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Recursive Utilization of FINTG and FROOT. 

Like the original SOLVE and INTEG did, both FROOT & FINTG support “crossed” nested calls from 

one another, i.e. you can call FROOT from an integrand function being used by FINTG, and you can 

call FINTG in the root-finding function definition for FROOT. However, it is not possible to recursively 

call either one of this functions sequentially from within a FOCAL routine. Any attempts to do so 

triggers the “RECURSION” error message and the execution aborts. 

The SIROM provides a set of MCODE functions and two FOCAL routines to overcome this limitation. 

Each time FROOT/FINTG is executed it creates a dedicated memory buffer to store the application 

data and to perform all the math. The basis of the operation is the use of a secondary memory area 

for the nested call of the function, not conflicting with the initial memory buffer created in the first 

call. The main loop uses the initial buffer #14, and the operand function in turn creates a secondary 

buffer #14 to use for the nested loop – deleting it after it’s complete. 

In order to reuse the existing code, we’ll trick the OS changing the id# of the initial buffer #14 right 

before the second call – not deleting it but cloaking it in the I/O Memory area of the calculator. The 

operand function re-labels the buffer with id#13 (using function CLOAK), then the nested call to 

FROOT/INTEG creates and uses a new buffer #14 to perform its task, and deletes it upon completion 

– returning the execution to the “operand” function FOCAL routine. Before the execution is returned 

to the driver program, the cloaked buffer is re-issued as id#14 (using function EXPOSE) so things 

can be picked up exactly where there were left off before calling the nested subroutine. 

If you must know, all CLOAK and EXPOSE do is changing the buffer id#’ of the initial buffer created 

in the first call to FROOT/INTEG - first from 14 to 13, and then back to 14. Prior to all this a third 

function (RESET) is used to check for pre-existing buffers with id#13 – deleting it if found. 

 

 

2D Driver Routines and Rules of Engagement. 

The main programs for double integrals and system of 2 equations are “FITG2” and “FRT2”.  Each 

one has an auxiliary routine associated with it, which acts as the first level operand functionand 

issues a second nested call for the integrand or the second equation appropriately, as follows: 

For FITG2, the function name f(x,y) is expected in ALPHA, and the four integral limits in the stack in 

the pattern “y1, y2, x1, x2” – (y1,y2) for the outer integral, and (x1,x2) for the inner one. 

 The integrand function is to be programmed assuming x is in R01, and y in the stack. 

 

For FRT2, both function names are expected to be in Alpha separated by comma (like “F1,F2”), and 

the guesses entered in the stack, with the pattern “x1, x2, y1, y2” - with (x1, x2) for f1(x,y) and (y1, 

y2) for f(2(x,y). 

 The second operand function f2(x,y) is executed first. It assumes x in R01 and y in the stack.  

 The first operand function f1(x,y) assumes x in R01 and y in R02. 

 You decide which one is F1 and F2 by their order in the ALPHA string 

All buffer management is made automatically by the auxiliary routines “*2D” and “*FG”. 
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Routine Listings. 

Here are the routine listings for your perusal. Notably FRT2 introduces more complexity to process 

the function names – entered as comma-separated strings in ALPHA – and due to the indirect call to 

f1(x,y) at the end of the auxiliary routine “*FG”  - which is not required in the double integration 

case, as it’s just one function involved. CLAC and ASWAP are borrowed from the ALPHA ROM – and 

need the Library#4 present in the calculator. They’re only used for FRT2. 

 

