
Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 1 of 77


Revision K15

With RCL Math, SHUFFLE, and Full Stack Tests

Including Auto-Complete Advanced XEQ+ Mode

& Fix ALL mode for accurate number display.

Written and programmed by Ángel Martin
January 31, 2023

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 2 of 77

This compilation revision 4.3.37
Copyright © 2014 -2023 Ángel Martin

 
     Total Rekall / FixALL

Dare 2 Compare Auto-Complete

Select/Case Universal XEQ+

 Data Registers Stack Registers

 Shadow Stack Buffer

Published under the GNU software license agreement.

Original authors retain all copyrights and should be mentioned in writing by any part utilizing this
material. No commercial usage of any kind is allowed.

Screen captures taken from V41, Windows-based emulator developed by Warren Furlow.

See www.hp41.org

Acknowledgments. - Thanks to the MCODE pioneers and grand masters who published their work in

PPC Journal and other sources, such as Ken Emery (and alter-ego Skiwd), Clifford Stern, Doug Wilder,
Håkan Thörngren, Frits Ferwerda and Nelson F. Crowle amongst others for their powerful functions,

real examples of solid MCODE programming.

Many thanks to Greg J. McClure and Poul Kaarup for their contributed functions in the auxiliary FAT.

Everlasting thanks to the original developers of the HEPAX and CCD Modules – real landmark and
seminal references for the serious MCODER and the 41 system overall. With their products they

pushed the design limits beyond the conventionally accepted, making many other contributions pale
by comparison.

http://www.hp41.org/

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 3 of 77




Table of Contents

1. What’s New in the 2020-23 revisions
a. Auto-Complete Mode . 10
b. Universal Execute . 16
c. Accessing Sub-functions . 17
d. Enhanced ASCII File Editor . 21
e. Continuous SST/BST . 25

2. The “Dare to Compare” Edition.
a. General Introduction . 26
b. The Sub-function CATalog . 27
c. Managing Auxiliary FATs . 28
d. Stack Comparisons Main Launcher . 29

3. The “Total Rekall” Edition
a. The Total RCL Dilemma . 31
b. Programmable arguments Look-up Table 32
c. Direct Register Comparisons . 33
d. General-Purpose Comparison . 34
e. General-Purpose Exchange . 35
f. Value Comparison with selected variable. 36

i. Example: Data Registers Bubble-Sort 37
g. Inverse ISG and DSE modes . 39

i. Example: Congruence Equation 41
h. The Double Indirection: a solution in search of a problem 41
i. Going over the top: Multiple Indirection 42

i. Example: Bubble sort w/out Data Movement 43
j. Appendix. A trip to Memory Line . 44

4. Advanced System Utilities.

a. Dynamic ALL mode displaying . 45
b. Stack Shuffling and selective clearing 46
c. Shadow Buffer Registers Storage . 52
d. Buffer Header: warping around SELECT 53
e. Finding the X-needle in the REG-haystack 55
f. Playing with Key Assignments. 56
g. Saving Status Registers in X-Memory 57
h. XROM Codes and Function ID# Codes 58
i. Saving and Restoring the RTN Stack 59
j. LIFO X-Functions . 60
k. Loading Multi-byte instructions . 62
l. Copying Bank-switched pages . 64
m. Appendix.- Internal Data Field structure 74
n. Appendix.- Dare to Compare: 102 functions at your fingertips . . 76

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 4 of 77

Figure 0: Interaction between the different function launchers.

Figure 1: RKL Hot keys (left) and Main Overlay (right).

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 5 of 77

Summary Function Table.

 # Function Description Input Dependency Type Author

0 -WARP CORE+ Lib#4 Check & Splash none Lib#4 MCODE Ángel Martin

1 ED+ Enhanced ASCII File Editor FName in ALPHA Lib#4 MCODE Hp – Á.Martin

2 XEQ+ Auto-Complete Mode Initial letter, hot keys Lib#4 MCODE Ángel Martin

3 ?CASE _ _ is case value Value in prompt / Next Line Lib#4 MCODE Ángel Martin

4 RKL _ _ Enhanced RCL function Prompts for RG#. Lib#4 MCODE Ángel Martin

5 RC- _ _ RCL Subtraction RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

6 RC+ _ _ RCL Addition RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

7 RC* _ _ RCL Multiply RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

8 RC/ _ _ RCL Divide RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

9 RC^ _ _ RCL Power RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

10 RIND2 _ _ RCL IND IND (IND …) RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

11 SELCT _ selects variable RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

12 SHFL _ _ _ _ _ Stack Shuffle five stack regs in prompt Lib#4 MCODE Ángel Martin

13 R0R4 _ _ _ _ _ Register Shuffle Five Reg numbers in prompt Lib#4 MCODE Ángel Martin

14 SIND2 _ _ STO IND IND (IND …) RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

15 A<>RG _ _ Alpha Exchange RG# in prompt / Next Line Lib#4 MCODE Ken Emery

16 WARP _ _ Sub-function Launcher Index / Name at prompt Lib#4 MCODE Ángel Martin

17 SST+ Continuous SST/BST Name in prompt Lib#4 MCODE Nelson Crowle

18 Y<> _ _ Swap Y and Register RG# in prompt / Next Line Lib#4 MCODE Greg McClure

19 Z<> _ _ Swap Z and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

20 T<> _ _ Swap T and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

21 L<> _ _ Swap L and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

22 M<> _ _ Swap M and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

23 N<> _ _ Swap N and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

24 O<> _ _ Swap O and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

25 P<> _ _ Swap P and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

26 ST<>RG _ _ Stack Exchange RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

27 -STKTST Function Builder Prompts for Reg and operation Lib#4 MCODE Ángel Martin

28 ?0= _ _ Equal to Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

29 ?0# _ _ Different from Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

30 ?0< _ _ Greater than Zero test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

31 ?0<= _ _ Greater than/Equal to Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

32 ?0> _ _ Less than Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

33 ?0>= _ _ Less than/ Equal to Zero Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

34 ?X= _ _ Equal to X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

35 ?X# _ _ Different from X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

36 ?X< _ _ Greater than X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

37 ?X<= _ _ Greater than/Equal to X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

38 ?X> _ _ Less than X Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

39 ?X>= _ _ Less than or equal to X test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

40 ?Y= _ _ Equal to Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

41 ?Y# _ _ Different from Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

42 ?Y< _ _ Greater than Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

43 ?Y<= _ _ Greater than or equal to Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

44 ?Y> _ _ Less than Y Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

45 ?Y>= _ _ Less than or equal to Y test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

46 ?Z= _ _ Equal to Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

47 ?Z# _ _ Different from Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

48 ?Z< _ _ Greater than Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

49 ?Z<= _ _ Greater than or equal to Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

50 ?Z> _ _ Less than Z Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

51 ?Z>= _ _ Less than or equal to Z test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

52 ?T= _ _ Equal to T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 6 of 77

 # Function Description Input Dependency Type Author

53 ?T# _ _ Different from T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

54 ?T< _ _ Greater than T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

55 ?T<= _ _ Greater than or equal to T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

56 ?T> _ _ Less than T Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

57 ?T>= _ _ Less than or equal to T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

58 ?L= _ _ Equal to L test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

59 ?L# _ _ Different from L test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

60 ?L< _ _ Greater than L test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

61 ?L<= _ _ Greater than or equal to T test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

62 ?L> _ _ Less than L Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

63 ?L>= _ _ Less than or equal to L test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

This module also includes a VERY large set of sub-functions arranged in an Auxiliary FAT, as follows:

0 -STK SWAPS Section Header Lib#4 MCODE Ángel Martin

1 a<> _ _ Swap a and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

2 b<> _ _ Swap b and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

3 c<> _ _ Swap c and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

4 d<> _ _ Swap d and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

5 e<> _ _ Swap e and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

6 }-<> _ _ Swap |- and register RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

7 Q<> _ _ Swaps Q and registers RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

8 ?M= _ _ Equal to M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

9 ?M# _ _ Different from M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

10 ?M< _ _ Greater than M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

11 ?M<= _ _ Greater than or equal to M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

12 ?M> _ _ Less than M Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

13 ?M>= _ _ Less than or equal to M test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

14 ?N= _ _ Equal to N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

15 ?N# _ _ Different from N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

16 ?N< _ _ Greater than N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

17 ?N<= _ _ Greater than or equal to N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

18 ?N> _ _ Less than N Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

19 ?N>= _ _ Less than or equal to N test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

20 ?O= _ _ Equal to O test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

21 ?O# _ _ Different from O test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

22 ?O< _ _ Greater than O test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

23 ?O<= _ _ Greater than or equal to O test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

24 ?O> _ _ Less than O Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

25 ?O>= _ _ Less than or equal to O test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

26 ?P= _ _ Equal to P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

27 ?P# _ _ Different from P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

28 ?P< _ _ Greater than P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

29 ?P<= _ _ Greater than or equal to P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

30 ?P> _ _ Less than P Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

31 ?P>= _ _ Less than or equal to P test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

32 ?Q= _ _ Equal to Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

33 ?Q# _ _ Different from Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

34 ?Q< _ _ Greater than Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

35 ?Q<= _ _ Greater than or equal to Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

36 ?Q> _ _ Less than Q Test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

37 ?Q>= _ _ Less than or equal to Q test RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

38 -SELECT FNS Section Header

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 7 of 77

39 ?S= Equal to S test Data in sel and target Lib#4 MCODE Ángel Martin

40 ?S# Different from S test Data in sel and target Lib#4 MCODE Ángel Martin

41 ?S< Greater than S test Data in sel and target Lib#4 MCODE Ángel Martin

42 ?S< _ _ Greater than or equal to S test Data in sel and target Lib#4 MCODE Ángel Martin

43 ?S> _ _ Less than S Test Data in sel and target Lib#4 MCODE Ángel Martin

44 ?S>= _ _ Less than or equal to S test Data in sel and target Lib#4 MCODE Ángel Martin

