01149RCL 01206E3/E+263GTO 00150*207+264ARCL X151+208RCL 00265PROMPT152RCL IND M209E266RTN153+210-267*LBL 00154CHS211E6268 $\SigmaV#$ 155STO IND Y212/26925156ISG M213+270>"5"157GTO 10214REGMOVE271MRIJA158"CN"2152272RDN159,216ST- 00273MSC+	142	RCL IND X	199	RCL 02	
144*201XEQ 02258RCL 03145ISG Y202RCL 00259/146""2035260CHS147RCL IND Y204+261"ROOT="148STO IND N2053262FS? 01149RCL 01206 E3/E+ 263GTO 00149RCL 01206 E3/E+ 264ARCL X150*207+264ARCL X151+208RCL 00265PROMPT152RCL IND M209E267*LBL 00153+210-267*LBL 00154CHS211E6268 $\Sigma V \#$ 155STO IND Y212/26925156ISG M213+270>"S"157GTO 10214REGMOVE271MRLJA158"CN"2152272RDN159,216ST-00273MSC+		RCL 02	200	TONE 2	
145ISG Y202RCL 00 $259 /$ 146""2035260CHS147RCL IND Y204+261" $ROOT=$ "148STO IND N2053262FS? 01149RCL 01206 E3/E+ 263GTO 00149RCL 01206 E3/E+ 264ARCL X150*207+264ARCL X151+208RCL 00265PROMPT152RCL IND M209E267*LBL 00153+210-268 $\Sigma V #$ 154CHS211E6268 $\Sigma V #$ 155STO IND Y212/26925156ISG M213+270>"5"157GTO 10214REGMOVE271MRIJA158"CN"2152272RDN159,216ST- 00273MSC+					258 RCL 03
145ISG Y202RCL 00260CHS146""2035261" $ROOT=$ "147RCL IND Y204+261" $ROOT=$ "148STO IND N2053262FS? 01149RCL 01206E3/E+263GTO 00150*207+264ARCL X151+208RCL 00265PROMPT152RCL IND M209E266RTN153+210-267*LBL 00154CHS211E6268 $\SigmaV\#$ 155STO IND Y212/26925156ISG M213+270>"5"157GTO 10214REGMOVE271MRIJA158"CN"2152272RDN159,216ST- 00273MSC+					259 /
140203 J 261"ROOT="147RCL IND Y 204 + 262 FS? 01148STO IND N 205 3 262 FS? 01149RCL 01 206 E3/E+ 263 GTO 00150* 207 + 264 ARCL X151+ 208 RCL 00 266 RTN152RCL IND M 209 E 267 *LBL 00153+ 210 - 267 *LBL 00154CHS 211 E6 268 $\SigmaV#$ 155STO IND Y 212 / 269 25 ABSP156ISG M 213 + 270 >"5"157GTO 10 214 REGMOVE 271 MRIJA158"CN" 215 2 272 RDN159, 216 ST- 00 273 MSC+					
147RCL IND Y 204 + 201 $R007=$ 148STO IND N 205 3 262 FS? 01149RCL 01 206 E3/E+ 263 GTO 00150* 207 + 264 ARCL X150* 207 + 266 RTN151+ 208 RCL 00 265 PROMPT152RCL IND M 209 E 266 RTN153+ 210 - 267 *LBL 00154CHS 211 E6 268 $\SigmaV#$ 155STO IND Y 212 / 269 25 ABSP156ISG M 213 + 270 >"5"157GTO 10 214 REGMOVE 271 MRIJA158"CN" 215 2 272 RDN159, 216 ST- 00 273 MSC+	146				
148STO IND N2053 262 FS? 01149RCL 01 206 E3/E+ 263 GTO 00150* 207 + 264 ARCL X150* 207 + 265 PROMPT151+ 208 RCL 00 265 PROMPT152RCL IND M 209 E 266 RTN153+ 210 - 267 *LBL 00153+ 210 - 268 $\Sigma V \#$ 154CHS 211 E6 268 $\Sigma V \#$ 155STO IND Y 212 / 269 25 ABSP156ISG M 213 + 270 >"S"157GTO 10 214 REGMOVE 271 MRIJA158"CN" 215 2 272 RDN159, 216 ST- 00 273 MSC+		RCL IND Y	204	+	
149RCL 01206E3/E+263GTO 00150*207+264ARCL X151+208RCL 00265PROMPT152RCL IND M209E266RTN153+210-267*LBL 00154CHS211E6268 $\Sigma V \#$ 155STO IND Y212/26925156ISG M213+270>"S"157GTO 10214REGMOVE271MRIJA158"C/V"2152272RDN159,216ST- 00273MSC+					
149RCL 01200 $L3/L4$ 264ARCL X150*207+265PROMPT151+208RCL 00265PROMPT152RCL IND M209E266RTN153+210-267*LBL 00154CHS211E6268 $\Sigma V \#$ 155STO IND Y212/26925156ISG M213+270>"S"157GTO 10214REGMOVE271MRIJA158"C/V"2152272RDN159,216ST- 00273MSC+					263 GTO 00
150 * 207 + 265 PROMPT 151 + 208 RCL 00 266 RTN 152 RCL IND M 209 E 266 RTN 153 + 210 - 267 *LBL 00 154 CHS 211 E6 268 $\Sigma V #$ 155 STO IND Y 212 / 269 25 ABSP 156 ISG M 213 + 270 >"S" 157 GTO 10 214 REGMOVE 271 MRIJA 158 "CN" 215 2 272 RDN 159 , 216 ST- 00 273 MSC+					
151 +208 RCL 00266 RTN152 RCL IND M $209 E$ $266 RTN$ 153 + $210 267 *LBL 00$ 154 CHS $211 E6$ $268 \Sigma V \#$ 155 STO IND Y $212 /$ $269 25 ABSP$ 156 ISG M $213 +$ $270 > "S"$ 157 GTO 10 $214 REGMOVE$ $271 MRIJA$ 158 "C/V" $215 2$ $272 RDN$ 159 , $216 ST- 00$ $273 MSC+$	150	*			
152RCL IND M209E266RIN153+210-267*LBL 00154CHS211E6268 $\Sigma V \#$ 155STO IND Y212/26925ABSP156ISG M213+270>"S"157GTO 10214REGMOVE271MRIJA158"C/V"2152272RDN159,216ST- 00273MSC+	151	+	208	RCL 00	
$153 +$ $210 267 * \text{LBL } 00$ 154 CHS 211 E6 $268 \Sigma V \#$ 155 STO IND Y $212 /$ $269 25 \text{ ABSP}$ 156 ISG M $213 +$ $270 >''S''$ $157 \text{ GTO } 10$ 214 REGMOVE 271 MRIJA $158 "CN"$ $215 2$ 272 RDN $159 ,$ $216 \text{ ST- } 00$ 273 MSC+					266 RTN
153 + 210 - 200 - 200 - 154 CHS 211 E6 268 25 ABSP 155 STO IND Y 212 / 269 25 ABSP 156 ISG M 213 + 270 > "S" 157 GTO 10 214 REGMOVE 271 MRIJA 158 "C/V" 215 2 272 RDN 159 , 216 ST- 00 273 MSC+					267 *LBL 00
154 CHS 211 LS 269 25 ABSP 155 STO IND Y 212 / 270 >"S" 156 ISG M 213 + 270 >"S" 157 GTO 10 214 REGMOVE 271 MRIJA 158 "CN" 215 2 272 RDN 159 , 216 ST- 00 273 MSC+					
155 STO IND Y 212 / 269 25 ABSP 156 ISG M 213 + 270 >"5" 157 GTO 10 214 REGMOVE 271 MRIJA 158 "C/V" 215 2 272 RDN 159 , 216 ST- 00 273 MSC+	154	CHS			
156 ISG M 213 + 270 >"5" 157 GTO 10 214 REGMOVE 271 MRIJA 158 "CN" 215 2 272 RDN 159 , 216 ST- 00 273 MSC+		STO IND Y	212	/	
150 150 151 REGMOVE 271 MRIJA 157 GTO 10 214 REGMOVE 271 MRIJA 158 "C/V" 215 2 272 RDN 159 216 ST- 00 273 MSC+					270 >" <u>S</u> "
157 Group 215 2 272 RDN 159 216 ST-00 273 MSC+					
159 , 216 ST- 00 273 MSC+					
159 , 216 ST- 00 273 MSC+	158	"CN"			
		,	216	ST- 00	273 MSC+
		,			

274	*LBL J		MRR+		FS? 09
275		281	CF 09	288	RTN
	MSIJ	282	X#0?	289	FC? 10
	*LBL 01	283	I+	290	GTO 01
278 279	278 MRR+	285	X<>Y QROUT STOP	291	END

Bairstow Method.

A faster program is **BAIRS**, which also uses a factorization method but does not utilize any of the matrix functions. Therefore the solutions are just prompted to the display but not saved into an X-Mem file. **BAIRS** expects the coefficients already stored in main memory, and the polynomial control word in X. Note that they will be overwritten during the execution of the program.

It uses registers R00 to R08 internally, thus cannot be used to store your data. The error message "bbb<=8" is shown otherwise. For both programs the accuracy of the solutions (and therefore their run times) depends on the display settings.

BAIRS factorizes the polynomial

 $p(x) = a_0 \cdot x^n + a_1 \cdot x^{n-1} + \dots + a_{n-1} \cdot x + a_n$ into quadratic factors and solves p(x) = 0 (n >1)

If deg(p) is odd, we have $p(x) = (a_0.x+b).(x^2+u_1.x+v_1).....(x^2+u_m.x+v_m)$; with m = (n-1)/2If deg(p) is even $p(x) = (a_0x^2+u_1.x+v_1)(x^2+u_2.x+v_2).....(x^2+u_m.x+v_m)$; with m = n/2

The coefficients u and v are found by the Newton method for solving 2 simultaneous equations. Then p is divided by $(x^2+u.x+v)$ and u & v are stored into R(ee-1) & Ree respectively . The process is repeated until all quadratic factors are found

Example 2. Solve $x^6 - 6x^5 + 8x^4 + 64x^3 - 345x^2 + 590x - 312 = 0$

Using **PMTP** to store the coefficients beginning in R09, thus the control word is **9,015**

Keystrokes	Display	Result
9.015, XEQ " PMTP "	™R 9: _ ″	
1, ENTER, CHS, 6, ENTER^,^8	B, ENTER^, 64, ENTER^, CHS,	345, ENTER [^] , 590, ENTER [^] , CHS, 312,
R/S	9,015	
XEQ " BAIRS "	shows precisions factors	
The solutions are:	"Z=-4,000" and "Z=2,000" "Z=2,000+J3,000" and conjuga "Z=1,000" and "Z=3,000"	ate (not shown)

Program listing.-

01 *LBL "BAIRS"	49 ISG 05	98 ISG X
02 RAD	50 GTO 02	99 GTO 01
03 CF 21	51 STO 05	100 CLD
04*LBL 00	52 RCL 01	101 RCL 08
05 9	53 *	102* LBL E
06 X<>Y	54 RCL 00	103 RCL 08
07 X>Y?	55 RCL 02	104 STO 04
08 GTO 00	56 ST* 01	105 ΣF#
09 " <i>bbb<=8"</i>	57 *	106 93
10 PROMPT	58 -	107 ODD?
11 GTO 00	59 RCL 03	108 GTO 03
12*LBL 00	60 RCL 05	109 RCL IND 04
13 STO 04	— 61 *	110 ISG 04
14 STO 08	62 RCL 02	111 GTO 05
15 2	63 X^2	112*LBL 03
16 STO 06	64 -	113 .
17 PI	65 STO 05	114 RCL IND 04
18 STO 07	66 /	115 ISG 04
19*LBL 01	67 ST+ 06	116 RCL IND 04
20 CLX	— 68 RCL 00	117 X<>Y
20 CLX 21 STO 00	69 RCL 03	118 /
22 STO 01	70 *	119 CHS
23 STO 02	71 RCL 01	120 TONE 9
24 STO 02	72 -	121 ΣF#
25 RCL 04	73 RCL 05	122 32
26 STO 05	74 /	123 STOP
20 310 03 27*LBL 02	75 ST+ 07	124 ISG 04
	76 R-P	125*LBL 04
28 RCL IND 05 29 RCL 00	77 RND	126 E
30 RCL 00	78 VIEW 06	127*LBL 05
30 KCL 07 31 *	79 X#0?	128 RCL IND 04
	80 GTO 01	128 KCL IND 04 129 ISG 04
32 - 22 PCL 01	81 SIGN	130 RCL IND 04
33 RCL 01 34 RCL 06	82 STO 05	131 QROOT
35 *	83 RCL 04	132 ISG 04
	84 7	132 130 04 133 FS? 30
36 - 37 X<> 01	85 <>J	133 F31 50 134 GTO 06
	86 5	
38 STO 00 39 RCL 02	87 +	135 TONE 9 136 QROUT
40 RCL 02	88 PDIV	137 STOP
40 KCL 07 41 *	89 STO 04	138 GTO 04
	90 RCL 06	138 GTO 04 139*LBL 06
42 - 42 PCL 02	91 STO IND Z	
43 RCL 03	92 ISG Z	140 BEEP
44 RCL 06	93 RCL 07	141 QROUT
45 * 46	94 STO IND T	142 STOP
46 -	95 RCL 04	143 END
47 X<> 03	96 2	
48 X<> 02	97 +	

4.4. Extended Polynomial Applications.

A few related topics - in that polynomials are involved - even if some programs don't make direct utilization of matrix functions. Here too the SandMatrix complements the functionallity included in the SadnMath. The table below summarizes them:

	Function	Description	Input / Output
0	EQT	Curve Equation Display	Equation number in X (0 to 15)
1	POLINT	Polynomial interpolation	Under program control
2	PRMF	Prime Factors decomposition	Argument in X-reg
3	PF>X	From prime factors to argument	Prime factors in matrix [PRMF]
4	TOTNT	Euler's Totient function	Argument in X-reg
5	POLFIT	Polynomial Fitting	Under program control
6	POLZER	From Poles to Zeroes	Under program control
7	PFE	Partial Fractions Expansion	Under program control

4.4.1. Displaying the Equations for Curve Fitting Programs { EQT }

As there was plenty of available space in the module, I decided to include this routine to complement the Curve Fitting program in the SandMath (**CURVE**). The routine **EQT** will write in Alpha the actual equation which reference number is in register R00, ranging from 0 to 15 as per the table below:

 Linear Reciprocal Hyperbola Reciprocal Hyperbola Power Modified Power Root Exponential Logarithmic Linear Hyperbolic 2^{nd.} Order Hyperbolic Parabola Linear Exponential Normal Log Normal Cauchy 	01+LBL "EQ" 02 XEQ IND 00 03 AVIEW A4 RTN 05 GTO "EQ" 06+LBL 00 07 "a+bX" 08 RTN 09+LBL 01 10 "1/(a+bX)" 11 RTN 12+LBL 02 13 "a+(b/X)" 14 RTN 15+LBL 03 16 "X/(aX+b)" 17 RTN 18+LBL 04 19 "aXtb"	30+LBL 08 31 "a+bLNX" 32 RTH 33+LBL 09 34 "a+bX+(c/X)" 35 RTN 36+LBL 10 37 "a+(b/X)+(c/X†2)" 38 RTH 39+LBL 11 40 "a+bX+cX†2" 41 R1N 42+LBL 12 43 "aX/bX" 44 RTN 45+LBL 13 46 "aet(((X-b)†2)/c" 47 "+)" 48 RTN
Note that EQT does not perform any calculations, thus it's just an embellishing addition to CURVE.	20 RTN 21+LBL 05 22 "ab†X" 23 RTN 24+LBL 06	49•LBL 14 50 "aet(((b-LNX)†2)" 51 "F≠c)" 52 RTN 53•LBL 15
The original FOCAL program listing was originally published in the AECROM manual, and it's reproduced here practically unaltered.	25 "abt(1/X)" 26 RTN 27*LBL 07 28 "aet(bX)" 29 RTN	53*E8E 13 54 *1/((a(X+b)†2)+c* 55 *F)* 56 RTN 57 END

The implementation in the SandMatrix is done in MCODE, much longer in size (about 350 bytes in total) but possible to tuck away in a second bank – where the space for it was available.

4.4.2. Polynomial interpolation. { POLINT }

The program **POLINT** follows the Aitken's interpolation method. It's an elegant simple implementation and a nice example of utilization of the capabilities of the platform. It was written by Ulrich K. Deiters, and it is posted at: <u>http://www.hp41.org/LibView.cfm?Command=View&ItemID=600</u>

The program performs polynomial interpolations of variable order on (xi, yi) data sets, with the order determined by the number of data pairs. It is applied as follows:

- You have a set of (xi, yi) data pairs. The xi are all different, and they need not be equidistant.

- You need to know the y value at the location x, which is not one of the xi.

- You start the program	XEQ " POLINT "
and enter x at the prompt.	x, R/S
 Then you enter the first data pair,	x0, R/S
preferably one which has an x_i close to x. The program returns y0.	y0, R/S
 You enter another data pair. The program returns the results of a linear interpolation. 	R/S x1, R/S y1, R/S
 You enter another data pair. The program returns the results of a quadratic interpolation. 	R/S x2, R/S y2, R/S
- You enter another data pair.	R/S
The program returns the results of a cubic	x3, R/S
interpolation.	y3, R/S

- ... and so on, until you exceed the SIZE of your calculator.

