Total_Rekall+ 2024

THE TOTHL _FREK
HP -9 MO

by
cor-
m

RCL Math and X-Mem Access for the HP-41

Plus Expanded Mem RCL for SY-41CL and MAXX Users.

Written and programmed by Angel Martin
February 2024

© Angel Martin - February 2024 Page 1

Total_Rekall+ 2024

This compilation revision 1.1.1

Copyright © 2024 Angel Martin

Published under the GNU software license agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.
See www.hp41.org

Acknowledgments.- This module is a derivative of several previous project like the XMEM_TWIN
and the “CL Expanded Registers” It also overlaps with the WARP_Core module in some areas.

Everlasting thanks to the original developers of the HEPAX and CCD Modules — real landmarks and
seminal references for the serious MCODER and the 41 system overall. With their products they
pushed the design limits beyond the conventionally accepted, making many other contributions pale
by comparison.

© Angel Martin - February 2024 Page 2

http://www.hp41.org/

Total_Rekall+ 2024

Summary Function Table.

Function Description Input Dependency Type Author

| 0 -TTLREKALL Lib#4 Check & Splash none Lib#4 MCODE Angel Martin
1 AIRCL__ _ Alpha integer Recall RG# in prompt / Next Line Lib#4 MCODE Angel Martin

| 2 RKL___ Enhanced RCL function Prompts for RGH. Lib#4 MCODE Angel Martin
3 RC-__+ RCL Subtraction RG# in prompt / Next Line Lib#4 MCODE Angel Martin
4 RC+___ RCL Addition RG# in prompt / Next Line Lib#4 MCODE Angel Martin
5 RC*__ _ RCL Multiply RG# in prompt / Next Line Lib#4 MCODE Angel Martin
6 RC/___ RCL Divide RG# in prompt / Next Line Lib#4 MCODE Angel Martin
7 RCA__ RCL Power RG# in prompt / Next Line Lib#4 MCODE Angel Martin
8 RCIM__ _ RCL Root RG# in prompt / Next Line Lib#4 MCODE Angel Martin
9 RIND2__ _ RCLIND IND RG# in prompt / Next Line Lib#4 MCODE Angel Martin
10 SIND2 _ _ _ STO IND IND RG# in prompt / Next Line Lib#4 MCODE Angel Martin
1 ST~ _ _ _ STO Power RG# in prompt / Next Line Lib#4 MCODE Angel Martin
12 STI™ __ STO Root RG# in prompt / Next Line Lib#4 MCODE Angel Martin
13 XIND2 _ _ _ X<>IND IND RG# in prompt / Next Line Lib#4 MCODE Angel Martin
14 STKSWP _ Stack Swaps Launcher Prompts for Stack Reg letter Lib#4 MCODE Angel Martin
15 RK#_ _ Sub-function Launcher Function index in prompt Lib#4 MCODE Angel Martin
16 -X-REGS FNS Section Header n/a Lib#4 MCODE Angel Martin
17 A<>XRG _ __ SwapALPHA and XRGs RG# in prompt / Next Line Lib#4 MCODE Angel Martin
18 CLXRG Clear ALL X-Regs none Lib#4 MCODE Angel Martin
19 CLXRGX Clear X-Regs RANGE RG# range in X Lib#4 MCODE Angel Martin
20 ST<>XRG _ _ _ Swap Stack ans XRGs RG# in prompt / Next Line Lib#4 MCODE Angel Martin
21 XARC_ _ _ X-Reg ARCL RG# in prompt / Next Line Lib#4 MCODE Angel Martin
22 XAST _ _ _ X-Reg ASTO RG# in prompt / Next Line Lib#4 MCODE Angel Martin
23 XDSE _ _ _ X-Reg DSE RG# in prompt / Next Line Lib#4 MCODE Angel Martin
24 XFINDX Find X in X-Mem Value in X Lib#4 MCODE Angel Martin
25 XISG_ _ _ X-Reg ISG RG# in prompt / Next Line Lib#4 MCODE Angel Martin
26 XRCL_ _ _ X-Reg RCL RG# in prompt / Next Line Lib#4 MCODE Angel Martin
27 XRC+_ _ _ X-Reg. RC+ RG# in prompt / Next Line Lib#4 MCODE Angel Martin
28 XRC-_ _ _ X-Reg RC- RG# in prompt / Next Line Lib#4 MCODE Angel Martin
29 XRC* _ _ _ X-Reg RC- RG# in prompt / Next Line Lib#4 MCODE Angel Martin
30 XRC/___ X-Reg RC/ RG# in prompt / Next Line Lib#4 MCODE Angel Martin
31 XRGMOV Move X-Regs RG# irange in X Lib#4 MCODE Angel Martin
32 XRGSWP Swap X-Regs RG# range in X Lib#4 MCODE Angel Martin
33 XSTO_ _ _ X-Reg. STO RG# in prompt / Next Line Lib#4 MCODE Angel Martin
34 XST+_ _ _ X-Reg ST+ RG# in prompt / Next Line Lib#4 MCODE Angel Martin
35 XST-_ _ _ X-Reg ST- RG# in prompt / Next Line Lib#4 MCODE Angel Martin
36 XST*_ _ _ X-Reg ST* RG# in prompt / Next Line Lib#4 MCODE Angel Martin
37 XST/___ X-Reg ST/ RG# in prompt / Next Line Lib#4 MCODE Angel Martin
38 XVEW_ _ _ View X-Reg RG# in prompt / Next Line Lib#4 MCODE Angel Martin
39 XX<>_ _ _ X-Reg X<> RG# in prompt / Next Line Lib#4 MCODE Angel Martin
40 -Y-REGS FNS Section Header n/a n/a MCODE Angel Martin
41 A<>XRG___ SwapALPHA and Y-RGs RG# in prompt / Next Line Lib#4 MCODE Angel Martin
42 CLXRG Clear ALL Y-Regs none Lib#4 MCODE Angel Martin
43 CLXRGX Clear Y-Regs RANGE RG# range in X Lib#4 MCODE Angel Martin
44 ST<>YRG _ _ _ Swap Stack and Y-RGs RG# in prompt / Next Line Lib#4 MCODE Angel Martin
45 YARC_ _ _ Y-Reg ARCL RG# in prompt / Next Line Lib#4 MCODE Angel Martin
46 YAST __ _ Y-Reg ASTO RG# in prompt / Next Line Lib#4 MCODE Angel Martin
47 YDSE _ _ _ Y-Reg DSE RG# in prompt / Next Line Lib#4 MCODE Angel Martin
48 YFINDX Find X in Y-Mem Value in X Lib#4 MCODE Angel Martin
49 YISG_ _ _ Y-Reg ISG RG# in prompt / Next Line Lib#4 MCODE Angel Martin