45 NEXT increment selection SEL variable Lib#4 MCODE Ángel Martin

46 PREV decrement selection SEL variable Lib#4 MCODE Ángel Martin

47 S<> _ _ Swap Selected & Target Regs Target Reg in prompt Lib#4 MCODE Ángel Martin

48 SEL? Shows the selected variable SEL variable Lib#4 MCODE Ángel Martin

49 SRCL Recalls Value in Selected var None Lib#4 MCODE Ángel Martin

50 SSTO Stores value in selected var Value in X Lib#4 MCODE Ángel Martin

51 SVIEW Shows Selected var contents SEL variable Value Lib#4 MCODE Ángel Martin

52 -WARP FNS Shows Splash Screen none Lib#4 MCODE Nelson F. Crowle

53 A<>ST Exchange Alpha & Stack Values in ALPHA and stack Lib#4 MCODE Ángel Martin

54 AIRCL _ _ Integer ARCL Prompts for rg# Lib#4 MCODE Ángel Martin

55 AUXFAT Shows pages w/ Aux FAT none Lib#4 MCODE Ángel Martin

56 bRCL _ Buffer reg recall buffer reg# (1-5) Lib#4 MCODE Ángel Martin

57 bSTO _ Buffer reg Storage buffer reg# (1-5) Lib#4 MCODE Ángel Martin

58 bVIEW _ Buffer Reg View Buffer reg# (1-5) Lib#4 MCODE Ángel Martin

59 bX<> _ Buffer Reg Exchange buffer reg# (1-5) Lib#4 MCODE Ángel Martin

60 CPYBNK _”_:_ Copies Bank# Bank#, from-to pages Lib#4 MCODE Ángel Martin

61 DSNEX Decrement & skip if not Equal Control word in X Lib#4 MCODE Ángel Martin

62 FINDX Find register containing X Value in X Lib#4 MCODE Ángel Martin

63 FIXALL Activates Fix ALL mode none Lib#4 MCODE Ángel Martin

64 GETST _ _ Get Status Regs from File # Regs, FileName Lib#4 MCODE Ángel Martin

65 HX2ROM A_:_ From Hex code to ROM# Hex code Lib#4 MCODE Greg McClure

66 INFO$ _ Shows Function Info Inputs for Name Lib#4 MCODE Ángel Martin

67 IOBUS _ Shows Bus by category 0,1,2,3 for Page types Lib#4 MCODE Ángel Martin

68 ISLEX Increment and Skip if Equal Control word in X Lib#4 MCODE Ángel Martin

69 KAFLP _ Flips ALL Key assignments none Lib#4 MCODE Ángel Martin

70 KYFLP _ Flips Key assignments Pressed key Lib#4 MCODE Ángel Martin

71 ^LASTF _ Prompts for FName to add Buffer #9 Lib#4 MCODE Ángel Martin

72 LASTF^ Starts LastF review Hot keys, Buffer #9 Lib#4 MCODE Ángel Martin

73 POPRTN Pop RTN stack from Buffer None Lib#4 MCODE Poul Kaarup

74 PUSHRTN Push RTN stack to buffer none Lib#4 MCODE Poul Kaarup

75 ROM2HX_ _:_ _ From ROM# to Hex Code ROM id# Lib#4 MCODE Greg McClure

76 RTN? Tests for pending RTNs YES/NO, skips if False Lib#4 MCODE Doug Wilder

77 RTNS Number of pending RTNs Pust in X, Lifts Stack Lib#4 MCODE Ángel Martin

78 SAVEST _ _ Save Status Regs #Regs, FileName Lib#4 MCODE Ángel Martin

79 SFLNCH _ Sub-function Launcher-launcher Page# in Prompt Lib#4 MCODE Ángel Martin

80 ST<> Swap Stack and Regs none Lib#4 MCODE Nelson F. Crowle

81 STVIEW Full Stack View None Lib#4 MCODE Ángel Martin

82 X<I>Y Exchange IND(X) & IND(Y) Values in X, Y Lib#4 MCODE Nelson F. Crowle

83 X=YZ? Double Comparison Values in X, Y, Z Lib#4 MCODE Ken Emery

84 X=YZT? Triple Comparison Values in Stack Lib#4 MCODE Poul Kaarup

85 XEQ ‘ _ Executes CAT1 function Values in buffer Lib#4 MCODE Ángel Martin

86 XEQ$ _ Universal Execute Prompts for Name Lib#4 MCODE Ángel Martin

87 -XTRA FNS Shows Splash Screen none Lib#4 MCODE Nelson F. Crowle

88 ?MEM System Indicators Shows Memory Left Lib#4 MCODE Ángel Martin

89 0<> _ _ Register Clearimg RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

90 A<>A ALPHA Reverse Text in ALPHA - MCODE Paul Kaarup

91 ALPHB Alphabetize Sorts alphabetically - MCODE Poul Kaarup

92 BFVIEW View Buffer Buf id# in X Lib#4 MCODE Ángel Martin

93 EASTER Easter Date Finder Year in X Lib#4 MCODE Kari Pasanen.

94 WF$ _ Sub-function Launcher by Name Name in prompt Lib#4 MCODE Ángel Martin

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 8 of 77

95 LODB _ _ Load Bytes in RAM Byte codes in prompts Lib#4 MCODE Nelson F. Crowle

96 LODB+ _ _ Load Bytes in RAM Byte Codes in prompts Lib#4 MCODE Nelson F. Crowle

97 METRON Metronome Beats per min in X Lib#4 MCODE Mark Power

98 PGCAT Page Catalog Press key to halt listing Lib#4 MCODE Steen Petersen

99 POP POP LIFO Launcher shows I:A:F:X:Z:T:R Lib#4 MCODE Doug Wilder

100 PUSH PUSH LIFO Launcher shows I:A:F:X:Z:T:R Lib#4 MCODE Doug Wilder

101 PROMT Variable Prompt Number of fields in X Lib#4 MCODE Nelson F. Crowle

102 REC- Previous ASCII Record FileName in ALPHA - MCODE Ángel Martin

103 REC+ Next ASCII record FileName in ALPHA - MCODE Ángel Martin

104 REC+X Advance Record by X Fname in ALPHA, x in X - MCODE Ángel Martin

105 RSORT Sorts {R00-R03} None Lib#4 MCODE Ángel Martin

106 SSORT Sorts XYZT stack none Lib#4 MCODE Ángel Martin

107 RCL Recall regs to Stack Data in Stack Lib#4 MCODE Ken Emery

108 STO Stores Stack in Regs Data in Regs Lib#4 MCODE Mark Power

109 XIND2 _ _ X<> IND IND RG# in prompt / Next Line Lib#4 MCODE Ángel Martin

110 XROM$ _ XROM Call Decoder Program name in ALPHA Lib#4 MCODE Klaus Huppertz

111 CAT+ _ Sub-function CATALOG has HOT keys Lib#4 MCODE Ángel Martin

Pink Background: New functions in the Bank-Switched versions.

General remark about the overarching module architecture.

This project has grown substantially from the initial Total-Rekall sketches in the early module. Making

it all work in a wholistic manner hasn’t been easy, especially consideing that the code has had
multiple revisions and additions in the last couple of years, some of them obvious afterthoughts. This

somehow is a less-than-ideal implementation from the programming side, lacking an all-inclusive,

tops-down approach from the scratch. Nevertheless looking at the final results you wouldn’t notice
any negative impact of the implementation in the actual usage of the functionality.

Module Dependencies.

The WARP_Core module is a Library#4-aware module, and therefore requires the Library#4 (revision

R58 or higher) to be plugged in the calculator. It also requires the CX OS, as some CX internal
routines are used. If the Library#4 is missing or the machine is not a CX the errors will halt it to avoid

likely problems.

Also note that the WARP_Core is a bank-switched module: its footprint is only 4k in the I/O bus, yet

there are three 4k-pages involved holding the code. This is important to properly configure it using
hardware devices like Clonx/NoV_RAM or MLDL2k. For the CL board, the module id# is not

surprisingly “WARP”, and it will automatically be plugged using PLUG. Note that WRAP is not
compatible with page#6 – avoid plugging it in that location.

Note also that you should avoid plugging it together with another bank-switched module
(with a 4k footprint) sharing the same logical external port.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 9 of 77

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 10 of 77

What’s new in the 2020-23 “WARP_Core” editions?

1. The Auto-complete mode. XEQ+

If you’ve been following the evolution of the “Total_Rekall“ module you’d no doubt expect grand and
important new things of a major revision like this one – and you won’t be disappointed, because this

edition includes the all-new, long-awaited, Auto-Complete mode for XEQ functions.

When you call the XEQ+ function a new mode of execution opens up to the user; one where instead

of spelling the complete function names at the alpha prompt, only the first initial letter is entered and
the calculator does the rest for you – with a few control hot-keys to navigate the complete system

(CAT’2), from page #3 up to the top in page #F for the plug-in modules, and page #1 for the native
OS functions (in CAT’3).

This is akin to the “auto-complete” functionality popular on other systems, very useful to assist in the
selection of those available functions in the current ROM configuration. Because of the finite number

of possible options (with an absolute total maximum of 630 functions when all pages are filled up
with modules each having 64 entries in their FATs), limiting the auto-completion to the first character

is not a shortcoming, but a practical design criterion to keep the code size and execution times within

reasonable parameters.

Using Auto-Complete.

In short: the function XEQ+ starts a new mode by prompting for an initial character letter or number.

When that selection is made and after a short search time (negligible on the CL for sure) it will
present all functions currently available in the bus that begin with that letter - commencing the search

in page#3 up until page #F. The listing can be done manually (SST) or continuous (R/S), and

several navigation keys are included: jump page, back-up page, next function, previous function, next
letter, previous letter.

The initial prompt is ready to look in the plug-in section of the system bus, i.e. from page #3 up to

page #F (15d). This is indicated by a double-quotes character in the display. Note that this

representation changes automatically to a single-quotes character if the target function is located in

the O/S, i.e. for the “native” functions in CAT’3. You can use the USER key to toggle between both:

 <-->

For XROM functions, both MCODE functions and FOCAL programs will be shown:

 ;

Once you've locked on your target function simply press XEQ to execute it, or [] ASN to assign it

to the key of your choice. If you’re not sure this is your choice (say duplicates or similarly spelled

ones exist), pressing RCL will show you some vital signs of the function, such page# and XROM id#

 <-->

Pressing the ENTER^ navigation key, you can change the letter sought to the next one alphabetical,

always starting at the current page and moving upwards.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 11 of 77

Manually Changing the Searched Page.

You can move up or down one page using the + or - control keys. If no target exists in the next

page using + the engine will keep looking look in pages above it, but not so using - for the

previous page. Eventually if no function starting with the selected letter exists, a “NO MATCH”
information message will be briefly shown left-justified, and the current function will persist. You can

also force the searched page by using the EEX or [P] hot-key, and inputting the initial page to start

the search from. The same upwards/downwards behavior applies when there are no target functions

in a forced page location, using the + or - control keys for pages jumping, or the EEX key for a

forced destination:

Functions from CAT’3

The native OS functions are fully supported by the Auto-Complete engine. You can access the OS

area either by typing “0”, “1”, or “2” directly at the page prompt triggered by EEX , or decreasing

the page# using - while a function from pg# 3 is shown (provided that such first letter is also

available in the OS group, as per the previous descriptions).

In case you wonder, page#4 is simply skipped over, while pages 0-1-2 (indistinctly) default to

page#1 to include the CAT’3 functions as well – so this functionality includes the standard functions
of the calculator (such as BEEP, FACT, MOD, SDEV, etc.). This support includes their inclusion on the

LASTF list for quick access of recently executed functions.