Going beyond the cubic interpolation is seldomly useful. High-order interpolations become increasingly sensitive to round-off errors and inaccuracies of the input data.

The number of data registers used depends on the order of the interpolation. An nth order interpolation (which uses n+1 pairs of data) occupies the registers R00 to R(2n+4), e.g., a cubic interpolation needs all registers up to R10.

If a printer is connected, the interpolation results are printed out, and the "empty" R/S entries are not required.

Example. Given the table below with a set of vapor pressure data for superheated water, what is the vapor pressure at 200 °C (= 473.15 K)?

T/K	380	400	450	480	500	530	560
p/MPa	0.12885	0.24577	0.93220	1.7905	2.6392	4.4569	7.1062

Here's the sequence followed to resolve it.

input	display	Comment
XEQ "INTPOL"	X <u>-</u> 7	
473.15, R/S	X 🛛 😑 🖓	
480, R/S	Y 🛛 🖃 🖓	
1.7905 , R/S	Y = 179050	
R/S	X (±7	
450 ,R/S	Y (±7	
0.9322, R/S	Y = 159452	linear interpolation
R/S	X 2 = 7	
500, R/S	Y 2 = 7	
2.6392, R/S	Y = 1.55067	quadratic interpolation
R/S	X 3 = 7	
400 ,R/S	Y 3 = 7	
0.24577, R/S	Y = 155453	cubic interpolation
R/S	X H <u>-</u> 7	
530, R/S	Y H <u>-</u> 7	
4.4569, R/S	Y = 1.55495	4th order

From this we conclude that 1.55 MPa is a reasonably good estimate; and that the linear interpolation was certainly not sufficient. Incidentally, the true value is 1.554950 MPa..

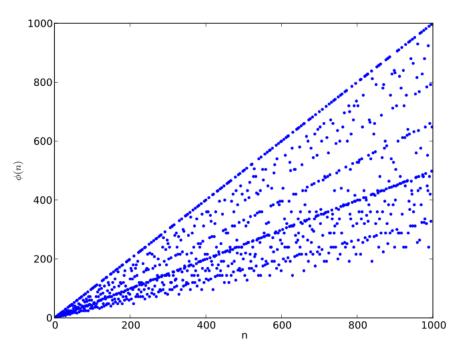
The program listing is shown below.

1	LBL "POLINT"		33	X<>Y	
2	FC? 55		34	AIP	
3	SF 21		35	X<>Y	
4	"X=?"		36	"/-=?"	
5	PROMPT	x value of point	37	PROMPT	prompts for Yk
6	STO 00		38	DSE 02	
7	3,05		39	GTO 02	
8	STO 01		40	LBL 03 🔶 🕂	
9	LBL 01		41	RCL IND 02	
10	RCL 01		42	*	
11	INT	k	43	LASTX	
12	Ε		44	RCL Z	
13	-	k-1	45	-	
14	E3/E+	1,00(k-1)	46	ISG 02	
15	3		47	RCL IND 02	
16	+	4,00(k-1)	48	LASTX	
17	STO 02		49	*	
18	RCL 01		50	ST- Z	
19	INT	k	51	LASTX	
20	3		52	RDN	
21	-	k-3	53	RDN	
22	2		54	1	
23	1		55	LBL 02 🔶	
24	"X"		56	STO IND 01	
25	AIP		57	ISG 02	
26	" -=?"		58	GTO 03	
27	PROMPT	prompts for Xk	59	"Y="	
28	RCL 00		60	ARCL X	
29	-		61	AVIEW	
30	STO IND 01		62	ISG 01	
31	ISG 01		63	GTO 01	next order
32	"Y"		64	END	done

4.4.3. Prime Factors Decomposition { PRMF , PF>X , TOTNT }

This section describes the three functions provided in the SandMatrix related to Prime factorization.

	Function	Description	Input / Output
1	PRMF	Prime Factors (Matrix Form)	Argument in X-reg
2	PF>X	From Factors to Number	Prime factors in Matrix file
3	TOTNT	Euler's Totient function	Argument in X-reg


The first one **PRMF** extends the basic prime factorization capability in the SandMath, **PFCT**. The difference is that whereas **PFCT** only uses the Alpha register to output the result (as Alpha string), here the prime factors and their multiplicities are also stored in a matrix in X-Mem - named [**PRFM**]. This ensures that no information will be lost (scrolled off the display if the length exceeds 24 char), and also provides a permanent storage of the results.

You can use PF>X to check the result: it re-builds the original argument from the values in the [**PRMF**] matrix, using the obvious relationship:

X =
$$\prod$$
 PF(i) ^m(i); for i = 1, 2... primes

Euler's Totient function.

In number theory, Euler's totient or phi function, $\phi(n)$ is an arithmetic function that counts the totatives of n, that is, the positive integers less than or equal to n that are relatively prime to n. The graphic below shows (well, sort of) the first thousand values of $\phi(n)$

Examples. Calculate the prime factors and the totient for the following numbers:

<u>n</u>	PF	phi
1,477	7*211	1,260
819,735	3*5*7*37*211	362,880
123,456	2^6*3*643	41.088,000
,		,

The programs are listed below. There's no fancy algorithm for **TOTNT**, it just counts the number of prime factors after doing the decomposition as a preliminary step.

1	LBL "TOTNT"	Euler's Totient Function	55	GTO 03	skip if yes
2	SF 04	flag case	56	ST/ L	divide number by PF
3	XEQ 10	get all Prime Factors	57	LASTX	Reduced number
4	0		58	GTO 00	loop back
5	MSIJ	sets pointer to 1:1	59	LBL 03 🔶	Store Exponent
6	X<>Y	argument to x	60	RCL 00	recover PF
7	LBL 07 <		61	MSR+	store in matrix
8	MRC+	get element	62	GTO 01	next factor
9	1/X	invert it	63	LBL 02	New PF found
10	CHS	sign change	64	STO 01	Store for comparisons
11	Ε		65	RCL 00	previous exponent
12	+	add 1	66	MSR+	Store Old PF Exponent
13	*	multiply	67	RDN	
14	FC? 09	end of row?	68	ST/ L	divide number by PF
15	GTO 07	loop back	69	LASTX	Reduced number
16	CLD	refesh display	70	DIM?	
17	RTN	done.	71	X<> Z	Bring the new PF back
18	LBL "PRMF"	Prime Factors	72	MSR+	store new PF
19	CF 04	flag case	73	FS?C 00	Was it Prime?
20	LBL 10		74	GTO 01	→ Bail Out, we're done
21	"PRMF"		75	Х<>Y	Bring the number back
22	2		76	GTO 05	Start Over
23	E3/E+	1,002	77	LBL "PF>X"	<u>Rebuild number</u>
24	MATDIM	Create Matrix	78	SF 04	flag case
25	CLX		79	"PRMF"	matrix name
26	MSIJA	sets pointer to 1:1	80	SF 10	fake condition
27	RDN	argument to x	81	LBL 01	PF Completed
28	CF 00	default: not prime	82	E	1
29	INT	condition x	83	FC? 10	end of matrix?
30	ABS	to avoid errors	84	MSR+	store it as last exp.
31	PRIME?	is it prime?	85	STO 00	initial value
32	SF 00	FIRST PF found	86	MSIJA	sets pointer to 1:1
33	MSR+	Store this PF	87	CLA	Clean Slate
34	X=1?	is PF =1?	88	LBL 06 🔶	Rebuild the number
35	GTO 01	yes, leave the boat	89	MRR+	get prime factor
36	FS?C 00	Was it Prime?	90	FC? 04	if not totient case
37	GTO 01	→ if Prime, we're done	91	AIP	add it to Alpha
38	STO 01	Store PF for comparisons	92	MRR+	get multiplicity
39	ST/ L	divide number by PF	93	FC? 04	if not totient and/
40	LASTX	Reduced number	94	X=1?	or if it is one
41	LBL 05		95	GTO 04	skip adding to Alpha
42	E	reset counter	96	"/-^"	otherwise put symbol
43	STO 00		97	AIP	and add it to the string
44	RDN		98	LBL 04	
45	LBL 00		99	γ^χ	PF^Exp
46	RCL 01	recall PF	100	ST* 00	Rebuilding the number
47	Х<>Ү	Reduced number	101	FS?10	End of Array?
48	PRIME?	is it prime?	102	GTO 04	yes, leave the boat
49	SF 00	PF found	103	FC? 04	if not totient case
50	X#Y?	Compare this and old PF's	104	"/-*"	append symbol
51	GTO 02	skip over if different	105	GTO 06	next PF
52	ISG 00	Same One	106	LBL 04	
53	NOP	Increase counter	107	RCL 00	final result
54	FS?C 00	Was it Prime?	108	FC? 04	if not totient case
			109	AVIEW	Show the construct
			110	END	done.

4.4.4. Polynomial Fitting { POLFIT }

The next program is taken from Valent'in Albillo article "*Long Live the Advantage ROM*' - showcasing the matrix functions included in it. As one can expect from that reference, it's an excellent example and therefore more that worth including in the SadnMatrix.

The original article is partially reproduced below – it is so well described that I could not resist adding it practically verbatim.

POLFIT is a small, user-friendly, fully prompting 62-line program (124 bytes) written specifically to demonstrate the excellent matrix capabilities of the Advantage ROM. **POLFIT** can find the coefficients of a polynomial of degree N which exactly fits a given set of N+1 arbitrary data points (not necessarily equally spaced), where N is limited only by available memory.

Among the many functions we could fit to data, polynomials are by far the easiest to evaluate and manipulate numerically or symbolically, so our problem is:

Given a set of n+1 data points (x1, y1), ..., (xn+1, yn+1), find an Nth-degree polynomial

$$y = P(x) = a1 + a2 x + a3 x2 + a4 x3 + ... + an+1 xn$$

which includes the (n+1) data points (x1, y1), (x2, y2), ..., (xn+1, yn+1). The coefficients (a1, ..., an+1) can be determined solving a system of (n+1) equations:

[1	X_1	x_1^2		x1 ⁿ][a1]]	=	[Yı]
[1	X2	x2 ²		x_2^n][a ₂]]	=	[Y2]
[.			•][.]]	=	[.]
[1	X _{n+1}	x _{n+1} 2		x _{n+1}	ˈ][a _{n+1}]	=	$[Y_{n+1}]$]

Program listing

01	LBL "POLFIT"	to use, simply XEQ " POLFIT "
02	"N=?"	prompts for the degree N of the polynomial
03	PROMPT	and waits for the user to enter N
04	1	add 1 to get the number of data points
05	+	N+1
06	1.001	the required multiplier
07	*	forms the matrix dimensions [N+1].00[N+1]
08	"MX"	specifies matrix MX to be created in X-Mem
09	MATDIM	creates and dimensions matrix MX in X-MEM
10	0	specifies first row, first column and
11	MSIJ	resets the row/column indexes
12	LBL 00	loop to ask for data & compute MX elements
13	MRIJ	recalls the current value of the indexes
14	"X"	forms the prompt to ask the user to enter xi
15	AIP	appends the index to the prompt
16	"/-=?"	appends "=?" to the prompt
17	PROMPT	prompts to enter xi and resume execution
18	ENTER^	fills the stack with the value of xi
19	ENTER^	in order to compute all powers of xi
20	ENTER^	from 1 to xi^n and store them in MX
21	1	initializes the value of xi^0 [i.e.: 1]
22	MSR+	stores it in MX and updates the indexes

23LBL 01loop to compute the powers of xi24*computes xi^j25MSR+stores it in MX and updates the indexes26FC? 09are we done with this row ?27GTO 01not yet, go back for the next xi power28FC? 10row done. Are we done with all rows?29GTO 00not yet, go back to ask for the next xi30CLAall rows done, MX complete. Make it current31DIM?get its dimensions: [N+1].00[N+1]32INTget its dimensions vector MY to be created in X-MEM34MATDIMcreates and dimensions vector MY in X-MEM35LBL Bask for yi data and store them in MY360specifies 1st element of the vector and37MSIJrecalls the current value of the index38LBL 02loop for next data and store them in MY39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt42"/-=?"appends the index to the prompt43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.			
25MSR+stores it in MX and updates the indexes26FC? 09are we done with this row ?27GTO 01not yet, go back for the next xi power28FC? 10row done. Are we done with all rows?29GTO 00not yet, go back to ask for the next xi30CLAall rows done, MX complete. Make it current31DIM?get its dimensions: [N+1].00[N+1]32INTget N+1 (avoid using a register)33"MY"specify vector MY to be created in X-MEM34MATDIMcreates and dimensions vector MY in X-MEM35LBL Bask for yi data and store them in MY360specifies 1st element of the vector and37MSIJresets the index to the 1st element38LBL 02loop for next data and store them in MY39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends "=?" to the prompt42"/-=?"appends the index to the prompt43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient <td></td> <td></td> <td></td>			
26FC? 09are we done with this row ?27GTO 01not yet, go back for the next xi power28FC? 10row done. Are we done with all rows?29GTO 00not yet, go back to ask for the next xi30CLAall rows done, MX complete. Make it current31DIM?get its dimensions: [N+1].00[N+1]32INTget N+1 (avoid using a register)33"//Y"specify vector MY to be created in X-MEM34MATDIMcreates and dimensions vector MY in X-MEM35LBL Bask for yi data and store them in MY360specifies 1st element of the vector and37MSLJresets the index to the 1st element38LBL 02loop for next data and store them in MY39MRLJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt42"/-=?"appends the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient			
27GTO 01not yet, go back for the next xi power28FC? 10row done. Are we done with all rows?29GTO 00not yet, go back to ask for the next xi30CLAall rows done, MX complete. Make it current31DIM?get its dimensions: [N+1].00[N+1]32INTget N+1 (avoid using a register)33"MY"specify vector MY to be created in X-MEM34MATDIMcreates and dimensions vector MY in X-MEM35LBL Bask for yi data and store them in MY360specifies 1st element of the vector and37MSLJ38LBL 02loop for next data and store them in MY39MRLJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt42"/-=?"appends the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient			
28FC? 10row done. Are we done with all rows?29GTO 00not yet, go back to ask for the next xi30CLAall rows done, MX complete. Make it current31DIM?get its dimensions: [N+1].00[N+1]32INTget N+1 (avoid using a register)33"MY"specify vector MY to be created in X-MEM34MATDIMcreates and dimensions vector MY in X-MEM35LBL Bask for yi data and store them in MY360specifies 1st element of the vector and37MSIJrecalls the current value of the index39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt42"/-=?"appends the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient			
29GTO 00not yet, go back to ask for the next xi30CLAall rows done, MX complete. Make it current31DIM?get its dimensions: [N+1].00[N+1]32INTget N+1 (avoid using a register)33"MY"specify vector MY to be created in X-MEM34MATDIMcreates and dimensions vector MY in X-MEM35LBL Bask for yi data and store them in MY360specifies 1st element of the vector and37MSIJresets the index to the 1st element38LBL 02loop for next data and store them in MY39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the user to enter yi43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient			
30CLAall rows done, MX complete. Make it current31DIM?get its dimensions: [N+1].00[N+1]32INTget N+1 (avoid using a register)33"MY"specify vector MY to be created in X-MEM34MATDIMcreates and dimensions vector MY in X-MEM35LBL Bask for yi data and store them in MY360specifies 1st element of the vector and37MSIJresets the index to the 1st element38LBL 02loop for next data and store them in MY39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends "=?" to the prompt43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient			
31DIM?get its dimensions: [N+1].00[N+1]32INTget N+1 (avoid using a register)33"MY"specify vector MY to be created in X-MEM34MATDIMcreates and dimensions vector MY in X-MEM35LBL Bask for yi data and store them in MY360specifies 1st element of the vector and37MSIJresets the index to the 1st element38LBL 02loop for next data and store them in MY39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient			
32INTget N+1 (avoid using a register)33"MY"specify vector MY to be created in X-MEM34MATDIMcreates and dimensions vector MY in X-MEM35LBL Bask for yi data and store them in MY360specifies 1st element of the vector and37MSIJresets the index to the 1st element38LBL 02loop for next data and store them in MY39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt42"/-=?"appends the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient		-	
33"MY"specify vector MY to be created in X-MEM34MATDIMcreates and dimensions vector MY in X-MEM35LBL Bask for yi data and store them in MY360specifies 1st element of the vector and37MSIJresets the index to the 1st element38LBL 02loop for next data and store them in MY39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt42"/-=?"appends the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient			
34MATDIMcreates and dimensions vector MY in X-MEM35LBL Bask for yi data and store them in MY360specifies 1st element of the vector and37MSIJresets the index to the 1st element38LBL 02loop for next data and store them in MY39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt42"/-=?"appends the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient			
35LBL Bask for yi data and store them in MY360specifies 1st element of the vector and37MSIJresets the index to the 1st element38LBL 02loop for next data and store them in MY39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt42"/-=?"appends the user to enter yi43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient			
360specifies 1st element of the vector and37MSIJresets the index to the 1st element38LBL 02loop for next data and store them in MY39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt42"/-=?"appends "=?" to the prompt43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient			
37MSIJresets the index to the 1st element38LBL 02loop for next data and store them in MY39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt42"/-=?"appends "=?" to the prompt43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient	35	LBL B	
38LBL 02loop for next data and store them in MY39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt42"/-=?"appends "=?" to the prompt43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient		-	
39MRIJrecalls the current value of the index40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt42"/-=?"appends "=?" to the prompt43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient			resets the index to the 1st element
40"Y"forms the prompt to ask for yi41AIPappends the index to the prompt42"/-=?"appends "=?" to the prompt43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient51MSIJresets the index to the 1st coefficient	38	LBL 02	loop for next data and store them in MY
41AIPappends the index to the prompt42"/-=?"appends "=?" to the prompt43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient	39		recalls the current value of the index
42"/-=?"appends "=?" to the prompt43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient51MSIJresets the index to the 1st coefficient	40	"Y"	forms the prompt to ask for yi
43PROMPTprompts the user to enter yi44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient51MSIJresets the index to the 1st coefficient	41	AIP	appends the index to the prompt
44MSR+stores it in MY and updates the index45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient51MSIJresets the index to the 1st coefficient	42	"/-=?"	appends "=?" to the prompt
45FC? 10are we done with all elements?46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coefficient51MSIJresets the index to the 1st coefficient	43	PROMPT	prompts the user to enter yi
46GTO 02not yet, go back to ask for the next yi47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coeffs. vector51MSIJresets the index to the 1st coefficient	44	MSR+	stores it in MY and updates the index
47"MX,MY"all yi stored. Specify MX,MY for the system48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coeffs. vector51MSIJresets the index to the 1st coefficient	45	FC? 10	are we done with all elements?
48MSYSsolves the system for the coefficients49LBL Cretrieve and display each coeff.500specifies 1st element of the coeffs. vector51MSIJresets the index to the 1st coefficient	46	GTO 02	not yet, go back to ask for the next yi
49LBL Cretrieve and display each coeff.500specifies 1st element of the coeffs. vector51MSIJresets the index to the 1st coefficient	47	"MX,MY"	all yi stored. Specify MX,MY for the system
500specifies 1st element of the coeffs. vector51MSIJresets the index to the 1st coefficient		MSYS	solves the system for the coefficients
51 MSIJ resets the index to the 1st coefficient	49	LBL C	retrieve and display each coeff.
	50	0	specifies 1st element of the coeffs. vector
52 LBL 03 loop to retrieve the next coefficient		MSIJ	resets the index to the 1st coefficient
	52	LBL 03	loop to retrieve the next coefficient
53 MRIJ recalls the current value of the index		MRIJ	recalls the current value of the index
54 "A" forms the prompt to display each coeff.	54	"A"	forms the prompt to display each coeff.
55 AIP appends the index to the prompt	55	AIP	appends the index to the prompt
56 "/-=" appends "=" to the prompt	56	"/-="	
57 MRR+ retrieves the value of the current coeff.	57	MRR+	
58 ARCL X appends the value to the prompt	58	ARCL X	
59 PROMPT shows the value to the user	59	PROMPT	
60 FC? 10 are we done outputting all the coeffs?	60	FC? 10	are we done outputting all the coeffs?
61 GTO 03 not yet, go back for the next coefficient		GTO 03	
62 END all done. End of execution.	62	END	all done. End of execution.