01 LBL "FRT2" 
 

01 LBL " FITG2"  
 02 CLKEYS no keys assigned 02 CLKEYS no keys assigned 

03 ASTO 00 save string 03 ASTO 00 save in R00 

04 ASWAP swap around ","  04 STO 03 upper limit2 

05 CLAC remove second 05 RDN 
 06 ASTO 05 save in R05 06 STO 02 lower limit2 

07 CLA 
 

07 RDN 
 08 ARCL 00 recall string 08 RESET reset buffers 

09 CLAC remove second 09 "2D"  first level operand 

10 ASTO 00 save in R00 10 FINTG call first round 

11 STO 04 upper bound2 11 RTN done. 

12 RDN 
 

12 LBL "*2D" 
 13 STO 03 lower bound2 13 STO 01 Save x for later 

14 RDN 
 

14 CLOAK mask buffer id# 

15 RESET reset buffers 15 RCL 02 lower limit2 

16 "*FG" first level operand 16 RCL 03 upper limit2 

17 FROOT call first round 17 CLA  
 18 RCL 02 y solution 18 ARCL 00 f(x,y) 

19 X<>Y arrange in stack 19 FINTG nested call 

20 "|-," appends 20 EXPOSE re-issue buf id# 

21 ARCL 00 f1(x,y) name 21 END ready 

22 ASWAP swap around 
   23 RTN done(!) 
   24 LBL "*FG" 

    25 STO 01 save x for later 
   26 CLOAK mask buffer id# 
   27 RCL 03 lower bound2 
   28 RCL 04 upper bound2 
   29 CLA 

    30 ARCL 05 f2(x,y) 
   31 FROOT nested call 
   32 EXPOSE re-issue buf id# 
   33 STO 02 Save yo result    

34 XEQ IND 00 calculates f1(x,Yo) 
   35 END 

     

FINTG uses registers {R00-R03} and leaves the results in X and R01. The function name is left in 

ALPHA (6-chars max). 

FRT2 uses registers {R00-R05} and leaves the results in the stack registers {X, Y} and {R01, R02} 

for the 2-equation roots. The comma-separated function names string is left in ALPHA (6-chars max 

for each name). 
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Comments. 

The new functions to support the nested configuration are simplified versions of some general-

purpose buffer utilities, available in other extension modules as follows: 

 RESET is equivalent to the sequence { 13, B?, CLB, RDN }  

 CLOAK is equivalent to the sequence { 14.013 , REIDBF, RDN} 

 EXPOSE is equivalent to the sequence: { 13.014 , REIDBF , RDN } 

B? and CLB are available in the OS/X ROM, and REIDBF in the RAMPAGE ROM. 

Using the simplified versions is more intuitive for math-oriented users, and besides freed up some 

space for additional examples in the SIROM. 

While you can use RESET at any time (which will delete buff #13 if present, or do nothing if not 

present), using CLOAK and EXPOSE will generally result in the error message “BUF ERR”. They’re 

meant to be used only while buffer #14 exists, which is tightly controlled by the code in FINTG and 

FROOT – and furthermore, the SIROM uses the I/O_PAUSE interrupt as a “search & destroy” for 

buffer#14 at all times. Refer to the corresponding section in the SandMath manual to read more on 

this subject. 

 

Caveat emptor:  

There’s a price to pay for this buffer trickery, and that’s the loss of the USER key assignments. As you 

can see in the listings above, the main routines call CLKEYS to make the operation more reliable 

(this avoids spurious buffer errors due to memory overwrites). You can save them in an X-Mem file 

using SAVEKA and then recover them with GETKA after the fact (both functions are also available in 

the AMC_OS/X ROM). 

These routines are not fast, their interest is in the methodology - not optimized for speed to say the 

least. If you need faster responses, then the SandMath provides dedicated MCODE functions for many 

of these and yet some more. 

Bear in mind that the INTEG-based method to define special functions is not an efficient one from the 

mathematical standpoint, but it is a godsend for engineering problems. Also FROOT is not perfect or 

fool-proof either, so choosing a good initial guess is of high importance. If FRT2 fails to find a root (in 

either variable), it’ll present the error message “NO ROOT” – Change the limits and try again. 
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The following examples should provide a good overview into the details of the programming. 

Example 1. Calculate the integral of the Bessel Jn function, ITJ(1,3) = INT (0,3) { J(1,t).dt}  

using the integral definition as reference: 

 

Program Code is below. Note that you don’t need to worry about the buffer management, that’s done 

automatically by the driver routines all transparently to the user. 