Back-door to the Standard XEQ

The PRGM key is also active as a hot key to invoke the native XEQ function. Use it if you want to

revert to the standard OS method to access numeric labels or a local label (A-H, a-e) within a user
program, or to spell the function name in ALPHA mode; by pressing ALPHA and then spell the name

as usual. However this method is now superseded by the “Universal Execute” as will be described
later on.

Typing in Special Characters.

Lower case characters (a-e), numbers and all other key-able special chars (like %, , ^, #, $, etc.)

are accessed using the shifted keys in the standard ALPHA keyboard. Simply press the [SHIFT] key to

toggle between the upper/lower case modes:

Another option is provided pressing the / key at the main prompt, to use special characters – even

if not key-able but allowed in function names. This makes it possible to search for function names

staring with “”, the forwards and backwards geese, or all the little men just to name a few.

 “2E” =>

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 12 of 77

Automated enumeration.

If you’d rather see an automated enumeration of the options then pressing R/S will show all

functions meeting those criteria up until the end of the bus. You can quit the listing at any time

pressing any key, and then press XEQ or ASN to perform the action once halted.

The enumeration will end with the last target function displayed in the LCD – not showing the “NO
MATCH” error message in this case. At this point you are still in the XEQ+ mode, so the hot keys

continue to be available.

Note that (with the exception of the native OS group), functions are not listed in alphabetical order,

but in sequential order, as they’re found in the respective FAT’s of the modules currently plugged in
the calculator. The only condition is that they all begin with the letter chosen at the initial prompt.

Firing blanks with INFO$

If all you want to do is finding out the function’s Page# and XROM data, you can use INFO$ instead
if XEQ$. This variant will search for the (sub) function which name is typed at the prompt, and if

found it’ll show the information screen directly. Note however that the sought for (sub) function will
not be executed, nor will it be saved in the LAST-7 buffer.

INFO$ can be accessed directly from the –STKT launcher using the [SHIFT] [XEQ] shortcut.

For example, try using INFO$ on itself to find out its own function parameters:

 =>

There you go, according to that it’s the 91st. sub-function (the underscore tells that, more on this
shortly) of the WARP Core module, XROM id#=21 and currently plugged into page #7

Caveat Emptor:

For O/S functions in the mainframe this information will always show page#1 (which it’s correct) but

the rest is somewhat a “poetic license”, since they don’t belong to any plug-in ROM and therefore it
makes no much sense to refer to XROM id# or FAT indices. It’s also different from the same

information screen shown from the XEQ+ facility, as it’s shown below for the ABS function:

 ,
Where #78 indicates it’s the 78th entry in the internal address table,

 ,
Here the XR: data is not intuitively obvious to decipher but it’s related to the function code for

assignment purposes.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 13 of 77

Sub-functions are included in the search.

The latest revisions of the WARP module provide the capability to also include the sub-functions in
the search, thus they will be shown when the first-letter criteria are met. In case you are not familiar

with them, this is a special functionality present in several advanced modules than breaks the 64-

function FAT barrier of the O/S. - see the list below for details.

Sub-functions are structured in Auxiliary FATs, different from the main FAT atop of each module page.
Since they are not included in the main FATs, the O/S knows nothing about them and therefore they

are not accessible by the standard XEQ function. This means they need another way to be invoked –

and typically each of those advanced modules has at least a dedicated launcher. More about this later,
in the “Universal Execute” section.

Module Aux FAT Location Launchers # Sub-funs

 41Z Deluxe Middle of Lower page ZF$, ZF# 62

 AMC_OS/X Middle of page XF$, XF# 22

 CL X-Mem Manager Middle of page YF$, YF# 22

 Formula Evaluation Middle of page SF$, SF# 24

 X-Mem TWIN Middle of Page TF$, TF# 21

 HEPAX_4H Top of Bank-3, Middle of bank-3 HEPAX, XF$ 21 + 25

 HP-16C Simulator Middle of page 16$, 16# 62

 PowerCL Xtreme Top of Bank-3, Top of bank-4 XQ1$, XQ2$ 89 + 89

 SandMath 4x4 Middle of Upper page F$, F# 117

 SandMatrix Middle of Lower page M$, M# 63

 WARP_Core Middle of page WF$, WF# 112

 Total System Indistinct XEQ$ 729
Table 1: Advanced Modules w/ Auxiliary FATs

The sub-functions are found whether they are located in (1:) an Auxiliary FAT or (2:) a Banked FAT
atop the page – and (3:) as combination of both situations, i.e. an auxiliary FAT located at the middle
of a banked page . This last case is only used by the HEPAX modules, and it’s of relative interest

because it just includes the replica of the X-Functions – only meaningful for non-CX systems.

The representation of the Sub-functions found during the enumeration is different from that of the
(standard) Main functions: the single or double quotes character used by native and XROM main

functions respectively is replaced by:

• An underscore character if the sub-function is in the auxiliary FAT (middle of the page)

• An overscore character when the sub-function is atop of a banked page, and

• A colon/overscore character when the sub-function is atop of a second banked page

See below the examples showing main function BFCAT and sub-function DCTXT (both from the
AMC_OSX module), and with sub-functions BFVIEW and BANKS? from the PowerCl_Extreme

module (in banks 3 and 4 respectively):

 ;

 Main function Auxiliary FAT

 ;

 Banked FAT, bk#3 Banked FAT, bk#4

Note that the same punctuation convention is used in the “PG#:” and “LAST:” information screens.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 14 of 77

Executing Sub-functions.

For complete location information of a sub-function, we need to know its index# within the Auxiliary
FAT, and the address location of said Aux. FAT – which, you’d remember, may even be in a banked

page as well. With that information at hand it’s possible to direct the program pointer to the

beginning of the sub-function code for manual execution.

However, that method won’t work when the sub-function needs to be entered into a program. In that
instance the information required besides its index# within the Aux. FAT is the actual sub-function

launcher code. This is exactly how sub-functions are entered in a program directly from the XEQ+

prompt, which does all the legwork identifying the suitable launcher and proceeding by inserting two
program steps with the launcher code and the index, as non-merged parameter.

You should also check the “Searching for Auxiliary FATs” section to learn more about this subject, and

to get familiar for the sub-functions AUXFAT and SFLNCH, very handy tools to manage these
advanced structures across the entire system bus.

The Extended LAST-7 facility.

The [XEQ] operation will also add the executed function automatically to the enhanced LASTF facility,
which now holds up to seven entries (say, didn’t LastF stand for “last-five”? ;-). The storage includes

both Main functions from the O/S or plug-in modules, and Sub-functions from auxiliary FATs,
either in the main bank or in a bank-switched one. It is performed automatically and needs no user

intervention. Two new utilities allow the user to review and execute these (LASTF^), plus a manual
mode to enter main functions into the list if so desired (^LASTF).

• The first time you press the radix key you’re invoking the LASTF^ sub-function. This gives

you the opportunity to re-access the last seven functions stored in the buffer, simply use the
[SST] key to scroll the list, then press XEQ to execute it.

• Like with the [XEQ+] functions, pressing the [RCL] key here also brings up the function
information screen, showing the Page# and XROM data of the function displayed in LAST-7

registers. This is very convenient if you want to double check that it’s the right function
before executing it.

• Pressing the radix key a second time invokes the ^LASTF sub-function, which shows an

editable field to manually enter a function name for its inclusion in the Last-Seven buffer -

from where you can access it using the method described above.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 15 of 77

It’s therefore important to remark that sub-functions will also be stored in the LAST-7 buffer.
This universal coverage guarantees that *any* command accessed via the XEQ+ facility is logged in

the Lasf-7 buffer. The only restriction for their recovery is that the plug-in modules are not moved
between accesses to the LAST-7 facility. Implementing this level of coverage wasn’t trivial, and it

definitely ran into the “low of diminishing returns” – a lot of complex code to cover fringe cases – but

the end result (and hopefully user experience too) is much more complete in this way.

LASTF stepping on LAST-7 Toes – and vice versa.

The LAST-7 engine uses buffer #9 to store the function id’s. But as you probably already knew, the
same buffer is also used for the same purpose by the individual sub-function launchers available in

several advanced modules listed in table 1. These have pre-assigned locations within the buffer
registers, b1 – b7, as seen in the tables below, therefore using them will override the corresponding

entry placed there by XEQ+ . For example, using F# or F$ in the SandMath is going to use the b3

register, thus overwriting whatever was put in it previously by XEQ+ or XEQ$. The very WARP itself

can create this issue too, since using WF# and WF$ will overwrite the contents of the b5 buffer
register.

How big is the offense? Well, for NUMERIC launchers it’s a misdemeanor as both entries are

compatible, but for ALPHABETIC launchers that’s not the case, and they will likely display garbage

characters when accessed by LAST-7

Table 2.- LASTF from individual Launchers

Table 3: LAST-7 from XEQ+ / XEQ$

Note that the LAST-7 engine uses a LIFO approach to store the information, whereby the registers

are pushed up with every new entry and the last function is always in the bottom register b1.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 16 of 77

Understanding the Function Search process.

The prompt always shows the “domain” block used for the search, either the OS area or the I/O Bus:

• A single quote indicates OS area: XEQ ’

• Double quotes indicate the I/O bus: XEQ ”

• Underscore denotes sub-functions in Auxiliary FATs XEQ_

• Upper-score denotes sub-functions in Banked FATs either XEQ‾ or XEQ:‾

The search always starts in page #3 – which holds the extended functions FAT in the CX. If no
functions starting with the target letter exist in that FAT, then the search continues in page#5, and

keeps going up until page #F. Once that end is reached, the original prompt is shown if still no
targets are found, i.e. there’s no roll-over at this point.

When a function is found you can list the following starting with the same letter using [SST], which

will automatically increase the page within the domain block when the current FAT is completed. This

means it will show functions either within the OS, or within the I/O bus but not across the divide!

You can also move back to the previous function using [BST], which will also move back to the
previous page when the top of FAT has been reached. Note that it’s easy to know that the FAT

always starts at the first byte within the page, but moving backwards the code needs to determine

the end of the FAT in the previous page - by reading the number of functions in its second byte.

The figure above does not show Auxiliary or Banked FATS, yet the same functionality exists with

them for the most part. There are, however, two important differences between the [SST] and [BST]
enumeration features.

• The first one occurs when a gap is in-between pages; i.e. there’s an empty page or a blank

(page with no FAT), or no functions meeting the target criteria). In that situation the gap will
be skipped moving upwards (the code will keep trying pages up until page #F is reached) but

the gap won’t be crossed moving downwards. Note that the same consideration applies to
the [+] and [-] navigation keys: going upwards will skip blank pages (gaps) but moving
downwards will not.

• The other important difference has to do with the sub-functions. The rule is that Auxiliary

FATs are always included in the search, on either direction – but Banked FATs are only

scanned going upwards. Therefore, sub-functions in Auxiliary FATs will be enumerated in
both directions – but those in Banked FATs will be skipped going backwards.