<u>Notes</u>

- As the Advantage ROM can work with matrices directly in X-Mem, **POLFIT** doesn't use any main RAM registers and so it will run even at SIZE 000. This has the added advantage (pun intended) of avoiding any register conflicts with other programs.
- **POLFIT** creates two matrices in X-Mem, namely [**MX**] and [**MY**], which aren't destroyed upon termination. Retaining [**MX**] allows the user to compute the coefficients of another polynomial using the same x data but different y data. In that case, the x data need not be entered again, only the new y data must be entered. Further, as the MX matrix is left in LU-decomposed form after the first fit, the second fit willproceed much faster. Retaining [**MY**] allows the user to employ the polynomial for interpolating purposes, root finding, numeric integration or differentiation, etc.
- Lines 2-11 prompt the user for the degree of the polynomial, then allocate the system matrix in Extended Memory (MATDIM) and reset the indexes (MSIJ).

- Lines 12-22 set up a loop that will fill up the rows of [**MX**]. Notice the use of the miscellaneous function AIP to build the prompt, and MSR+ to store the value and automatically advance the indexes to point to the next element.
- Lines 23-27 form a tight loop that computes each power of xi and uses MSR+ to store it and advance the indexes. Flag 9 logs if we're done with the column in which case we would proceed to the next row. If so, Flag 10 is then checked to see if we're done with all the rows.
- Once the system matrix has been populated, lines 30-45 do likewise dimension, and populate the MY matrix, prompting the user for the required yi values. Then, once all the data have been input and both matrices are allocated and populated, lines 46-47 solve the system for the coefficients of the polynomial using MSYS.
- Finally, lines 48-59 establish a loop that labels and outputs all the coefficients.

Example

Rumor has it that the seemingly trigonometric function $y = \cos(5 \arccos x)$ is actually a 5th-degree polynomial in disguise. Attempt to retrieve its true form.

If it is indeed a 5th-degree polynomial, we can retrieve its true form by fitting a 5th-degree polynomial to a set of 6 arbitrary data points (x,y). Any set with different x values ($-1.0 \le x \le +1.0$) will do, but for simplicity's sake we'll use x=0, 0.2, 0.4, 0.6, 0.8, and 1. Proceed like this:

- set Rad mode, 4 decimals:	XEQ "RAD", FIX 4	
 start the program: 	XEQ "POLFIT"	"M = 🖓 "
 specify degree 5: 	5 R/S	"X (=₽″
 enter 1st x value: 	0 R/S	"X 2 = 7 ″
 enter 2nd x value: 	0.2 R/S	"X∃ <u>=</u> 7″
 enter 3rd x value: 	0.4 R/S	``X ᅛ <u>ー</u> '? ″
 enter 4th x value: 	0.6 R/S	"X 5 = 7 "
 enter 5th x value: 	0.8 R/S	"ХБ <u>н</u> 7"
 enter 6th x value: 	1 R/S	"Y (= 7"
 enter 1st y value: 	0, ACOS, 5, *, COS, R/S	"Y 2 ± 7 ″
 enter 2nd y value: 	0.2, ACOS, 5, *, COS, R/S	"Y∃ <u>=</u> 7 ″
 enter 3rd y value: 	0.4, ACOS, 5, *, COS, R/S	[™] Υ ᅛ <u>-</u> '7 ''
 enter 4th y value: 	0.6, ACOS, 5, *, COS, R/S	"Y 5 ± 7 "
 enter 5th y value: 	0.8, ACOS, 5, *, COS, R/S	"YБ=7″
 enter 6th y value: 	1, ACOS, 5, *, COS, R/S	"a (=- 10250E-9″
	R/S	"a 2 : 5.0 0 0 0 "
	R/S	°⊶∃÷7.08676-8″
	R/S	"a 4 <u>-</u> - 2 0.0 0 0 0 ″
	R/S	°⊶5±26 (886-7″
	R/S	"a5=(5.0000″

So, disregarding the very small coefficients due to rounding errors, the undisguised polynomial is:

$$P(x) = \cos(5 \arccos x) = 5 x - 20 x^3 + 16 x^5$$

You might want to execute now CAT"4 (or EMDIR), to see that the matrices used are still available so that you can redisplay the coefficients, solve for a new set of y values, or use the polynomial for interpolation, etc.

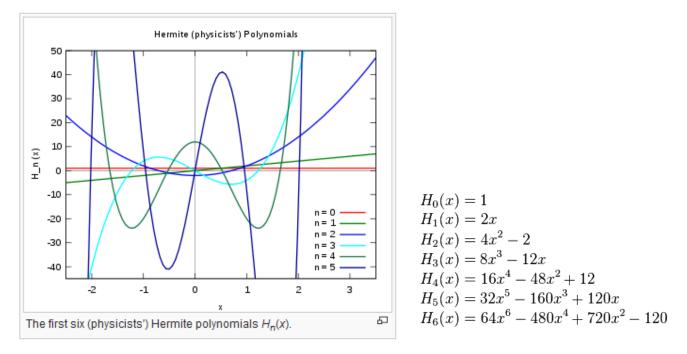
CAT"4	"М Х	MØ36″	[the system matrix is 6x6 = 36 elements]
	"MY	MØØ6″	[the coeff. matrix is $6x1 = 6$ elementss]
	554.6	3888 [EM F	Room left - this value varies with your configuration]

4.4.5. Orthogonal Polynomials.

Hermite Polynomials. { HMT }

The Hermite Polynomials were defined by Laplace (1.810) though in scarcely recognizable form, and studied in detail by Chebyshev (1.859). Chebyshev's work was overlooked and they were named later after Charles Hermite who wrote on the polynomials in 1.864 describing them as new.

There are two different ways of standardizing the Hermite polynomials; The "probabilists' [He(n)] and the "physicists' [H(n)] Hermite polynomials" given by the following expressions:


$$He_n(x) = (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} e^{-\frac{x^2}{2}} \qquad H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}$$

These two definitions are not exactly identical; each one is a rescaling of the other,

$$H_n(x) = 2^{\frac{n}{2}} He_n(\sqrt{2}x), \qquad He_n(x) = 2^{-\frac{n}{2}} H_n\left(\frac{x}{\sqrt{2}}\right)$$

The figure below shows the first six Hermite polynomials Hn, which are those implemented in the SandMatrix using the recurrence expression: $H = 2\pi H_{c}(\pi) = 2\pi H_{c}(\pi)$

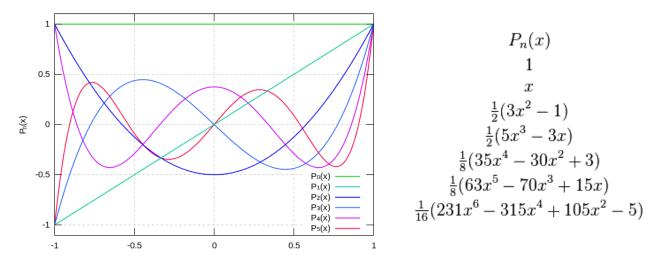
$$H_{n+1}(x) = 2xH_n(x) - 2nH_{n-1}(x).$$

They are written as fully MCODE functions, thus the execution time is optimized – wich is especially relevant given the recurrent nature of the method employed.

Examples.	Calculate H7(3.14)	and H3(-2.5)
-----------	--------------------	--------------

we type:	7, ENTER^, 3.14, ΣV\$ "HMT"	=>	73,726.24325
and:	3, ENTER^, 2.5, CHS, ΣML, [,]	=>	-95.00000000

Legendre Polynomials { LEG }


In mathematics, Legendre functions are solutions to Legendre's differential equation shown below. They are named after Adrien-Marie Legendre. This ordinary differential equation is frequently encountered in physics and other technical fields. In particular, it occurs when solving Laplace's equation (and related partial differential equations) in spherical coordinates.

$$\frac{d}{dx}\left[(1-x^2)\frac{d}{dx}P_n(x)\right] + n(n+1)P_n(x) = 0.$$

These solutions for n = 0, 1, 2, ... (with the normalization Pn(1) = 1) form a polynomial sequence of orthogonal polynomials called the Legendre polynomials. Each Legendre polynomial Pn(x) is an nth-degree polynomial.

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} \left[(x^2 - 1)^n \right]$$

The figure below shows the first six Legendre polynomials, with their explicit expressions on the left:

Like in the Hermite's case, the SandMatrix implementation (also written in MCODE for better performance and accuracy) uses a recursive approach to calculate them, described by the Bonnet's formula below:

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x).$$

Examples: Calculate L7(4.9), and L3(-2.5)

we type:	7, ENTER^, 4.9, ΣV\$	=>	1,698,444.018
and:	3, ENTER^, 2.5, CHS, ΣML, [,]	=>	-35.31250000

Note: Remember that the SandMatrix includes functions **CHB1** and **CHB2** to calculate the Chebyshev polynomials; you can refer to the SandMatrix Manual for details. The implementation there is also done in MCODE, thus as fast and convenient as possible.

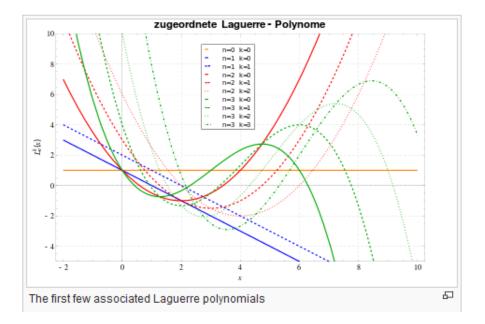
Note that despite being sub-functions from the SandMath, both CHB1 and CHB2 are available from the ΣML "P: _" launcher as well. – and as such they'll be logged in its own LASTF buffer when used.

Laguerre and Associated Laguerre Polynomials. { LAG , LANX }

In mathematics, the Laguerre polynomials, named after Edmond Laguerre (1834 - 1886), are solutions of Laguerre's equation - which is a second-order linear differential equation. This equation has nonsingular solutions only if n is a non-negative integer.

$$xy'' + (1 - x)y' + ny = 0$$

The Associated Laguerre polynomials (alternatively, but rarely, named Sonin polynomials after their inventor, Nikolay Yakovlevich Sonin) are solutions of


$$xy'' + (\alpha + 1 - x)y' + ny = 0$$

One can also define the Laguerre polynomials recursively, defining the first two polynomials as shown below (where $\alpha=0$ for the standard type), and then using the following recurrence relation, for any term k ≥ 1 :

$$L_0^{(\alpha)}(x) = 1$$

$$L_1^{(\alpha)}(x) = 1 + \alpha - x$$

$$L_{k+1}^{(\alpha)}(x) = \frac{(2k+1+\alpha-x)L_k^{(\alpha)}(x) - (k+\alpha)L_{k-1}^{(\alpha)}(x)}{k+1}.$$

Examples: Calculate L7(3.14) and L7(1.4, 3.14)

The input parameters are entered similarly in the stack for both case, with "a" in the Z- register for the generalized case, and "n" and "x" in the Y- and X-registers in both instances.

and:

 7, ENTER^, 3.14, ΣV\$ "LAG"
 => -0.978658720

 1.4, ENTER^, 7, ENTER^, 3.14, ΣV\$ "LANX"
 => 1.692567095

As a reminder, the SandMath module includes **LAYX**, another generalization of the Laguerre polynomias for non-integer orders. It is a direct application of the Kumer M function; refer to the SandMath manual for details.

4.4.6. Orthogonal polynomial Fit. { OPFIT } - Moved to Curve_Fitting Module

Orthogonal polynomials are a very advantageous method for polynomial regression. Not only it allows for a more progressive approach, but also the accuracy of the values so obtained is typically better. This program employs this method; even if it doesn't calculate any orthogonal polynomials explicitly.

Given m value pairs (xi, yi) and a maximum degree to explore (n), this program calculates the n(n+3)//2 polynomial coefficients of the corresponding n polynomials of degrees 1, 2, 3,... n that best fit the given data (therefore equivalent to the least squares method). It also obtains the determination coefficients and typical errors for each degree,

The method followed uses the construct $\mathbf{Y}(\mathbf{x}) = \mathbf{d0} \ \mathbf{PO}(\mathbf{x}) + \mathbf{d1} \ \mathbf{P1}(\mathbf{x}) + \dots \mathbf{dn} \ \mathbf{Pn}(\mathbf{x})$; where p0, p1, ... pn are the orthogonal polynomials corresponding to the entered data that satisfy the expression $\Sigma \ \text{Pi} \ \text{Pj} = 0$, for every i#j

The advantage of this approach is a better accuracy, as it avoids the resolution of the usual n linear systems, frequently ill-conditioned, that arise in the least squares method.

Example.- To check the program we took the following 11 value pairs from the polynomial

$P(x) = x^4 - 2x^3 + 3x^2 - 4x + 5$

Xi	-3	-2	-1	0	1	2	3	4	5	6	7560
Yi	179	57	15	5	3	9	47	165	435	953	1839

Using the data above explore up to degree n=4, showing the correlation coefficients, the D-factors and the errors for each of the alternatives.

The results are all provided in the table below:

Degree (n)	Corrlt. (r^2)	Errors (e^2)	Determ. (d^2)	Coefficients
n = 1	R1=4,482218E-1	E0=3,295160E5	D0=3,370000E2	a0=9,140000E1
	K1-4,402210L-1	E1=1,818197E5	D1=1,228000E2	a1=1,228000E2
				a0=-1,486000E2
n =2	R2=9,000134E-1	E2=3,294720E4	D2=4,000000E1	a1=-3,720000E1
				a2=4,000000E1
n = 3			D3=6,000000E0	a0=1,700000E1
	R3=9,821452E-1	E3=5,883429E3		a1=-7,200000E1
				a2=4,000000E0
				a3=6,000000E0
				a0=5,000000E0
n = 4				a1=-4,000000E0
	R4=1,000000E0	E4=0,000000E0	D4=1,000000E0	a2=3,000000E0
				a3=-2,000000E0
				a4=1,000000E0

<u>Credits:</u> The original version (labeled "**APOLO**") was written by Eugenio Úbeda, and published in the UPLE. The version in the SandMatrix only had minimal changes made to it. It was by far the longest program in the module, and unfortunately had to be removed to make room for the Vector Functions.

4.4.6. From Poles to Zeros.. and back. { POLZR , POLZR , PFE }

These programs complete the applications section. The first two calculate the coefficients and zeros of a polynomial expressed as a partial expansion of factors, as would typically be the case when working with transfer functions in control theory. The third program does the reverse, i.e. it builds the partial fraction expansion for a polynomial given it its "standard" (or natural) form.

