
Total_Rekall+ 2024  
 

© Ángel Martin – February 2024 Page 1 
 

 






 

RCL Math and X-Mem Access for the HP-41 
Plus Expanded Mem RCL for SY-41CL and MAXX Users. 

 

 

                                                                                                 
 
 
 

Written and programmed by Ángel Martin 
February 2024 



Total_Rekall+ 2024  
 

© Ángel Martin – February 2024 Page 2 
 

This compilation revision 1.1.1 

Copyright © 2024 Ángel Martin 

 

        

 

 

 

 

 

77 

                                                   
 

 

 

 

 

 

 

 

 

 

Published under the GNU software license agreement. 
 
Original authors retain all copyrights and should be mentioned in writing by any part utilizing this 

material.  No commercial usage of any kind is allowed. 

 
Screen captures taken from V41, Windows-based emulator developed by Warren Furlow. 

See www.hp41.org 

 
 

Acknowledgments.- This module is a derivative of  several previous project like the XMEM_TWIN 
and the “CL Expanded Registers” It also overlaps with the WARP_Core module in some areas. 

 

Everlasting thanks to the original developers of the HEPAX and CCD Modules – real landmarks and 
seminal references for the serious MCODER and the 41 system overall. With their products they 

pushed the design limits beyond the conventionally accepted, making many other contributions pale 
by comparison. 

http://www.hp41.org/


Total_Rekall+ 2024  
 

© Ángel Martin – February 2024 Page 3 
 

Summary Function Table. 

 

# Function Description Input Dependency Type Author 

0 -TTL REKALL Lib#4 Check & Splash none Lib#4 MCODE Ángel Martin 

1 AIRCL _ _ _ Alpha integer Recall RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

2 RKL _ _ _ Enhanced RCL function Prompts for RG#.  Lib#4 MCODE Ángel Martin 

3 RC- _ _ + RCL Subtraction RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

4 RC+ _ _ _ RCL Addition RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

5 RC* _ _ _ RCL Multiply RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

6 RC/ _ _ _ RCL Divide RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

7 RC^ _ _ _ RCL Power RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

8 RCI^ _ _ _ RCL Root RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

9 RIND2 _ _ _ RCL IND IND RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

10 SIND2 _ _ _ STO IND IND RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

11 ST^  _ _ _ STO Power RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

12 STI^  _ _ _ STO Root RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

13 XIND2 _ _ _ X<> IND IND RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

14 STKSWP _ Stack Swaps Launcher Prompts for Stack Reg letter Lib#4 MCODE Ángel Martin 

15 RK# _ _  Sub-function Launcher Function index in prompt Lib#4 MCODE Ángel Martin 

16 -X-REGS FNS Section Header n/a Lib#4 MCODE Ángel Martin 

17 A<>XRG _ _ _ Swap ALPHA and XRGs RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

18 CLXRG Clear ALL X-Regs none Lib#4 MCODE Ángel Martin 

19 CLXRGX  Clear X-Regs RANGE RG# range in X Lib#4 MCODE Ángel Martin 

20 ST<>XRG _ _ _ Swap Stack ans XRGs RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

21 XARC _ _ _ X-Reg ARCL RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

22 XAST _ _ _ X-Reg ASTO RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

23 XDSE _ _ _ X-Reg DSE RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

24 XFINDX Find X in X-Mem Value in X Lib#4 MCODE Ángel Martin 

25 XISG _ _ _ X-Reg ISG RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

26 XRCL _ _ _  X-Reg RCL RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

27 XRC+ _ _ _ X-Reg. RC+ RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

28 XRC- _ _ _ X-Reg RC- RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

29 XRC* _ _ _ X-Reg RC- RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

30 XRC/ _ _ _ X-Reg RC/ RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

31 XRGMOV Move X-Regs RG# irange in X Lib#4 MCODE Ángel Martin 

32 XRGSWP Swap X-Regs RG# range in X Lib#4 MCODE Ángel Martin 

33 XSTO _ _ _ X-Reg. STO RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

34 XST+ _ _ _ X-Reg ST+ RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

35 XST- _ _ _ X-Reg ST- RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

36 XST* _ _ _ X-Reg ST* RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

37 XST/ _ _ _ X-Reg ST/ RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

38 XVEW _ _ _ View X-Reg RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

39 XX<> _ _ _ X-Reg X<> RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

40 -Y-REGS FNS Section Header n/a n/a MCODE Ángel Martin 

41 A<>XRG _ _ _ Swap ALPHA and Y-RGs RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

42 CLXRG Clear ALL Y-Regs none Lib#4 MCODE Ángel Martin 

43 CLXRGX  Clear Y-Regs RANGE RG# range in X Lib#4 MCODE Ángel Martin 

44 ST<>YRG _ _ _ Swap Stack and Y-RGs RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

45 YARC _ _ _ Y-Reg ARCL RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

46 YAST _ _ _ Y-Reg ASTO RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

47 YDSE _ _ _ Y-Reg DSE RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

48 YFINDX Find X in Y-Mem Value in X Lib#4 MCODE Ángel Martin 

49 YISG _ _ _ Y-Reg ISG RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

50 YRCL _ __ Y-Reg RCL RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 



Total_Rekall+ 2024  
 

© Ángel Martin – February 2024 Page 4 
 

# Function Description Input Dependency Type Author 

51 YRC+ _ _ _ Y-Reg. RC+ RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

52 YRC- _ _ _ Y-Reg RC- RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

53 YRC* _ _ _ Y-Reg RC- RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

54 YRC/ _ _ _ Y-Reg RC/ RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

55 YRGMOV Move Y-Regs RG# irange in X Lib#4 MCODE Ángel Martin 

56 YRGSWP Swap Y-Regs RG# range in X Lib#4 MCODE Ángel Martin 

57 YSTO _ _ _ Y-Reg. STO RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

58 YST+ _ _ _ Y-Reg ST+ RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

59 YST- _ _ _ Y-Reg ST- RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

60 YST* _ _ _ Y-Reg ST* RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

61 YST/ _ _ _ Y-Reg ST/ RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

62 YVEW _ _ _ View Y-Reg RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

63 YX<> _ _ _ Y-Reg X<> RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

0 -STKSWAP Section Header n/a n/a MCODE \Angel Martin 

1 a<> _ _ Swap “a” and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

2 b<> _ _ Swap “b” and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

3 c<> _ _ Swap “c” and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

4 d<> _ _ Swap “d” and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

5 e<> _ _ Swap “e” and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

6 }-<> _ _  Swap }- and Register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