Remember that you can always force the page# to look within, either by moving sequentially to the

next/previous page (with a target letter present in both pages in the [-] case), or by jumping directly

to a specific page# using [EEX]. This is how you can move to the OS area, i.e. pages #0 to #2:
either by pressing [-] while a function from page #3 is locked-on, or by jumping directly to any of the

first three pages (0-2).

FAT# 9 FAT #8 FAT #7 OS / CAT_3

[BST]
[SST]

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 17 of 77

2.- The Universal Execute. XEQ$_

The Auto-Complete mode is a very powerful way to “navigate” the entire system bus, looking for

functions and sub-functions using only the initial letter of their names. This is often speedier and
more convenient that the standard { XEQ, ALPHA } approach of the O/S – which requires typing

correctly the complete name, - needed to be fully known by the user.

But each situation is different and sometimes it may be more convenient to use the direct full-name

spelling method. The trouble child here are the sub-functions, invisible to the O/S and therefore not
seen by the native XEQ function – regardless of its prowess, which aren’t to be underestimated.

The solution is the new “Universal Execute“ function, XEQ$, which allows you to type main function

names, as well as sub-function names – located either in Auxiliary FATs or in Banked-switched FATs !
Therefore knowing the dedicated launcher to access a particular sub-function is no longer needed,

freeing up the casual user from that requirement for the complete utilization of the full potential of

the system.

Accessing XEQ$ is as simple as pressing the ALPHA key at the XEQ+ prompt, or during the

enumeration of the selected (sub)function. Once you do it the display will change to an editable field
and ALPHA will be active for the typing of the name:

Note: Because XEQ$ is itself a sub-function, it’s also possible to access it using the Warp Sub-
function Launchers – either numerically with WF# and its index# = 085 , or alphabetically with WF$.

XEQ$ replaces all Alphabetical sub-function launchers from the advanced modules, as it supports

manual (interactive) execution and Program entry of (sub)functions in a FOCAL program in RAM –

pretty much like its “navigator” counterpart, XEQ+

The (sub)function search commences scanning the OS and the plug-in bus for matches, i.e. pretty
much like the native XEQ except that FOCAL Labels in RAM programs will be ignored. If the name

isn’t found the code will sequentially scan all bus pages looking for Auxiliary and Banked FATs, and
scan their contents for a suitable match. During the process the display shows an information

message as seen below

 perhaps:

LASTF support of XEQ$

The most beneficial aspect of the universal execute is possibly that all functions invoked will be added

to the LAST-7 buffer for later accessibility. This includes OS functions from CAT’3, and MCODE

functions or FOCAL programs from plugged-in module. Having them saved in the buffer can become
very handy during long programs data entry.

But there’s more: like it was the case in the XEQ+ “navigator” mode, sub-functions found using

XEQ$ are also included in the LAST-7 buffer as mentioned before.

Caveat Emptor: Note that the latest revisions of the modules listed in Table-1 are needed for the

Universal Execute to work with sub-functions. Older revisions will trigger the “NO MATCH” message,
but other than that shouldn’t cause any harmful disruptions to the system.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 18 of 77

Sub-function access.

The way sub-functions are accessed depends on whether they’re being entered in a program or used
directly in manual mode.

• In PRGM mode the sub-function needs two program steps, the first one with the

corresponding sub-function launcher and a second one with the index in the auxiliary FAT.
It’s therefore up to the XEQ+ facility to identify the launcher (in the main bank of the current

page) and figure out its corresponding index within the Auxiliary FAT.

This works flawlessly even if there are two Auxiliary FATs in different banks, like it happens in the
PowerCL_Extreme and the HEPAX_4H modules (see diagrams below) – automatically selecting

the appropriate of the two launchers. This is a very robust implementation, and the program

steps entered will work as long as the module is plugged in the calculator - regardless of which
page. Not bad, if you think about it.

• In the manual case the XEQ+ facility will simply send the program pointer to the address

where the code for the called function starts, be that in a main bank or in a banked-switched

one (circumstance that will require activating the target bank previously too). This will start
the execution of the sub-function.

This case is not as fool-proof; however, consider for example that you access the sub-function

BANKED in the PowerCL_Extreme with the module plugged in page #7. As explained before, the

sub-function current address will be stored in the LAST-7 buffer for ulterior access via LASTF, but
let’s say you relocate the PowerCL module to a different page in-between, and then access the

LAST-7 engine: what will be the consequence? The old (wrong) address is stored and will
potentially play some havoc. Not a very likely scenario though, but it’s not totally impossible and

therefore it’s good to be aware of it.

HEPAX_4H POWER_CL

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 19 of 77

Note for MCODErs.

The table below shows the information stored in the 75 register fields depending on the type of
function. This information is stored there when executing the function using either XEQ+ or XEQ$,

and will later be process ed by the LASTF^ facility to show the (sub)-function name and XROM data

upon request.

Type C[MS] C[M] C[S&X]

O/S Mainframe “0” “- - - - - - 1ADR” “- - -“

XROM Main Function “0” “- - - - - - FADR” “CDE”

Sub-Function bk# (0-3) “- - - - - - FADR” “000”

Remarks:

• “FADR” is the function’s FAT entry address, and not the function’s execution address – which

could be obtained from “FADR” calling the [GTADR5] routine in the Library#4. Here the “F”
character represents the page# (or “1” for the O/S mainframe functions), and the “A”

character is either zero (for main FATs and banked FATs atop the page) or “8” for Aux FATs,
in whichever bank.

• “CDE” are the three rightmost characters of the function HEX code, which is obtained from
“FADR” calling the [FNCODE] routine located at 0xp6EA. Having this is very valuable when it

comes to executing the function: we’ll call [RAK70] in the Library#4, which works even if the

plug-in module containing the function were to be relocated between the initial XEQ$ action
and the re-call via LAST-7.

You may wonder why the information for sub-functions stored in the LAST-7 buffer is the FAT

address, instead of the combination of its launcher code plus the index#. After all, such alternative is
used in PRGM mode, so why couldn’t it also be the method for manual mode? All that would be

needed is to fill the A.X field with the index# (in hex) and send the program pointer to the launcher
function itself, right?

That would certainly work if the implementation had followed the standard method defined in the O/S
to prompt for the index parameter (using the upper bits of the function title chars)… but not such

luck! As it turns out this is a self-inflicted problem because most of the sub-function launchers do
not use said standard O/S method, but a custom one that mimics the same functionality but also

allows for ALPHA key pressing – to switch to the launcher by name version – which isn’t possible with
the OS method.

For example using WARP in the Warp module, you can either enter an index number of press ALHA

to switch to the text entry mode:

 ,

Note that ALPHA is automatically active when entering in the WF$ prompt (this saves one

keystroke). Note as well that pressing ALPHA again without any characters typed in will use the
current text in ALPHA instead. – unless ALPHA is blank, in which case the second pressing will be

ignored.

This may appear as a too subtle an enhancement to care for, but it is very useful in program mode in
order to harmonize the standard and enhanced methods.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 20 of 77

Overlays and Underlays.

The XEQ+ mode is a new way to navigate the variable environment of the calculator that doesn’t
require you know the exact function spelling, nor that you do the actual typing of the letters – but it’s

much more than an alternative for machines with defective ALPHA key ;-)

The picture below shows the available hot keys at different stages of the operation. Some are active
at the initial “A:Z” prompt – like ^:_ _ for special character input; whilst others are applicable to the

shown selection – such INFO, XEQ, and ASN.

Use the back-arrow key to restart the process or to cancel out to the OS.

The ALPHA key is used to trigger the “Universal Execute”, XEQ$. Use it if you want to type the

complete (sub)function name directly at the prompt, which enables ALPHA automatically.

The PRGM key is also active as a hot key to revert to the native XEQ function. Use it if you want to

revert to the standard OS method to spell the function name in ALPHA mode, simply press PRGM,
ALPHA and then spell the name as usual.

The operation is very dynamic and therefore not easy to describe with a static overlay. The best way

to learn is by using it a few times. Seeing is believing; try it out and chances are soon it’ll become one
of your favorites. A real keeper!

Q-Note: The Q-register contents is overwritten during the Stack Comparison in Manual mode;
 therefore, they’re meant to be used in running programs only.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 21 of 77

3.- The Enhanced ASCII File Editor. { ED+ }

Below is the article posted in the hp-forum describing the Enhanced Editor as a patch for the CX OS.

Note that the version in the Warp_Core module is fully self-contained and thus does not require
the patch, but the description is applicable to the implementation here, which is a tad more

complicated than the patch for the CX because it uses a port-dependent scheme, as obviously the
module could be plugged in any of the I/O external bus pages (8-F). This required changing the

original ?NCXQ calls to three-byte calls, with the unpleasant consequence of losing the C-register as

valid parameter-passing resource.

As a result, in the Warp_Core the code uses the stack register “L” for scratch – which means
that every time you call ED+ the contents of the LastX register will be lost. Make sure you make up

for this in your FOCAL programs if needed.

41CX: Adding Lower Case & Special Chars to ASCII File Editor.

The standard ASCII file Editor in the 41CX has no support for lower case and other special

characters. As a consequence, those chars need to be entered first in ALPHA and then manually

transferred to the ASCII file using APPCHR or APPREC; either way the user needs to exit the editor,

make the manual transfer, and call ED again.

With this patch entering lower-case and special characters is simply done by typing the designated

key from within ED itself, no need for intermediate cumbersome steps.

The special chars keyboard layout is the same one available for ALPHA mode on the OS/X Module

(and in turn on the original CCD Module) with USER off. There are two conceptual differences

though:

1. Since ED uses the USER key to move the cursor one position to the left, that key cannot be the

mode flag in this case. Activation of the lower case & special chars is done switching ALPHA off

instead.

2. With ALPHA switched off, the "native" ED uses the numeric keys to enter digits, radix and the

unary minus sign. That is not changed, and therefore imposes a design for the rest of available

choices. This forces an inverted scheme for the layout compared to the OS/X, as follows:

• Special characters are in the same positions as in the OS/X but accessed using non-Shifted

keys. The exceptions to this rule are the "little men" characters, which use letters [A], [B],

[C], and [K] instead.

• Lower-case letters are accessed using SHIFTED keys - from SHIFT-A for "a" thru SHIFT-Z

for "z". The only exception being "l" and "m", which use the non-shifted keys "L" and "M"

(as LBL and GTO are reserved for the insertion mode and go-to-record functions within ED).

Easier to use it than to describe it - especially if you have the old CCD overlay at hand. The important

thing is that none of the standard features or character layout in the original ED are altered in any

way.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 22 of 77

Patching the CX ROM.

All changes are confined within the bank-switched page of the CX-Extended Functions, i.e.

ROM_5B. If you use the 41-CL or an emulator capable of altering the OS sector (like V41), then all

you have to do is replace said ROM_5B with the new one containing the patch.