| 50 YRCL___ Y-Reg RCL RG# in prompt / Next Line Lib#4 MCODE Angel Martin

© Angel Martin - February 2024 Page 3

Total_Rekall+ 2024

Function Description Input Dependency Type Author

51 YRC+_ _ _ Y-Reg. RC+ RG# in prompt / Next Line Lib#4 MCODE Angel Martin
52 YRC-___ Y-Reg RC- RG# in prompt / Next Line Lib#4 MCODE Angel Martin
53 YRC*_ _ _ Y-Reg RC- RG# in prompt / Next Line Lib#4 MCODE Angel Martin
54 YRC/__ _ Y-Reg RC/ RG# in prompt / Next Line Lib#4 MCODE Angel Martin
55 YRGMOV Move Y-Regs RG# irange in X Lib#4 MCODE Angel Martin
56 YRGSWP Swap Y-Regs RG# range in X Lib#4 MCODE Angel Martin
57 YSTO_ __ Y-Reg. STO RG# in prompt / Next Line Lib#4 MCODE Angel Martin
58 YST+_ _ _ Y-Reg ST+ RG# in prompt / Next Line Lib#4 MCODE Angel Martin
59 YST-_ _ _ Y-Reg ST- RG# in prompt / Next Line Lib#4 MCODE Angel Martin
60 YST*__ _ Y-Reg ST* RG# in prompt / Next Line Lib#4 MCODE Angel Martin
61 YST/_ _ _ Y-Reg ST/ RG# in prompt / Next Line Lib#4 MCODE Angel Martin
62 YVEW_ __ View Y-Reg RG# in prompt / Next Line Lib#4 MCODE Angel Martin
63 YX<>_ Y-Reg X<> RG# in prompt / Next Line Lib#4 MCODE Angel Martin
0 -STKSWAP Section Header n/a n/a MCODE \Angel Martin
1 a<>_ _ Swap “a” and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
2 b<>__ Swap “b” and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
3 <> Swap “c” and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
4 d<>_ _ Swap “d” and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
5 e<>_ Swap “e” and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
6 }<>__ Swap }- and Register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
7 Y<>_ Swap Y and Register RG# in prompt / Next Line Lib#4 MCODE Greg McClure
8 I<>_ _ Swap Z and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
9 T<>_ _ Swap T and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
10 L<>_ Swap L and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
11 M<>_ _ Swap M and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
12 N<>_ _ Swap N and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
13 0O<>_ _ Swap O and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
14 P<>_ _ Swap P and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
15 Q<>_ _ Swap Q and register RG# in prompt / Next Line Lib#4 MCODE Angel Martin
16 -XTRA FNS Section header Shows Splash screen Lib#4 MCODE Nelson Crowle
17 ?YFNX Checks for YENX None Lib#4 MCODE Angel Martin
18 ?LIB4 Checks for Library #4 none Lib#4 MCODE Angel Martin
19 A<ST Swaps ALPHA and Stack None Lib#4 MCODE Angel Martin
20 ASWP> Swaps Text around “>” String in ALPHA Lib#4 MCODE Angel Martin
21 D>H Decimal to Hex Dec value in X Lib#4 MCODE William Graham
22 H>D Hex to Decimal Hex value in ALPHA Lib#4 MCODE William Graham
23 DROP Puts Y in Reg# in X ValueinY, RG# in X Lib#4 MCODE Angel Martin
24 FETCH Fetches register contents Absolute address in X Lib#4 MCODE Angel Martin
25 FINDX Finds value in Data Regs Value in X Lib#4 MCODE Angel Martin
26 RKS$ _ Sub-function Launcher Function NAME in prompt Lib#4 MCODE Angel Martin
27 RCLX Recalls Stat Regs to Stack Data in Stat Regs Lib#4 MCODE Mark Power
28 STOX Stores Stack in Stack Regs Data in Stack Lib#4 MCODE Mark Power
29 ST<>X Swaps Stack with Stat Regs Data in memory Lib#4 MCODE Nelson Crowle
30 ST>B7 Copies Stack to Shadow Buff. Data in Stack Lib#4 MCODE Angel Martin
31 STVIEW Shows Stack contents Data in Stack Lib#4 MCODE Angel Martin
32 CAT+ Sub-function CATalog None Lib#4 MCODE Angel Martin

Sub-functions are accessed using the launcher. Use either the sub-function INDEX

number at the prompt, or press ALPHA to type the sub-function NAME.

© Angel Martin - February 2024 Page 4

Total_Rekall+ 2024

Introduction: Three Types of Memory

Implicit to the functionality provided by this module is the concept of Main, Extended and Expanded
memory types.

Main Memory holds the stack registers, data registers, I/O buffers and program memory area.
The data registers capacity is controlled by the SIZE function. The maximum capacity on an
HP-41 CV/CX is 319 registers, which requires that there are no programs, buffers, or key
assignments present in the system.

Extended memory is provided by the X-Functions and X-Memory Modules on a plain HP-
41C/CV machine, and on an HP-41CX it comprises 606 data registers. The extended memory
is usually structured in files but this module accesses the registers individually with the X-
REGS functions — and therefore is not compatible with the standard arrangement. Refer to
the X-MEM_TWIN module for a comprehensive description and alternate ways to avoid
incompatibilities — certainly out of the scope of this module.

Expanded Memory on a SY-41 CL or a MAXX module comprises 1,024 registers for the
purpose of this module. It can be used as a bulk backup location, or its contents can also be
accessed individually using the Y-REGS functions. Refer to the XPREGS module for a detailed
description and applications.

dec addr x-regi HEX addr
voID 16 REGS
1,007 605 /(25D) |3EF T

X-MEM2 239 REGS

769 367 /(16F) |301
VoID 17 REGS — 478 REGS
751| 366/ (16E} |2EF

X-MEM1 239 REGS T
513| 128/(080) |201 — |
+1 REG o total of

606 registers
MAIN RAM 320 REGS |

192/ 0CO i
191| 127/(07F) |OBF
MEMO 128 REGS
64| 000/ (000) (D40
VOID 48 REGS

16
] STATUS 16 REGS

© Angel Martin - February 2024 Page 5

Total_Rekall+ 2024

Three Launchers for the Three Kinds of Memory {|RKL]|, | XRCL|,|[YRCL [}

Implicit to the previous description is the concept of Main, Extended and Expanded memory types.
Each one of the three sections in the module is dedicated to each of these types.

e The main memory section is an extension of the native capabilities, mostly (but not
exclusively) related to the recall operations. A few other additions are included

e The Extended and Expanded sections are complete new additions and therefore include
functions to handle the storage, recall and exchange of data in the corresponding memory
area. The function names in these two sections are very similar, only differentiated by the
initial letter being “X” or “Y” — a consistent naming scheme that facilitates their usage.

e Going across memory zones is also possible using the stack registers as common anchor
available in the three sections. For instance from Main memory to X-Mem, or from Y-Mem to
X-Mem will need to move the data through the stack register X.

The picture below summarizes all module functions grouped by the memo
RCL launchers are interconnected, you can cycle through them using the

zone. Note that the three

SST] key.

AIRCL, FINDX , RC+, RC-, RC*, RC,’I RCA, RCIM, RIND2 , SIND2 , STA, STIMN

1

[I XARC
RPrL " _ SST
YARC = Q XAST
YAST XDSE
YDSE
A<>XRG XISG
visG ?L-c;-:ge = FF - CLXRG XRC+
YRG. CLYRGX CLXRGX YRC-
YRC- CTeavRE {a,b,c,d, e, K, M,N, O, P, Q, ST<>XRG XRC+
YRC+ XYZTL XRC*
YRC* prah ﬂ XRC
YRC/ n B D XSTé
ysTo YFINDX ECE XFINDX 27
ysT+ YRGMOV YFS XRGMOV 2
ysT. YRGSWP XRGSWP XST;
S = -
XVEW
YVEW '.'RE.‘_"___< l[:REL"_ XX<>
Yx<> USER USER
SST
Expanded Memory Extended Memory
(41CL, MAXX) (41CX, X-Fns/Mem)
© Angel Martin - February 2024 Page 6

Total_Rekall+ 2024

The Total_Rekall Dilemma.

One of the obvious shortcomings of the HP-41 OS is the lack of RCL math functions: even if they are
less necessary than the STO math and perhaps easily replaced by combination of other standard
functions, it is a sore omission that has been the subject of previous implementation attempts to
close that gap.

The first component is naturally the individual RCL math functions, like RC+, RC-, RC* and RC/.
These can be written without much difficulty, even supporting INDirect addressing, but with two
major restrictions:

1. Operating in manual mode only, and
2. Excluding the Stack registers from the register sources.

The first limitation can be overcome using the non-merged function approach, whereby the argument
of the function in a program is given in the next program line following it. This is stack-neutral so
doesn't interfere with the intermediate calculations.

To solve the stack addressing one needs to resort to heavier trickery, basically writing extra M-code
to replace the OS handling of the prompting in these functions — based on the PTEMP bits of the
function name. The prompting is therefore completely under the control of the function, and not
facilitated by the OS. It is arguably a small net benefit compared to the required effort, but as the
only remaining challenge it was well worth tackling down.

Once the technique was developed it was relatively easy to apply to other functions, like those
managing the direct access to Extended Memory (X-Mem) registers individually, or even those
dedicated to the same task for Expanded Memory (Y-Mem) registers — available on the SY-41 CL
and MAXX modules.

That's how the idea of a Recall launcher came into being, following the same model available in the
native OS for the STO math functions — grouping them under a logical structure. Subsequently the
RKL launcher added further capabilities within the module, and became a new and enhanced RCL on
its own beyond the grouping features.