7 Y<> _ _  Swap Y and Register RG# in prompt / Next Line Lib#4 MCODE Greg McClure 

8 Z<> _ _ Swap Z and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

9 T<> _ _ Swap T and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

10 L<> _ _ Swap L and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

11 M<> _ _ Swap M and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

12 N<> _ _ Swap N and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

13 O<> _ _ Swap O and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

14 P<> _ _ Swap P and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

15 Q<> _ _ Swap Q and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin 

16 -XTRA FNS Section header Shows Splash screen Lib#4 MCODE Nelson  Crowle 

17 ?YFNX Checks for YFNX None Lib#4 MCODE Ángel Martin 

18 ?LIB4 Checks for Library #4 none Lib#4 MCODE Ángel Martin 

19 A<>ST Swaps ALPHA and Stack None Lib#4 MCODE Ángel Martin 

20 ASWP> Swaps Text around “>” String in ALPHA Lib#4 MCODE Ángel Martin 

21 D>H Decimal to Hex Dec value in X Lib#4 MCODE William Graham 

22 H>D Hex to Decimal Hex value in ALPHA Lib#4 MCODE William Graham 

23 DROP Puts Y in Reg# in X Value in Y, RG# in X Lib#4 MCODE Ángel Martin 

24 FETCH Fetches register contents Absolute address in X Lib#4 MCODE Ángel Martin 

25 FINDX Finds value in Data Regs Value in X Lib#4 MCODE Ángel Martin 

26 RK$ _ Sub-function Launcher Function NAME in prompt Lib#4 MCODE Ángel Martin 

27 RCL Recalls Stat Regs to Stack Data in Stat Regs Lib#4 MCODE Mark Power 

28 STO Stores Stack in Stack Regs Data in Stack Lib#4 MCODE Mark Power 

29 ST<> Swaps Stack with Stat Regs Data in memory Lib#4 MCODE Nelson  Crowle 

30 ST>B7 Copies Stack to Shadow Buff. Data in Stack Lib#4 MCODE Ángel Martin 

31 STVIEW Shows Stack contents Data in Stack Lib#4 MCODE Ángel Martin 

32 CAT+ Sub-function CATalog None Lib#4 MCODE Ángel Martin 

       

Sub-functions are accessed using the  RK#  launcher. Use either the sub-function INDEX 

number at the prompt, or press ALPHA to type the sub-function NAME. 
 
              



Total_Rekall+ 2024  
 

© Ángel Martin – February 2024 Page 5 
 

 Introduction: Three Types of Memory 

 
Implicit to the functionality provided by this module is the concept of Main, Extended and Expanded 
memory types.  

 
 Main Memory holds the stack registers, data registers, I/O buffers and program memory area. 

The data registers capacity is controlled by the SIZE function. The maximum capacity on an 

HP-41 CV/CX is 319 registers, which requires that there are no programs, buffers, or key 

assignments present in the system.  
 

 Extended memory is provided by the X-Functions and X-Memory Modules on a plain HP-

41C/CV machine, and on an HP-41CX it comprises 606 data registers. The extended memory 
is usually structured in files but this module accesses the registers individually with the X-

REGS functions – and therefore is not compatible with the standard arrangement. Refer to 

the X-MEM_TWIN module for a comprehensive description and alternate ways to avoid 
incompatibilities – certainly out of the scope of this module. 

 
 Expanded Memory on a SY-41 CL or a MAXX module comprises 1,024 registers for the 

purpose of this module. It can be used as a bulk backup location, or its contents can also be 

accessed individually using the Y-REGS functions. Refer to the XPREGS module for a detailed 
description and applications. 

 

 
 

 
 



Total_Rekall+ 2024  
 

© Ángel Martin – February 2024 Page 6 
 

Three Launchers for the Three Kinds of Memory  {  RKL  ,   XRCL  ,  YRCL } 

 
Implicit to the previous description is the concept of Main, Extended and Expanded memory types.  

Each one of the three sections in the module is dedicated to each of these types.  

 
 The main memory section is an extension of the native capabilities, mostly (but not 

exclusively) related to the recall operations.  A few other additions are included 

 
 The Extended and Expanded sections are complete new additions and therefore include 

functions to handle the storage, recall and exchange of data in the corresponding memory 

area. The function names in these two sections are very similar, only differentiated by the 

initial letter being “X” or “Y” – a consistent naming scheme that facilitates their usage. 
 

 Going across memory zones is also possible using the stack registers as common anchor 

available in the three sections. For instance from Main memory to X-Mem, or from Y-Mem to 
X-Mem will need to move the data through the stack register X. 

 
  

 

The picture below summarizes all module functions grouped by the memory zone. Note that the three 

RCL launchers are interconnected, you can cycle through them using the  SST  key. 

 

 



Total_Rekall+ 2024  
 

© Ángel Martin – February 2024 Page 7 
 

The Total_Rekall Dilemma.  
 

 
One of the obvious shortcomings of the HP-41 OS is the lack of RCL math functions: even if they are 

less necessary than the STO math and perhaps easily replaced by combination of other standard 
functions, it is a sore omission that has been the subject of previous implementation attempts to 

close that gap. 

 
The first component is naturally the individual RCL math functions, like RC+, RC-, RC* and RC/. 

These can be written without much difficulty, even supporting INDirect addressing, but with two 
major restrictions: 

 

1. Operating in manual mode only, and 
2. Excluding the Stack registers from the register sources. 

 
The first limitation can be overcome using the non-merged function approach, whereby the argument 

of the function in a program is given in the next program line following it. This is stack-neutral so 
doesn’t interfere with the intermediate calculations. 

 

To solve the stack addressing one needs to resort to heavier trickery, basically writing extra M-code 
to replace the OS handling of the prompting in these functions – based on the PTEMP bits of the 

function name. The prompting is therefore completely under the control of the function, and not 
facilitated by the OS. It is arguably a small net benefit compared to the required effort, but as the 

only remaining challenge it was well worth tackling down. 

 
Once the technique was developed it was relatively easy to apply to other functions, like those 

managing the direct access to Extended Memory (X-Mem) registers individually, or even those 
dedicated to the same task for Expanded Memory (Y-Mem) registers – available on the SY-41 CL 

and MAXX modules. 

 
That’s how the idea of a Recall launcher came into being, following the same model available in the 

native OS for the STO math functions – grouping them under a logical structure. Subsequently the 
RKL launcher added further capabilities within the module, and became a new and enhanced RCL on 

its own beyond the grouping features. 

 
 
 
 
 
 
 

 

Side note: The Sub-function Launcher  RK#   

 
RK# is available as a main function in the FAT, therefore it can be assigned to any key – or 
can it? The issue of course is the non-keyable character “#”, posing a small challenge that 
requires either synthetic programming skills or using the extended ASN facility available in 
advanced modules like the AMC_OS/X. 
 
But say that no advanced modules are at hand – then our friendly RKL launcher comes to 
the rescue: pressing the PRGM key at its prompt activates RC# as well :\ 
 

       



Total_Rekall+ 2024  
 

© Ángel Martin – February 2024 Page 8 
 

Module Dependencies. 

 
The XMEM Twin is a Library4-aware module; therefore, it expects the Library#4 revision R4 to be 

present on the system. The module will check for it upon the calculator ON event, showing an error 
message if not found. This will abort the polling points sequence for all other modules plugged at 

higher position in the bus. Do not attempt to run the programs or functions within the module 
without the Library#4 plugged in. 
 

        
 

 

Sub-function Catalog. 
 

CAT+ Sub-functions Catalog Ángel Martin Source: Library #4 

XEQ ‘  Direct Execution   

LASTF Last Function   

 

The module includes an auxiliary FAT with a set of 22 sub-functions. Because these are not in the 
main FAT the OS knows nothing about them, so they cannot be called using XEQ, nor can they be 

assigned to keys using ASN. Therefore, a dedicate way to access them must exist. Two functions are 
available to call sub-functions either alphabetically (by spelling their name in ALPHA) or numerically, 

by entering their corresponding index# in the prompt: 

 

         
 

Like all other modules with sub-functions, there is a way to enumerate them using CAT+ – itself a 

sub-function included in the auxiliary FAT. We already saw that CAT+ can be triggered from the 
CAT+ prompt, pressing [ENTER^], spelling its name with RK$, or using index #000 with RK#. 