Patching instructions. Three steps are necessary:

Step #1. There are only three bytes to change in the original ED code, which is good news since that

code is 1,001 bytes long!. The bytes to change are located at 0x5F62, 0x5EF0 and 0x5EF1; where:

0x5F62 has a jump-if-carry to address 5F51 (37F JC - 17d). The jump distance needs to be changed to

point at 5F4C instead, i.e.

5F62 357 JC -22d

0x5EF0/F1 has a call to [BLINK] (265 , 020) - this needs to be replaced with a non-conditional jump

to address 0x5BF1:

5EF0 3C5 ?NC GO

5EF1 16E ->5BF1

Step #2. Next we need to add the following code at the jumped-to location (which is conveniently

empty in the original ROM), to process the key-presses and triage them accordingly:

Code:
5BDF 1B0 POPADR get calling address

5BE0 170 PUSHADR keep it in RTN stack

5BE1 03C RCR 3 move pg# to C<3>

5BE2 0A6 A<>C S&X get absolute TBL adr

5BE3 1BC RCR 11 rotate to ADR field

5BE4 066 A<>B S&X put reference in A[S&X]

5BE5 11A A=C M preserve this address

5BE6 330 FETCH S&X read KEYCODE

5BE7 2E6 ?C#0 S&X value non-zero?

5BE8 14D ?NC GO NO, Skip one line and RTN

5BE9 032 ->0C53 [SKIP1]

5BEA 23A C=C+1 M add offset until

5BEB 366 ?A#C S&X are they different?

5BEC 01B JNC +03 no, exit loop

5BED 23A C=C+1 M next addr field

5BEE 3BB JNC -09 loop back

5BEF 330 FETCH S&X get func. address

5BF0 3E0 RTN and return

5BF1 066 A<>B S&X sought-for value

5BF2 130 LDI S&X beginning of table

5BF3 3F9 CON: [LWRCAS]

5BF4 1F6 C=C+C XS "6F9"

5BF5 106 A=C S&X start of table

5BF6 37D ?NC XQ search ADDR in table

5BF7 16C ->5BDF [SRCHR1]

5BF8 02B JNC +05 [GOTCHA]

5BF9 265 ?NC XQ blink screen

5BFA 020 ->0899 [BLINK]

5BFB 3C9 ?NC GO return to main code

5BFC 17A ->5EF2 [CURSR2]

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 23 of 77

5BFD 106 A=C S&X replaced char#

5BFE 075 ?NC GO take over from here

5BFF 17A ->5E1D [VALID1]

Step #3. The code above relies on a character table that needs to be added to the ROM. We do this
in another empty section, not to disturb any existing code - as follows:

Code:
56F9 041 shift-"A"

56FA 061 "a"

56FB 042 shift-"B"

56FC 062 "b"

56FD 043 shift-"C"

56FE 063 "c"

56FF 044 shift-"D"

5700 064 "d"

5701 045 shift-"E"

5702 065 "e"

5703 046 shift-"F"

5704 066 "f"

5705 047 shift-"G"

5706 067 "g"

5707 048 shift-"H "

5708 068 "h"

5709 049 shift-"I "

570A 069 "i"

570B 04A shift-"J "

570C 06A "j"

570D 04B shift-"K"

570E 06B "k"

570F 04C "L"

5710 06C "l"

5711 04D "M"

5712 06D "m"

5713 04E shift-"N"

5714 06E "n"

5715 04F shift-"O"

5716 06F "o"

5717 050 shift-"P"

5718 070 "p"

5719 051 shift-"Q"

571A 071 "q"

571B 052 shift-"7"

571C 072 "r"

571D 053 shift-"8"

571E 073 "s"

571F 054 shift-9"

5720 074 "t"

5721 055 shift-"U"

5722 075 "u"

5723 056 shift-4"

5724 076 "v"

5725 057 shift-"5"

5726 077 "w"

5727 058 shift-"6"

5728 078 "x"

5729 059 shift-"Y"

572A 079 "y"

572B 05A shift-"1"

572C 07A "z"

572D 03D shift-"2"

572E 10C "m"

572F 03F shift-"3"

5730 021 "|"

5731 020 shift-"0"

5732 101 "pi"

5733 064 "D"

5734 05B "["

5735 065 "E"

5736 05D "]"

5737 07E "F"

5738 01F "spat"

5739 025 "G"

573A 040 "@"

573B 01D "H"

573C 023 "#"

573D 03C "I"

573E 028 "("

573F 03E "J"

5740 029 ")"

5741 05E "N"

5742 027 " ' "

5743 024 "P"

5744 022 " " "

5745 02D "-"

5746 05F "_"

5747 02B "+"

5748 026 "&"

5749 02A "*"

574A 060 "t"

574B 02F "/"

574C 05C "\"

574D 02C shift-radix

574E 03B ";"

574F 03F shift-"?"

5750 021 "|"

5751 03A shift-"/"

5752 100 upper "_"

5753 000 <end of table>

That's all there's to it folks - enjoy your enhanced ED+ !

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 24 of 77

PS. With this enhancement, it's possible to enter any formula expression used by the Formula
Evaluation module directly in an ASCII record. Refer to the following for details:
http://www.hpmuseum.org/forum/thread-862...evaluation

PPS. To *visualize* the lower-case letters in the LCD you need to use a half-nut machine, and also
apply the patch provided by JF-Garnier in the following link:
http://www.hpmuseum.org/cgi-sys/cgiwrap/...?read=1205

WARP Top-Level Overlay.

Besides the one for the XEQ+ facility, the WARP module also has a top-level overlay, which obviously

includes an entry for the enhanced Text Editor ED+, the SELCT/CASE functions, the General Stack

Comparisons facility -STKT, as well as many other functions and sub-functions from the module. All
of these will be described in the following sections of the manual.

This overlay is somehow different from the standard concept in that it also fosters a few functions

from the Formula Evaluation module. Why is that? Because combining these two modules makes a

lot of sense from the programmability and synergy standpoint, really taking the 41 environments to
new realms.

The functions from the Formula Evaluation

Module are as follows:

• IF, ELSE, ENDIF ; evaluated on

formula expressions in ALPHA –
entered with ^FRMLA

• DO, WHILE ; evaluated on formula
expressions in ALPHA – entered with

^FRMLA

• LET=, GET=, SHOW ; for direct
assignment of variables to the

Shadow buffer registers (indeed very
similar to bSTO, bRCL, and bVIEW

in this module, but featuring one

additional buffer register).

It comes without saying that clicking on

these functions without the Formula_Eval
module plugged in will only show the

corresponding XROM codes, but no actual

execution will take place. You can however
use them to enter them in a user program,

of course.

http://www.hpmuseum.org/forum/thread-8622.html?highlight=formula+evaluation
http://www.hpmuseum.org/cgi-sys/cgiwrap/hpmuseum/articles.cgi?read=1205

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 25 of 77

4.- Continuous SST and BST. { SST+ }

And to finalize the ‘What’s New’ section let’s review the latest addition to the module: a continuous

mode for the Single-Step and Back-Step functions, repeating the execution while the function key
remains depressed (auto-repeat operation).

This operation requires assigning the SST+ function to two keys, one direct for the SST operation

and another shifted for the BST case. Obvious candidates are of course the BST and SST keys on

the keyboard, since the perfect mnemonics are already there and the continuous mode replaces the
original (which is still accessible if needed simply by leaving the USER mode). This design only needs

one XROM entry in the ROM’s FAT, which is always a good thing.

Note that when using the shifted variant (for continuous BST), the SHIFT annunciator will stay on

after you release the assigned key – and you’ll need to press the SHIFT key to deactivate it (or

move on pressing a shifted key if that’s what you want of course).

The auto-repeat SST/BST mode is only active during program editing and review - i.e. when the
PRGM annunciator is on. No operation occurs if PRGM is off, showing the “NULL” message on the

display after a short while. Finally, like the native counterparts, the SST+ function is not

programmable. (Yes, you can force it into a program by pressing the assigned key without the
module plugged in, but that won’t do you any good so… don’t!).

Implementation details

SST+ makes use of a poorly documented feature of the 41 O/S called “immediate execution” (IE),

which takes advantage of the constant monitoring done by keyboard parsing routines looking for
depressed keys. If these routines encounter an IE function, it transfers the execution to it using a

shortcut to process it immediately without doing any of the usual between-instruction handlings. This
trick effectively provides an auto-repeat operation of the IE function while the key remains depressed.

The program line enumeration speed is not adjustable. It is set to a convenient response for a quick
advance or backtrack within the program code, but it’s not meant to be used for code review

purposes (too fast for that). On the 41-CL the function makes an additional pause if TURBO mode is
selected.

To make room for SST+ the functions WF# and WF$ have been consolidated into one (“WARP”)

that accepts both numeric and alphabetical inputs. So, like the native XEQ function, at the WARP _ _

prompt you can either enter a numeric value for the sub-function index, or press ALPHA followed by
the sub-function name. Note that WF$ remains available as a sub-function as well.

Credits

SST+ is based on SST^ and BST^ functions written by Nelson F. Crowle and originally available in

the NFCROM. The MCODE is much shorter than other continuous SST implementations, such as CSST
written by Phil Tri – available in other modules and formerly included in the WARP module as well but

now replaced by this simpler and easier-to-use implementation.

Note that SST+ does not work on the DM-41X because the software emulation implemented on that

machine doesn’t have support for the immediate execution functionality.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 26 of 77

MCODE Listing for SST+

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 27 of 77

General Introduction – ‘Dare to Compare’.

Welcome to unexplored territories, a journey taking the venerable hp-41 platform to places it

probably hasn't been before: meet the "Dare 2 Compare" version of the Total_Rekall module, with

the following new bells & whistles:

• Enhanced launchers and function prompts that interact with one another and are "aware" of

previous choices. Refer to the sketch in previous pages for details.

• Added a secondary FAT with 112 sub-functions, amongst them all test functions on the stack

registers {M-Q} – to complement the {T to L} set implemented as main functions).

• Automatic entering for main functions of non-merged arguments as second program lines.
For instance: Z<=T? . This feature was a must, after I learned how to do it while developing

the CLXPREGS module.

• For sub-functions, a triple-non-merged argument scheme using three program steps. For

instance: M>= IND Z?, whereby only the third parameter is entered manually.

• Added functions SELCT and ?CASE – a pseudo SLECT-CASE implementation that allows

comparison of any “variable” (i.e. register, including the stack and indirect) defined by SELCT

and stored in the buffer - with a hard value (integer) entered at the ?CASE prompt.

• New direct register exchange (not using the stack) between the register selected by SELCT

and the target chosen by S<>, also supporting indirect, stack and combination of both.
Features housekeeping utilities like NEXT, PREV, and SEL? to show, increment and

decrement the selected register variable. Useful for program algorithms to save explicit re-

selections.