Side note: The Sub-function Launcher

RK# is available as a main function in the FAT, therefore it can be assigned to any key — or
can it? The issue of course is the non-keyable character “#”, posing a small challenge that
requires either synthetic programming skills or using the extended ASN facility available in
advanced modules like the AMC_OS/X.

But say that no advanced modules are at hand — then our friendly RKL launcher comes to
the rescue: pressing the PRGM key at its prompt activates RC# as well :\

FHLY ' RHE _

© Angel Martin - February 2024 Page 7

Total_Rekall+ 2024

Module Dependencies.

The XMEM Twin is a Library4-aware module; therefore, it expects the Library#4 revision R4 to be
present on the system. The module will check for it upon the calculator ON event, showing an error
message if not found. This will abort the polling points sequence for all other modules plugged at
higher position in the bus. Do not attempt to run the programs or functions within the module
without the Library#4 plugged in.

WO LI dARHARY NO CX/7065

USER USER

Sub-function Catalog.

CAT+ Sub-functions Catalog Angel Martin Source: Library #4
XEQ' Direct Execution
LASTF Last Function

The module includes an auxiliary FAT with a set of 22 sub-functions. Because these are not in the
main FAT the OS knows nothing about them, so they cannot be called using XEQ, nor can they be
assigned to keys using ASN. Therefore, a dedicate way to access them must exist. Two functions are
available to call sub-functions either alphabetically (by spelling their name in ALPHA) or numerically,
by entering their corresponding index# in the prompt:

=T RHY

USER ALPHA UZER HLPHA

Like all other modules with sub-functions, there is a way to enumerate them using CAT+ — itself a
sub-function included in the auxiliary FAT. We already saw that CAT+ can be triggered from the
CAT+ prompt, pressing [ENTER”], spelling its name with RK$, or using index #000 with RK#.

A few hot-keys allow you to control and navigate the catalog during the enumeration:

e [R/S] stops and resumes the listing

e [SST] manually advances to the next sub-function

e [SHIFT] reverses the direction of the enumeration

e [ENTERA] jumps to the next/previous section header

o [XEQ] will execute the sub-function shown if the enumeration is suspended.
e Back-arrow will exit the catalog

When you execute a sub-function using the launchers or by means of the CAT+ shortcut, its index#
is saved in the LastFunction buffer automatically. This allows subsequent re-execution through the
LASTF facility, pressing RK# followed by the [RADIX] key.

All sub-functions are programmable. When they're entered into a program its name is briefly shown in
the display and two program steps are added by the launchers — one with the numeric launcher RC#
and another one following it with the corresponding index#. This is done automatically for you, no
need to enter it manually.

CAT+ will print the sub-functions names if a printer is connected in NORM or TRACE modes.
The complete list of sub-functions is provided at the beginning of the manual.

© Angel Martin - February 2024 Page 8

Total_Rekall+ 2024

RCL Math on steroids: The Extended RKL.

In addition to the four “standard” arithmetic operations available for the STO case, this module
includes RCA and RCI” for the Recall Power and root functions — which will calculate the REG-th.
power or root of the value in X, (i.e. X= X~ RG# and X=X~1/RG#). These two functions are inverse
of one another, similar to {RC* and RC/} or to {RC+ and RC-} so one of them undoes the other’s
effect.

AIRCL RCLE 5T~ STIn | RC# | RCS |
L. J
s fa. b, c d e K
RIND2 STIND2 XIND2 RKL STKSWP {{M. N, O, P, Q}
AL MY ZTL
' ™
RC+ RC- RC* RC/ RCA RCIA

The RKL launcher also includes provision to invoke other recall-related functions such as AIRCL and
RCLX - plus it doubles as a sub-function launcher to access the sub-functions included in the module
— either by their index number (using RC#) or by their names (using RC$). The last-function facility
is also implemented of course, triggered by the radix key at the RC# prompt.

The stack registers and indirect addressing are of course still available using the same hot-keys,
RADIX and SHIFT, same as the standard RCL implementation.

RRL "INID __ RO+ INDT ST _

UZER USER

[[

In terms of usability, note that you can switch amongst the six RCL math functions pressing the
corresponding arithmetic key at their prompt. Besides, you can also revert back to the native RCL
pressing the [RCL] key again at its prompt.

Direct access to the upper data registers

All RKL functions feature a 3-digit prompt field to directly access registers in the 100-319 range. Note
that contrary to the standard native RCL function, using RKL in the range from 112 and up you'll be
accessing these upper main memory registers directly, no need to use indirect addressing
anymore - Thus simplifying the user interface and bringing more consistency to the machine
operation.

In manual mode (interactive use) the RKL function code is always used, and not the standard RCL -
not even for the simplest cases such as RCL 00, etc.

During program editing however the RKL entries are automatically replaced by the native
counterparts in the OS whenever possible. Using the standard OS achieves maximum byte
efficiency in line entering for the standard cases, i.e. RCL 27 or RCL IND ST X in a single program
step as opposed to using the non-merged approach.

This replacement won't happen when the data register lies in the upper region, i.e. above R111 — and
in those instances the RKL function itself will be entered in the program, followed by a numeric line
coding the corresponding register number — as well as the INDirect addressing case of course. This is
reflected in the summary table shown in next page — including the Shadow Stack buffer area.

© Angel Martin - February 2024 Page 9

Total_Rekall+ 2024

Note that even if the U/I doesn't provide access for registers above R199 nothing is stopping you
from editing the parameter line manually with values up to 319 - assuming they are configured via
SIZE.

Registers Direct Addressing INDirect Addressing
Lower (R00-R111) RCL nn, merged RCL IND nn
Upper (R112-R319) RKL nn, non-merged | RKL nn+0x180, 2 lines
Stack (T, Z, Y, X, L....) | RCL ST nn +0x170 RCL IND ST nn+0x2F0
Shadow Buffer (A-G) RKL nn+0x300 RKL nn+0x480

Table 1. Data Registers Zones

Shadow Stack Buffer

The Shadow Stack area is a 7-register buffer in main memory (with buffer id#=7) that can be used
as stack backup, or as emergency data storage for those cases when we run out of data registers
(been there before?). Accessing the buffer suffix "bR” is simple: just press the RADIX key twice at the
RCL function prompt, followed by the buffer register number (only from 1 to 7 are allowed). In fact
repeat pressings of the Radix key will toggle between the ST and BF suffixes, as shown below.

RKL'ST _

USER

KL "bFR _

UZER

-

This module includes the sub-function ST>B7 to save data from the stack into the Shadow Stack
buffer — refer to the WARP_Core module for further information on this subject.

The table below shows the stack registers mapping within the shadow buffer when using the ST>B7
function. Note that buffer registers F and G are not used in this case.

Stack T|Z]Y|X|L|-]-
Buffer |A|B|C|D|E|F|G

Diagrams of data suffixes.

The following picture shows the suffix ranges used by the different functions to flag register zones in
Main memory. They are provided as a FYI only, as there’s no need to concern yourself with the
internal structure of the implementation to use the functions.

Stack adds 0x170 ; IND adds 0x180 ; both combined adds 0x2F0
Buffer adds 0x300 ; IND buffer adds 0x480

Parameter Address (hex) IND Stack
0 13F | 170|180 2BF 2F0-2FF
| J : J 300-30F 480-490
! Stack Buffer IND Buffer
Data Registers IND Regs.

Once again, with this implementation ALL registers can be accessed directly and ALL registers can be
used as INDirect addressing location. i.e. cases like RCL 199, and RCL IND 125 are now a perfectly
valid syntax.

© Angel Martin - February 2024 Page 10

Total_Rekall+ 2024

The path not taken

Note the distinctly different approach followed by this module compared to the standard convention
used by the HP-41 operating system. Indeed we're departing the tried and tested ways in search for
a more logical implementation - this requires a new convention to flag the stack registers and the
indirect addressing, different from the standard one used by the OS. With the new technique ALL
data registers can be accessed by the RKL function directly, thus it get rids of the overlapping zones
consequence of the suffixes 0x070 and 0x080 used for the stack registers and indirect addressing -
see the table below for details.