 
A few hot-keys allow you to control and navigate the catalog during the enumeration: 

 

 [R/S]  stops and resumes the listing 

 [SST] manually advances to the next sub-function 

 [SHIFT] reverses the direction of the enumeration 

 [ENTER^] jumps to the next/previous section header  

 [XEQ] will execute the sub-function shown if the enumeration is suspended.  

 Back-arrow will exit the catalog 

 

When you execute a sub-function using the launchers or by means of the CAT+ shortcut, its index# 
is saved in the LastFunction buffer automatically. This allows subsequent re-execution through the 

LASTF facility, pressing RK# followed by the [RADIX] key. 
 

All sub-functions are programmable. When they’re entered into a program its name is briefly shown in 

the display and two program steps are added by the launchers – one with the numeric launcher RC# 
and another one following it with the corresponding index#. This is done automatically for you, no 

need to enter it manually. 
 

CAT+ will print the sub-functions names if a printer is connected in NORM or TRACE modes. 

The complete list of sub-functions is provided at the beginning of the manual. 

 



Total_Rekall+ 2024  
 

© Ángel Martin – February 2024 Page 9 
 

RCL Math on steroids: The Extended RKL. 

 
In addition to the four “standard” arithmetic operations available for the STO case, this module 

includes RC^ and RCI^ for the Recall Power and root functions – which will calculate the REG-th. 
power or root of the value in X, (i.e. X= X^RG# and X=X^1/RG#). These two functions are inverse 

of one another, similar to {RC* and RC/} or to {RC+ and RC-} so one of them undoes the other’s 
effect. 

 
 
The RKL launcher also includes provision to invoke other recall-related functions such as AIRCL and 

RCL – plus it doubles as a sub-function launcher to access the sub-functions included in the module 

– either by their index number (using RC#) or by their names (using RC$). The last-function facility 

is also implemented of course, triggered by the radix key at the RC# prompt. 
 

The stack registers and indirect addressing are of course still available using the same hot-keys, 
RADIX and SHIFT, same as the standard RCL implementation. 

 

                
 

In terms of usability, note that you can switch amongst the six RCL math functions pressing the 
corresponding arithmetic key at their prompt. Besides, you can also revert back to the native RCL 

pressing the [RCL] key again at its prompt.  

 

 
Direct access to the upper data registers 
 
All RKL functions feature a 3-digit prompt field  to directly access registers in the 100-319 range. Note 

that contrary to the standard native RCL function, using RKL in the range from 112 and up you’ll be 
accessing these upper main memory registers directly, no need to use indirect addressing 

anymore - Thus simplifying the user interface and bringing more consistency to the machine 
operation. 

 

In manual mode (interactive use) the RKL function code is always used, and not the standard RCL - 
not even for the simplest cases such as RCL 00, etc. 

 
During program editing however the RKL entries are automatically replaced by the native 

counterparts in the OS whenever possible.  Using the standard OS achieves maximum byte 

efficiency in line entering for the standard cases, i.e. RCL 27 or RCL IND ST X in a single program 
step as opposed to using the non-merged approach. 

 
This replacement won’t happen when the data register lies in the upper region, i.e. above R111 – and 

in those instances the RKL function itself will be entered in the program, followed by a numeric line 
coding the corresponding register number – as well as the INDirect addressing case of course. This is 

reflected in the summary table shown in next page – including the Shadow Stack buffer area. 

 
 

 



Total_Rekall+ 2024  
 

© Ángel Martin – February 2024 Page 10 
 

Note that even if the U/I doesn’t provide access for registers above R199 nothing is stopping you 

from editing the parameter line manually with values up to 319  - assuming they are configured via 
SIZE. 

 

Registers Direct Addressing INDirect Addressing 
Lower (R00-R111) RCL nn,  merged RCL IND nn 

Upper (R112-R319) RKL nn , non-merged RKL nn+0x180, 2 lines 

Stack (T, Z, Y, X, L….) RCL ST nn +0x170 RCL IND ST nn+0x2F0 

Shadow Buffer (A-G) RKL nn+0x300 RKL nn+0x480 

Table 1. Data Registers Zones 
 

Shadow Stack Buffer 
 

The Shadow Stack area is a 7-register buffer in main memory (with buffer id#=7) that can be used 
as stack backup, or as emergency data storage for those cases when we run out of data registers 

(been there before?). Accessing the buffer suffix “bR” is simple: just press the RADIX key twice at the 
RCL function prompt, followed by the buffer register number (only from 1 to 7 are allowed). In fact 

repeat pressings of the Radix key will toggle between the ST and BF suffixes, as shown below. 

   

            
 
 

This module includes the sub-function ST>B7 to save data from the stack into the Shadow Stack 
buffer – refer to the  WARP_Core module for further information on this subject. 

 
The table below shows the stack registers mapping within the shadow buffer when using the ST>B7 
function. Note that buffer registers F and G are not used in this case. 

 

Stack T Z Y X L - - 

Buffer A B C D E F G 

 
 

Diagrams of data suffixes. 
 
The following picture shows the suffix ranges used by the different functions to flag register zones in 

Main memory. They are provided as a FYI only, as there’s no need to concern yourself with the 

internal structure of the implementation to use the functions. 
 

Stack adds 0x170 ; IND adds 0x180 ; both combined adds 0x2F0 
Buffer adds 0x300 ; IND buffer adds 0x480 

 

 
 
Once again, with this implementation ALL registers can be accessed directly and ALL registers can be 

used as INDirect addressing location. i.e. cases like RCL 199, and RCL IND 125 are now a perfectly 

valid syntax. 



Total_Rekall+ 2024  
 

© Ángel Martin – February 2024 Page 11 
 

The path not taken 
 
Note the distinctly different approach followed by this module compared to the standard convention 

used by the HP-41 operating system. Indeed we’re departing the tried and tested ways in search for 
a more logical implementation  - this requires a new convention to flag the stack registers and the 

indirect addressing, different from the standard one used by the OS. With the new technique ALL 

data registers can be accessed by the RKL function directly, thus it get rids of the overlapping zones 
consequence of the suffixes 0x070 and 0x080 used for the stack registers and indirect addressing - 

see the table below for details. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2:  Register index mapping used by the OS 
 
 
Graphically the Data Suffix diagram for the “Classic” approach is represented below: 
 

Stack adds 0x070; IND adds 0x080 ; both combined adds 0x0F0 
Buffer adds 0x100 ; IND buffer adds 0x180 

 

 
 
All other modules using extended RCL implementations (notably the SandMath and the 

WARP_Core)  utilize the “Classic” model..

 Argument Shown: Argument Shown: Argument Shown: 

 100 00 112 T 124 b 

 101 01 113 Z 125 c 

 102 A 114 Y 126 d 

 103 B 115 X 127 e 

 104 C 116 L 128 IND 00 

 105 D 117 M 129 IND 01 

 106 E 118 N 130 IND 02 

 107 F 119 O 131 IND 03 

 108 G 120 P 132 IND 04 

 109 H 121 Q 133 IND 05 

 110 I 122 |- 134 IND 06 

 111 J 123 a 135 IND 07 



Total_Rekall+ 2024  
 

© Ángel Martin – February 2024 Page 12 
 

An exception to the rule. 
 
A few prompting functions in the module do not allow stack arguments in their prompts when entered 

in a program. These are the sub-functions for register swapping. Note however that in manual mode 
you can use any register number, Stack registers, Buffer registers and INDirect addressing as 

destination   

 
Be aware that when editing a program the non-merged line will not be automatically created for 

these cases. If you enter these functions in a program, you must add the argument manually as an 
additional step. Even more confusing perhaps, note that these exceptions use the “Classic” data 

register addressing scheme, thus only data registers R00 to R111 can be accessed directly, and 

registers R112 and above cannot be selected as INDirect addresses. Refer to the table 2 ahown in 
previous page. 