• Direct comparison to zero for any register (direct, indirect, stack), with the "Zero-group"

functions. For instance: ?0# 23 , or: ?0>= IND 08. Also includes the sub-function 0<>
for a clearing register option not altering the stack.

• Implements the "emergency storage buffer" with six data registers in case you run out of
regular ones. You can store, recall, view, and Exchange the buffer registers with the X

register at any time. Also, you can use this buffer with functions PUSHRTN and POPRTN to

extend the RTN stack length.

• An all-new stack shuffle function SHFL, that allows altering the five main stack registers

XYZTL according to a register pattern entered as a five-field prompt in manual mode, or in an
ALPHA string during program execution. Selective register clearing is also possible using zero

as the register description in the strings.

• New functions to search for Auxiliary FATs (AUXFAT) and their corresponding launchers
(SFLNCH) – help you manage the advanced features in the system.

Very tricky stuff, and not simple to make it all tick at unison - but the results are nothing short of

amazing if I may say it. Reading this manual should help you digest the new functionality and
apply it to practical examples as well.

Note: To make all these additions and enhancements possible it was needed to remove the UMS

(Unit Management System) from the earlier versions of the Total_Rekall module. The UMS with
Constants Library is available in the PowerCL and PowerCl_Extreme modules. The UMS without

the constants library is also available in the dedicated “UMS Module” for those of you without a

41CL (say what? a temporary situation hopefully…)

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 28 of 77

The Sub-Function Catalog. { CAT+ }

CAT+ provides usability enhancements for admin and housekeeping. It invokes the sub-function
CATALOG; UU with hot-keys for individual function launch and general navigation. Users of the POWERCL

Module will already be familiar with its features, as it’s exactly the same code – which in fact resides
in the Library#4 and it’s reused by other modules, like the 41Z, SandMath, and SandMatrix as well.

UUThe hot-keys and their actions are listed below:

[R/S]: halts the enumeration
[SST/BST]: moves the listing one function up/down

[SHIFT]: sets the direction of the listing forwards/backwards

[XEQ]: direct execution of the listed function – or entered in a program line
[ENTER^]: moves to the next/previous section depending on SHIFT status

[<-]: back-arrow cancels the catalog

One limitation of the sub-functions scheme that you’ll soon realize is that contrary to the main
functions, they cannot be assigned to a key for the USER keyboard. Typing the full name with WF$ _

(or entering its index at the WARP _ _ _ prompts) is always required. This can become annoying if

you want to repeatedly execute a given sub-function. The LAST Function implementation described
below certainly minimizes this issue for repeat executions of the last sub-function called, without a

dedicated key assignment required.

Launchers and Last Function functionality. { WARP , WF$ }

This module includes full support for the “LASTF” functionality. This is a handy choice for repeat

executions of the same function (i.e. to execute again the last-executed function), without having to
type its name or navigate the different launchers to access it. The implementation is not universal – it

only covers functions invoked using the dedicated launchers, but not those called using the

mainframe XEQ function. The following table summarizes the launchers that include this feature:

Module Launchers LASTF Method

WARP Core -STKT _ Captures (sub)fnc id#
 RKL _ _ Captures (sub)fnc id#

 WF$ _ Captures fnc NAME

 WARP _ _ _ Captures (sub)fnc id#

 CAT+ (XEQ’) Captures (sub)fnc id#

LASTF Operating Instructions

The Last Function feature is triggered by pressing the radix key (decimal point - the same key used

by LastX) at the “ST: ” prompt. When this feature is invoked, it first shows “LASTF” briefly in the

display, quickly followed by the last-function name. Keeping the key depressed for a while shows
“NULL” and cancels the action. In RUN mode the function is executed, and in PRGM mode it’s added

as a program step if programmable, or directly executed if not programmable.

If no last-function record yet exists, the error message “NO LASTF” is shown. If the buffer #9 (used

to store the last function id# code) is not present, the error message is “NO BUF” instead.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 29 of 77

Searching for Auxiliary FATs. { AUXFAT , SFLNCH }

With the spread of advanced modules, it’s become challenging to know how many of them have
auxiliary FAT’s holding sub-functions. To assist on this subject, the WARP_Core adds two new

functions as described below.

Sub-function Launcher-launcher (no typo).

SFLNCH will scan the page entered at the prompt for Auxiliary FAT. If one is found, the

corresponding sub-function launcher will be launched, offering the user to type the sub-function
name. For example, for the Warp_Core itself:

, => ,

The input will be restricted from #6 to #F, as those are the only pages that may have a secondary
FAT. Typing any other character will simply be ignored by the function, and the prompt will persist.

If there’s no module plugged in the chosen page, or if the ROM has no FAT you’ll get the usual error

messages “NO ROM” or “NO FAT” correspondingly.

The search starts at the top of the page, looking for code structure common to all sub-function
facilities, involving the consecutive presence of several MCODE instructions. Note that depending on

the actual location of those instructions within the 4k page the search time may be long.

When the sub-function launcher code is found the function will transfer the execution to it, presenting

the ALPHA prompt for the sub-function name spelling. If no launcher code is found, the function will
show a “NO MATCH” message.

Enumeration of Pages with Secondary FATs.

AUXFAT will scan the calculator bus looking for auxiliary FATs in all the pages, starting with pg# 6. A

list will be compiled and presented when the scanning has completed (i.e. all pages until pg# F have

been searched).

For example, with the WARP_Core and the Formula_EVAL modules plugged in, the function returns
the following result (which is helpful to find out on which pages are meaningful for SFLNCH):

AUXFAT will “see” the secondary FATs from the PowerCL and the HEPAX_4H modules, even though

they are is in a bank-switched page. It will not however see the original HEPAX secondary FATs. Note

also that AUXFAT is itself a sub-function, and therefore needs to be called using WF$ (or WF# with
index #045)

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 30 of 77

The main Function Launcher { –STKT }

Considering the number and nature of the functions included in this module it isn’t surprising that the

launcher method has been once again the chosen approach. You can access any of the stack swaps
and test functions with a few keystrokes using a single function, the “Function Builder” -.

The driving parameter for the function is the stack register, thus the expected input at the ”ST _”
main prompt is to be the corresponding stack register letter {X, Y, Z, T, L, M, N, O, P, Q,} – which will

be placed on the left side of the display in a second prompt to chose the specific action to perform.

Once the stack register is chosen, the second prompt offers a selection of options in a menu-like

fashion with two screens toggled by the SHIFT key to fit the seven choices available:

 -→

Once the individual register is selected, a common feature in all functions is that the prompt accepts
IND _ _ , and ST _ arguments using the SHIFT and RADIX keys as with the native OS implementation.

The combined IND ST _ is also allowed of course.

Dynamic Register Update: the “NEXT” choice.

Pressing the [SST] key will update the function builder main prompt; changing the source register
sequentially in a cyclic sequence each time [SST] is pressed. This saves time and keystrokes, making

it easier to use in spite of its comprehensive functionality. Note also that pressing the back-
arrow will revert back to the main prompt, requesting a register to start the process.

Where are the upper status registers? {“a” to “e”}

All 16 stack register swaps are available, either as main functions or in the auxiliary FAT as sub-
functions. This is the case of the upper stack registers {a-e}, that can be accessed directly from the
main launcher pressing the corresponding top-row key. Just be careful with these!!

Because of their relative small practical application, the tests of the upper status registers were

replaced by the Zero-testing set, You can still use them as the second argument at the stack

addressing prompt, for instance you could do: T<> a, or: Z<> c if wanted.

Special Guest “Zero”

In addition to the 10 stack registers mentioned before you can also enter zero “0” at the main

“ST_“ prompt to invoke the Zero-comparison test function – so considered it to be the invited guest

to the stack for these purposes. Note this is not Data Register R00, but the value “0” for the
comparison. Note also that swapping with “zero” brings the current reg. value to X besides clearing
the chosen register.

Reversed RPN Logic?

Contrary to the standard native functions on the 41 OS, all the individual test comparison functions

feature the question mark at the beginning of its name. This is just a nomenclature choice but has no

bearing on the actual operation of the functions. In a program the same “Skip line if False” rule
applies if the test result is not true, whereas in manual mode the “YES’/’NO” messages will be

triggered for the True/False cases as usual.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 31 of 77

The “Total_Rekall” Dilemma . { RKL }

One of the obvious shortcomings of the HP-41 OS is the lack of RCL math functions: even if they are

less necessary than the STO math and perhaps easily replaced by combination of other standard

functions, it is a sore omission that has been the previous subject of different implementation
attempts to close that gap.

The first component is naturally the addition of individual RCL math functions, like RC+, RC-, RC*,

RC/ and RC^(the bonus one). These can be written without much difficulty, even supporting

INDirect register addressing, but with two major restrictions:

1. Operating in manual mode only, and
2. Excluding the Stack registers from the register sources.

The first limitation can be overcome using the non-merged function approach, whereby the argument
of the function in a program is given in the next program line following it. This is stack-neutral so

doesn’t interfere with the intermediate calculations.

To solve the stack addressing one needs to resort to heavier wizardry, basically writing extra code to
replace the OS handling of the prompting in these functions – which is based on the PTEMP bits of

the function name. The custom prompting is therefore completely under the control of the function,
and not facilitated by the OS. It is arguably a small net benefit compared to the required effort, but
as the only remaining challenge it was well worth tackling down.

Once the technique was developed it was relatively easy to apply to other functions, like the stack

exchange and comparison tests – if you can you envision instructions like: “Y<> IND M”, or “Z<=N?”

to give just two examples. Unfortunately, the Library#4 was already full, so the subroutines are only
available on this module.

RCL Math on steroids: The Extended RKL Launcher.

In addition to the four “standard” arithmetic operations this module includes RC^, for the Recall

Power function – which will calculate the REG-th. power of the value in X, i.e. X= e^(RG# * ln X).

The other additional case is AIRCL, which will append to ALPHA the integer part of the value stored
in the data register. It also supports the stack and indirect values, such as IND ST X.

All RCL functions feature a prompt lengthener to directly access registers in the 100-111 range. You

can activate this by pressing the EEX key at any of their prompts. Note that from 112 and up you’ll

be either accessing Stack registers or INDirect addresses, as shown in the next pages (see table 1.1)

In terms of usability, note that you can switch amongst the five RCL math functions pressing the
corresponding arithmetic key at their prompt. You can also revert back to the RKL function simply

pressing the [SST] key twice during any of their prompts (this toggles between the RKL group and
the main launcher described in the following section).

To save program bytes, RKL will automatically revert to the standard RCL when entered as a
program step. Lastly, you can manually revert to the native RCL pressing the [RCL] key again at its

prompt. When you do this in program mode the standard OS is used for efficient line entering of the
standard cases, i.e. RCL 27 in a single program step as opposed to using the non-merged approach.