	Function	Description	Input / Output
1	POLZER	Zeros of transfer functions	Under program control
2	POLZR	Coefficients of "Natural" Polyn	Under program control
2	PFE	Partial Fraction Expansion	Under program control

(*) POLZER ha been - Moved to Advntg_MATH Module

These programs calculate the polynomial coefficients and roots of expressions such as:

P(x) =Σ **[1 / (x-pi)] ;** i= 1,2,... n

Which will be transformed into:

 $P(x) = \Sigma ai x^{i}; i = 0, 1, ... (n-1)$

The coefficients are obtained using the following formulae:

a(n-1) = n $a(n-2) = (n-1) \Sigma pi$ $a(n-3) = (n-2) \Sigma \Sigma pi pj$ $a(n-4) = (n-3) \Sigma \Sigma \Sigma pi pj pk$ $a(n-5) = (n-4) \Sigma \Sigma \Sigma \Sigma \Sigma pi pj pk pl$ $a(n-6) = (n-5) \Sigma \Sigma \Sigma \Sigma \Sigma pi pj pk pl pm$

in general the n-th. coefficient would require the calculation of n-dimensional product sums. However the program **POLZER** is limited to expressions up to 7 poles max (resulting in 6 zeroes), whereas **POLZR** is not. The caveat is that **POLZR** will only calculate the coefficients of the natural polynomial, but not its roorts. You can of course use **PROOT** or **BAIRS** manually for that purpose.

Example.- To study the stability of the transfer function below, calculate its roots.

G(s) = 1/s + 1/(s-1) + 1/(s-2) + 1/(s-3) + 1/(s-4)

Keystrokes	Display
XEQ " POLZER "	#POL = 7
5, R/S	$P \leftarrow O \pm P$
0, R/S	P (2) ± 7
1, R/S	P (3) ± 7
2, R/S	P(4)= 7
3, R/S	P (5) ± 7
4. R/S	" $\Sigma \dots \Sigma \Sigma \dots \Sigma \Sigma \Sigma \dots \Sigma \Sigma \Sigma \Sigma \dots \Sigma \Sigma \Sigma \Sigma \dots$ "
	"EF57 Y/N"
" Y "	a (4) = 5
R/S	a (∃) ± - 4∅
R/S	a (2) = (Ø5
R/S	$\mathbf{\omega} \left(1 \right) = - 1 \mathbf{\Box} \mathbf{\Box}$
R/S	u (∅) ±24

Therefore the "natural" polynomial form is as follows:

$$G(s) = 5 s^{4} - 40 s^{3} + 105 s^{2} - 100 s + 24$$

This is where **POLZR** lets thing go, leaving the polynomial control word bbb.eee in the X-Register. For **POLZER**'s case however, the execution is next transferred to **PROOT** (or to **QUART** if #p=5) which calculates the roots following the iterative process explained in section 4.3.1. Remember that the accuracy is dictated by the number of decimals places set .

R/S	"RUNNING•"
	X (<u>=</u> 3,6
R/S	x 2 <u>-</u> 2,5 4 3 9 5
R/S	×3= (45609
R/S	хч <u>-</u> Ø, Э 5 5 5 7

POLZER is also a rather long program – and dates back to the days the author attended EE School many moons ago, so I'm somehow attached to it.

4.4.7. Partial Fraction Decomposition { **PFE** }

In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is a fraction such that the numerator and the denominator are both polynomials) is the operation that consists in expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.

In symbols, one can use partial fraction expansion (where f and g are polynomials) to change expression forms as shown below

$$\frac{f(x)}{g(x)} \qquad \sum_{j} \frac{f_j(x)}{g_j(x)}$$

where $g_j(x)$ are polynomials that are factors of g(x), and are in general of lower degree. Thus, the partial fraction decomposition may be seen as the inverse procedure of the more elementary operation of addition of rational fractions, which produces a single rational fraction with a numerator and denominator usually of high degree. The full decomposition pushes the reduction as far as it will go: in other words, the factorization of g is used as much as possible. Thus, the outcome of a full partial fraction expansion expresses that fraction as a sum of fractions, where:

the denominator of each term is a power of an irreducible (not factorable) polynomial and the numerator is a polynomial of smaller degree than that irreducible polynomial. To decrease the degree of the numerator directly, the Euclidean division can be used, but in fact if f already has lower degree than g this isn't helpful.

Implementation

POLZER may be an old program but **PFE** is a much more modern event, written by JM Baillard and published at: <u>http://hp41programs.yolasite.com/part-frac-expan.php</u>

Given a rational function R(x) = P(x) / Q(x) with $Q(x) = [q_1(x)]^{\mu_1}$ $[q_n(x)]^{\mu_n}$ and $gcd(q_i, q_j) = 1$ for all i # j, this program returns the partial fraction expansion:

$$\begin{split} \mathsf{R}(x) &= \mathsf{E}(x) \; + \; p_{1,1}(x) \; / \; [\; q_1(x) \;]^{\mu 1} \; + \; p_{1,2}(x) \; / \; [\; q_1(x) \;]^{\mu 1 - 1} \; + \; \dots + \; p_{1,\mu 1}(x) \; / \; q_1(x) \\ &+ \; \dots \\ &+ \; p_{n,1}(x) \; / \; [\; q_n(x) \;]^{\mu n} \; + \; p_{n,2}(x) \; / \; [\; q_n(x) \;]^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;]^{\mu n} \; + \; p_{n,2}(x) \; / \; [\; q_n(x) \;]^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;]^{\mu n} \; + \; p_{n,2}(x) \; / \; [\; q_n(x) \;]^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;]^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;]^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;]^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; p_{n,\mu n}(x) \; / \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; (q_n(x) \;)^{\mu n - 1} \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; (q_n(x) \;)^{\mu n - 1} \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; (q_n(x) \;)^{\mu n - 1} \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; (q_n(x) \;)^{\mu n - 1} \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; (q_n(x) \;)^{\mu n - 1} \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; (q_n(x) \;)^{\mu n - 1} \; + \; \dots \\ &+ \; (q_n(x) \;)^{\mu n - 1} \; + \; (q_n(x) \;)^{\mu n - 1} \; + \; (q_n(x) \;)^{\mu n - 1} \; + \; (q_n(x) \;)^{\mu n - 1} \; + \; (q_n(x) \;)^{\mu n - 1}$$

where deg $p_{i,k} < \text{deg } q_i$, and E(x) is the quotient in the Euclidean division P(x) = E(x) Q(x) + p(x) and p(x) is the remainder.

Data entry is a complicated affair but it has been automated – just follow the process carefully. It makes extensive use of the polynomial arithmetic routines **PPRD** and **PDIV**. Also the polynomial entry routine **PEDIT** is called several times...

The program prompts for the number of factors in the denominator, as well as for their degrees and multiplicities. It also prompts for the coefficients of the numerator polynomial and of each factor polynomial in the denominator; so you don't need to store those values manually prior to executing PFE.

Data output is not automated; therefore you'd need to interpret the control words returned in stack registers. Some guidelines will follow in the examples.

 $R(x) = P(x)/Q(x) = (6x^{5} - 19x^{4} + 20x^{3} - 7x^{2} + 7x + 10) / [(2x^{2} + x + 1).(x - 2)^{2}]$

Keystrokes	Display	Result
XEQ "PFE"	"# IE N = 7"	Input number of factors
2, R/S	``N Ш M 丑 ± ♀ ″	inputs degree of numerator
5, R/S	"Σ< ωΚ # X 7 K > ″	Reminder of convention
-, -, -	"a 5 = 7"	coefficients data entry
6, R/S	°a 4 =	
19, CHS, R/S	"oB= 7"	
20, R/S	"a2= 7	
7, CHS, R/S	" <u>∞</u> (= 7″	
7, R/S	" <u>o 0 = 7 "</u>	
10, R/S	<u>"□ (#=7″</u>	Input degree of Q1 in den.
2, R/S	``Σ< ы₭ ж Х ↗ ₭ 冫 ″	Reminder of convention
	"@2=7"	
2, R/S	"o (= ?"	
1, R/S	"o 🛛 = 🦓 "	
1, R/S	<u>"02#=7″</u>	
1, R/S	``Σ〈≧Κ業XℤΚ〉″	Reminder of convention
	"o (= 7"	
1, R/S	"o 🛛 = 7	
2, CHS, R/S	"X ₽ ℤ μ″	time to enter the multiplicities now
	"o (= 7"	exponent of first factor
1, R/S	"oZ= 7"	exponent of second factor
2, R/S	flying goose	beep sounds
	"Е < X > ″	informs that E(x) follws
	$\Sigma \subset K \times Z K $	Reminder of convention
	"∞ (=∃″	
R/S	`` <u>⇔</u>	end of data output.

Example1.	Calculate the partial fraction decomposition for $R(x)$ below.
-----------	--

There are three control words placed registers R05, R06, and R15 upon completion, as follows:

1. The cnt'l word stored in R15 is for the Quotient polynomial, E(x)

- The cnt'l word in R05 gives the entire register range for the coefficients of all the pi(x) polynomials the numerators of the expanded fractions. It needs to be interpreted depending on the denominators qi(x) are polynomials of degree 1 or polynomials pf degree 2 with negative discriminant.
- 3. The contents of these registers are to be read
 - by groups of 1 number if deg qj = 1 the numerators are constants
 - by groups of 2 numbers if deg qj = 2 the numerators are polynomials of degree 1
 - by groups of 3 numbers if deg qj = 3 the numerators are polynomials of degree 2, and so on
- 4. The third in R06 is for an alternative solution using a new reminder p(x)

Thus in this case registers R16 and R17 contain the coefficients for E(x) = 3x + 1; And registers R33 – R36 for the denominator polynomials: (which must be three of them!)

p1,1(x) = 2x + 3; p2,1(x) = 4; p2,2(x) = 5

Thus the final result is as follows:

$$R(x) = E(x) + p1,1(x) / (2x^2 + x + 1) + p2,1(x) / (x-2)^2 + p2,2(x) / (x-2)$$

Or alternatively using the data in registers R18 – R21 (cnt'l word in Z):

 $p(x) = 12 x^3 - 12x^2 - 5x + 6$; and thefore: R(x) = E(x) + p(x) /Q(x)

Example 2.- Calculate the partial fraction decomposition for R(x) below.

 $R(x) = P(x)/Q(x) = x^5 / (3x^2 + 1)^2$

The three control words returned are:

 R06:
 18.021 with: R18=-2/3, R19= 0, R10 =-1/9, R21 =0
 R05:
 28.031 with R29=1/9, R29=0, | R30=-2/9, and R31=0

 R15:
 16,017 with: R16 = 1/9 and R17 = 0

The range in R05 must be split as: $p_{1,2} = x/9 x + 0$; and $p_{2,2} = -2x/9 + 0$

Therefore:

$$R(x) = E(x) + p1,2(x)/(3x^2 + 1)^2 + p2,2(x)/(3x^2 + 1)$$

All in all a powerful program, which flexibility requires some careful attention to the details involved.

<u>Note:</u>- you can check another Partial Fraction expansion program (by Narmwon Kim) available at the HP-41 archive site, which features a simpler user interaction and data entry/output, but at the expense of more limited functionality. It is also less general-purpose, and more geared towards control system applications.

http://www.hp41.org/LibView.cfm?Command=View&ItemID=776

Other Polynomial Launchers – Roots and Utils.

For convenience purposes several root finding and other polynomial utilities functions are grouped in an independent launcher – combining functions from both the SandMath and the SandMatrix, under common themes.

This launcher is accessed as an alternate "personality" of the ΣDST (*) function (no more FAT entries were available), pressing the XEQ key to invoke it. In fact, XEQ toggles between both "personalities", as shown in the picture below:

Like **DST**, the polynomial launcher itself also has two "screens", toggled with the SHIFT key:

The following tables show which functions are available under each of the two screens. Note that some are from the SandMath module, in a logical grouping of the roots theme.

#	Function	Description	Input
1	STLINE	Straight Line equation	{ y1, x1, y2, x2 } in stack
2	QROOT	Quadratic Equation	{ a, b, c } in stack
3	CROOT	Cubic Equation	{ a, b, c, d } in stack
4	QUART	Quartic Equation (monic)	{ b, c, d, e } in stack (a=1)
Ν	PROOT	Polynomial Roots	Follow program instructions
В	BAIRS	Bairstow Method	Follow program instructions
F	FROOT	Roots of f(x)	FNAME in ALPHA, a, b in Y- / X-reg
Ρ	POLZER	From Poles to Zeros	Prompts for poles

#	Function	Description	Input
С	PCPY	Polynomial Copy	From / to control words in stack
D	DTC	Deletion of Tiny coeffs	Control word in X
Е	PEDIT	Polynomial Editor	Control word in X
V	PVIEW	Polynomial View	Control word in X
L	PVAL	Polynomial Evaluation	Control word in Y, point in X
F	POLFIT	Polynomial Fitting	Follow program instructions
Ι	POLINT	Polynomial interpolation	Follow program instructions
Н	CHRPOL	Characteristic polynomial	MNAME in ALPHA

Notes:-

- The back arrow key cancels the action and returns to the main Σ ML launcher ("M:_"prompt).
- The USER and ALPHA keys are also active to invoke the sub-function launchers ΣV # and ΣF \$.
- You can refer to the appropriate section within this manual or the SandMath manual for specific details of all these functions.
- The SandMath functions executed from here will also be registerer in the SandMatrix's "Last Function" facility.

(*) **DST** will be described in the next section of the manual.

The "Last Function" functionality.

Like the SandMath and other advanced modules, the SandMatrix include support for the "LASTF" functionality. This is a handy choice for *repeat executions of the same function* (i.e. to re-execute the last-executed function), without having to type its name or navigate the different launchers to access it.

The implementation is not universal – it only covers functions invoked using the dedicated launchers, but not those called using the mainframe XEQ function. It does however support two scenarios:

- functions in the main FATs, from *any* plugged-in module; as well as
- those *sub-functions from the auxiliary FATs*.

Because the latter group cannot be assigned to a key in the user keyboard, the LASTF solution is especially useful in this case. The following table summarizes the launchers that have this feature:

Module	Launchers LASTF Method		
SandMatrix 4	ΣML, ΣDST	Captures sub/fnc id#	
revision "M"	Σ V\$ _	Captures sub/fnc NAME	
	ΣV#	Captures sub/fnc id#	
Revision "N"	CAT+ (XEQ')	Captures sub/fnc id#	

Note that the Alphabetical launcher ΣV \$ will *switch to ALPHA mode automatically*. Spelling the function name is terminated pressing ALPHA, which will either execute the function (in RUN mode) or enter it using *two* program steps in PRGM mode by means of the ΣV # function plus the corresponding index (using the so-called non-merged approach). This conversion happens entirely automatically.

With revision "N", the LASTF operation is also supported when excuting a sub-function from within the **CAT+** enumeration, using the [XEQ] hot-key - very handy for those fncs with elusive spelling.

Another new enhancement is the display of the sub-function names when using the index-based launcher ΣV # - which provides visual feedback that the chosen function is the intended one (or not). This feature is active in RUN mode, when entering it into a program, and when single-stepping a program execution - but obviously not so during the standard program runs.

LASTF Operating Instructions

No separate function exists. - The Last Function feature is triggered by pressing the radix key (decimal point - the same key used by LastX) while the launcher prompts are up. This is consistently implemented across all launchers supporting the functionality in the three modules (SandMath, SandMatrix and PowerCL) – they all work the same way.

When this feature is invoked, it first briefly shows "LASTF" in the display, quickly followed by the lastfunction name. Keeping the key depressed for a while shows "NULL" and cancels the action. In RUN mode the function is executed, and in PRGM mode it's added as a program step if programmable, or directly executed if not programmable.

The functionality is a two-step process: a first one to capture the function id#, and a second that retrieves it, shows the function name, and finally parses it. All launchers have been enhanced to store the appropriate function information (either index codes or full names) in registers within a dedicated buffer (with id# = 9). The buffer is maintained automatically by the modules (created if not present when the calculator is 'switched ON), and its contents are preserved while it is turned off (during "deep sleep"). No user interaction is required.

If no last-function information yet exists, the error message "NO LASTF" is shown. If the buffer #9 is not present, the error message is "NO BUF" instead.

5. Vectors and Geometry

S. I. -VECTOR CALC

	¥.	E	R	L	E
	09	SER			

This section was first inspired by the Advantage Pac FOCAL programs **VC** and **TR** - which have now been re-written using the new MCODE functions for enhanced performance and accuracy.

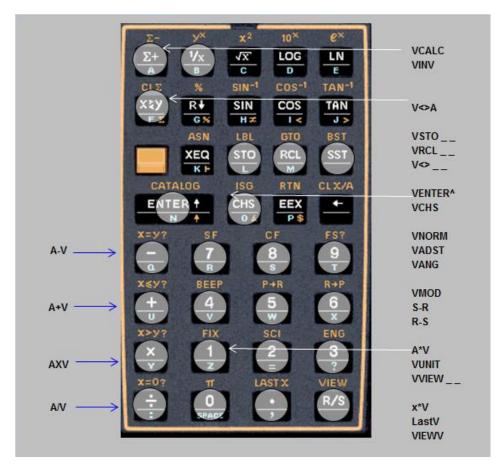
Where the SandMatrix implementation adds significant value is in the convenience and usability aspects. The vector calculator for instance is a launcher-based scheme that extends the Advantage menu-driven concept a few notches, providing more functionality and wider range – as will be described later on. Data registers are also handled in a vector-oriented fashion, operating on 3-registers blocks at once – and supporting INDirect addressing; all fully programmable using the so-called "non-merged functions" technique.