Argument | Shown: | Argument | Shown: | Argument | Shown:
100 00 112 T 124 b
101 01 113 z 125 C
102 A 114 Y 126 d
103 B 115 X 127 e
104 C 116 L 128 IND 00
105 D 117 M 129 IND 01
106 E 118 N 130 IND 02
107 F 119 o 131 IND 03
108 G 120 P 132 IND 04
109 H 121 Q 133 IND 05
110 I 122 |- 134 IND 06
111] 123 a 135 IND 07

Table 2: Register index mapping used by the OS

Graphically the Data Suffix diagram for the “Classic” approach is represented below:

Stack adds 0x070; IND adds 0x080 ; both combined adds 0x0F0
Buffer adds 0x100 ; IND buffer adds 0x180

Parameter Address (hex) 070- OFD 101 181-
0 06F|07F| 080 TFF|OFF i 187
0 111|112 | 128 239|24I} 257 385

127 |] 255 263 N

) | 2.5 -
Data Registers la;}ck IND Regs. IND Stack Buffer IND Buffer

|

112 Data Regs w/ Direct access 207 Data Regs w/ INDirect acces
0 111 112 318
16 Stack Registers 7 Buffer Registers
TZY X, LMNOQP A B CDEFG
Q. K abc.de

All other modules using extended RCL implementations (notably the SandMath and the
WARP_Core) utilize the “Classic” model..

© Angel Martin - February 2024 Page 11

Total_Rekall+ 2024

An exception to the rule.

A few prompting functions in the module do not allow stack arguments in their prompts when entered
in a program. These are the sub-functions for register swapping. Note however that in manual mode
you can use any register number, Stack registers, Buffer registers and INDirect addressing as
destination

Be aware that when editing a program the non-merged line will not be automatically created for
these cases. If you enter these functions in a program, you must add the argument manually as an
additional step. Even more confusing perhaps, note that these exceptions use the “Classic” data
register addressing scheme, thus only data registers ROO to R111 can be accessed directly, and
registers R112 and above cannot be selected as INDirect addresses. Refer to the table 2 ahown in
previous page.

Other data suffix diagrams

Just for completion sake, see below the corresponding data suffix diagrams for the Extended and
Expanded memory cases.

Extended Memory - As usual, it assumes a full X-Mem configuration

Parameter Address (hex) caoo Daoo
0 240 | 3FF|400 65D TFF|800 93H AQ0 B3E COF DOF

FFF

| Y J | Y J | ' J | r J _r_J HJ

XM-Registers IND XM-Regs. IND Reg. Data Reg. IND Stack Stack

In words:
IND adds 0x400 ; Stack adds 0xD0O . Both combined adds 0x OxCOF
Regular data registers adds 0xA00, IND data registers adds 0x800

Expanded Memory

Parameter Address (hex) coo
0 3FF|400 TFF|800 93g A0 B3E COF D70-D7F

FFF

| r J *) k_Y) | T] \TJ LTJ
Y-Registers IND Y-Regs. IND Reg. Data Reg. IND Stack Stack
In words:
IND adds 0x800 ; Stack adds 0xD70 . Both combined adds Ox 0x7F
Regular data registers adds 0xA00, IND data registers adds 0x800

© Angel Martin - February 2024 Page 12

Total_Rekall+ 2024

The Double Indirection: A solution in search of a problem?

Arguably a double indirection capability may be seen more as an extravaganza than as a useful
feature. After all, how many times have you encountered a situation where the indirect index was
itself depending on another variable, and doing so in a counter-like fashion?

Well those situations do exist, more often than none and with increased likelihood as you get into
advanced algorithms and matrix applications — but I won't tire you with examples, rather here are
functions SIND2 , RIND2, and XIND2 which perform a double indirection for STO / RCL / X<>
actions .

Enough to make your head spin a little? — Then you should try the TRIPLE indirection, available when
you hit the shift key at that stage, ie:

SIND2 IND __ = STOIND IND IND _ _
RIND2 IND _ _ = RCLIND INDIND _ _
XIND2 IND _ _ = X<>INDINDIND _ _

These functions use two (or three if SHIFTED) standard data registers to hold the argument of the
data register where the value is to be recalled from (RIND2) or stored into (SIND2). Better keep your
register maps handy!

Going over the top: Multiple Indirection

Interesting things happen if you keep pressing the [SHIFT] key - as these functions support a
multiple indirection pattern that allows redirecting the target registers as many as 10 levels (and
beyond). The function prompt will change to reflect the current level, with a combination of even
values and their IND options. For example, pressing [SHIFT] at the RIND2 IND _ _ prompt will bump
the counter to:

[RIHL“{ _ }I | [E‘IHL"L{ INDT __]
HEER & , and then: i X
Followed by the screens shown below in a continuous sequence:

T Ri TI T AT HEU
P - = D[INITE 4 P9 af _
1]

USER 0
and then:

Example: assuming the following registers contain the values shown below:

R10=0; RCL 10 =0

ROO = 3; RCLIND 10 = 3

RO3 =5; RIND2 10 =5

RO5=7; RIND2IND10 = 7

RO7=m RIND4 10 =T
RIND4IND10 = 5

Then we have: RIND6 10 =7 , etc.

Note that this functionality is restricted to RUN mode only, and when this function is used in a
running program it'll be limited to a double indirection (or triple in the IND case).

© Angel Martin - February 2024 Page 13

XMEM Twin Module Manual

Application Example: Bubble Sort without data movement. (By Greg McClure)

; FIXED SORT -- Gregory J. McClure

; Does a non-destructive bubble sort of registers specified in another
; set of consecutive pointer registers. The data to sort is not moved,
; but the pointer registers will be changed to reflect the numeric

; order (ascending) of the values indirectly pointed to by them.

; ROO thru RO2 are used by the program.

; Example: RO3-R06 contain 10, 12, 15, 18.

; R10, R12, R15, R18 contain the data to sort (4, 3, 2, 1).

; X contains 3.006 as descriptor of pointer register set, then SORT is run.
; When done, SORT will change R03-R06 to contain 18, 15, 12, 10.

; R10, R12, R15, R18 will be unchanged.

01 LBL "SORT"

02 LBL 10

03 STO 00 ; 1ST VALUE POINTER
04 STO 01 ; 2ND VALUE POINTER
05 ISG 01

06 STO 02 ; SAVE 1ST POINTER
07 LBL 00

08 RIND2 ; TTRKALL DOUBLE IND READS
08 RIND2

09 1

10 X>Y?

11 GTO 01 ; SKIP SWAP

12 RCL IND 00 ; RECALL POINTERS
13 RCL IND 01

14 STO IND 00 ; REVERSE POINTERS
15 X<>Y

16 STO IND 01

17 LBL 01

18 ISG 00 ; BUMP VALUE POINTERS
19 IsSG 01

20 GTO 00 ; MORE TO COMPARE
21 RCL 02 ; GET CURRENT POINTERS SET
22 E-3

23 -

24 ENTER"

25 INT

26 1.001

27 *

28 X=Y?

29 GTO 02 ; DONE

30 RCL 02

31 GTO 10

32 LBL 02

33 "DONE"

34 AVIEW

35 END

© Angel Martin -June 2022 Page 14

XMEM Twin Module Manual

Stack Swapping functions and

The OS includes the X< > function to exchange the contents of the X-register with other stack or
data registers — but if fails to extend this to any other stack register. To this point, a set of stack-
swapping sub-functions is also included in this module. You can use them to exchange the
contents of any of the 16 status registers in the machine, including ALPHA, the stack, and the
other reserved status registers (as always, use these with caution!).

In addition to the standard method with the sub-function launchers RC# and RC$, these
functions can be accessed using a dedicated launcher: the function STKSWP in the main FAT.