More on this subject later on.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 32 of 77

Programmability: arguments Look-up Table

All functions and sub-functions are fully programmable. When entered into a program the argument
will be automatically entered as a second program line after the main function. This line will not be
executed; rather the function will read the value during the program execution. Note also that this

works seamlessly for direct data registers up to R111, with no need for manual adjustment for
extended range, INDirect and Stack register arguments (refer to the table below for details).

For INDirect registers 80 Hex (or 128 dec) is automatically added to the register number.

Examples: Z<> IND 25 => Z<> followed by 152

 RC/ IND 16 => RC/ followed by 144

For Stack arguments 70 Hex (or 112 dec) is automatically added to the “Stack index” number.

Examples: Z<> T => Z<> followed by 112 (T index = 0)

 RC+ Y => RC+ followed by 114 (Y index = 2)

For combined INDirect Stack arguments, F0 hex (or 240 dec) is automatically added to the stack

index, or 240 decimal

Examples: Z<> IND Z -> Z<> followed by 241

 RC* IND M => RC* followed by 243

The table below shows the transition zones graphically:

Table 1: Register index mapping.

A few exceptions to the rule.

A couple of functions in the module do not allow stack arguments in their prompts. These functions

are A<>RG and ST<>RG. You can use any register number and INDirect addressing but not Stack
registers as the destination – neither the combination IND ST even if it is possible to invoke it. These

functions use the standard method provided by the OS to build the prompts, which as it was

mentioned before lacks the complete flexibility offered by the newer functions.

Warning: Be aware that the merged lined will not be automatically created for these two functions. If
you enter them in a program, you must add the argument manually as an additional program step.

Argument Shown as: Argument Shown as: Argument Shown as:

100 00 112 T 124 b

101 01 113 Z 125 c

102 A 114 Y 126 d

103 B 115 X 127 e

104 C 116 L 128 IND 00

105 D 117 M 129 IND 01

106 E 118 N 130 IND 02

107 F 119 O 131 IND 03

108 G 120 P 132 IND 04

109 H 121 Q 133 IND 05

110 I 122 |- 134 IND 06

111 J 123 a … …

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 33 of 77

Direct Register Comparisons.

A fact that may be easily overlooked is that besides doing intra-stack register comparisons, these

functions also allow direct comparison of any of the main stack registers with any data register in
RAM. Furthermore, the Zero group allows direct comparison with zero on any data register as well,

not just the stack.

This provides more flexible programming choices, saving programming steps and keeping the stack

unaltered as there’s no need to bring the register content to X/Y in order to make the comparisons.

Some examples:

?X< 13 => is R13 > X? ?0# 05 => is R05 different from zero?
?T>= 16 => is R16 <= T? ?0> 11 => is R11 less than zero?

Example: Armed with these new functions bubble-sorting the stack is a fairly simple task – as long

as you remember that multi-line functions cannot be directly placed after a test:

01 LBL “STSRT

02 X>Y?

03 X<>Y

04 ?Y<= (Z)
05 GTO 00

06 Y<> (Z)
07 LBL 00

08 ?Z<= (T)
09 GTO 00

10 Z<> (T)
11 LBL 00

12 X>Y?
13 X<>Y

14 ?Y<= (Z)

15 GTO 00
16 Y<> (Z)
17 LBL 00

18 X>Y?

19 X<>Y
20 END

Be aware that in program mode the function arguments will be automatically added as non-merged

steps – this will be described in the following pages.

Stack Exchange vs. Test Functions

There is no fundamental difference in the eligible stack registers for exchange functionality vs. direct
comparisons. All the status registers except the “lazy-T” }-(10) have the same set, although some

functions are in the main FAT, and some others are in the Auxiliary FAT. This is again due to the

limited number of entries in the FAT, which imposed some selection between registers, based on
likely importance and usability.

In terms of functionality, the table below shows the available choices for a direct approach, and

which ones are only available indirectly, as a second argument of the particular function.

Register Exchange Tests Register Exchange Tests

X Main Main Q Sub-fcn Sub-fcn

Y Main Main |- Sub-fcn Indirect

Z Main Main a Sub-fcn Indirect

T Main Main b Sub-fcn Indirect

L Main Main c Sub-fcn Indirect

M Main Sub-fcn d Sub-fcn Indirect

N Main Sub-fcn e Sub-fcn Indirect

O Main Sub-fcn “0” Sub-fcn Main

P Main Sub-fcn Rnn Main Indirect

Lastly, non-stack Data Register swapping is missing from this set, but it’s not forgotten - it’s the

subject of the next sections.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 34 of 77

General-Purpose Comparison with SELCT / ?CASE

Perhaps the most versatile approach for register comparison is provided by the combination of

functions SLCT and ?CASE. With them you can test any register (chosen using SELCT) against a
fixed integer value – which is provided as the argument for ?CASE.

The variable chosen by SELCT is stored in the header of buffer id#7 (the same one used for the
“emergency storage” information). This may be a direct data register number, a stack register (adds

70 Hex), an indirect register (adds 80 Hex), or the combination of both (adds F0 Hex). Refer to the
table in previous section for details. This is done automatically by the function, totally transparent to

the user.

 or:

In program mode the variable for SELCT and the comparison value for ?CASE will be introduced as
non-merged lines in program step following the main function – which is consistent with the other

functions seen before that use the same schema. Note that comparison values are positive integers
only.

If no variable has been selected previously, ?CASE will default to the X register (i.e. id# 73 Hex or
115 decimal – again no need for you to be concerned with that detail). Pressing [VIEW] at the SLCT

prompt will show you the current variable stored in the buffer.

The variable will therefore continue to be in effect until another SELCT statement is used. This will
allow you to make repeat comparisons without the need to have to recall the reference in every

instance – and also without the need to have both the reference and the variable in the stack.

For example, to compare the value of data register R05 with the values 1,2,3 you’ll use these

instructions, which can be interspersed amongst all your program code (note that there’s no need for
an “END SELECT”-like instruction):

SELCT 05 loads the reference in buffer

?CASE 1 tests if R05=1?
Yes

No

…
?CASE 2 tests if R05=2?

Yes
No

….
?CASE 3 tests if R05=3?

Yes

No
…

Note that the comparison value is directly provided in the prompt, and that a “by reference”
comparison is not allowed (i.e. using a data register instead).

As the question mark would suggest, ?CASE is a typical test function that will follow the “do if true /
skip if false” rules when running in a program – or show the familiar “YES/NO” in manual mode.

Remember not to place a non-merged function directly *after* a test function – doing so will create a
problem as the OS does not recognize the non-merged steps as part of a single function!

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 35 of 77

General-Purpose Exchange with SELCT / S<>

In a parallel implementation to the previous subject, you can also use the SELCT schema combined

with the sub-function S<> to perform a data register exchange directly, i.e. with no need to bring
either of their contents to the stack – which is so left undisturbed.

The advantages are clearly seen: the stack is not altered, and the same selected variable-register can
be used for both case-equal comparison and register-exchanges. Both together offer possibilities to

the smart FOCAL programmers, never too late to learn new tricks ;-)

 Defines the selected variable-register Defines the target register to exchange.

Like SELCT itself, S<> also supports indirect addresses, Stack addresses and combination of both –

thus you could do flexible register exchanges, such as: IND ST M <> IND 34.

Here too the same table of parameters shown in figure-1 applies – refer to that table for details.
Remember that the indirect reference will change if you alter the content of the register that holds

the register pointer.

Showing and Recalling the selected variable.

If you’re not sure which is the selected variable you can press [R/S] at either of these function’s

prompts to invoke the SEL? Function – which recalls its value to the X-register, and in manual mode
also to the display.

• SEL? shows the value currently selected. If no selection has been made the default value
shown is the X register. Note that the selection of a variable does not require that the

register exists at that point – the existence checks will be done when trying to access the
contents of said register.

 or:

Increasing and Decreasing the selected variable.

These sub-functions are related to the SEL# variable set by SELCT, as follows:

• NEXT and PREV increment and decrement the selected variable by one. No decrement will
occur if the selection is R00. No changes will be made if no selection exists (which defaults to

Stack “X”). These functions are very useful during program control for sequential access to

different registers as selected variables. In manual mode the information message will show
the new setting, as if SEL? had been invoked as well. Note that the stack will remain

unchanged, i.e. these functions don’t recall the updated value to the X-register.

Remark that NEXT/PREV have effect on the register number stored in the buffer header (i.e. the “S”

variable), but not on the actual register contents. Also note that if an indirect or stack register is
selected then the next/previous value is dictated by the “natural” register sequence, i.e. Stack_L

comes after Stack_X, etc.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 36 of 77

Value Comparison tests with selected variable.

Similarly, using the provided sub-functions you can compare the contents of the selected variable

with any “target” register of your choice entered at the prompt. Like all tests functions in manual
mode “YES/NO” is shown depending on the true/false condition; and in a running program one

program line will be skipped when false, or when true it will continue with the line following the sub-
function merged lines (which there’ll be three of them as these are sub-functions!).

Note that the equal-to comparison ?S= is different from ?CASE; in both instances it is the content of

the selected register what gets used as first value (i.e. “by reference”) , but the second value differs:
in the equal-to case it is the content of the target register being compared, whereas for ?CASE the

comparison is against the value provided at the prompt (i.e. “by value”).

Let’s for example compare the contents of data registers R04 and R05. If we choose R05 as the
selected variable, then R04 becomes the “target” to compare against, i.e. showing all the parameters

as non-merged program steps:

01 SELCT (05) 01 SELCT (05)

02 5 02 5
03 WF# 03 WF#

04 40 04 42
05 4 ?S< 04 05 4 ?S> 04

06 Yes 06 yes
07 No 07 no

The surrogate Stack Register “S”.

All of the variable comparison functions, as well as the exchange S<> and ?CASE have been

grouped under its own section within the main launcher –STKT. Either by pressing ”‘S” or moving
about the stack registers letters using [SST], the surrogate S-register screens offer the same

functionality as the standard stack registers, as shown in the pictures below:

 -→

Note how this U/I has the same look & feel as the other stack registers. The fact that all the choices

are sub-functions is completely transparent to the user – with the only exception of the need to

manually add the parameter line in a program as described before in the manual.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 37 of 77

Connecting “S” with RKL

We have just seen that even though “S” isn’t a proper stack register it can certainly be handled as if it
were. This metaphor has been extended (but not stretched) to include support for “S” as option of

the RKL prompt, when the radix key is used for the stack registers. Thus, the contents of the current

selected register can be recalled in this way – which also includes the IND addressing and the RKL
math operations as well.

 or:

Note however that in program mode the RKL instruction will be registered using the actual selected

register number as parameter in the second line – not as a variable but as its actual value at the time
when the instruction is entered in the program.

You can, however, use the sub-function bRCL instead (with parameter zero) – which will use the

selected register in a running program, and thus it’s completely equivalent to RKL “S” also in program
mode. The caveat is the lack of IND and math operations in this case.