 
 

 
 

 
Other data suffix diagrams 
 
Just for completion sake, see below the corresponding data suffix diagrams for the Extended and 

Expanded memory cases.  
 

Extended Memory - As usual, it assumes a full X-Mem configuration 

 

 
In words:  
IND adds 0x400 ; Stack adds 0xD00 . Both combined adds 0x 0xC0F 

Regular data registers adds 0xA00, IND data registers adds 0x800 

 
 

Expanded Memory 

 

 
In words:  
IND adds 0x800 ; Stack adds 0xD70 . Both combined adds 0x 0x7F 

Regular data registers adds 0xA00, IND data registers adds 0x800 



Total_Rekall+ 2024  
 

© Ángel Martin – February 2024 Page 13 
 

The Double Indirection: A solution in search of a problem? 

 
Arguably a double indirection capability may be seen more as an extravaganza than as a useful 
feature. After all, how many times have you encountered a situation where the indirect index was 

itself depending on another variable, and doing so in a counter-like fashion? 
 

Well those situations do exist, more often than none and with increased likelihood as you get into 

advanced algorithms and matrix applications – but I won’t tire you with examples, rather here are 
functions SIND2 , RIND2, and XIND2 which perform a double indirection for STO / RCL / X<> 

actions . 

 
Enough to make your head spin a little? – Then you should try the TRIPLE indirection, available when 

you hit the shift key at that stage, ie:  
 

SIND2 IND _ _  =  STO IND IND IND _ _ 

RIND2 IND _ _  =  RCL IND IND IND _ _  
XIND2 IND _ _  =   X<> IND IND IND _ _ 

 
These functions use two (or three if SHIFTED) standard data registers to hold the argument of the 

data register where the value is to be recalled from (RIND2) or stored into (SIND2).  Better keep your 
register maps handy! 

 
 

Going over the top: Multiple Indirection 
 
Interesting things happen if you keep pressing the [SHIFT] key  - as these functions support a 
multiple indirection pattern that allows redirecting the target registers as many as 10 levels (and 
beyond). The function prompt will change to reflect the current level,  with a combination of even 
values and their IND options. For example, pressing [SHIFT] at the RIND2 IND _ _ prompt will bump 
the counter to: 
 

, and then: , 
Followed by the screens shown below in  a continuous sequence: 
 

,  and then:  
 

Example: assuming the following registers contain the values shown below: 
 

R10 = 0;  
R00 = 3;   
R03 = 5;   
R05 = 7;   

R07 = 
 

Then we have: 

RCL 10   =   0 
RCL IND 10 =   3 
RIND2 10  =   5 
RIND2 IND 10  =   7 

RIND4 10  =   
RIND4 IND 10  =   5 
RIND6 10  =   7       ,   etc… 

 
 

Note that this functionality is restricted to RUN mode only, and when this function is used in a 

running program it’ll be limited to a double indirection (or triple in the IND case). 



XMEM Twin Module Manual 

 

© Ángel Martin –June 2022 Page 14 
 

Application Example: Bubble Sort without data movement. (By Greg McClure) 
 

; 

; FIXED SORT -- Gregory J. McClure 

; 

; Does a non-destructive bubble sort of registers specified in another 

; set of consecutive pointer registers.  The data to sort is not moved, 

; but the pointer registers will be changed to reflect the numeric 

; order (ascending) of the values indirectly pointed to by them. 

; R00 thru R02 are used by the program. 

; 

; Example: R03-R06 contain 10, 12, 15, 18. 

; R10, R12, R15, R18 contain the data to sort (4, 3, 2, 1). 

; X contains 3.006 as descriptor of pointer register set, then SORT is run. 

; When done, SORT will change R03-R06 to contain 18, 15, 12, 10. 

; R10, R12, R15, R18 will be unchanged. 

; 

 

01 LBL "SORT" 

02 LBL 10 

03 STO 00       ; 1ST VALUE POINTER 

04 STO 01       ; 2ND VALUE POINTER 

05 ISG 01 

06 STO 02       ; SAVE 1ST POINTER 

07 LBL 00 

08 RIND2        ; TTRKALL DOUBLE IND READS 

08 RIND2 

09 1 

10 X>Y? 

11 GTO 01       ; SKIP SWAP 

12 RCL IND 00   ; RECALL POINTERS 

13 RCL IND 01 

14 STO IND 00   ; REVERSE POINTERS 

15 X<>Y 

16 STO IND 01 

17 LBL 01 

18 ISG 00       ; BUMP VALUE POINTERS 

19 ISG 01 

20 GTO 00       ; MORE TO COMPARE 

21 RCL 02       ; GET CURRENT POINTERS SET 

22 E-3 

23 - 

24 ENTER^ 

25 INT 

26 1.001 

27 * 

28 X=Y? 

29 GTO 02       ; DONE 

30 RCL 02 

31 GTO 10 

32 LBL 02 

33 "DONE" 

34 AVIEW 

35 END 
 



XMEM Twin Module Manual 

 

© Ángel Martin –June 2022 Page 15 
 

Stack Swapping functions and   STKSWP_      
 
The OS includes the X<> function to exchange the contents of the X-register with other stack or 
data registers – but if fails to extend this to any other stack register. To this point, a set of stack-
swapping sub-functions is also included in this module. You can use them to exchange the 
contents of any of the 16 status registers in the machine, including ALPHA, the stack, and the 
other reserved status registers (as always, use these with caution!).  
 
In addition to the standard method with the sub-function launchers RC# and RC$, these 
functions can be accessed using a dedicated launcher: the function STKSWP in the main FAT. 
 

 _{a, b, c, d, e, K} ; {M. N. O. P} ; {X. Y. Z. T. L} 
 
This is a very convenient method that offers further usability as it allows the “navigation” across 
the status registers using the PLUS/MINUS keys. For example, between the “a” and “b” regs: 
 
 

 
 
 
 
 
As expected, Stack registers and Indirect addressing are fully supported by these functions – just 
like the native X<> offers in the standard machine. 
 

   ;     
 
Caveat emptor.- Because they are sub-functions, entering them in a program requires the user 
to manually add the parameter as a THIRD program line – using the “classic” convention for 
suffixes, as discussed previously and shown in the table below. Add 0x070 for stack, 0x080 for 
IND and 0x0F for both.  A few examples are included: 
 
M<> N   Z<> IND 05  Y<>  IND T 
{RC#, 11, 118}  {RC#, 8, 133}  {RC#, 7, 240} 
  8    

  

 Argument Shown: Argument Shown: Argument Shown: 

 100 00 112 T 124 b 

 101 01 113 Z 125 c 

 102 A 114 Y 126 d 

 103 B 115 X 127 e 

 104 C 116 L 128 IND 00 

 105 D 117 M 129 IND 01 

 106 E 118 N 130 IND 02 

 107 F 119 O 131 IND 03 

 108 G 120 P 132 IND 04 

 109 H 121 Q 133 IND 05 

 110 I 122 |- 134 IND 06 

 111 J 123 a 135 IND 07 



XMEM Twin Module Manual 

 

© Ángel Martin –June 2022 Page 16 
 

Appendix.-  A trip down to Memory Lane. From the HP-41 User’s Handbook.-  
 

 
 

 
 
 

 
 
 

 

 

 



XMEM Twin Module Manual 

 

© Ángel Martin –June 2022 Page 17 
 

Utilities in the Sub-functions area. 