T TH
R {abcdeK};{MNOP{XYZT L}

This is a very convenient method that offers further usability as it allows the “navigation” across
the status registers using the PLUS/MINUS keys. For example, between the “a” and “b"” regs:

As expected, Stack registers and Indirect addressing are fully supported by these functions — just
like the native X<> offers in the standard machine.

woor T ki T T | i Y L] T
L L 2 P 1] 5 1 = d L 2 5 L —
USER . USEFR

7 L 4

Caveat emptor.- Because they are sub-functions, entering them in a program requires the user
to manually add the parameter as a THIRD program line — using the “classic” convention for
suffixes, as discussed previously and shown in the table below. Add 0x070 for stack, 0x080 for
IND and OxOF for both. A few examples are included:

M<>N Z<> IND 05 Y<> INDT
{RC#, 11, 118} {RC#, 8, 133} {RC#, 7, 240}
8
Argument | Shown: | Argument | Shown: Argument | Shown:

100 00 112 T 124 b
101 01 113 Z 125 C
102 A 114 Y 126 d
103 B 115 X 127 e
104 C 116 L 128 IND 00
105 D 117 M 129 IND 01
106 E 118 N 130 IND 02
107 F 119 0 131 IND 03
108 G 120 P 132 IND 04
109 H 121 Q 133 IND 05
110 I 122 |- 134 IND 06
111 J 123 135 IND 07

© Angel Martin -June 2022 Page 15

XMEM Twin Module Manual

Appendix.- A trip down to Memory Lane. From the HP-41 User’s Handbook.-

Automatic Primary Extended
Memory Data Storage Data Storage
Stack Registers Registers
The standard
HF-41 has Tou can add up to four memory modules,
63 (BB bringing the total to 100 primary and 219
TF all memory modules where primary storage extended storage registers.

allocated to storage registers, registers.

each additional module would
account for the following register
addresses:

The Function
05

The Indirect Address Register
Fos 10,0000

The Desired Register
(Fecalled into the X-register.)

Fio 2.5400

Arithmetic can be performed upon the contents of all storage registers by executing followed by the
arithinetic fanction followed in turn by the register address. For example:

Cpertion Result

01 Mutnber in X-register 15 added to the contents of register Eqy, and the
sum 15 placed mto Eqy. The display execution form of this iz [s1+]

[-]0z Mumber m X-register 1z subtracted from the contents of register Eaz,
and the difference iz placed into Egz. The display execution form of
thiz 1z [sT-]

0= Mumber in X-register 15 multipled by the contents of register Eqz, and
the product iz placed wmto Faz The display execution form of this is
BT:]

[+]04 Mumber m Eqpgq 15 dinded by the number m the X-regster, and the

gquotient is placed inte Eqq. The display execution form of this 15 [s732]

© Angel Martin -June 2022 Page 16

XMEM Twin Module Manual

Utilities in the Sub-functions area.

Besides the Stack registers swap functions, a few other utilities are included in the auxiliary FAT.
They're mostly self-explanatory so we'll include just a short description here.

is a very fast neat routine that looks for the value in the stack X-register in the data
registers area. If a match is found the register number is entered in X , and if not found the value -1
is used instead. The stack is lifted unless of course the stack lift flag is disabled, like when executed
right after CLX or ENTER”. So it works much like like POSA and POSFL in the X-Functions module.

STVIEW | does a sequential enumeration of the stack registers, labeling the display with the stack
letter for easier traceability.

FETCH | recalls the content of the register whose parameter index (following the “new” convention)
is in the X register. For example FETCH 25 recalls R25 to X, and FETCH 117 recalls R117 to X.

DROP | will put the value in the Y-register into the data register whose number is in X

[RCLZ |, |STOZ, | and | ST<>Z | manage exchanges between the stack and the statistical registers - a
block of five registers defined by the native function TREG. Refer to the HP-41 user manual for
details. The table below shows the register correspondence assuming a *REG 11 setting:

Stack T z Y X L
Statistical | R11 | R12 | R13 | R14 | R15

exchanges the Stack registers {X, Y, Z,, T, L} and the individual ALPHA+ registers (that is
the standard ALHA plus the Q-Reg), {M, N, O, P, Q }. It has the corresponding mapping as well:

Stack T|Z|Y|X|L
ALPHA+ |[P|O|N|M|Q

ASWP> | swaps the two sides of the string in ALPHA around the “>" character — and does nothing if
" >" doesn't exist. For instance the string "CATS>DOGS" changes to "DOGS>CATS".

|D>H |and |[H>D | are little hexadecimal to decimal conversion routines. The maximum number
allowed is 0x2540BE3FF or 9,99999999 E9 decimal. These functions were written by William Graham
and published in PPC] V12N6 p19, enhancing in turn the initial versions first published by Derek Amos
in PPCCJ V12N1 p3.

The input values are expected to be in the X-register (decimal value) for D>H and in ALPHA for H>D
(Hex string) — and vice versa for the output results. A couple of examples: “ABCD”, H>D =>
43,981.000 , D>H => “ABCD”

ST>B7 | loads the contents of the stack in the Shadow Stack buffer. It was mentioned before in the
manual.

[2LIB4 | and | 2YFNX | simply check for the presence of the Library#4 and YFNX modules plugged in
the calculator. They put a warning message if not found and halt the program execution if entered in
a program.

© Angel Martin -June 2022 Page 17

XMEM Twin Module Manual

Part Il -. Managing the Global X-Mem Extended registers

This section covers the individual access of the extended registers included in the three X-MEM blocks.
You'll be able to store, recall, view, exchange, and perform ISG/DSE operations on 606 of those
registers as if they were standard data registers within main memory. Note the presence of the

arithmetic operations as well.

Extended Regs Store Recall Other X-Blocks
X-Register XSTO ___ | XRCL_ _ _ | XX<>__ _ | CLXRG
FromOto 605. | XST+_ _ _ | XRC+_ _ _ | XVEW _ _ _ | CLXRGX
XST-___ | XRC-___ | XDSE _ __ | XRGMOV
XST* ___ | XRC*__ _ | XISG___ | XRGSWP
XST/ ___ | XRC/ ___ | XFINDX ST<>XRG __ _
ALPHA XAST ___ | XARC_ _ _ A<>XRG __ _

Besides the direct access, you also have the INDirect addressing capabilities implemented on the
expanded registers; the sixteen Stack registers (including synthetic regs {M-e}); and all the standard-
Registers - a hybrid mode, unique to this implementation.

Most of the functions will prompt for the parameters to use. The initial prompt is a three-field
underscore for the X-register indeed. Pressing [SHIFT] changes it to IND three-digit fields for another
X-register to be used as indirect. Pressing the [RADIX] key changes to the IND ST _ prompt, where
you'll enter the register mnemonic, from T to e (all sixteen are available). Pressing the radix key again
changes to a IND RG_ _ prompt where you can enter a standard register number to use as indirect
address. Repeat pressings of the radix key act as a toggle between those two. There’s also provision
for direct stack and standard register arguments — even if those can be redundant in practice, being
exactly the same as the original ones.

Once you complete the entry adding the register number the action is performed in RUN mode, or
two program lines are entered in program mode — automatically selecting the appropriate parameter
depending on the direct or indirect types. This is automatically done so you needn’t (and shouldn't)
edit the value entered in the program’s second line at all — which will be properly interpreted in a
running program.

You can move between the functions while the prompts are up; not only to select the math operation
but also to change the main function amongst the group. So for instance during the XRCL _ _ _ main
prompt pressing the key will trigger the XX<> function, or pressing will invoke the
XSTO function instead. Also you can revert to the original mainframe functions pressing the
corresponding key of the function in the prompt, for instance here pressing will trigger the
original RCL _ _

w T iy T mi T LT T ir T
XS TO"INDI _ _ _ KX LA 57 -
USER RAD 1 USER RAD 1

w T v T Wi T
n.u_‘tE L Mo - - =
USER RAD 1

© Angel Martin -June 2022 Page 18

XMEM Twin Module Manual

The functions will not allow you to enter any value greater than 605 either as direct index or indirect
index — not even when entering them in a program line. Attempting to enter larger values will trigger
a "NONEXISTENT” error message. However, that check is not made for IND_RG combinations, as
there’s no telling at that point about how many standard registers will be available at the execution
stage.