Accessing the Vector sub-Functions.

Multi-Functions $\Sigma V^{\#}$ and $\Sigma V^{\$}$ provide access to the entire set of vector sub-functions, grouped in two sections. The sub-functions can be invoked either by its index within the group, using $\Sigma V^{\#}$, or its direct name, using $\Sigma V^{\$}$. This is implemented in such a way that they are also programmable, and can be entered into a program line using a technique called "*non-merged functions*".

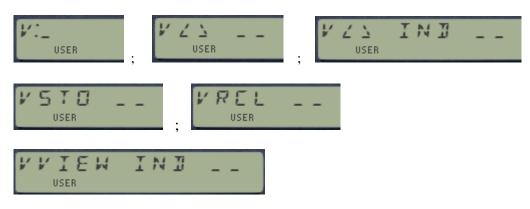
This approach is identical to the one used in the SandMath module – and derives from the original implementation in the HEPAX module.

A sub-function catalog **CAT+** is also available, listing the functions included within the groups. Direct execution (or programming if in PRGM mode) is possible just by stopping the catalog at a certain entry and pressing the XEQ key. The **CAT+** catalog behaves very much live the native ones in the machine: you can stop it using R/S, SST/BST them, press ENTER^ to move to the next "sub-section", cancel or resume the listing at any time.


As additional bonus, the sub-function launcher $\Sigma V \$$ will also search the main FAT if the sub-function name is not found within the multi-function group – so the user needn't remember where a specific function sought for was located. In fact, $\Sigma V \$$ will also find a function from any plugged-in module in the system, even outside of the SandMatrix module.

A comprehensive Vector Function Launcher prompt.

The Vector launcher is one of the <u>three modes</u> of the main module launcher, ΣML , by pressing the [A] key at the initial "M:_" prompt – which changes it into the "V:_" prompt.


As it occurs with theme modules, there are a large number of functions that work together and ideally should all be available in a USER keyboard for optimal utilization. And as it's become customary (see the 41Z and SandMath manuals) – a dedicated launch pad is the best solution to solve this need.

With this approach it's not necessary to make multiple key assignments to quickly access all of the functions – saving memory and allowing for other USER key mappings. The "V." prefix indicates a prompting for the function keys, which are logically mapped to the same real-functions on the standard 41C keyboard. Prompting functions are also included in this implementation.

The picture below shows the Vector Keyboard, as invoked by the \mathbf{V} : launcher:

Note that with exception of the conditional tests, all mapped keys are direct, no need to use [SHIFT] unless for INDirect addressing. Note as well that the prompts also support using keys from the two top rows for quick argument entry 1-10

Vector Conditionals.

Other useful functions are those used to test whether vectors in V1 and V2 levels are equal/different, or whether the V1 level contains a zero-vector: V=0?, V#0?, V=A?, and V#A? They return YES/NO in RUN mode, and skip the next line if false when used in a program.

Note: There is a cosmetic limitation in the subfunction names: even if it's not displayed correctly, the "#" character is [SHIFT] [H] in the Alpha keyboard.

A word on Vector Stack implementation.

Before you ask: no; there isn't a memory buffer or any similar fancy trick implemented in the Vectors ROM for a full-fledged vector stack. Because there isn't a dedicated memory area for it, it follows that the implementation must use the standard means for all purposes – meaning the (real) stack and Alpha registers. Even with this limitation it's possible to implement a poor-man's version of a vector-RPN stack with just two levels, plus also featuring "Last-Vector" functionality for the most important cases. The following paragraphs describe the details of such an implementation.

1. Two stack levels (V1 and V2) using the stack and Alpha.

Logically the three components of the first vector level (V1) will occupy the X,Y and Z registers in the stack. <u>Monadic functions</u> should return the result in the X register, placing the xcoordinate in LastX for easy retrieval, should the original vector is to be recalled. <u>Dual</u> <u>functions</u> will operate on both the stack and the Alpha registers M, N, and O – which hold the second vector operand (V2). In addition to the Vector Recall, Storage and Exchange a few other functions are included for convenient handling of the levels: **VENTER^**, **V**<>A, and **LASTV** (see below). With all these the 2-level vector stack becomes useful and suitable for the majority of usual scenarios.

2. Fully Programmable VRCL, VSTO, V<>, VVIEW.

Using the non-merged functions technique, the numeric argument is taken from the next line in a program. Zero is not explicitly required and INDirect is done by adding 128 to the address (80 Hex). They operate on 3-register blocks, and their indexes are logical and not related to the actual underlying data registers.

3. Compatibility with Alpha messages:- Scratch.

The choice of Alpha for the second vector level (V2) requires some work-around when the use of Alpha prompting or displaying is also needed – in a FOCAL program, like **VC** or **TR**. This has been accomplished with **EXSCR**, a simple register swapping function to be called both before and after the PROMPT or AVIEW actions – effectively preserving V2 in a scratch area: registers **L**,**T**, and "**a**" during the process. This requires that no more than 2 pending subroutine returns are used before calling "*VC*" - not perfect but clever enough to work in practicality.

4. **LASTV** functionality:- Level "0" in a dynamic scheme.

The natural choices for a temporary storage of the LastV (V0) components are the still-unused registers L,T, and P. Using L is a given, since it already works like a *LastX* in the real case. T is a safe choice but P becomes unusable in all practical cases due to the OS demand for it as data-entry scratch. We chose register Q instead, as a better fit despite also being very volatile. In reality both P and Q are used to hold the third coordinate in sequence: it is first stored in P when the function execution commences, where it remains during the calculations – which allows free usage of Q for the 13-digit math routines. Then it is transferred from P to Q upon exiting the function, where it stays for LASTV to pickup (until/unless Q is used by the OS in other action).

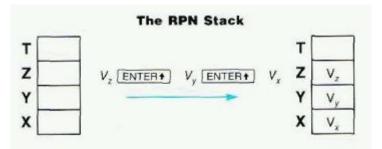
5. Viewing the vector components.

Functions **VIEWV** and **VVIEW** provide a sequential displaying of the three vector components for V1 or any vector stored in memory. The display is used and not Alpha (so level-2 is not disturbed), and each component value is tagged with its own label - X:, Y:, or Z: These functions are also fully programmable. The time lapsed in between components display is fixed, but the displaying will be halted while any key is kept depressed.

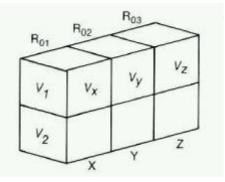
New versions of the classic Advantage Programs.

The SandMatrix contains new versions of the popular Vector programs from the Advantage Pac: "VC", and "TR" / "CT". <u>Their usage is completely compatible</u>, even if they use all new functions instead of the original FOCAL programs. Obvious advantages are faster execution, shorter program listings, and more accuracy due to the 13-digit math routines employed within the new functions. Also fewer data registers are needed since level-2 is in Alpha's {M,N,O} – and not in {R01, R02, R03} as in the Advantage's case.

Vector operations.


The "**VC**" program simulates a "Vector Calculator" superimposed on your normal calculator. It redefines the functions in the top two rows of keys to these vector operations: addition, subtraction, distance, dot product, cross product, angle between vectors, norm, and unit vector. This pac also offers these operations to you as regular functions (without the Vector Calculator) that you can execute like any other Hp-41 (nonkeyboard) function. Their Alpha names are given under "Summary of Vector Operations*.

The vector operations operate on three-dimensional vectors described in rectangular coordinates. That is, every vector has three components, Vx, Vy, and Vz. For a two-dimensional vector, Vz must be equal to zero.


A complement to **VC** is the Coordinate Transformations program, **TR**. This means you can carry out vector operations and transformations on the same data, since you can access either program from the other one. The use of coordinate transformations is covered in the next section, "Coordinate Transformations".

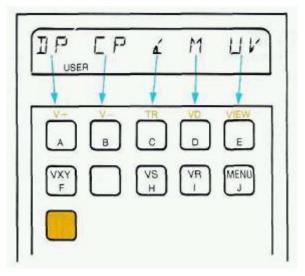
Method.

The Vector Calculator (program VC) creates a vector stack that works in concert with the regular RPN stack (X-, Y-, Z-, and T-registers). When you enter the three components of a vector in the order Vz, Vy, Vx, they occupy the regular stack like so:

How do the two stacks relate to each other? Basically, the "bottom" level of the vector stack (V2) is stored in registers X, Y, and Z of the stack, while the "upper" level of the vector stack (V1) is stored in ALPHA registers M, N, and O. You can imagine the registers shared in a three-dimensional stack like so:

The Vector stack is two vector-level high, so it accommodates two vectors. Note, however, that each level contaris three components, the x-, y-, z-components far each vector.

The diagram below shows you what happens in vector entry and vector stack movement from the point-of-view of the vector stack and from the point-of-view of the RPN and vector stacks together:


When you enter two vectors (as you would prior to executing a typical vector operation), the first one you key in becomes V1 and the second one you key in becomes V2. A "vector entry" (the function **VENTER^**, or pressing R/S in the Vector Calculator) copies the bottom vector (V2) into the top Vector (V1). Then, when you key in the next vector, it overwrites the copy in the bottom vector (V2), leaving the first vector in V1 and the second vector in V2.

	1. Enter vector's components:	2. Vector enter:	3. Enter second vector's components:
Vector Stack	V_1 V_2 x_1, y_1, z_1	$V_{1} \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$V_{1} \begin{array}{ c c c c c c c c c c c c c c c c c c c$
nput	V_z ENTER+ V_y ENTER+ V_x	VE (or R/S) in Vector Calculator)	V _z ENTER+ V _y ENTER+ V _z
Vector and RPN Stacks	$V_2 x_1 y_1 z_1$	$ \begin{array}{c c} \mathbf{R}_{01} \ \mathbf{R}_{02} \ \mathbf{R}_{03} \\ \mathbf{V}_1 \ \mathbf{x}_1 \ \mathbf{y}_1 \ \mathbf{z}_1 \\ \bullet \ \bullet \ \bullet \ \bullet \\ \mathbf{V}_2 \ \mathbf{x}_1 \ \mathbf{y}_1 \ \mathbf{z}_1 \end{array} $	$ \begin{array}{c} R_{01} R_{02} R_{03} \\ V_1 x_1 y_1 z_1 \\ V_2 x_2 y_2 z_2 \end{array} $

Instructions.

- Starting VC (invoking the vector calculator) does not clear the vector stack, so you can still work with previously stored vectors.
- Be sure to give each vector three dimensions. If it has only two dimensions, then enter a zero for Vz.
- Enter the vector's dimensions as rectangular coordinates. If you have polar coordinates (magnitude and angle) for a two-dimensional vector, convert them using the function P-R (polar to rectangular).
- For those operations involving angles, the units will match the current angular mode setting (Degrees, Radians, or Grads).
- The view function ([][E]) is very useful for reviewing the components of V2 in the stack.
- V1 refers to the "top" vector; the one in {M, N, and O} Alpha registers. V2 refers to the "bottom" vector; the one in {X, Y, and Z} stack registers

This menu will show you which key corresponds to which function in VC. Press [] to recall this menu to the display at any time.

To clear the menu at any time, press \leftarrow ; This shows you the contents of the X-register, but does not end the program. You can perform calculations, then recall the menu by pressing [J]. (However, you do not need to clear the program's display before performing calculations.)

The Vector Calculator provides two methods for entering a vector into the vector stack. The vectorenter function (**VENTER^**) is analogous to the ENTER^ key. A shortcut method of vector entry is the $\boxed{R/S}$ key. Whenever you enter the vector components from the keyboard when the menu was the last thing displayed before keying in the three components. Pressing R/S will perform the same function as **VENTER^**.

The following table shows the keystrokes to execute vector operations on the Vector Calculator (program VC). For a definition of each operation, refer to the "Summary of Vector Operations" following the Instruction Table.

Instructions	Key in:	Display
Start the program for the Vector Calculator VC	XEQ " VC "	DP CP <) M UV
Enter the three components of your first vector (V1). Separate two vectors with a vector enter after the first set of coordinates: execute VENTER^ or – if the menu was the last thing displayed before you entered the first component – press R/S.	z1, ENTER^ y1, ENTER^ x1, R/S – or VENTER^	z1 y1 DP CP <) M UV
Key in the second vector (V2). Do <u>not</u> press R/S	z2, ENTER^ y2, ENTER^ x2	z2 y2 x2
Display the main menu (optional)	[1]	DP CP <) M UV
<i>Execute a vector operation:</i> Dot Product: V1 * V2	[A] (DP)	DOT = result
Cross Product: V1 x V2	[B] (CP)	X= x result Y= y result Z= z result
Angle between V1 and V2	[C] (<)	<) result
Norm (magnitude) of V2	[D] (M)	M= result
Unit Vector of V2	[E] (UV)	X= x result Y= y result Z= z result
Vector Add V1+V2	<mark>[]</mark> [A]	X= x result Y= y result Z= z result

Vector Subtract V1-V2	[][B]	X= x result Y= y result
		Z= z result
Coordinate Transformations – refer to the next section for instructions.	[_][C] USER [_][C]	Z0,Y0,X0 ? DP CP <) M UV
Distance between V1 and V2	[][D]	d= result
Restore the main menu after or between operations (optional)	[נ]	DP CP <) M UV
To view the components of V2, the vector in the stack:	[][E]	X= x result Y= y result
		Z= z result
To exchange V1 and V2 (the vector components in {M,N,O} and {X,Y,Z}	[F]	DP CP <) M UV
To store V2.s components as vector-register "n" in R3n+1, R3n+2, R3n+3:	n, [H]	DP CP <) M UV
To recall the conents of vector-register n into V2 (X,Y,Z), pushing V2 into V1:	n, [I]	X= x result Y= y result
		Z= z result

Remarks

You can eliminate the displaying of results on the Vector Calculator by setting flag 04. This lets you perform successive calculations more quickly by not having to step through the display of the results. You can still view the results when you want by pressing [][E].

This program uses local Alpha labels (as explained in the owner's manual for the HP-41) assigned to keys [A]-[F], [H]-[J], and [][A]-[][E]. These local assignments are overridden by any User-key assignments you might have made to these same keys, thereby defeating this program. Therefore be sure to clear any existing User-key assignments of these keys before using this program, and avoid redefining these keys in the future.

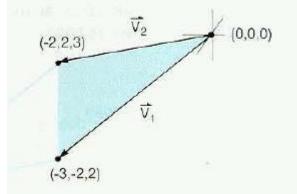
Summary of Vector Operations

The vector operations are accessible in two different ways:

- By using the Vector Calculator and its redefined keys, as explained above.
- By directly executing a vector function using its Alpha name, like any other HP-41 nonkeyboard function.
- V1 refers to the first (or "top") vector: the one in M, N and O. V2 refers to the second (or "bottom") vector: the one in X, Y, and Z.

The operations perform the same calculations regardless of how they are executed. These characteristics are given in the table below, along with their Alpha names and descriptions.- You can also execute these operations by Alpha name from inside the Vector Calculator, though it is usually more convenient to use the Vector Calculator's redefined keys.

Table of Vector Functions. This table shows all functions implemented in the module. Note that the convention followed indicates V1 level in $\{X,Y,Z\}$ and V2 level in $\{M,N,O\}$ – that is reversed from the Advantage's.


Function	Effect
A+V	Adds vectors V1 and V2. Result vector ($v2+v2$) is placed in V1, with v1 saved in LastV (V0). V2 is left unchanged.
A-V	Subtracts vectors V1 and V2. Result vector (v2-v1) is placed in V1, with v1 saved in LastV (V0). V2 is left unchanged.
A*V	Calculates the DOT product of V1 and v2. Result is left in X-reg. X-component of v1 is saved in LastX, all other registers are unchanged.
AXV	Calculates the CROSS product of V1 and V2. Result vector (v2 x v1) is placed in V1, with v1 saved in LastV. V2 is left unchanged.
A/V	Calculates V2 x (1/V1). Same result and LastV conventions apply.
EXSCR	Exchanges Vector in Alpha v2 with registers {L,T,a}
LASTV	Recalls last vector to level-1 and pushes V1 into V2
X*V	Scales the vector with components in $\{T,Z,Y\}$ by the factor in X. Result is left in level V1
V<>	Exchanges vector in V1 with the vector-register nn. Supports INDirect addressing.
V<>A	Exchanges vectors in levels V1 and V2
VADST	Calculates the distance between V1 and V2. Result is left in X-reg, with X- component of v1 saved in LastX.
VANG	Calculates the angle between V1 and V2. Result is left in X-reg, with X-component of v1 saved in LastX.
VCHS	Changes sign of all components of v1. Original v1 is saved in LastV (V0).
VENTER^	Pushes v1 (in X,Y,Z-regs) into the V2 level (M,N,O-regs).
VIEWV	Sequentially shows the three components of vector v1
VINV	Replaces v1 with the inverse of its components. Original v1 is saved in V0.
VMOD	Calculates the modulus of $v1 = SQRT(Vx^2+Vy^2+Vz^2)$. Result is placed in X-reg, with the x component saved in LastX.
VNORM	Calculates the norm of $v1 = (Vx^2+Vy^2+Vz^2)$. Result is placed in X-reg, with the x component saved in LastX.
VRCL	Recalls vector-register nn to V1 level, pushes v1 into V2 – and v2 is lost. Supports INDirect addressing.
VSTO	Stores v1 into vector-register nn. Supports INDirect addressing.
VUNIT	Replaces v1 with its unitary vector, that is $v = v1 / v1 $. Original v1 is placed in LastV. V2 is unchanged.