 

As mentioned before, speed is not this method’s forte. Even on V41 in turbo mode it’ll take a good 75 

seconds to return 1.260052 (in FIX 6). This was not the goal of the example, but to clarify the 

general guidelines and showcase the conceptual approach. If you want a fast result you’re 

encouraged to use JBS in the SandMath, or even better the ITJ(sub)function also in the SandMath, 

which uses the Generalized, Regularized Hypergeometric function for the calculation – a world of 

differences… 

Comment. This particular example is of course much better dealt with using the well-known 

expression between the Bessel function J1 and J0 shown below (proving once again that it’s always 

good to check your math before embarking in long and winding paths): 

thus: 

 

Here’s an interesting plot showing 

the integral function of J1(x) 

between ]-15 . 15[ 

 

 

  

01 LBL "ITJB" 13 LBL " *JN" inner variable t in stack

02 X<>Y order n to X 14 RAD angular mode

03 STO 04 order saved in R04 15 RCL  04 get order

04 CLX lower outer limit 16 * n.t

05 X<>Y upper outer limit 17 X<>Y inner variable t

06 0 lower inner limit 18 SIN sin t

07 PI upper inner limit 19 RCL  01 outer variable

08 "*JN" function name 20 * x.sin t

09 XROM " ITG2" double integration 21 - n.t - x.sin t
10 PI adjust factor 22 COS cos (n.t - x.sin t)

11  / final result 23 END          integrand complete.

12 RTN done.
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Example 2. Calculate the solution for the system of non-linear equations below: 

f1(x,y) =x - sin(x + y)   Solution: x = 0,935082064 

f2(x,y) = y - cos(x - y)     y = 0,998020058 

 

 

The equations are programmed as shown below. Note how the convention is observed, with the y 

value assumed in the stack for the second function and in R02 for the first one; whilst x is always 

assumed in R01 for both functions. The solutions are obtained in about 3 seconds (FIX 9) using V41 

in Turbo mode. 

 

        ALPHA, “F1,F2” , ALPHA, 1, ENTER^, 2, ENTER^, 1, ENTER^, 2,  XEQ “FRT2”          

01 LBL "F1" 
 

09 LBL "F2" 
 02 RCL 01 x 10 RAD 
 03 RCL 02 y 11 CHS -y 

04 + x+y 12 RCL 01 x 

05 SIN sin(x+y) 13 + x-y 

06 RCL 01 x 14 COS cos(x-y) 

07 - sin(x+y)-x 15 X<>Y y 

08 RTN 
 

16 - cos(x-y)-y 

   

17 END 
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More Examples. 

The table below lists the examples provided in the module, with their type of application and possible 

recursion/nested approaches. 

Example Description Used Program Application Type Dimension 

2DF1 Integrand example1 2DITG 2D Integration Simple 
2DF2 Integrand example2 2DITG 2D Integration Simple 
2DF3 Integrand example3 2DITG 2D Integration Simple 

F1XY Integrand example1 FITG2 2D Integration Recursive 
F2XY Integrand example2 FITG2 2D Integration Recursive 

F1, F2 Operands example1 FRT2 2-equation System, Recursive 
G1, G2 Operands example2 FRT2 2-equation System Recursive 

CI Cosine Integral FINTG Single Integration Simple 
SI Sine Integral FINTG Single Integration Simple 
ERF Error Function FINTG Single Integration Simple 

FOURN Fourier Coeffs. FINTG Single Integration Simple 

Q-1 Inverse Probability FROOT, FINTG Roots of integral Nested 

JNX Bessel Function J FINTG Single Integration Simple 
JITX Integral Bessel J FITG2 2D Integration Recursive 
JZRN Zeros Bessel J FROOT, FINTG Roots of integral Nested 

 

The integrand functions for these examples are direct transcriptions of the well-known definition 

formulas for the special functions, such as: 
 

 ;   

;   

For the Inverse Normal probability, the program solves for x using the definition of the cumulative 

probability based on the error function – which in turn is defined as an integral. 

 

For the Fourier coefficients case, the function is expected to be periodic (but the generic period 

needn’t be ), and centered around x=0. The formulas for T =  are given below:

 

Example:- Calculate the first six coefficients for F(x) = x^ 2, assuming a period T=2, centered in x0 

= 0.  As it’s known, X^2 = 4/3 ^2 + SUM{ 4 cos(nx) /n^2 - 4 sin(nx) /n } |n=0,1,… 

  

Using an accuracy of 6 decimal places: 

01  LBL “FT”  
02  X^2 
03  RTN 

a0 = 13,1595 b0 = 0 

a1 = 4 b1 = -12,566 

a2 = 1 b2 = -6,5797 

a3 = 0,4444 b3 = -4,1888 

a4 = 0,250 b4 = -3,1415 

a5= 0,160 b5 = -2.513 
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Other Programs included. 