 

Besides the Stack registers swap functions, a few other utilities are included in the auxiliary FAT. 
They’re mostly self-explanatory so we’ll include just a short description here. 

 
 

 FINDX  is a very fast neat routine that looks for the value in the stack X-register in the data 

registers area. If a match is found the register number is entered in X , and if not found the value -1 

is used instead. The stack is lifted unless of course the stack lift flag is disabled, like when executed 
right after CLX or ENTER^. So it works much like like POSA and POSFL in the X-Functions module. 

 
 

 STVIEW  does a sequential enumeration of the stack registers, labeling the display with the stack 

letter for easier traceability.  
 

 FETCH  recalls the content of the register whose parameter index (following the “new” convention) 

is in the X register. For example FETCH 25 recalls R25 to X, and FETCH 117 recalls R117 to X. 

 

 DROP  will put the value in the Y-register into the data register whose number is in X 

 

 

 RCL ,  STO,  and  ST<>  manage exchanges between the stack and the statistical registers - a 

block of five registers defined by the native function REG. Refer to the HP-41 user manual for 

details. The table below shows the register correspondence assuming a REG 11 setting: 

 

Stack T Z Y X L 

Statistical R11 R12 R13 R14 R15 

 

 A<>ST  exchanges the Stack registers {X, Y, Z,, T, L} and the individual ALPHA+ registers (that is 

the standard ALHA plus the Q-Reg), {M, N, O, P, Q }. It has the corresponding mapping as well: 
 

Stack T Z Y X L 

ALPHA+ P O N M Q 

 

 ASWP>  swaps the two sides of the string in ALPHA around the “>” character – and does nothing if 

“ >”  doesn’t exist. For instance the string “CATS>DOGS” changes to “DOGS>CATS”. 

 
 

 D>H  and  H>D  are little hexadecimal to decimal conversion routines. The maximum number 

allowed is 0x2540BE3FF or 9,99999999 E9 decimal. These functions were written by William Graham 
and published in PPCJ V12N6 p19, enhancing in turn the initial versions first published by Derek Amos 

in PPCCJ V12N1 p3.  
 

The input values are expected to be in the X-register (decimal value) for D>H and in ALPHA for H>D 
(Hex string) – and vice versa for the output results.  A couple of examples:  “ABCD”, H>D   =>   

43,981.000  ,   D>H  => “ABCD” 

 
 

 ST>B7  loads the contents of the stack in the Shadow Stack buffer. It was mentioned before in the 

manual. 
 

 

 ?LIB4  and  ?YFNX  simply check for the presence of the Library#4 and YFNX modules plugged in 

the calculator. They put a warning message if not found and halt the program execution if entered in 

a program. 



XMEM Twin Module Manual 

 

© Ángel Martin –June 2022 Page 18 
 

Part II -. Managing the Global X-Mem Extended registers                    
 

 
 
This section covers the individual access of the extended registers included in the three X-MEM blocks. 

You’ll be able to store, recall, view, exchange, and perform ISG/DSE operations on 606 of those 

registers as if they were standard data registers within main memory. Note the presence of the 
arithmetic operations as well. 

 

Extended Regs Store Recall Other X-Blocks 

X-Register  
From 0 to 605. 
 

XSTO _ _ _ XRCL _ _ _ XX<> _ _ _ CLXRG 

XST+ _ _ _ XRC+ _ _ _ XVEW _ _ _ CLXRGX 

XST- _ _ _ XRC- _ _ _ XDSE _ _ _ XRGMOV 

XST* _ _ _ XRC* _ _ _ XISG _ _ _ XRGSWP 

XST/ _ _ _ XRC/ _ _ _ XFINDX ST<>XRG _ _ _ 

ALPHA XAST _ _ _ XARC _ _ _  A<>XRG _ _ _ 
 

 
Besides the direct access, you also have the INDirect addressing capabilities implemented on the 

expanded registers; the sixteen Stack registers (including synthetic regs {M-e}); and all the standard-
Registers - a hybrid mode, unique to this implementation. 

 

Most of the functions will prompt for the parameters to use. The initial prompt is a three-field 
underscore for the X-register indeed. Pressing [SHIFT] changes it to IND three-digit fields for another 

X-register to be used as indirect. Pressing the [RADIX] key changes to the IND ST _ prompt, where 
you’ll enter the register mnemonic, from T to e (all sixteen are available). Pressing the radix key again 

changes to a IND RG_ _ prompt where you can enter a standard register number to use as indirect 
address. Repeat pressings of the radix key act as a toggle between those two. There’s also provision 

for direct stack and standard register arguments – even if those can be redundant in practice, being 

exactly the same as the original ones. 
 

Once you complete the entry adding the register number the action is performed in RUN mode, or 
two program lines are entered in program mode – automatically selecting the appropriate parameter 

depending on the direct or indirect types. This is automatically done so you needn’t (and shouldn’t) 

edit the value entered in the program’s second line at all – which will be properly interpreted in a 
running program. 

 
You can move between the functions while the prompts are up; not only to select the math operation 

but also to change the main function amongst the group. So for instance during the XRCL _ _ _ main 

prompt pressing the  SST  key will trigger the XX<> function,  or pressing  STO  will invoke the 

XSTO function instead. Also you can revert to the original mainframe functions pressing the 

corresponding key of the function in the prompt, for instance here pressing  RCL  will trigger the 

original RCL _ _ 

 

 

     
 

     
 

 

 
 



XMEM Twin Module Manual 

 

© Ángel Martin –June 2022 Page 19 
 

The functions will not allow you to enter any value greater than 605 either as direct index or indirect 

index – not even when entering them in a program line. Attempting to enter larger values will trigger 
a “NONEXISTENT” error message. However, that check is not made for IND_RG combinations, as 

there’s no telling at that point about how many standard registers will be available at the execution 
stage. 

 

The usage of standard stack and data registers is not only more convenient from the usability 
standpoint, but also it enables the RCL math on these registers via the XRCL function: 

 

     
 

Although possible, it is however not meant to be used in a program because of the obviously higher 
byte count. That’s why when used in an editing program the direct stack and data register X-

functions revert automatically to the native STO/RCL functions instead, which has the additional 

benefit of a clearer representation by the OS as merged lines.  

 
 
Storing and Recalling ALPHA Data 
 
The extended functions XAST and XARC provide the means to store and recall ALPHA data directly 
in the expanded registers area. Like their numeric counterparts, they support direct, INDirect, stack 

and standard registers indexes for a complete palette of options at your disposal. You can access 

these directly from the XSTO/XRCL prompts by pressing the  ALPHA  key at any time. 

 

                    
 

 
Deleting Expanded Registers. 
 

The function CLXRG will delete all the 606 expanded registers. 
 

Additionally with CLXRGX you can selectively delete a defined block of extended registers as defined 
by its control word (in X) “bbb.eeennn”, The bbb digits are the base address of the source expanded 

register block, in the range R0 through R605. The eee digits are the base address destination 
expanded register block, again in the range R0 through R605. nnn is the incremental step for the 

registers to delete. If nnn is zero a value of one used. 

 

Other Block Operations. 
 
Think of the following functions as analogous to the X-Functions extensions on the original function 

set of the calculator, only applied to the extended memory area instead. 