The usage of standard stack and data registers is not only more convenient from the usability
standpoint, but also it enables the RCL math on these registers via the XRCL function:

XRC+" G671 _ XRC/"Rb __
UZER RAD 1 UZER RAD 1

Although possible, it is however not meant to be used in a program because of the obviously higher
byte count. That's why when used in an editing program the direct stack and data register X-
functions revert automatically to the native STO/RCL functions instead, which has the additional
benefit of a clearer representation by the OS as merged lines.

Storing and Recalling ALPHA Data

The extended functions XAST and XARC provide the means to store and recall ALPHA data directly
in the expanded registers area. Like their numeric counterparts, they support direct, INDirect, stack
and standard registers indexes for a complete palette of options at your disposal. You can access
these directly from the XSTO/XRCL prompts by pressing the key at any time.

| i T ™ ir T mi Ti - |
n H 5 i A ey} —_— = - H p [! A il F [
USER RAD 1 USER RAD 1

Deleting Expanded Registers.
The function CLXRG will delete all the 606 expanded registers.

Additionally with CLXRGX you can selectively delete a defined block of extended registers as defined
by its control word (in X) “bbb.eeennn”, The bbb digits are the base address of the source expanded
register block, in the range RO through R605. The eee digits are the base address destination
expanded register block, again in the range RO through R605. nnn is the incremental step for the
registers to delete. If nnn is zero a value of one used.

Other Block Operations.

Think of the following functions as analogous to the X-Functions extensions on the original function
set of the calculator, only applied to the extended memory area instead.

e A<>XRG and ST<>XRG exchange a group of five extended registers with ALPHA (plus Q)
or the Stack (T-L) respectively. The start register is to be entered at the prompt in manual
mode, or expected to be in the X-Register when running a program. These functions do not
allow INDirect indexing.

¢ XRGMOV and XRGSWP can be used to move or exchange a block of extended registers at
once — either contiguous or in an increment pattern as provided by the control word sss.dddii
in the X-register. Much the same as the X-Functions RGMOVE and RGSWAP - in case you
wonder.

© Angel Martin -June 2022 Page 19

XMEM Twin Module Manual

Moving around the Extended Registers Functions.

BEO.,

XISG

A

Y

XDSE

BN (DsE) |

XARC XAST
XRC+ XS8T+
XRC- XST-
XRC* XsT
XRC/ X8Tl
(RCL) o 0
ST
RG -~
<) B o T xvew R vEW)
Figure 1.

Even if there isn't a dedicated launcher for these functions, navigation amongst them is as easy as
intuitive. First off, assign one of the functions to its “natural” key, for instance XSTO to the STO key.

Then while the XSTO _ _ _ prompt is shown you can move about all the X-Reg functions by pressing
the key for the corresponding action, i.e.

RCL will toggle to XRCL _ _ _

SST (for X<>) will launch XX<> _ _ _

R/S (for VIEW) will launch XVEW _ _ _

CHS (for ISG) will launch XISG _ _ _

ALPHA will trigger XAST _ _ _

The math keys will launch the corresponding math function, ie. XST+ _ _ _

EEX (for DSE)will launch XDSE _ _ _

SHIFT will add the IND _ _ prompt

RADIX will add the ST _ prompt. All 16 status regs are selectable.

RADIX again to toggle between ST _ and RG _ _. Choose any standard reg up to 99.

STO again to exit to the native STO function (no way back!)

Note that the DIRECT Stack/REG prompt is not strictly needed — that’s the native function
already. However, the RCL Math functions are useful and are available using this approach.

All the options above are available from within any of the 16 functions - regardless of which one you
used to start the sequence. See the descriptions earlier in this manual for more details.

© Angel Martin -June 2022 Page 20

XMEM Twin Module Manual

Extra bonus: Finding the X-needle in the X-haystack.

For those times when you'd like to know if a certain value is stored in the X-data registers, the
function XFINDX is available to do a cursory comparison looking for a match with the value in the X-
register. All X-data registers are checked, starting with XR00 until XR605 — which could take a long
time depending on where the match exists.

The function returns the number of the first X-data register found that contains the same value as the
X-Register. If none is found, the function puts -1 in X to signify a no-match situation. The stack is
lifted so the sought for value will be pushed to stack register Y upon completion.

Below there is a FOCAL routine that checks up to XR605, as well as an equivalent routine for the
standard data registers - for comparison purposes. See the WARP_Corel manual for yet another
routine to tackle this “where is Waldo” problem using other advanced functions.

01 LBL “XFNDX” | | 01 LBL “FINDX”

02 .605 02 SIZE?

03 X<>Y 03 E

04 LBL 00 04 -

05 XRCLIND Y (3074) 05 E3

06 X=Y? 06 /

07 GTO 02 07 X<>Y

08 RDN 08 LBLOO

09 ISG X 09 RCLINDY

10 GTO 00 10 X=Y?

11 CLX 11 GTO 02

12 -1 12 RDN

13 RTN 13 ISGY

14 LBL02 14 GTO 00

15 X<>2Z 15 CLX

16 INT 16 -1

17 END 17 RTN
18 LBL 02
19 X<>2Z
20 INT
21 END

The possibilities of having an additional set of 606 registers available to your own programs are wide
and deep. For starters you could permanently operate with a SIZE 000 and use all the 320 standard
registers in main memory for User Code programs, key assignments and I/O buffers; so a few more
bytes taken up by the parameter lines won't be a problem.

© Angel Martin -June 2022 Page 21

XMEM Twin Module Manual

Converting Standard Programs

Having a complete function set ensures that you can convert programs very easily, simply by
replacing the standard functions with their expanded version. Even the ALPHA storage functions
XAST and XARC are included, which can also use the expanded register range.

Then you have the benefit of a much larger set of registers (606 vs. a maximum of 319 without any
program in RAM) available for your program, a sheer advantage to manage larger size cases of the
problem you're trying to solve — from matrix operations to sorting data, to mention just a couple.

For example, with a few modifications the PPC ROM programs S2 and S3 can be used to sort more
than 600 registers in a very efficient way. — with random data populating those registers it took about
20 seconds to sort 606 registers on TURBO 50 mode!

See below two simple routines I used to populate the registers and to view them. They expect the
control word bbb.eee in X before you run them.

01 LBL "XVIEW" 01 LBL "XRAN"
02 LBLOO 02 RCLX

03 "XR" 03 LBLOO

04 ARCLI 04 RNDM

05 " 05 XSTOINDY (3074)
06 XRCLIND X (3075) 07 RDN

08 ARCLX 08 ISGX

09 AVIEW 09 GTO 00

10 PSE 10 RDN

11 RDN 11 END

12 ISG X

13 GTO 00

14 END

Functions ARCLI and RNDM are available in the AMC_OX/X Module.

Note.- In case you're interested, the parameter lines used by these functions as non-merged, second
line, correspond to the following:

1. The register index for direct access, from 0 to 605 [000 — 25D]
2. The indirect register index for IND from 1,024 to 1,629 [400 — 65D]
3. The hybrid standard register IND RG, from 2,048 to 2,367 [800 — 93F]
4. The direct standard registers, from 2560 to 2879 [AOO — B3F]
5. The indirect Stack register index, from 3,072 to 3,088 [CO0-C10]
6. The direct Stack registers index, from 3328 to 3343 [DO0 — D10]

Obviously, there’s a few gaps of unused values, like between 2,368 and 2,559 — but you shouldn’t be
concerned with this at all; after all the parameters are entered automatically by the functions (totally
transparent to the user), and it takes the same number of bytes to use a 4-digit number, regardless
of its value.

Note that the status register Q(9) is used internally by the function’s MCODE, and therefore should
not be used in your FOCAL programs as synthetic register when the expanded registers functions are
also used.

© Angel Martin - June 2022 Page 22

CL XPMEM Module Manual

Part 111 - Managing the CL Expanded Y-registers

The CL board has three 4k-blocks of RAM memory reserved for extensions to the OS. So far these
have been rather ignored by all applications, but finally they're put to a good use with the function
sets included in this module.

This section covers the individual access of the expanded Y-registers included in the RAM block
located at 0x801, i.e. the first of those three RAM blocks. You'll be able to store, recall, view,
exchange, and perform ISG/DSE operations on 1,024 of those registers as if they were standard 41
registers within main memory. Note the presence of the arithmetic operations as well.