Besides the recursive routines the SIROM module includes a couple of FOCAL programs also geared 

towards the root finding and integration subjects.  

The first program is “SYS2”, original written by FJ Pamies Durá, (UPLE #35006) to solve non-linear 

systems of 2-equations. Here the operand functions assume x stored in R01 and y stored in R02 for 

both functions, therefore not entirely compatible with the requirements for the second function in 

FRT2 –but it’s easy to make a compatible version, just preamble the F2 routine with {RCL 02, 

ENTER^ } to make it compatible with SYS2, i.e: 

{ LBL “F22, RCL 02, ENTER^ , GTO “F2” }  and: 

{ LBL “G22, RCL 02, ENTER^, GTO “G2” } 

This program is noticeable faster than FRT2 because the iterative process follows a simultaneous 

approach on both variables (x,y) to approximate for the root, based on the two partial derivatives of 

the functions respectively. By contrast, on FRT2 this is done on each variable independently, which in 

general will require more iterations and therefore longer execution times. It’ll be akin to zigzagging 

versus doing a bee-line towards the root.  It also shows the successive values of the approximations 

in the display: 

 ,  

This program prompts for all the required data up front, in a “driver” arrangement. This includes the 

two function names, the accuracy (number of decimals), and the initial estimation (xo, yo) for the 

solution. SYS2 uses data registers {R00 – R10}. 

Example. Obtain the roots for the system of two equations below (available as “G1” and “G2”) 

g1(x,y) = x^2 + y^2 -5        Solution: x = 2 

g2(x,y) = x^2 -y^2 - 3     y = 1 

This is an interesting case because FRT2 not only is much slower (as we knew it was going to be), 

but also fails to find a root using initial guesses equal to the solutions, i.e. x0 = 2, y0=1.  
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The second program is “2DITG” – Valentín Albillo’s neat example from DataFile for Double Integrals 

- that uses FINTG applied to the inner integral and with a 3-point, 5th. order Gaussian method for the 

outer integral. Three example routines (2DF1, 2DF2, 2DF3) are included in the ROM as follows: 

;   

 

See the original article for details, available at: 
http://web.archive.org/web/20110906135412/http://membres.multimania.fr/albillo/calc/pdf/DatafileVA024.pdf 

 

In addition to the outer and inner limits in the stack (lower outer first, upper inner last) this program 

uses a parameter to specify the number of steps for the outer integration (a.k.a. the number of 

subintervals used). This is expected to be in R10 before executing the program – make sure you 

provide the value prior to executing 2DITG. The accuracy and execution times are directly impacted 

by the display settings (by virtue of FINTG) and the number of steps. 

If you want to use 2DITG with your own functions, the integrand routines expect x in R01 and y in 

the X register (as per FINTG conventions).  

The results are: I1 = 8/3 = 2.6666666 

I2 = Ln(25/24) = 0.040821 

I3 = 1321.275779 

Note that because the data registers convention is the same for both main programs, you can use 

2DF1, 2DF2 and 2DF3 as examples for FITG2 – and conversely use F1XY and F2XY as examples for 

2DITG. In general, the execution times are very similar (and long) using M=10 for number of steps. 
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Finally, there is the PPC Solve routine, a classic must-have in everybody’s toolbox. It is labeled “SLV” 

here, and the only difference is that it expects the function name in Alpha (no need to save it in R06 

before). SLV uses data registers {R06-R09}. Set F10 if you want to see the iterations.  Refer to the 

PPC ROM manual for details on SV, which also includes numerous examples of utilization. 

 

Other References. 

There was no more room available in this module to include more applications or examples, but many 

more fancy programs to calculate single and multiple integrals are available in the INTEGRATOR 

module, written in collaboration with Jean-marc Baillard and including a small arsenal of tools for the 

task.  And yet more integration programs are available in the SwapMath module, written by 

Sherman Lowell and Ernest Gibbs and published in PPCCJ V11N7 p18 and PPCCJ V8N4 

p31respectively – you’re encouraged to refer to their QRG’s for further details. 

If what suits your fancy is systems of non-linear equations instead, you’re encouraged to check the 

NONLINEAR module, which picks up where this module leaves off, including JM Baillard’s programs 

to resolve systems with two, three and general case with “n” equations. 

 

 

 

 