 
 A<>XRG and ST<>XRG exchange a group of five extended registers with ALPHA (plus Q) 

or the Stack (T-L) respectively. The start register is to be entered at the prompt in manual 

mode, or expected to be in the X-Register when running a program. These functions do not 
allow INDirect indexing. 

 

 XRGMOV and XRGSWP can be used to move or exchange a block of extended registers at 

once – either contiguous or in an increment pattern as provided by the control word sss.dddii 
in the X-register. Much the same as the X-Functions RGMOVE and RGSWAP - in case you 

wonder. 
 

 



XMEM Twin Module Manual 

 

© Ángel Martin –June 2022 Page 20 
 

Moving around the Extended Registers Functions. 
 

 
Figure 1. 

 
Even if there isn’t a dedicated launcher for these functions, navigation amongst them is as easy as 
intuitive. First off, assign one of the functions to its “natural” key, for instance XSTO to the STO key. 

 
Then while the XSTO _ _ _ prompt is shown you can move about all the X-Reg functions by pressing 

the key for the corresponding action, i.e.  

 
 RCL will toggle to XRCL _ _ _ 

 SST (for X<>) will launch XX<> _ _ _ 

 R/S (for VIEW) will launch XVEW _ _ _ 

 CHS (for ISG) will launch XISG _ _ _ 

 ALPHA will trigger XAST _ _ _ 

 The math keys will launch the corresponding math function, ie. XST+ _ _ _ 

 EEX (for DSE )will launch XDSE  _ _ _ 

 SHIFT will add the IND _ _ prompt 

 RADIX will add the ST _ prompt. All 16 status regs are selectable. 

 RADIX again to toggle between ST _ and RG _ _. Choose any standard reg up to 99. 

 STO again to exit to the native STO function (no way back!) 

 Note that the DIRECT Stack/REG prompt is not strictly needed – that’s the native function 

already. However, the RCL Math functions are useful and are available using this approach. 

 
 

All the options above are available from within any of the 16 functions  – regardless of which one you 
used to start the sequence. See the descriptions earlier in this manual for more details. 



XMEM Twin Module Manual 

 

© Ángel Martin –June 2022 Page 21 
 

Extra bonus: Finding the X-needle in the X-haystack. 
 
For those times when you’d like to know if a certain value is stored in the X-data registers, the 

function XFINDX is available to do a cursory comparison looking for a match with the value in the X-
register. All X-data registers are checked, starting with XR00 until XR605 – which could take a long 

time depending on where the match exists. 
 

The function returns the number of the first X-data register found that contains the same value as the 
X-Register. If none is found, the function puts -1 in X to signify a no-match situation. The stack is 

lifted so the sought for value will be pushed to stack register Y upon completion. 

 
Below there is a FOCAL routine that checks up to XR605, as well as an equivalent routine for the 

standard data registers - for comparison purposes. See the WARP_Corel manual for yet another 
routine to tackle this “where is Waldo” problem using other advanced functions. 

 

 

01 LBL “XFNDX” 

02  .605 
03  X<>Y 

04  LBL 00 

05  XRCL IND Y (3074) 

06  X=Y? 
07  GTO 02 

08  RDN 
09  ISG X 

10  GTO 00 
11  CLX 

12  -1 

13  RTN 

14  LBL 02 

15  X<> Z 

16  INT 

17  END 
 

 
 

 
 

01 LBL “FINDX” 

02 SIZE? 
03 E 

04 – 
05 E3 

06 / 

07 X<>Y 

08 LBL 00 

09 RCL IND Y 

10 X=Y? 
11 GTO 02 

12 RDN 

13 ISG Y 
14 GTO 00 

15 CLX 
16 -1 

17 RTN 

18 LBL 02 

19 X<> Z 
20 INT 

21 END 
 

The possibilities of having an additional set of 606 registers available to your own programs are wide 

and deep. For starters you could permanently operate with a SIZE 000 and use all the 320 standard 

registers in main memory for User Code programs, key assignments and I/O buffers; so a few more 
bytes taken up by the parameter lines won’t be a problem. 



XMEM Twin Module Manual 

 

© Ángel Martin – June 2022 Page 22 
 

Converting Standard Programs 

 

Having a complete function set ensures that you can convert programs very easily, simply by 
replacing the standard functions with their expanded version. Even the ALPHA storage functions 

XAST and XARC are included, which can also use the expanded register range. 
 

Then you have the benefit of a much larger set of registers (606 vs. a maximum of 319 without any 

program in RAM) available for your program, a sheer advantage to manage larger size cases of the 
problem you’re trying to solve – from matrix operations to sorting data, to mention just a couple. 

 
For example, with a few modifications the PPC ROM programs S2 and S3 can be used to sort more 

than 600 registers in a very efficient way. – with random data populating those registers it took about 

20 seconds to sort 606 registers on TURBO 50 mode! 
 

See below two simple routines I used to populate the registers and to view them. They expect the 
control word bbb.eee in X before you run them. 

 
01 LBL "XVIEW" 

02 LBL 00 

03 "XR" 
04 ARCLI 

05 "|-: " 
06 XRCL IND X  (3075) 

08 ARCLX 

09 AVIEW 
10 PSE 

11 RDN 
12 ISG X 

13 GTO 00 

14  END 

01 LBL "XRAN" 

02 RCL X 

03 LBL 00 

04 RNDM 

05 XSTO IND Y  (3074) 
07 RDN 

08 ISG X 

09 GTO 00 
10 RDN 

11 END 

 

 
Functions ARCLI and RNDM are available in the AMC_OX/X Module. 

 
Note.- In case you’re interested, the parameter lines used by these functions as non-merged, second 
line, correspond to the following:  

 

1. The register index for direct access, from 0 to 605  [ 000 – 25D ] 
2. The indirect register index for IND  from 1,024 to 1,629  [ 400 – 65D ] 

3. The hybrid standard register IND RG, from 2,048 to 2,367  [ 800 – 93F ] 
4. The direct standard registers, from 2560 to 2879   [ A00 – B3F ] 

5. The indirect Stack register index, from 3,072 to 3,088    [ C00 – C10 ] 

6. The direct Stack registers index, from 3328 to 3343  [ D00 – D10 ] 
 

Obviously, there’s a few gaps of unused values, like between 2,368 and 2,559 – but you shouldn’t be 
concerned with this at all; after all the parameters are entered automatically by the functions (totally 

transparent to the user), and it takes the same number of bytes to use a 4-digit number, regardless 
of its value. 
 
Note that the status register Q(9) is used internally by the function’s MCODE, and therefore should 

not be used in your FOCAL programs as synthetic register when the expanded registers functions are 
also used. 

 
 



CL XPMEM Module Manual 

 

© Ángel Martin –March 2023 Page 23 
 

Part III - Managing the CL Expanded Y-registers  
 

 
The CL board has three 4k-blocks of RAM memory reserved for extensions to the OS.  So far these 
have been rather ignored by all applications, but finally they’re put to a good use with the function 

sets included in this module. 
 

This section covers the individual access of the expanded Y-registers included in the RAM block 
located at 0x801, i.e. the first of those three RAM blocks. You’ll be able to store, recall, view, 

exchange, and perform ISG/DSE operations on 1,024 of those registers as if they were standard 41 

registers within main memory. Note the presence of the arithmetic operations as well. 
 

Extended Regs Store Recall Other X-Blocks 

Y-Register  
From 0 to 1,023. 
Use EEX for the 
Fourth digit field. 