VVIEW	Sequentially views the components of vector-register nn. Supports INDirect addressing.
V=0?	Conditional test on the three components of v1 being zero. Returns YES/NO, skips line in a program if FALSE.
V#0?	Conditional test on at least one component of v1 not zero. Returns YES/NO, skips line in a program if FALSE.
V=A?	Conditional test on v1 being equal to v2. Returns YES/NO, skips line in a program if FALSE.
V#A?	Conditional test on v1 not equal to v2. Returns YES/NO, skips line in a program if FALSE

Remember that of all these, only the prompting functions (with underscores next to the name) are located in the main FAT – and the rest are sub-functions in the secondary FAT, therefore you need to use ΣV \$ or ΣV \$ to execute them.

Example 1.-

Find the area of the triangle determined by the vectors v1 = (-3, -2, 2) and v2 = (-2, 2, 3). Recall that the area of the parallelogram determined by v1 and v2 equals the magnitude of v1 x v2.

The solution is half the magnitude of the cross product. Using the Vector functions:

Туре	Result
3, ENTER^, 2, ENTER^, 2, CHS, VENTER^	(-2, 2, 3)
2, ENTER [^] , 2, CHS, ENTER [^] , 3, CHS, AXV	(10, -5, 10)
VMOD	15,000
2, /	7,500

Example 2.-

Resolve the following three loads along a 175-degree line. Use the dot product on the sum of the three loads to do so. You will first need to convert the polar coordinates to rectangular coordinates. Remember to set z=0.

Save the results for the polar coordinates of L3 and the 175°-line so that you can re-use them to find the resolution (dot product) when L3 is doubled. This example stores those results in vector-registers 1 and 2.

The solution is the dot product of the resulting vector and the unit vector in the desired direction. Each vector must be converted to rectangular coordinates, so here are the keystrokes:

Keystrokes	Action	_Result
XEQ "DEG"	Sets angular mode	
0, ENTER^, 143, ENTER^, 170	L1 in polar coordinates	
P-R	rectangular	(-135.768, 102.309, 0)
VENTER^	pushes it to V2	
0, ENTER^, 62, ENTER^, 185	L2 in polar coordinates	
P-R	rectangular	(86.852, 163.345, 0)
A+V,	adds L1+L2	(-48.916, 265.654, 0)
VENTER^	pushes it to V2	
0, ENTER^, 261, ENTER^, 100	L3 in polar coordinates	
P-R	rectangular	(-15.643, -98.769, 0)
VSTO 01	saves L3	
A+V,	adds L1+L2+L3	(-64.559, 166,885, 0)
VENTER^	pushes it to V2	
0, ENTER^, 175, ENTER^, 1	line polar coordinates	
P-R	rectangular	(-0.996, 0.087, 0)
VSTO 02	saves unit vector	
A*V	calculates projection	78.859

Note that you need to execute **VENTER^** at the end of each intermediate vector calculation, so the result is placed in the V2 level (in registers M,N,O) and doesn't get overwritten by the new vector components being entered.

When the load L3 is doubled, since the sum [L1+L2+L3] is still in the level-2, we type:

Keys	Action Result	
V<>A brings L1+L2+L3 back to level-1		
VRCL 01 pushes V1 into V2 and recalls L3 to V1		
A+V adds L3 to the previous sum		
VRCL 02 pushes V1 into V2 and recalls the line unit vector		
A*V calculates the projection 85,		

There's nothing surprising about the utilization of the vector functions, which use the same logic to separate vector arguments as the complex numbers in the 41Z module (using ZENTER^); that you may already be familiar with.

Coordinate transformations

The **TR** program performs three-dimensional translation of coordinates, with or without rotation. This program uses parts of the **VC** program for vector operations. You can access **TR** either directly or from VC.

The program prompts you for the coordinates of the origin of the new system (x0, y0, z0), the angle of rotation of this system relative to the original system, and the axis about which the rotation is performed. You can then enter points in the original system (x, y, z) that you want transformed to the new system (x', y', z'), or enter points in the new system (x',y',z') that you want transformed to the original system (x, y, z). For a two-dimensional case, enter z0 as zero.

A Two-Dimensional Rotation about the Axis (0, 0, 1)

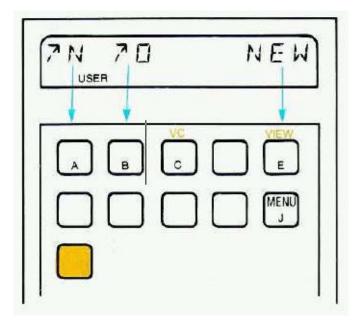
After specifying the new origin (x, y, z), you specify the rotation angle. For a three-dimensional system with a non-Zero angle of rotation, you also specify its rotation vector (a, b, c). The rotation vector defines the axis about which the rotation is to be done; it can have any non-zero magnitude. Twodimensional transformations are handled as a special case of three-dimensional transformations with (a, b, c) set to (0, 0, 1).

Equations

 $\vec{P}' = [(\vec{P} - \vec{T}) \cdot \vec{n}]\vec{n}(1 - \cos\theta) + (\vec{P} - \vec{T})\cos\theta + [(\vec{P} - \vec{T}) \times \vec{n}]\sin\theta$ $\vec{P} = [(\vec{P}' \cdot \vec{n})\vec{n}(1 - \cos\theta) + \vec{P}'\cos\theta + (\vec{P}' \times \vec{n})\sin(-\theta)] + \vec{T}$ where: $\vec{P}' = \text{new system coordinates}$ $\vec{P} = \text{old system coordinates}$ $\vec{T} = \text{origin of new system}$ $\vec{n} = \text{unit rotation vector } (a, b, c)$ $\theta = \text{rotation angle}$

Instructions

You can start **TR** either directly (XEQ "TR") or from the Vector Calculator ([][C]) in **VC**. The Vector Calculator is covered in the "Vector Operations" chapter.


Enter coordinates as rectangular coordinates and specify angles according to the current setting (Degrees, Radians, or Grads mode).

- For two dimensions, input zero for the z-value.
- For pure translation, input zero for the rotation angle.
- For pure rotation, input zeros for x0, Y0, and z0

• The sign of the rotation angle is determined by the right-hand rule and the direction of the rotation vector. For two dimensions, counter-clockwise rotation is considered positive.

• You can switch into and out of the Vector Calculator by pressing . ([][C] ("C" for Calculator and Coordinate transformations). You can then perform vector operations upon vector coordinates in the stack and in storage registers. (Refer to "Remarks' for the storage locations of the vector coordinates.)

• The view function ([][E]) is very useful for reviewing the coordinates of the point in the stack.

Once you have entered your variables, this menu shows you which key corresponds to which function in **TR**. To restore this menu to the display at any time, press [J] *if the USER annunciator is On*. (If it is not on, press USER to turn it on.) Or, if the calculator is displaying results, you can press \mathbb{R}/\mathbb{S} until the menu appears. This will not disturb the program in any way.

To clear the menu at any time, press $\overline{\leftarrow}$. This shows you the contents of the X-register, but does not end the program. You can perform calculations, and then continue the program by pressing [J]. (However, you do not need to clear the program's display before performing calculations.)

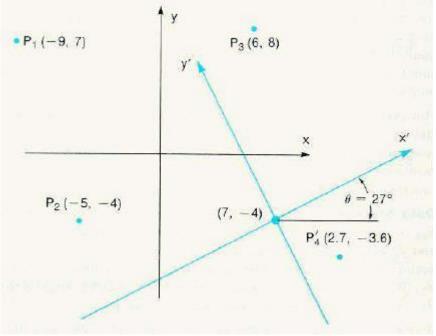
Instruction Table for TR

	Instructions	Key In:	Display
1.	Start program TR. The menu items in the dis- play indicate the locations of functions in the top row of keys.	XEQ TR	Z0,Y0,X0 ?
2.	Enter the origin for the new system.	$z_0 $ ENTER \bullet $y_0 $ ENTER \bullet $x_0 $ R/S	z ₀ y ₀ ROT _本 ?
3.	Input the rotation angle of the new system:	θ R/S	c,b,a ?
4.	For a three-dimensional system: Input the ro- tation vector's coordinates. For a two-dimensional system: just press R/S.	C ENTER+ D ENTER+ a R/S	c b tN tO NEW
5.	To transform the coordinates of a point from the original system to the new system (tN), enter the three coordinates of that point and select tN. (For two dimensions, set $z=0$.)	Z ENTER+ Y ENTER+ X A (†N) R/S † R/S † R/S †	z y' X = x' Y = y' Z = z' tN tO NEW
6.	To transform the coordinates of a point from the new system to the original system (tO), enter the three coordinates of that point and select tO. (For two dimensions, set $z=0$.)	Z' ENTER+ y' ENTER+ X' B (†0) R/S † R/S † R/S †	z' y' $X = x$ $Y = y$ $Z = z$ $tN \ tO \qquad NEW$
7.	To view the coordinates of the point in the stack:	E R/S R/S R/S t	X=x-coordinate Y=y-coordinate Z=z-coordinate tN tO NEW
8.	To transform another set of coordinates, go back to step 5 or 6.		and a
9.	To set up a new transformed system, select NEW and then return to step 2.	E (NEW)	Z0,Y0,X0 ?
10.	To use vector operations, switch to the Vector Calculator. All the functions described in the "Vector Operations" chapter are then available to you.	USER must be on)	DP CP 🛧 M UV
11.	To return to the TR program from VC:	C	Z0,Y0,X0 ?
12.	To transform a vector result V_2 from VC, by- pass the initial prompts and call up the main menu (assuming a transformed system is al- ready defined):	USER J	tN tO NEW

Remarks

This program uses local Alpha labels (as explained in the owner's manual for the HP-41) assigned to keys **[A]**, **[B]**, **[E]**, **[][C]**], and **[J]**. These local assignments are *overridden* by any User-key assignments you might have made to these same keys, thereby defeating this program. Therefore be sure to *clear any existing User-key assignments of these keys* before using this program, and avoid redefining these keys in the future.

However, these local Alpha labels are active only while the USER annunciator is on. This allows you to use the arithmetic functions in the top two rows while the USER annunciator is off. (As long as USER is on, the keys mentioned above are redefined and will not execute their Normal functions.)


Data Storage. The vector or point you want to transform is stored in R00, R01, R02, which is vectorstorage register 0 (initially from the X-, Y-, and Z-registers). The rotation vector is stored in R03, R04, R05, which is vector-storage register 1. The origin of the new system is stored in R06, R07, R08, which is vector-storage register 2. The rotation angle is stored in R13, while R09, R10, and R11 are used for scratch.

If you will be using vector storage operations (**VSTO**, **VRCL**, and the Vector Calculator) along with **TR**, keep in mind that **TR** uses R0-R13 when it is initialized (XEQ "TR"). This means you should not store vectors in vector registers 1 through 4 (if you plan to use **TR** in your vector calculations).

Flags. Flag 01 is used to indicate whether the transformation is to be made to the new system or to the original system. When flag 1 is set, the transformation is to the new system. Flag 05 is set when the system is rotated.

Example 1.-

The coordinate systems (x, y) and (x', y') are shown below. Convert the points P1,' P2, and P3 to equivalent coordinates in the (x', y') system. Convert the point P'4 to equivalent coordinates in the (x, y) system.

Keystrokes	Display	Action
FIX 4		sets the display format used here.
XEQ " TR"	``Z Ø, Y Ø, X Ø 7 ″	prompts for new origin
0, ENTER^, 4, CHS, ENTER^, 7	7.0000	components in stack
R/S	"ROIZ> ?"	prompts for angle of rotation
27, R/S	"c,b,a ?"	prompts for the rotation vector
R/S (2-dimensional)	"ZN ZO NEW"	ready for P1
0, ENTER [^] , 7, ENTER, 9, CHS,	-9.0000	components in stack
[A] (^N)	× = - 9.2622	shows new components
	Y = 17.0649	(in automated sequence)
	Z = 0.0000	
R/S (optional)	"7N 70 NEW"	ready for P2
0, ENTER [^] , 4, CHS, ENTER [^] , 5, CHS	-5.0000	components in stack
[A] (^ N)	X <u>-</u> - (0.692)	shows new components
	Y = 5.4479	(in automated sequence)
	Z = 0.0 0 0 0	
R/S (optional)	"7N 70 NEW"	ready for P3
0, ENTER^, 3.6, CHS, ENTER^, 2.7	2.7000	components in stack
[B] (^O)	X = 1 1.0 4 0 1	shows old components
	Y = - 5.98 (8	(in automated sequence)
	Z = 0.0 0 0 0	

Example 2.-

A three-dimensional coordinate system is translated to (2.45, 4.00, 4.25). After the translation, a 62.5 degree rotation occurs about the (0, -1, -1) axis. In the original system, a point had the coordinates (3.9, 2.1, 7.0). What are the coordinates of the point in the translated, rotated sytem?

Keystrokes	Display	Action
[]	• 7N 70 NEW"	retrieves menu (if USER is on)
[E] (NEW)	``ZØ,YØ,XØ7″	prompts for new origin
4.25, ENTER^, 4, ENTER, 2.45	2.4500	components in stack
R/S	"ROIZ> 7"	prompts for angle of rotation
62.5, R/S	"c,b,a 7"	prompts for the rotation vector
1, CHS, ENTER [^] , ENTER [^] , 0	0.0000	components in stack
R/S	"ZN Z⊟ NEW"	ready for P
7, ENTER^, 2.1, ENTER^, 3.9	3.90000	components in stack
[A] (^ N)	X = 3.586 (shows old components
	Y = 0.2609	(in automated sequence)
	Z = 0.589 (

Programming Information

The subroutine **CT** can be used in your own programs. It performs coordinate transformations (rotations and translations) in three dimensions. It takes the x-, y-, and z-values from the stack (X-, Y-, and Z-registers) and transforms them to another system, or from the new system to the original system.

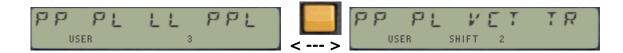
<u>Comments</u>. To use **CT**, load the translation vector (T), the unit rotation vector (N), and the rotation angle, set flag 01 to go to the new system or clear flag 01 to go to the original system. Set flag 05 to rotate the vector's coordinates (P). The result is returned to the X-, Y-, and Z-registers and in R1, R02 and R03.

Note that **CT** is located in the secondary FAT, thus it requires ΣV \$ (or ΣV #) to run.

Program listings

As you can see by comparing it to the original programs the code length is drastically reduced – and the program clarity is also much improved, with a very intuitive structure behind all functionality.