Extended Regs Store Recall Other X-Blocks

Y-Register YSTO___|YRCL___ | YX<>___ | CLYRG

From0to01,023. | YST+___ | YRC+__ _ | YVEW __ _ | CLYRGX

Use EEX forthe | YST-___ | YRC-___ | YDSE___ | YRGMOV

Fourth digit field. | YST* ___ | YRC* __ _ | YISG ___ | YRGSWP
YST/___ | YRC/__ _ | YFINDX ST<>YRG __ _

ALPHA YAST ___ | YARC __ _ A<>YRG _ _ _

Besides the direct access, you also have the INDirect addressing capabilities implemented on the
expanded registers; the sixteen Stack registers (including synthetic regs {M-e}); and all the standard-
Data Registers - a hybrid mode, unique to this implementation.

Most of the functions will prompt for the parameters to use. The initial prompt is a three-field
underscore for the Y-register indeed. Pressing [SHIFT] changes it to IND three-digit fields for another
Y-register to be used as indirect. Pressing the [RADIX] key changes to the IND ST _ prompt, where
you'll enter the register mnemonic, from T to e (all sixteen are available). Pressing the radix key again
changes to a IND RG_ _ prompt where you can enter a standard register number to use as indirect
address. Repeat pressings of the radix key act as a toggle between those two. There’s also provision
for direct stack and standard register arguments — even if those can be redundant in practice, being
exactly the same as the original ones.

Once you complete the entry adding the register number the action is performed in RUN mode, or
two program lines are entered in program mode — automatically selecting the appropriate parameter
depending on the direct or indirect types. This is automatically done so you needn’t (and shouldn't)
edit the value entered in the program’s second line at all — which will be properly interpreted in a
running program.

You can move between the functions while the prompts are up; not only to select the math operation
but also to change the main function amongst the group. So for instance during the YRCL _ _ _ main
prompt pressing the key will trigger the YX<> function, or pressing will invoke the
YSTO function instead. Also you can revert to the original mainframe functions pressing the
corresponding key of the function in the prompt, for instance here pressing will trigger the
original RCL _ _

| T il T R |
veToO"INDT - __ VX /A"

USER USER

YRC+"

USER UZER

ko
Prid
ko
I

I

I
R
r
o
Prid
kd
|
vy
I

|

© Angel Martin -March 2023 Page 23

CL XPMEM Module Manual

The functions will not allow you to enter any value greater than 1,023 either as direct index or
indirect index — not even when entering them in a program line. Attempting to enter larger values will
trigger a "NONEXISTENT” error message. However, that check is not made for IND_RG combinations,
as there’s no telling at that point about how many standard registers will be available at the execution
stage.

The usage of standard stack and data registers is not only more convenient from the usability
standpoint, but also it enables the RCL math on these registers via the YRCL function:

YR+ g7 YR RG
USER | USER

Although possible, it is however not meant to be used in a program because of the obviously higher
byte count. That's why when used in an editing program the direct stack and data register Y-
functions revert automatically to the native STO/RCL functions instead, which has the additional
benefit of a clearer representation by the OS as merged lines.

The table and chart below show all possible combinations for program editing:

adds 0x400 adds 0xA00 adds 0x800 adds OxD70 adds 0xC00
Func. | Y-Regnnn IND Y-reg nnn | Data Reg nn IND Data Reg nn STK nn IND STK nn

YSTO nnn nnn+1024 STO nn nn+2048 STO ST(nn) nn+3072
YST+ nnn nnn+1024 ST+ nn nn+2048 ST+ ST(nn) nn+3072
YST- nnn nnn+1024 ST-nn nn+2048 ST- ST(nn) nn+3072
YST* nnn nnn+1024 ST* nn nn+2048 ST* ST(nn) nn+3072
YST/ nnn nnn+1024 ST/ nn nn+2048 ST/ ST(nn) nn+3072
YRCL nnn nnn+1024 RCL nn nn+2048 RCL ST(nn) nn+3072
YRC+ nnn nnn+1024 nn+2560 nn+2048 nn+3440 nn+3072
YRC- nnn nnn+1024 nn+2560 nn+2048 nn+3440 (nn+3072
YRC* nnn nnn+1024 nn+2560 nn+2048 nn+3440 nn+3072
YRC/ nnn nnn+1024 nn+2560 nn+2048 nn+3440 nn+3072
YDSE nnn nnn+1024 DSE nn nn+2048 DSE ST(nn) nn+3072
YISG nnn nnn+1024 ISG nn nn+2048 ISG ST(nn) nn+3072
YX<> nnn nnn+1024 X<>nn nn+2048 X<> ST(nn) nn+3072
YVEW nnn nnn+1024 VIEW nn nn+2048 VIEW ST(nn) nn+3072
YARC nnn nmn+1024 ARCL nn nn+2048 ARCL ST(nn) nn+3072
YAST nnn mnn+1024 ASTO nn nn+2048 ASTO ST(nn) nn+3072

Parameter Address (hex) 00

0 3FF|400 7FF|800 93E A00 B3E COF D70-D7F FFF

“ r H f e — Y B e
Y-Registers IND Y-Regs. IND Reg. Data Reg. Stack IND Stack

Note that the U/I won't allow entering Data Register indexes above 99. If values nn>99 are needed
you should edit manually the second non-merged line, using the same rule as shown above. This will
only apply to the YRCL_Math functions, as all others have a native OS equivalent.

Y-REG Data_Reg nn = Y-REG as first line plus (nn+2560) as second line.
Y-REG IND Data_Reg nn = Y_REG as first line plus (nn+2048) as second line.

For example: YRC+ RG 111 will be: YRC+, plus “2670"
YRCL IND RG 111 will be: YRCL, plus “2149"

© Angel Martin -March 2023 Page 24

CL XPMEM Module Manual

Storing and Recalling ALPHA Data

The expanded functions YAST and YARC provide the means to store and recall ALPHA data directly
to/from the expanded registers area. Like their numeric counterparts, they support direct, INDirect,
stack and standard registers indexes for a complete palette of options at your disposal. You can
access these directly from the YSTO/YRCL prompts by pressing the key at any time.

A S ClvyRRCY o _ _

USER USER

Going above 999

Revision 2G+ adds a convenient usability feature to the U/I, whereby the 3-digit prompt can be

extended to a 4-digit, and furthermore the first 2 fields are automatically set to “10_ _". This is
because there are only 1024 Y-Registers in Expanded RAM, thus the second digit must be zero.
ysTon YSTOY i@
| USER FRAD 1 % USER FRAD 1

At this point you should enter the remaining of the index value, ranging from 00 to 23. If values
above 23 are keyed in it will result in a "NONEXISTENT” error message.

Deleting, Moving and Swapping Expanded Registers.

Think of the following functions as analogous to the X-Functions extensions on the original function
set of the calculator, only applied to the expanded memory area instead.

e The function CLYRG will delete all the 1,024 expanded registers, and therefore it's equivalent
to YMCLR used on the entire 0x801 block, as follows: “801000-0FFF”, YMCLR

o Additionally with CLYRGX you can selectively delete a defined block of expanded registers as
defined by its control word (in X) “bbb.eee:nnn”, The bbb,eee digits denote the first and last
expanded registers to clear, in the range RO through R999. Finally nnn is the step number for
registers to be cleared. If nnn is zero a value of one used.

For example, the control word 25,250005 will clear every firth Y-register starting at YR 025
and ending at YR 250 (that is YR25, YR30, YR35, YR40, YR245, YR250).

¢ YRGMOV and YRGSWP can be used to move or exchange a block of expanded registers at
once — either contiguous or in an increment pattern as provided by the control word
bbb.eee:nnn in the X-register. Much the same as the X-Functions RGMOVE and RGSWAP - in
case you wonder, so here nnn denotes the block size to be moved or swapped.

Other Block Operations.

¢ A<>YRG and ST<>YRG exchange a group of five expanded registers with ALPHA (plus Q)
or the Stack (T-L) respectively. The start register is to be entered at the prompt in manual
mode, or expected to be in the X-Register when running a program. These functions do not
allow INDirect indexing.

© Angel Martin -March 2023 Page 25

CL XPMEM Module Manual

Moving around the Expanded Registers Functions.