YSTO _ _ _ YRCL _ _ _ YX<> _ _ _ CLYRG 

YST+ _ _ _ YRC+ _ _ _ YVEW _ _ _ CLYRGX 

YST- _ _ _ YRC- _ _ _ YDSE _ _ _ YRGMOV 

YST* _ _ _ YRC* _ _ _ YISG _ _ _ YRGSWP 

YST/ _ _ _ YRC/ _ _ _ YFINDX ST<>YRG _ _ _ 

ALPHA YAST _ _ _ YARC _ _ _  A<>YRG _ _ _ 
 

 

Besides the direct access, you also have the INDirect addressing capabilities implemented on the 
expanded registers; the sixteen Stack registers (including synthetic regs {M-e}); and all the standard-

Data Registers  - a hybrid mode, unique to this implementation. 
 

Most of the functions will prompt for the parameters to use. The initial prompt is a three-field 

underscore for the Y-register indeed. Pressing [SHIFT] changes it to IND three-digit fields for another 
Y-register to be used as indirect. Pressing the [RADIX] key changes to the IND ST _ prompt, where 

you’ll enter the register mnemonic, from T to e (all sixteen are available). Pressing the radix key again 
changes to a IND RG_ _ prompt where you can enter a standard register number to use as indirect 

address. Repeat pressings of the radix key act as a toggle between those two. There’s also provision 
for direct stack and standard register arguments – even if those can be redundant in practice, being 

exactly the same as the original ones. 

 
Once you complete the entry adding the register number the action is performed in RUN mode, or 

two program lines are entered in program mode – automatically selecting the appropriate parameter 
depending on the direct or indirect types. This is automatically done so you needn’t (and shouldn’t) 

edit the value entered in the program’s second line at all – which will be properly interpreted in a 

running program. 
 

You can move between the functions while the prompts are up; not only to select the math operation 
but also to change the main function amongst the group. So for instance during the YRCL _ _ _ main 

prompt pressing the  SST  key will trigger the YX<> function,  or pressing  STO  will invoke the 

YSTO function instead. Also you can revert to the original mainframe functions pressing the 

corresponding key of the function in the prompt, for instance here pressing  RCL  will trigger the 

original RCL _ _ 

 

 

     
 

     
 

 



CL XPMEM Module Manual 

 

© Ángel Martin –March 2023 Page 24 
 

The functions will not allow you to enter any value greater than 1,023 either as direct index or 

indirect index – not even when entering them in a program line. Attempting to enter larger values will 
trigger a “NONEXISTENT” error message. However, that check is not made for IND_RG combinations, 

as there’s no telling at that point about how many standard registers will be available at the execution 
stage. 

 

The usage of standard stack and data registers is not only more convenient from the usability 
standpoint, but also it enables the RCL math on these registers via the YRCL function: 

 

     
 
Although possible, it is however not meant to be used in a program because of the obviously higher 

byte count. That’s why when used in an editing program the direct stack and data register Y-
functions revert automatically to the native STO/RCL functions instead, which has the additional 

benefit of a clearer representation by the OS as merged lines.  
 
 

The table and chart below show all possible combinations for program editing: 

 
    adds 0x400 adds 0xA00 adds 0x800 adds 0xD70 adds 0xC00 

Func. Y-Reg nnn IND Y-reg nnn Data Reg nn IND Data Reg nn STK nn IND STK nn 

YSTO nnn nnn+1024 STO nn nn+2048 STO ST(nn) nn+3072 

YST+ nnn nnn+1024 ST+ nn nn+2048 ST+ ST(nn) nn+3072 

YST- nnn nnn+1024 ST- nn nn+2048 ST- ST(nn) nn+3072 

YST* nnn nnn+1024 ST* nn nn+2048 ST* ST(nn) nn+3072 

YST/ nnn nnn+1024 ST/ nn nn+2048 ST/ ST(nn) nn+3072 

YRCL nnn nnn+1024 RCL nn nn+2048 RCL ST(nn) nn+3072 

YRC+ nnn nnn+1024 nn+2560 nn+2048 nn+3440 nn+3072 

YRC- nnn nnn+1024 nn+2560 nn+2048 nn+3440 (nn+3072 

YRC* nnn nnn+1024 nn+2560 nn+2048  nn+3440 nn+3072 

YRC/ nnn nnn+1024 nn+2560 nn+2048  nn+3440 nn+3072 

YDSE nnn nnn+1024 DSE nn nn+2048 DSE ST(nn) nn+3072 

YISG nnn nnn+1024 ISG nn nn+2048 ISG ST(nn) nn+3072 

YX<> nnn nnn+1024 X<> nn nn+2048 X<> ST(nn) nn+3072 

YVEW nnn nnn+1024 VIEW nn nn+2048 VIEW ST(nn) nn+3072 

YARC nnn nmn+1024 ARCL nn nn+2048 ARCL ST(nn) nn+3072 

YAST nnn mnn+1024 ASTO nn nn+2048 ASTO ST(nn) nn+3072 

 

 
 
Note that the U/I won’t allow entering Data Register indexes above 99. If values nn>99 are needed 

you should edit manually the second non-merged line, using the same rule as shown above. This will 
only apply to the YRCL_Math functions, as all others have a native OS equivalent. 

 

Y-REG Data_Reg nn   = Y-REG as first line plus (nn+2560) as second line.  
Y-REG IND Data_Reg nn  = Y_REG as first line plus (nn+2048) as second line. 

 
For example:   YRC+ RG 111 will be:  YRC+, plus “2670” 

  YRCL IND RG 111 will be: YRCL, plus “2149”  

 
 



CL XPMEM Module Manual 

 

© Ángel Martin –March 2023 Page 25 
 

Storing and Recalling ALPHA Data 
 
The expanded functions YAST and YARC provide the means to store and recall ALPHA data directly 

to/from the expanded registers area. Like their numeric counterparts, they support direct, INDirect, 
stack and standard registers indexes for a complete palette of options at your disposal. You can 

access these directly from the YSTO/YRCL prompts by pressing the  ALPHA  key at any time. 

 

                    
 

 
Going above 999 

 
Revision 2G+ adds a convenient usability feature to the U/I, whereby the 3-digit prompt can be 

extended to a 4-digit, and furthermore the first 2 fields are automatically set to “10_ _”. This is 

because there are only 1024 Y-Registers in Expanded RAM, thus the second digit must be zero. 
 

              
 
At this point you should enter the remaining of the index value, ranging from 00 to 23. If values 

above 23 are keyed in it will result in a “NONEXISTENT” error message. 

 
 
Deleting, Moving and Swapping Expanded Registers. 
 

Think of the following functions as analogous to the X-Functions extensions on the original function 
set of the calculator, only applied to the expanded memory area instead. 

 

 The function CLYRG will delete all the 1,024 expanded registers, and therefore it’s equivalent 

to YMCLR used on the entire 0x801 block, as follows: “801000-0FFF”, YMCLR 
 

 Additionally with CLYRGX you can selectively delete a defined block of expanded registers as 

defined by its control word (in X) “bbb.eee:nnn”, The bbb,eee digits denote the first and last  
expanded registers to clear, in the range R0 through R999. Finally nnn is the step number for 

registers to be cleared. If nnn is zero a value of one used. 

 
For example, the control word 25,250005 will clear every firth Y-register starting at YR 025 

and ending at YR 250 (that is YR25, YR30, YR35, YR40, ….. YR245, YR250). 
 