03 14 04 Xx 05 PS 06 LE 07 CF 08 "Z 09 PF 10 VS 11 2 12 CL 13 "F 14 PF 15 CF 16 X: 17 G 18 SF	>Y? SIZE BL E 7 27 ZO, YO, XO ?" ROMPT STO	48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	LBL "CT" FC? 01 GTO 02 VRCL 2 A-V FC? 05 RTN LBL 02 FC? 05 GTO 01 VSTO VRCL 1 AXV RCL 13 FC? 01	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15	LBL "3VC" CF 04 LBL J CF 21 SF 27 EXSCR "DP CP a M UV" AVIEW EXSCR STOP VENTER^ GTO J LBL d VADST	34 35 36 37 38 39 40 41 41 42 43 44 45 46 47	A+V GTO 05 LBL b A-V LBL 05 FS? 04 GTO J LBL e VIEWV STOP GTO J LBL B AXV
03 14 04 Xx 05 PS 06 LE 07 CF 08 "Z 09 PF 10 V3 11 2 12 CL 13 "F 14 PF 15 CF 16 Xx 17 G 18 SF	>Y? SIZE BL E F 27 ZO, YO, XO ?" ROMPT STO LX ROT<)?" ROMPT F 05 =0? TO 00 F 05 TO 13	50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	GTO 02 VRCL 2 A-V FC? 05 RTN LBL 02 FC? 05 GTO 01 VSTO VRCL 1 AXV RCL 13	03 04 05 06 07 08 09 10 11 11 12 13 14	LBL J CF 21 SF 27 EXSCR "DP CP a M UV" AVIEW EXSCR STOP VENTER^ GTO J LBL d	36 37 38 39 40 41 42 43 44 45 46 47	GTO 05 LBL b A-V LBL 05 <
O4 X: 05 PS 06 LE 07 CF 08 "2 09 PF 10 VS 11 2 12 CL 13 "F 14 PF 15 CF 16 X: 17 G 18 SF	>Y? SIZE BL E F 27 ZO, YO, XO ?" ROMPT STO LX ROT<)?" ROMPT F 05 =0? TO 00 F 05 TO 13	51 52 53 54 55 56 57 58 59 60 61 62 63 64 65	VRCL 2 A-V FC? 05 RTN LBL 02 FC? 05 GTO 01 VSTO VRCL 1 AXV RCL 13	04 05 06 07 08 09 10 11 12 13 14	CF 21 SF 27 EXSCR "DP CP a M UV" AVIEW EXSCR STOP VENTER^ GTO J LBL d	37 38 39 40 41 42 43 44 45 46 47	LBL b A-V LBL 05 FS? 04 GTO J LBL e VIEWV STOP GTO J LBL B
05 PS 06 LE 07 CF 08 "Z 09 PF 10 VS 11 2 12 CL 13 "F 14 PF 15 CF 16 X= 17 G 18 SF	SIZE BL E F 27 Z0,Y0,X0 ?" ROMPT STO LX ROT<)?" ROMPT F 05 =0? TO 00 F 05 TO 13	52 53 54 55 56 57 58 59 60 61 62 63 64 65	2 A-V FC? 05 RTN LBL 02 FC? 05 GTO 01 VSTO VRCL 1 AXV RCL 13	05 06 07 08 09 10 11 12 13 14	SF 27 EXSCR "DP CP a M UV" AVIEW EXSCR STOP VENTER^ GTO J LBL d	38 39 40 41 42 43 44 45 46 47	A-V LBL 05 FS? 04 GTO J LBL e VIEWV STOP GTO J LBL B
06 LE 07 CF 08 "Z 09 PF 10 VS 11 2 12 CL 13 "F 14 PF 15 CF 16 X= 17 G 18 SF	F 27 Z0,Y0,X0 ?" ROMPT STO LX ROT<)?" ROMPT F 05 =0? TO 00 F 05 TO 13	54 55 56 57 58 59 60 61 62 63 64 65	A-V FC? 05 RTN LBL 02 FC? 05 GTO 01 VSTO VRCL 1 AXV RCL 13	06 07 08 09 10 11 12 13 14	EXSCR "DP CP a M UV" AVIEW EXSCR STOP VENTER^ GTO J LBL d	39 40 41 42 43 44 45 46 47	LBL 05 FS? 04 GTO J LBL e VIEWV STOP GTO J LBL B
07 CF 08 "22 09 PF 10 VS 11 2 12 CL 13 "F 14 PF 15 CF 16 XS 17 G 18 SF	F 27 Z0,Y0,X0 ?" ROMPT STO LX ROT<)?" ROMPT F 05 =0? TO 00 F 05 TO 13	54 55 56 57 58 59 60 61 62 63 64 65	FC? 05 RTN LBL 02 FC? 05 GTO 01 VSTO VRCL 1 AXV RCL 13	07 08 09 10 11 12 13 14	"DP CP a M UV" AVIEW EXSCR STOP VENTER^ GTO J LBL d	40 41 42 43 44 45 46 47	FS? 04 GTO J LBL e VIEWV STOP GTO J LBL B
08 "2 09 PF 10 VS 11 2 12 CL 13 "F 14 PF 15 CF 16 XS 17 G 18 SF	ZO, YO, XO ?" ROMPT STO LX ROT<)?" ROMPT F 05 =0? TO 00 F 05 TO 13	55 56 57 58 59 60 61 62 63 64 65	RTN LBL 02 Image: Constraint of the second se	08 09 10 11 <i>12</i> 13 14	AVIEW EXSCR STOP VENTER^ GTO J LBL d	41 42 43 44 45 46 47	GTO J LBL e VIEWV STOP GTO J LBL B
09 PF 10 V 11 2 12 CL 13 "F 14 PF 15 CF 16 X= 17 G 18 SF	ROMPT STO LX ROT F 05 =0? STO 00 F 05 TO 13	56 57 58 59 60 61 62 63 64 65	LBL 02 FC? 05 GTO 01 VSTO VRCL 1 AXV RCL 13	09 10 11 <i>12</i> 13 14	EXSCR STOP VENTER^ GTO J LBL d	42 43 44 45 46 47	LBL e VIEWV STOP GTO J LBL B
10 V! 11 2 12 CL 13 "F 14 PF 15 CF 16 X= 17 G 18 SF	STO LX ROT<)?" ROMPT F 05 =0? STO 00 F 05 TO 13	57 58 59 60 61 62 63 64 65	FC? 05 GTO 01 VSTO VRCL 1 AXV RCL 13	10 11 12 13 14	STOP VENTER^ GTO J LBL d	43 44 45 46 47	VIEWV STOP GTO J LBL B
11 2 12 CL 13 "F 14 PF 15 CF 16 X= 17 G 18 SF	LX ROT<)?" ROMPT F 05 =0? :70 00 F 05 TO 13	58 59 60 61 62 63 64 65	GTO 01 VSTO VRCL 1 AXV RCL 13	11 <i>12</i> 13 14	VENTER^ GTO J LBL d	44 45 46 47	STOP GTO J LBL B
12 CL 13 "F 14 PF 15 CF 16 X= 17 G 18 SF	LX ROT<)?" ROMPT F 05 =0? F 05 TO 13 ROMPT F 05 F 05	59 60 61 62 63 64 65	VSTO VRCL 1 AXV RCL 13	12 13 14	GTO J LBL d	45 46 47	GTO J LBL B
13 "F 14 PF 15 CF 16 X: 17 G 18 SF	ROT<)?" ROMPT F 05 =0? :70 00 F 05 TO 13	60 61 62 63 64 65	VRCL 1 AXV RCL 13	13 14	LBL d	46 47	LBL B
14 Pf 15 CF 16 X= 17 G 18 SF	ROMPT F 05 =0? TO 00 F 05 TO 13	61 62 63 64 65	AXV RCL 13	14		47	
15 CF 16 X 17 G 18 SF	F 05 =0? 770 00 F 05 TO 13	62 63 64 65	AXV RCL 13		VADST		AXV
16 X= 17 G 18 SF	=0? TO 00 F 05 TO 13	63 64 65	RCL 13	15			
17 <i>G</i> 18 SF	F 05 TO 13	64 65			EXSCR	48	GTO 05
18 SF	F 05 TO 13	65		16	" V-A "	49	LBL H
	TO 13		CHS	17	LBL 02	50	VSTO
		66	SIN	18	"="	51	GTO J
-		67	X*V	19	ARCL X	52	LBLI
21 E		68	E	20	AVIEW	53	VRCL
-	<> Z	69	STO 12	20	EXSCR	54	GTO 05
_	c,b,a ?"	70	RDN	22	STOP	55	
-	ROMPT	71	VRCL				LBL A
	UNIT	72	RCL 13	23	GTO J	56	A*V
-	STO	73	cos	24	LBL c	57	EXSCR
27 1		74	ST- 12	25	XROM "TR"	58	"V*A"
	BL J	75	X*V	26	LBL C	59	GTO 02
	BL 00 <	76	A+V	27	VANG	60	LBL E
	F 27	77	VSTO	28	EXSCR	61	VUNIT
-	F 21	78	3	29	"VA<)"	62	GTO 05
	F 01	79	VRCL	30	GTO 02	63	LBL D
-	^N ^O NEW"	80	1	31	LBL F	64	VMOD
-	ROMPT	81	VRCL	32	V<>A	65	EXSCR
_	TO 00	82	A*V	33	GTO J	66	"/V/"
-	BL c	83	ST* 12			67	GTO 02
	ROM "3VC"	84	V<>A	_		68	END
	BLA	85	RCL 12	_		00	
	F 01	86	X*V	_			
-		87	VRCL	_			
	BLB	88	3				
-	F 01	89	A+V	_			
	BL 03	90	FS? 01				
-	ROM "CT"	91	RTN				
-	BLe	92					
		93	VRCL				
	TO 00	94	2	-			
		95	A+V				
		96	END	-			


Calculating 2D and 3D Distances: The DDST Launcher

A few example programs in the module illustrate the convenience of using an abstraction layer to handle vector expressions – without having to worry about their individual components. The net result is shorter, neater programs with higher-level structure, devoid of all those multiple STOnn / RCLnn statements so common otherwise – and therefore much easier to understand and debug.

Elements	3D	2D	N-Dim
Point-Point	VADST	PP2	DOTN
Point-Line	"PL3"	PL2	-
Point-Plane	"PPL3"	-	-
Line-Line	"LL3"	-	-

The functions included in this group are as follows:

For further convenience these functions are grouped together in its own launcher, ΣDST – which is accessed either by pressing <u>XEQ</u> at the "V:" or "P:" prompts; or by pressing <u>USER</u> at any of the three prompts. Once invoked, you can toggle the 2D and 3D cases with the [SHIFT] key, whereby changing the displayed choices accordingly. Note also the usage of the user flags annunciators 2/3 to denote the corresponding case (where the Shifted screen is for the 2D case).

Note that **VCT** and **TR** are shortcuts for the Advantage's Vector Calculator and Coordinate Transformation programs described before. The formulas used are as follows.-

2D Point-to-Point distance:
$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2}.$$

Where the points are given by P(p1,p2) and Q(q1,q2). Enter q2, q1, p2, p1 in the stack; then execute **PP2.** The result is left in the X-register.

Example: The distance between points M(1,2) and N(3,4) is:

4, ENTER^, 3, ENTER^, 2, ENTER^, 1, Σ**V\$** "PP2" -> d = □2,828 427 125

$$d = \frac{|mx_1 - y_1 + k|}{\sqrt{m^2 + 1}}$$

2D Point-to-Line distance:

where the line is given by the equation Y = mx+k, and the point is P(x1,y1).

Enter m,p,y1,x1 in the stack; then execute **PL2**. The result is left in the X-register.

Example: The distance from the point M(2,5) and the line y = 3x + 4 is:

3, ENTER^, 4, ENTER^, 5, ENTER^, 2, **∑V\$** "PL2" --> d = (.58 () 38 8 3 2

$d(p,q) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + (p_3 - q_3)^2}.$

Where the points components are P(p1, p2, p3) and Q(q1, q2,q3).

3D Point-to-Point distance

Use **VENTER**[^] to separate v1 and v2 in the vector stack; then use **VADST**.

Example: verify that the distance between points P(1,2,3) and Q(-1,-2,-3) is the double of the magnitude of any of them.

 3, ENTER^, 2, ENTER^, 1, VENTER^, VCHS, VADST
 -->
 d = 1,48 = 3 (4114)

 3, ENTER^, 2, ENTER^, 1, VMOD, 2, *
 -->
 1,48 = 3 (4114)

<u>3D point-to-line distance:</u> $d = || \mathbf{U} \mathbf{X} \mathbf{A} \mathbf{M} || / || \mathbf{U} ||$

Where the point is M(x,y,z) and the line is determined by its anchor point A(a,b,c) and unit vector U(u,v,w). The program **PL3** will prompt for the components of A, M, and U.

Example: L: is defined by the point A(2,3,4) & the vector U(1,4,9) and M(2,5,3)

XEQ " PL3"	`ZM <u>-</u> ₽″
3, ENTER^, 5, ENTER^, 2, R/S	`ZR <u>=</u> Z″
4, ENTER^, 3, ENTER^, 2, R/S	<u> ** 7 日 = 7 ″</u>
9, ENTER^, 4, ENTER^, 1, R/S	d=2,233785110

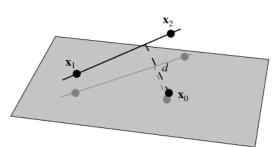
<u>**3D Point-to-Plane distance.**</u> For a plane given by (ax + by + cz + d) = 0, and a point (x1, y1, z1) not necessarily lying on the plane, the shortest distance from to the plane is:

$$D = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

The program **PPL3** will prompt for the components, leaving the result in the X-register.

Example: P: 2x + 3y + 5z = 9 and M(4,6,1)

XEQ "PPL3" 9, ENTER^, 5, ENTER^, 3, ENTER^, 2, R/S 1, ENTER^, 6, ENTER^, 4, R/S "7PL=9" "7M=9" 8=3,56887 (265

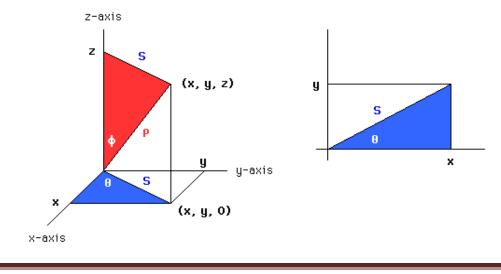

<u>3D Line-to-Line distance</u>. d = |(UxU').AA'| / ||UxU'||

For a line L determined by one point A(a,b,c) and one direction vector U(u,v,w) , and another line L' determined by its anchor point A'(a',b',c') and one direction vector U'(u',v',w'). The program **LL3** will prompt for the different components, leaving the result in the X-register.

Example: (L) is defined by A(2,3,4) & U(1,4,7), and (L') is defined by A'(2,1,6) & U'(2,9,5)

XEQ "LL3"	`ZB + = Z″
6, ENTER^, 1, ENTER^, 2, R/S	<i>"</i> ℤ <u>R</u> <u>=</u> ℤ″
4, ENTER^, 3, ENTER^, 2, R/S	<i>"</i> ℤЦ+ ₌ ℤ″
5, ENTER^, 9, ENTER^, 2, R/S	`Z∐=Z″
7, ENTER^, 4, ENTER^, 1, R/S	a <u>-</u> 0,364 10684 1

(c) Ángel M. Martin



01	LBL "PL3"	30	XEQ 02
02	"^M=?"	31	AXV
03	XEQ 01	32	VUNIT
04	XEQ 02	33	VRCL (00)
05	VUNIT	34	A*V
06	AXV	35	GTO 05
07	VMOD	36	LBL "PPL3"
08	GTO 05	37	"^PL=?"
09	LBL 01	38	PROMPT
10	PROMPT	39	R^
11	VENTER^	40	STO 00
12	EXSCR	41	RDN
13	"^A=?"	42	VENTER^
14	PROMPT	43	EXSCR
15	EXSCR	44	"^M=?"
16	A-V	45	PROMPT
17	RTN	46	EXSCR
18	LBL 02	47	A*V
19	VENTER^	48	ST- 00
20	EXSCR	49	V<>A
21	"U^=?"	50	VMOD
22	PROMPT	51	ST/ 00
23	EXSCR	52	X<> 00
24	RTN	53	LBL 05 🔶
25	LBL "LL3"	54	ABS
26	XEQ 01	55	"d="
27	VSTO (00)	56	ARCL X
28	"^U'=?"	57	AVIEW
29	PROMPT	58	END
29	FROIVIPT	58	ENU

The programs are shown below – really simple when the right functions are used.

Coordinate Conversions – SandMath Module.

Functions **R-S** and its inverse **S-R** will convert rectangular to spherical coordinates and back. The convention used is shown in the figure below, with the azimuth angle (theta) measured in the XY plane between the X-axis and the projection of the vector S -, and the Zenith angle (phi) measured from the Z-axis to the vector the radius P. The calculations are made using the internal [TOPOL] and [TOREC] OS routines, same ones used for the native **P-R** and **R-P** functions.

N-dimensional Vector Operations { DOTN , V*VN }

DOTN is an all-MCODE implementation of a n-dimensional vector dot (scalar) product, the norms of each operand and the angle between them. Originally written by JM Baillard, the input parameters are the control words for each vector in registers X and Y (more about this later), and the result values are placed in the stack.

Obviously the vector components must be input in the appropriate registers, which you can do using any of the available input programs available in the SandMatrix – will be seen with detail in the polynomial section later in the manual. Incidentally the code for **DOTN** is located in the second bank of the lower page – taking advantage of the available room after the removal of the digital functions.

Example. Calculate the scalar product of vectors U(2,3,7,1) and V(3,1,4,6), storing their components in registers {R01 - R04} for U, and {R06 - R09} for V.

For the data input we have several choices; here we'll Use the **PMTP** function seen before, just pretending the vector components are analogous to polynomial coefficients (which is irrelevant to the actual inner workings of **PMTP**).

1.004, XEQ "**PMTP**" -> "R1: _", we type: 2, ENTER^, 3, ENTER^, 7, ENTER^, 1, R/S 6.009, XEQ "**PMTP**" -> "R6: _", we type: 3, ENTER^, 1, ENTER^, 4, ENTER^, 6, R/S

Re-entering the control codes in X, and Y (if not already there) we execute the function, which returns:

-> 43, see table below for all the available data.

STACK	INPUTS	OUTPUTS	Results
Т	/	μ	46.52626239°
Z	/	U	7.874007874
Y	bbb.eee(U)	V	7.937253933
Х	bbb.eee(V)	U.V	43,000000
L	/	cos µ	

This is a good example of Jean-Marc's very complete and economical programming. Needless to say it executes at blazing light speed, as you would expect from an MCODE routine like this.

<u>Note</u>: The SandMath module includes functions **IN** and **OUT** in the auxiliary FAT (therefore you'd need to use Σ **F**\$ to execute them) that can be used for data entry in the n-dimensional case, as follows:

IN / **OUT**, sequentially enter data or review a block of registers:

- Enter the initial register index for **IN**, then proceed with all required entries and terminate with a "blank" R/S to end the sequence.
- Input the control word in X in the form bbb.eee, and **OUT** will display all registers sequentially. Use flag 21 to control the display prompt (set) or not (clear).