YDSE
(ISG)
YISG
YARC YAST
YRC+ YST+
YRC- YST-
YRC* YST*
YRC/ YST/
YRCL |« YSTO
1
(RCL) |e— IND__ > (sT0)
IND 1

— > > ew
e e NED,

Figure 1.

Even if there isn't a dedicated launcher for these functions, navigation amongst them is as easy as
intuitive. First off, assign one of the functions to its “natural” key, for instance YSTO to the STO key.

Then while the YSTO _ _ _ prompt is shown you can move about all the Y-Reg functions by pressing
the key for the corresponding action, i.e.

RCL will toggle to YRCL _ _ _

SST (for X<>) will launch YX<> _ _ _

R/S (for VIEW) will launch YVEW _ _ _

CHS (for ISG) will launch YISG _ _ _

ALPHA will trigger YAST _ _ _

The math keys will launch the corresponding math function, ie. YST+ _ _ _

EEX will add one field to the prompt: YSTO 1 _ _ _

SHIFT will add the IND prompt (assuming EEX isn't already up)

RADIX will add the ST _ prompt. All 16 status regs are selectable.

RADIX again to toggle between ST _ and RG _ _. Choose any standard reg up to 99.

STO again to exit to the native STO function (no way back!)

Note that the DIRECT Stack/REG prompt is not strictly needed — that’s the native function
already. However, the RCL Math functions are useful and are available using this approach.

All the options above are available from within any of the 15 functions (YDSE is not part of this
scheme) — regardless of which one you used to start the sequence. See the descriptions earlier in this
manual for additional details.

© Angel Martin -March 2023 Page 26

CL XPMEM Module Manual

Extra bonus: Finding the X-needle in the Y-haystack.

For those times when you'd like to know if a certain value is stored in the Y-data register, the sub-
function YFINDX (a.k.a. XF# 21) is available to do a cursory comparison looking for a match with
the value in the X-register. All Y-data registers are checked, starting with YR0O until YR1023 — which
could take a long time depending on where the match exists.

The function returns the number of the first Y-data register found that contains the same value as the
X-Register. If none is found, the function puts -1 in X to signify a no-match situation. The stack is
lifted so the sought for value will be pushed to stack register Y upon completion.

Below there is a FOCAL routine that checks up to YR999, as well as an equivalent routine for the
standard data registers - for comparison purposes. See the Total_Rekall manual for yet another
routine to tackle this “where is Waldo” problem using other advanced functions.

18 LBL “YFNDX" | | 22 LBL “FINDX"
19 .999 23 SIZE?
20 X<>Y 24 E
21 LBLO0O 25 -
22 YRCL (INDY) 26 E3
23 3074 27/
24 X=Y? 28 X<>Y
25 GTO 02 29 LBL 00
26 RDN 30 RCLINDY
27 1SG X 31 X=Y?
28 GTO 00 32 GTO02
29 CLX 33 RDN
30 -1 34 ISGY
31 RN 35 GTO 00
32 LBLO2 36 CLX
33 X<>Z 37 -1
34 INT 38 RTN
35 END 39 LBLO2
40 X<>Z
41 INT
42 END

The possibilities of having an additional set of 1,024 registers available to your own programs are
wide and deep. For starters you could permanently operate with a SIZE 000 and use all the 319
standard registers for User Code programs, key assignments and I/O buffers; so a few more bytes
taken up by the parameter lines won't be a problem.

© Angel Martin -March 2023 Page 27

CL XPMEM Module Manual

CODA: MCODE listing for YFINDX

Header ABTE ops X
Header ABTF "D “D" Find ¥-Register wf X value
Header ABED O4F N within the extended block
Header ABB1 g
Header aBg2 4s Er
Header ABE3 "osg “¥ A ngel Martin
YEINDX ABE4 360 PORT DEF: check for CL mem
ABBS 08C Xa to avoid memaory lost!
ABEE 020 -=A490 [CLMEM?Z]
ABEBY OFE READ 3(X) get target value
ABEE Fse M=C ALL convenient storage
apes [130 LDIs&x
ABBA |3FF _ CON:1023 Ao _
ABEB 226 C=C+1 S&X 400"
ABBC (1] (=B 58X save pointer in B.X
ABED OCe C=B S&X get current pointer
ABBE B0 RAMSLCT select register
ABBF Fa6 C=C+1 S&X point to next reg
ABSOD e C<>B 58X save pointer in B.X
AB91 o3e READATA read contents
e long; ABS2 10E A=C ALL put in A for compares
2gisters ABS3 Fag C=M ALL recall X value
M ABS4 36E TARC ALL test for match
ABS5 063 INC +12d found!
ABSG 21C PT=2
ABS7 210 LD@PT-B
aBsE 15 a=Cus
ABS9 EE TA<B X5 reached the top?
ABSA 398 INC -13d no, do next
ABSB 4E C=0 ALL yes, NOT found
ABSC 2DC PT=13
ABSD 250 LD@PT-5 returms -1 instead
ABSE 050 LD@FT-1
ABSF OEE Ce»B ALL
ABAD 058 JNC+11d —
ABA1 D46 C=D3EX <
ABAZ2 270 RAMSLCT
aBA3 DE6 A<»B SEX
ABA4 146 A=A-1 58N
agas [130 LDl s&x
ABAG |SFF _ CON:1023_ | Ao _
ABAT 226 C=C+1 58N "ap0"
ABAR 106 A=A-C 58N
ABAS 1F5 PNC XQ
ABAA oc4 -=3170 [BIN--DT
ABAB 0539 NCEO
ABALC 044 -=122F [RCL]

© Angel Martin - May 2022

Page 28

CL XPMEM Module Manual

Converting Standard Programs

Having a complete function set ensures you can convert programs very easily, simply by replacing the
standard functions with their expanded version. As of release 2B even the ALPHA storage functions
YAST and YARC are included, which can also use the expanded register range.

Then you have the benefit of a much larger set of registers available for your program, a sheer
advantage to manage larger size cases of the problem you're trying to solve — from matrix operations
to sorting data, to mention just a couple.

For example, with a few modifications the PPC ROM programs S2 and S3 can be used to sort more
than 1,000 registers in a very efficient way. — with random data populating those registers it took
about 32 seconds to sort 1,000 registers on TURBO 50 mode!

See below two simple routines I used to populate the registers and to view them. They expect the
control word bbb.eee in X before you run them.

01 LBL"YVIEW" 01 LBL "YRAN"
02 LBLOO 02 RCLX

03 "YR" 03 LBLOO

04 ARCLI 04 RNDM

05 " 05 YSTO (INDY)
06 YRCL (IND X) 06 3074

07 3075 07 RDN

08 ARCLX 08 ISG X

09 AVIEW 09 GTOO00

10 PSE 10 RDN

11 RDN 11 END

12 ISGX

13 GTO 00

14 END

Functions ARCLI and RNDM are available in the AMC_OX/X Module.

Note.- In case you're interested, the parameter lines used by these functions correspond to the
following: (with SIZE 319 for the standard registers case)

7. The register index for direct access, from 0 to 1,023 [000 — 3FF]
8. The indirect register index for IND from 1,024 to 2,047 [400 — 7FF]
9. The hybrid standard register IND RG, from 2,048 to 2,367 [800 — 93F]
10. The direct standard registers, from 2560 to 2879 [AOO - B3F]
11. The indirect Stack register index, from 3,072 to 3,088 [CO0-C10]
12. The direct Stack registers index, from 3328 to 3343 [DOO — D10]

Obviously, there's a few voids like between 2,368 and 2,559 — but you shouldn’t be concerned with
this at all; after all the parameters are entered automatically by the functions (totally transparent to
the user), and it takes the same number of bytes to use a 4-digit number, regardless of its value.

Note that the status register Q(9) is used internally by the functions MCODE, and therefore should
not be used in your FOCAL programs as synthetic register when the expanded registers functions are
also used.

Warning: The expanded Register functions are not to be used if the first block is already
used as back-up location. Use blocks #2 and #3 instead!

© Angel Martin - May 2022 Page 29

CL XPMEM Module Manual

© Angel Martin - May 2022 Page 30