 YRGMOV and YRGSWP can be used to move or exchange a block of expanded registers at 

once – either contiguous or in an increment pattern as provided by the control word 
bbb.eee:nnn in the X-register. Much the same as the X-Functions RGMOVE and RGSWAP - in 

case you wonder, so here nnn denotes the block size to be moved or swapped. 

 
 

Other Block Operations. 
 

 

 A<>YRG and ST<>YRG exchange a group of five expanded registers with ALPHA (plus Q) 

or the Stack (T-L) respectively. The start register is to be entered at the prompt in manual 
mode, or expected to be in the X-Register when running a program. These functions do not 

allow INDirect indexing. 
 

 



CL XPMEM Module Manual 

 

© Ángel Martin –March 2023 Page 26 
 

Moving around the Expanded Registers Functions. 

(ISG)

YARC YAST

YRC+ YST+

YRC- YST-

YRC* YST*

YRC/ YST/

1 _ _ _

(RCL) IND _ _ _ (STO)

IND 1_ _ _

IND ST _

IND RG_ _

(X<>) (VIEW)
YVEWYX<>

YRCL YSTO

YISG

YDSE

 
Figure 1. 

 

 
Even if there isn’t a dedicated launcher for these functions, navigation amongst them is as easy as 

intuitive. First off, assign one of the functions to its “natural” key, for instance YSTO to the STO key. 

 
Then while the YSTO _ _ _ prompt is shown you can move about all the Y-Reg functions by pressing 

the key for the corresponding action, i.e.  
 

 RCL will toggle to YRCL _ _ _ 

 SST (for X<>) will launch YX<> _ _ _ 

 R/S (for VIEW) will launch YVEW _ _ _ 

 CHS (for ISG) will launch YISG _ _ _ 

 ALPHA will trigger YAST _ _ _ 

 The math keys will launch the corresponding math function, ie. YST+ _ _ _ 

 EEX will add one field to the prompt: YSTO 1 _ _ _ 

 SHIFT will add the IND prompt (assuming EEX isn’t already up) 

 RADIX will add the ST _ prompt. All 16 status regs are selectable. 

 RADIX again to toggle between ST _ and RG _ _. Choose any standard reg up to 99. 

 STO again to exit to the native STO function (no way back!) 

 Note that the DIRECT Stack/REG prompt is not strictly needed – that’s the native function 

already. However, the RCL Math functions are useful and are available using this approach. 
 

 

All the options above are available from within any of the 15 functions (YDSE is not part of this 
scheme) – regardless of which one you used to start the sequence. See the descriptions earlier in this 

manual for additional details. 
 



CL XPMEM Module Manual 

 

© Ángel Martin –March 2023 Page 27 
 

Extra bonus: Finding the X-needle in the Y-haystack. 
 
For those times when you’d like to know if a certain value is stored in the Y-data register, the sub-

function YFINDX (a.k.a. XF# 21) is available to do a cursory comparison looking for a match with 
the value in the X-register. All Y-data registers are checked, starting with YR00 until YR1023 – which 

could take a long time depending on where the match exists. 
 

The function returns the number of the first Y-data register found that contains the same value as the 
X-Register. If none is found, the function puts -1 in X to signify a no-match situation. The stack is 

lifted so the sought for value will be pushed to stack register Y upon completion. 

 
Below there is a FOCAL routine that checks up to YR999, as well as an equivalent routine for the 

standard data registers - for comparison purposes. See the Total_Rekall manual for yet another 
routine to tackle this “where is Waldo” problem using other advanced functions. 

 

 

18 LBL “YFNDX” 

19  .999 
20  X<>Y 

21  LBL 00 

22  YRCL  (IND Y) 

23  3074 
24  X=Y? 

25  GTO 02 
26  RDN 

27  ISG X 
28  GTO 00 

29  CLX 

30  -1 
31  RTN 

32  LBL 02 

33  X<> Z 

34  INT 
35  END 

 
 

 
 

22 LBL “FINDX” 

23 SIZE? 
24 E 

25 – 
26 E3 

27 / 

28 X<>Y 

29 LBL 00 

30 RCL IND Y 

31 X=Y? 
32 GTO 02 

33 RDN 

34 ISG Y 
35 GTO 00 

36 CLX 
37 -1 

38 RTN 

39 LBL 02 

40 X<> Z 
41 INT 

42 END 
 

 
 
The possibilities of having an additional set of 1,024 registers available to your own programs are 

wide and deep. For starters you could permanently operate with a SIZE 000 and use all the 319 
standard registers for User Code programs, key assignments and I/O buffers; so a few more bytes 

taken up by the parameter lines won’t be a problem. 

 



CL XPMEM Module Manual 

 

© Ángel Martin – May 2022 Page 28 
 

CODA: MCODE listing for YFINDX 

 

 



CL XPMEM Module Manual 

 

© Ángel Martin – May 2022 Page 29 
 

Converting Standard Programs 

 

Having a complete function set ensures you can convert programs very easily, simply by replacing the 
standard functions with their expanded version. As of release 2B even the ALPHA storage functions 

YAST and YARC are included, which can also use the expanded register range. 
 

Then you have the benefit of a much larger set of registers available for your program, a sheer 

advantage to manage larger size cases of the problem you’re trying to solve – from matrix operations 
to sorting data, to mention just a couple. 

 
For example, with a few modifications the PPC ROM programs S2 and S3 can be used to sort more 

than 1,000 registers in a very efficient way. – with random data populating those registers it took 

about 32 seconds to sort 1,000 registers on TURBO 50 mode! 
 

See below two simple routines I used to populate the registers and to view them. They expect the 
control word bbb.eee in X before you run them. 

 
01 LBL "YVIEW" 

02 LBL 00 

03 "YR" 
04 ARCLI 

05 "|-: " 
06 YRCL (IND X) 

07 3075 

08 ARCLX 
09 AVIEW 

10 PSE 
11 RDN 

12 ISG X 

13 GTO 00 
14  END 

01 LBL "YRAN" 

02 RCL X 

03 LBL 00 

04 RNDM 

05 YSTO (IND Y) 
06 3074 

07 RDN 

08 ISG X 
09 GTO 00 

10 RDN 
11 END 

 

 
Functions ARCLI and RNDM are available in the AMC_OX/X Module. 

 
Note.- In case you’re interested, the parameter lines used by these functions correspond to the 

following: (with SIZE 319 for the standard registers case) 

 
7. The register index for direct access, from 0 to 1,023  [ 000 – 3FF ] 

8. The indirect register index for IND  from 1,024 to 2,047  [ 400 – 7FF ] 
9. The hybrid standard register IND RG, from 2,048 to 2,367  [ 800 – 93F ] 

10. The direct standard registers, from 2560 to 2879   [ A00 – B3F ] 

11. The indirect Stack register index, from 3,072 to 3,088    [ C00 – C10 ] 
12. The direct Stack registers index, from 3328 to 3343  [ D00 – D10 ] 

 
Obviously, there’s a few voids like between 2,368 and 2,559 – but you shouldn’t be concerned with 

this at all; after all the parameters are entered automatically by the functions (totally transparent to 
the user), and it takes the same number of bytes to use a 4-digit number, regardless of its value. 
 
Note that the status register Q(9) is used internally by the functions MCODE, and therefore should 

not be used in your FOCAL programs as synthetic register when the expanded registers functions are 
also used. 

 
 

Warning: The expanded Register functions are not to be used if the first block is already 
used as back-up location. Use blocks #2 and #3 instead! 



CL XPMEM Module Manual 

 

© Ángel Martin – May 2022 Page 30 
 

 