Initially keeping track of the different sub-function launchers can be a bit challenging , but easy enough to remember that it's just two of them: ΣF \$ in the SandMath and ΣV \$ in the SandMatrix (or their corresponding index-based counterparts ΣF # and ΣV #)

<u>The alternative – Vectors as Matrices.</u>

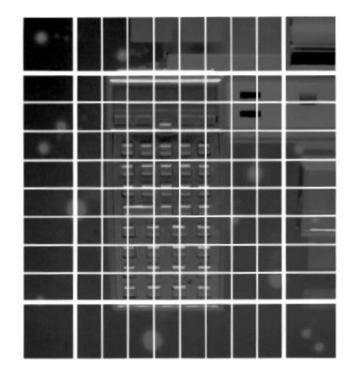
V*VN performs the same tasks (n-dimensional vector dot product) but using a different approach: treating the vectors as column matrices it simply uses M^*M to calculate the result, multiplying the first operand vector by the transpose of the second operand vector. All data input/output are driven under program control. The execution time is longer than **DOTN**, trading so convenience for speed.

To appreciate the workings of **V*****VN** you need to consider that it transposes V2 before doing the multiplication, and that it calculates the Frobenius norms of each matrix on the fly to obtain the angle. The dot product is placed in a 1x1 matrix named "V*V" in X-Mem.

Here's the listing of the program that clearly shows all the housekeeping chores required to prepare the strings needed in ALPHA for the matrix functions as input. Even if it's somehow slower and less efficient, it's a good "academic example" of utilization of the standard matrix functions.

01	LBL "V*V"		31	FNRM	
02	FS? 06	subroutine use?	32	/	
03	GTO 00	yes, skip data entry	33	"V2"	
04	-SNDMTRX 4	prompts "ORDER=?"	34	FNRM	
05	STOP		35	1	
06	INT		36	ACOS	
07	"V1"		37	X<>Y	
08	MATDIM		38	"V<)="	
09	XEQ 05	V1 data input	3 9	ARCL Y	
10	DIM?		40	PROMPT	show angle
11	"V2"		41	RTN	
12	MATDIM		42	LBL 05	
13	XEQ 05	V2 data input	43	3	
14	LBL 00 🔶	1	44	X<>F	
15	"V*V"		45	0	
16	CLX		46	MSIJA	position pointer
17	MATDIM		47	LBL 04	
18	"V1"		48	"c"	
19	TRNPS		49	MRIJ	
20	"/-,V2,V*V"		50	MP	
21	M*M		51	MR	
22	ASHF		52	ARCLX	
23	0		53	"/-?"	
24	MSIJA	position pointer	54	PROMPT	
25	MR	recall element	55	MS	
26	ENTER^		56	l+	
27	"/-="		57	FC? 10	reached the end?
28	ARCL X		58	GTO 04	no, loop back
29	PROMPT	show result	59	MNAME?	
30	"V1"		60	END	

The usage of user flag 06 determines whether the program is used as a subroutine – in which case the data entry is skipped. This is more or less consistently done throughout the SandMatrix module, and has the benefit of saving one entry in the FAT – which would be needed for the subroutine label.


Line 4 uses the header function "-SNDMTRX 4", which in program mode adds the text "ORDER=?" to the display (not ALPHA). This saves bytes and keeps the contents of ALPHA unchanged.

Note: - Functions **EV3** and **PF>X** are handy companions to the main programs **EV3X3** and **PRMF** respectively. They've been placed in this section of the auxiliary FAT purely on a convenience basis, to make room in the main FAT for other more relevant functions – so they're available using the subfunction launchers ΣVL \$ or ΣVL #. Refer to the corresponding sections in the manual for usage instructions and details.

Remember to always check Jean-Marc Baillard's pages on these and related subjects, really a treasure trove of solid programs you can use. In particular, the Euclidean distances and the Vector products:

http://hp41programs.yolasite.com/distance.php http://hp41programs.yolasite.com/dotcross.php

Appendices.

Note: Make sure that revision "R" (or higher) of the Library#4 module is installed.

(c) Ángel M. Martin

Appendix M.- MCODE listings for LU? And ^MROW .

There are a few new M-Code functions in the SandMatrix that make direct usage of the module's subroutines. A representative example is given below, showing the very short routine LU? – that checks whether the matrix is in its decomposed form – simply by reading the appropriate digit in the matrix header register.

1	LU?	Header	A5FA	OBF	"?"	
2	LU?	Header	A5FB	015	" U "	
3	LU?	Header	A5FC	00C	"L"	
4	LU?	LU?	A5FD	379	PORT DEP:	Jumps to Bank_2
5	LU?		A5FE	03C	XQ	adds "4" to [XS]
6	LU?		A5FF	1D9	->A5D9	[LNCH0]
7	LU?		A600	388	<parameter></parameter>	<u>B788</u>
8	LU?		A601	00B	JNC +01	
9	LU?		A602	100	ENROM1	restore bank-1
10	LU?		A603	0B0	C=N ALL	header register
11	LU?		A604	25C	PT= 9	LU digit
12	LU?		A605	2E2	?C#0 @PT	
13	LU?		A606	0B9	?NC GO	False
14	LU?		A607	05A	->162E	[SKP]
15	LU?		A608	065	?NC GO	True
16	LU?		A609	05A	->1619	[NOSKP]

Lastly, and just in case you though that functions **PMTM** and **PMTP** are actually not a big deal (which would be the logical conclusion if you only look at their FOCAL program listing) – here is in all its gory detail the listing for its MCODE-heart, function **^MROW**.

I'll spare you the more onerous details, but suffice it to say that it was an involved assignment. And don't forget that another function is also used to support the matrix prompt mode: ANUMDL – although in this case I just had to copy HP's code from the HP-IL Development Module (thanks HP! :-)

1	^MROW	Header	B658	097	"W"	
2	^MROW	Header	B659	00F	" O "	
3	^MROW	Header	B65A	012	" R "	Input Matrix Row
4	^MROW	Header	B65B	00D	"M"	
5	^MROW	Header	B65C	01E	" ^ "	Ángel Martin
6	^MROW	^MROW	B65D	0C4	CLRF 10	start anew: no CHS yet
7	^MROW		B65E	184	CLRF 11	start anew: no commas yet
8	^MROW		B65F	344	CLRF 12	start anew: no digits yet
9	^MROW		B660	0F8	READ 3(X)	
10	^MROW		B661	070	N=C ALL	
11	^MROW		B662	<mark>345</mark>	?NC XQ	Clears Alpha
12	^MROW		B663	040	->10D1	[CLA]
13	^MROW		B664	215	?NC XQ	Build Msg - all cases
14	^MROW		B665	OFC	->3F85	[APRMSG2]
15	^MROW		B666	212	" R "	
16	^MROW		B667	0B0	C=N ALL	row number in BCD format
17	^MROW		B668	37C	RCR 12	move the MSB to C{0)
18	^MROW		B669	21C	PT= 2	
19	^MROW		B66A	010	LD@PT- 0	
20	^MROW		B66B	2D0	LD@PT- B	add colon to digit
21	^MROW		B66C	3E8	WRIT 15(e)	write it in display (9-bit)
22	^MROW		B66D	<mark>355</mark>	?NC XQ	blank space to LCD
23	^MROW		B66E	<u>03C</u>	->0FD5	DSPL20
24	^MROW		B66F	33D	?NC GO	Input List in Alpha
25	^MROW		B670	112	->44CF	[ALIST]

Not such a big deal, you keep saying? Well, let's have a look at the remaining part in the Libary#4

1	ALIST	BCKARW	44CD	055	?NC GO 🔶			Delete char plus logic
2	ALIST		44CE	116	->4515			[DELCHR]
3	ALIST	ALIST	44CF	115	?NC XQ 🔶 🔶	-		Partial Data Entry!
4	ALIST		44D0	038	->0E45			[NEXT1]
5	ALIST		44D1	3E3	JNC -04			[BCKARW]
6	ALIST		44D2	000	?FSET 3			numeric input?
7	ALIST		44D3	093	JNC +18d			NO, KEEP LOOKING
8	ALIST		44D4	OBE	A<>C MS			recall LS digit from A[13]
9	ALIST		44D5	130	LDI S&X			
10	ALIST		44D6	003	CON:			pre-load the numeric mask
11	ALIST		44D7	2FC	RCR 13	-	_	move it to C[S&X]
12 13	ALIST		44D8 44D9	3E8	WRIT 15(e) SETF 12		_	write it in display (9-bit) enable SPACE
15	ALIST	TOALPH	44D9	39C	PT= 0		_	
15	ALIST	TOALITI	44DR	058	G=C @PT,+			
16	ALIST		44DC	149	?NC XQ			Disable PER, enable RAM
17	ALIST		44DD	024	->0952			[ENCPO0]
18	ALIST		44DE	051	?NC XQ			
19	ALIST		44DF	OB4	->2D14			[APNDNW]
20	ALIST	GOBACK	44E0	042	C=0 @PT			
21	ALIST		44E1	058	G=C @PT,+			reset PTEMP bits
22	ALIST		44E2	3D9	?NC XQ			Enable Display (not cleared)
23	ALIST		44E3	01C	->07F6			[ENLCD]
24	ALIST	ANCHOR1	44E4	35B	JNC -21d			ONE PROMPT
25	ALIST		44E5	28C	?FSET 7 🔶			decimal key pressed?
26	ALIST		44E6	03B	JNC +07	7		NO, KEEP LOOKING
27	ALIST		44E7	18C	?FSET 11			been used already?
28	ALIST		44E8	3E7	JC -04			ONE PROMPT
29	ALIST		44E9	188	SETF 11			no more radix (unless deletion)
30	ALIST		44EA	10D	?NC XQ			adds proper radix sign
31	ALIST		44EB	114	->4543			[<u>RADIX4]</u>
32	ALIST	ANCHOR2	44EC	373	JNC -18d			[TOALPH]
33	ALIST		44ED	0B0	C=N ALL			PRESSED KEY CODE
34	ALIST		44EE	106	A=C S&X			
35	ALIST		44EF	130	LDI S&X			
36	ALIST		44F0	030	CON:			ENTER^ keycode [030]
37	ALIST		44F1	366	?A#C S&X			
38	ALIST		44F2	04F	JC +09]		
39	ALIST		44F3	34C	PSET 12?	+		digits input already?
40	ALIST	ANCHOR1	44F4	383	JNC -16d		>	ONE PROMPT
41	ALIST		44F5	0C4	CLRF 10			clear CHS flag
42	ALIST		44F6	184	CLRF 11		_	allow RADIX
43	ALIST		44F7	344	CLRF 12			set SPACE flag
44	ALIST		44F8	355	?NC XQ			add space to LCD
45	ALIST		44F9	03C 393	->0FD5			[DSPL20]
46	ALIST		44FA		JNC -14d			add to Alpha
47	ALIST ALIST		44FB 44FC	130 370	LDI S&X			R/S kousada [270]
48	ALIST		44FC 44FD	370	?A#C S&X			R/S keycode [370] terminate digit entry
49 50	ALIST		44FD 44FE	366 07B	/A#C 5&X JNC +15d			[WAYOUT]
50	ALIST		44FE 44FF	130	LDI S&X	┥╸╉╸		
52	ALIST		4500	230	CON:			CHS keycode [230]
53	ALIST		4501	366	?A#C S&X			
54	ALIST		4502	023	JNC +04			
55	ALIST		4502	265	?NC XQ			Blink Display - pass #2
56	ALIST		4504	020	->0899			[BLINK1]
57	ALIST		4505	37B	JNC -17d		>	ONE PROMPT
58	ALIST		4506	0000	?FSET 10	+-+-		been used already?
59	ALIST		4507	3F7	JC -02			ONE PROMPT
60	ALIST		4508	0C8	SETF 10			first time
61	ALIST		4509	130	LDI S&X	~~~~	~~~~~	
62	ALIST		450A	02D	n_n			appends "-"
63	ALIST		450B	3E8	WRIT 15(e)			9-bit LCD write
64	ALIST		450C	303	JNC -32d			[TOALPH]
65	ALIST	WAYOUT	450D	3DD	?NC XQ 🔶]		Left-justify LCD
			450E	OAC	->2BF7			[LEFTJ]

(c) Ángel M. Martin January 2021

67	ALIST		450F	161	?NC XQ <	Clear LCD and reset things
68	ALIST		4510	124	->4958	[EXIT3]
69	ALIST		4511	 175	?NC XQ	Adjust F10 Status
70	ALIST		4512	114	->455D	[ADJF10]
71	ALIST		4513	31D	?NC GO	Normal Function ReturnKB
72	ALIST		4514	002	->00C7	[NFRKB]
73	ALIST	DELCHR	4515	3B8	READ 14(d)	to delete rightmost chr
74	ALIST		4516	158	M=C ALL	save it for later
75	ALIST		4517	149	?NC XQ	Disable PER, enable RAM
76	ALIST		4518	024	->0952	[ENCP00]
77 78	ALIST		4519 451A	178 2EE	READ 5(M) ?C#0 ALL	anything in Alpha?
78	ALIST		451A 451B	037	JC +06	anything in Alpha? yes, go on
80	ALIST		451C	104	CLRF 8	no, abort if empty
81	ALIST		451D	184 1B1	?NC XQ	Mainframe Message
82	ALIST		451E	070	->1C6C	[MSGA]
83	ALIST		451F	03C	"NULL"	from table
84	ALIST	fixed bug	4520	37B	JNC -17d	Reset everything and leave
85	ALIST		4521	2E5	?NC XQ 🚽	remove last Alpha char
86	ALIST		4522	110	->44B9	[ABSP4]
87	ALIST		4523	198	C=M ALL	recall deleted char value
88	ALIST		4524	106	A=C S&X	store in A for comparisons
89	ALIST		4525	130	LDI S&X	check for SPACE
90 91	ALIST		4526 4527	020 <i>0AD</i>	"space" ?NC XQ	<space></space>
91	ALIST		4527	114	->452B	complete the logic [CHUNK4]
92 93	ALIST		4528	114 381	->452B ?NC GO	repeat the prompt
94	ALIST		452A	112	->44E0	[GOBACK]
95	ALIST	CHUNK4	452B	366	?A#C	carry if different
96	ALIST		452C	01F	JC + 03	
97	ALIST		452D	348	SETF 12	allow new space entry
98	ALIST		452E	0A3	JNC +20d	BAILOUT
99	ALIST		452F	130	LDI S&X	check for "-" chr
100	ALIST		4530	02D	<i>n_n</i>	"-" char value
101			4531	366	?A#C S&X	carry if not "-"
102	Executed within		4532	02F	JC + 05	
103	an opportunistic		4533	34C	?FSET 12	is there SPACE chr?
104 105	just grouping co	mmon code	4534 4535	017 0C4	JC +02 CLRF 10	allow new "-" entry
105	ALIST		4535	0C4 063	JNC +12d	BAIL OUT
100	ALIST		4537	198	C=M ALL	recall deleted char value
108	ALIST		4538	3D8	C<>ST XP	Got a radix? If so, we neet to
109	ALIST		4539	14C	?FSET 6	replace it without comma
110	ALIST		453A	043	JNC +08	
111	ALIST		453B	3D9	?NC XQ	Enable Display (not cleared)
112	ALIST		453C	01C	->07F6	[ENLCD]
113	ALIST		453D	144	CLRF 6	remove the radix value
114	ALIST		453E	284	CLRF 7	(both if need be)
115	ALIST		453F	3D8	C<>ST XP	recall deleted char value
116	ALIST		4540	3E8	WRIT 15(e)	write it in display
117	ALIST		4541 4542	184 3E0	CLRF 11	Re-allow comma writing
118	ALIST	RADIX4	4542 4543	3E0	RTN	Disable PER, enable RAM
119 120	ALIST	RADIA4	4543 4544	024	->0952	[ENCP00]
120	ALIST		4545	3B8	READ 14(d)	put F28 to F9
122			4546	2BC	RCR 7	
123	transfer staus of	f UF28 to F9,	4547	248	SETF 9	
124	adds the convert	ted crh code	4548	1EE	C=C+C ALL	comma or period ?
125	to the LCD and p	repares ALPHA	4549	013	JNC +02	overflows if COMMA (cf28)
126			454A	244	CLRF 9	comma = CF 28
127	ALIST		454B	3D9	?NC XQ	Enable Display (not cleared)
128	ALIST		454C	<u>01C</u>	->07F6	[ENLCD]
129	ALIST		454D	3B8	READ 14(d)	read right
130	ALIST		454E	3D8	C<>ST XP	
131	ALIST		454F 4550	148 24C	SETF 6 ?FSET 9	comma or period 2
132 133	ALIST		4550 4551	013	JNC +02	comma or period ?
133	ALIST		4551	288	SETF 7	should replace the last chr
135	ALIST		4552	3D8	C<>ST XP	with the same one w/ radix
136	ALIST		4554	3E8	WRIT 15(e)	9-bit LCD write
137	ALIST		4555	130	LDI S&X	
138	ALIST		4556	02C	""	appends "," [02C]
139	ALIST		4557	24C	?FSET 9	
140	ALIST		4558	360	?C RTN	no need, return
141	ALIST		4559	226	C=C+1 S&X	
142	ALIST		455A	226	C=C+1 S&X	appends "." [02E]
143	ALIST		455B	3E0	RTN	

(c) Ángel M. Martin

The End.

This concludes the SandMatrix Manual – Hope you have found it useful and interesting enough to keep as a reference. Better yet, go ahead and write a few more functions on your own. A few suggestions are:

- Program to calculate Eigenvectors from Eigenvalues
- General-purpose p-th. root of a matrix
- General-purpose Logarithm of a matrix
- Extended-memory support for Polynomial files
- Anything else you feel like going for!

Note: Make sure that revision "R" (or higher) of the Library#4 module is installed.