Using bRCL will be covered in a later section of the manual. For the time being just remember that,
both in manual and running program modes:

 =

Storing, Recalling and Viewing the contents of “S”

You can always use the standard RCL, STO and VIEW instructions to recall, store and view the

contents, but that requires knowing the value of the #SEL variable itself to use it as parameter. An
easier way is also available with the sub-functions SRCL, SSTO and SVIEW - which don’t need you

to have such knowledge beforehand. Therefore, here’s another equivalence for you:

 =

The SRCL, SSTO and SVIEW sub-functions operate on the register which value is stored in #SEL.

Therefore these four keystroke sequences are equivalent:

 01 SEL? 01 RKL “S” 01 SRCL 01 bRCL 0

 02 RCL IND X (not in a PRGM !)

Note: If you prefer it, the “S” parameter designates a sort of indirect destination of the operation –
as it’ll use the data register which value is stored in #SEL variable. Yet it’s also possible to use IND if

you access it via RKL, like in “ RKL IND S” – which could also be considered as a double indirection
from a strict point of view.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 38 of 77

Examples: Data Registers Bubble-Sort

The programs below show two practical examples of the new functions for data register sorting. Note
the use of the non-merged program steps and the workaround required in the conditional tests to

avoid jumping in-between non-merged lines. The second main label uses the control word bbb.eee in

X to delimit the data registers range, whereas the first will use all the data registers currently
available in the calculator.

01 *LBL “SRTALL” all registers

02 SIZE? Get current size

03 DSE X get last reg index
04 E3 format it

05 /

06 *LBL “SRTRGX” bbb.eee in X

07 *LBL 01 main loop
08 ENTER^ push cnt’l word to Y

09 ENTER^ push it one more
10 SELCT (IND Y) select ind(bbb)

11 242

12 ISG X bbb+1
13 GTO 00 skip until end is reached

14 RTN all done.
15 *LBL 00 inner loop

16 WF# (?S>= IND X) use the reverse test and a
17 43 forced GTO to avoid jumping

18 243 in between non-merged steps:

19 GTO 00 true, jump over
20 S<> (IND X) false, swap registers

21 243
22 *LBL 00

23 ISG Y

24 SELCT (IND Y) update selected register
25 242 (cannot use NEXT !)

26 ISG X update comparison register
27 GTO 00 repeat inner loop

28 X<> Z recall control word
29 E-3 decrease upper limit

30 -

31 GTO 01 repeat main loop
32 END end of program

Another approach for the all-registers case is shown below, using the NEXT instruction to update the

selected register directly – as opposed to the indirect way in the previous example.

01 *LBL “SRTALL2”

02 SIZE?
03 DSE X

04 E3

05 /
06 *LBL 01

07 SELCT (00)
08 ENTER^

09 ISG X

10 GTO 00

11 RTN

12 *LBL 00
13 WF# (?S<= IND X)

14 41

15 243
16 GTO 00

17 S<> (IND X)
18 243

19 *LBL 00

20 WF# (NEXT)

21 45

22 ISG X
23 GTO 00

24 X<>Y

25 E-3
26 -

27 GTO 01
28 END

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 39 of 77

Tinkering with ISG and DSE: complement modes.

In the previous examples we have used the ISG function to increase the pointers to the data registers

being compared. The code is a bit inefficient because the termination conditions are the opposite to
the implemented in the standard ISG and DSE functions – i.e. here we loop while the condition is

FALSE, which requires an additional GTO step to skip the RTN.

The complement functions are defined as follows:

• ISLEX “Increment X and Skip if Less or Equal”, and
• DSNEX “Decrement X and Skip if Not Equal”.

In both cases they only work on the X register, which is expected to have a control word in the form
bbb.eee:ii , like the standard ISG and DSE. If the increment is not given (zero) the default value used

is ii=1.

Using ISLEX instead of ISG X in the example programs will change the code to this:

06 *LBL “SRTRGX” bbb.eee in X

07 *LBL 01 main loop
08 ENTER^ push cnt’l word to Y

09 ENTER^ push it one more
10 SELCT IND Y (242) select ind(bbb)

11 ISLEX (WF# 68) bbb+1

13 RTN all done if (bbb+1) > eee
15 *LBL 00

16 …

And similarly, in SRTALL2:

 06 *LBL 01
07 SELCT (0)

08 ENTER^
09 WF# (ISLEX) bbb+1

10 68

11 RTN all done if (bbb+1) > eee
12 *LBL 00

13 …

Another approach to deal with this contingency would have been using the SKIP function, available
in some extension modules. When placed in the TRUE position it basically defeats the “do if true” rule,

shifting the decision by one program step:

ISG X

True
False

…

ISG X

SKIP
False

…

ISLEX

(Un)True
(Not)False

…

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 40 of 77

Have we re-invented these wheels?

Certainly, there’s some overlap between the new functions and the set included in the CX X-Functions,

as shown on the table below:

CX-Function X=NN? X#NN? X<NN? X<=NN? X>NN? X>=NN?

WARP fnc. ?X=IND Y ?X# IND Y ?X< IND Y ?X<= IND Y ?X> IND Y ?X>= IND Y

However, the similarities end there - as the new functions expand the number of choices beyond the

“IND Y” case, have a prompting U/I and perhaps most importantly they don’t require altering the

contents of the stack to perform the comparisons. Also in terms of byte usage both schemes are
comparable, as the CX functions require at least one byte in Y to be used for register argument.

In terms of the Data Register exchange, there are also a couple of alternatives within the standard CX
functions or other modules to perform equivalent actions, such as:

• Rnn <> Rkk can be done with REGSWAP, using nnn.kkk in X

• Rnn <> Rkk is also possible with X<I>Y, with “nn” in Y and “kk” in X (or vice-versa).

Which depending on the data register numbers may be more or less favorable in terms of byte count;

see for example exchanging R10 and R25 below using the three approaches:

SELCT 10 10,025 10, ENTER^

S<> 25 REGSWAP 25, X<I>Y

8 bytes, no stack 8 bytes, X used 7 bytes, both X,Y used

Compatibility with other Prompt Lengthener alternatives.

A more interesting comparison can be made with the other implementation of the Extended Prompts,

like the ZENROM does using the EEX key, or even the Prompt Lengthener feature in the AMC_OS/X

Module using the ON key.

For these two implementations, the second byte of the RCL is added to the same instruction in a
program, i.e. RCL 111 will be displayed as “RCL J”, and similarly RCL 127 will show as “RCL e”. This

is clearly more efficient in byte usage; however it does not support the RCL arithmetic operations
allowed by this module.

Note that the OS/X Prompt lengthener is only triggered with the standard OS-provided functions, and
therefore won’t appear at the custom prompt offered by “RKL _ _” or “RIND2 _ _”; nor by the

ZENROM’s after you have pressed the EEX key, i.e. “RCL 1_ _”. Pressing the ON key in those

instances will just turn the machine off.

But you can have it both ways: if you have the OS/X Module plugged in (as every power user

should :-) you can take advantage of this method by pressing again the RCL key at the RKL _ _

prompt: as mentioned before, this will revert to the standard RCL _ _, and then press ON to extend

the field to three digits and enter “1xx” directly.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 41 of 77

Say what, one-thousand registers?

It is also possible to press the EEX key while the OS/X extended prompt is up, which would add

another field to it and so appearing to allow choices of data registers above 999 – if it weren’t for the
fact that such a thing can’t physically exist on the normal machine (the 41CL is a different story). See

for example the examples below, calling for a data register above 1,900:

 or:

If you did that in PRGM mode, say entering 1900 in the prompt, surprisingly the end result turns out
to be “RCL G” – which equals RCL 108. This can be explained by the (apparently unrelated) fact that

MOD(1900, 128) = 108, i.e. we’ve gone full circle in data registers parlance.

Program Example – Congruence Equation

The program below is a direct translation of the original written by Thomas Klemm for the HP-42.

See http://www.hpmuseum.org/forum/thread-1116.html

It solves for x in the equation: A * x = B mod N

The only changes pertain to the RCL math steps located at lines 14, 19, 22, and 68: simply add the
register number as a second line after the RCL function as detailed in the table shown in page 7. (You

can omit it on the case of zero).

Example: 5 * x = 3 mod 17

Solution: 5, ENTER, 3, ENTER, 17, XEQ "CONG" => 4

http://www.hpmuseum.org/forum/thread-1116.html

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 42 of 77

The Double Indirection: A solution in search of a problem?

Arguably a double indirection capability may be seen more as an extravaganza than as a useful

feature. After all, how many times have you encountered a situation where the indirect index was
itself depending on another variable, and doing so in a counter-like fashion?

Well those situations do exist, more often than none and with increased likelihood as you get into
advanced algorithms and matrix applications – but I won’t tire you with examples; rather here are

functions SIND2, RIND2 and XIND2, which perform a double STO/RCL/SWAP IND IND _ _

Enough to make your head spin a little, right? – Then you should try the TRIPLE indirection, available

when you hit the shift key at that stage, ie:

SIND2 IND _ _ = STO IND IND IND _ _ (Main function)
RIND2 IND _ _ = RCL IND IND IND _ _ (Main function)

XIND2 IND _ _ = X<> IND IND IND _ _ (Sub-function, thus needs WF$ to launch)

These functions use two (or three if SHIFTED) standard data registers to hold the arguments of the

data register where the value is to be recalled from (RIND2), stored into (SIND2), or exchanged with
stack reg X (XIND2). Better keep your register maps handy!

Going over the top: Multiple Indirection

Interesting things happen if you keep pressing the [SHIFT] key - as these functions support a
multiple indirection pattern that allows redirecting the target registers as many as 10 levels (and

beyond). The function prompt will change to reflect the current level, with a combination of even
values and their IND options. For example, pressing [SHIFT] at the RIND2 IND _ _ prompt will bump

the counter to:

, and then: ,
Followed by the screens shown below in a continuous sequence:

, and then:

Example: assuming the following registers contain the values shown below:

R10 = 0;
R00 = 3;
R03 = 5;
R05 = 7;

R07 = 

Then we have:

RCL 10 = 0
RCL IND 10 = 3
RIND2 10 = 5
RIND2 IND 10 = 7

RIND4 10 = 

RIND4 IND 10 = 5
RIND6 10 = 7 , etc…

Note that this functionality is restricted to manual mode only, and when this function is used in a
running program it’ll be limited to a double indirection (or triple in the IND case).

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 43 of 77

Application Example: Bubble Sort without data movement. (By Greg McClure)

;

; FIXED SORT -- Gregory J. McClure

;

; Does a non-destructive bubble sort of registers specified in another

; set of consecutive pointer registers. The data to sort is not moved,

; but the pointer registers will be changed to reflect the numeric

; order (ascending) of the values indirectly pointed to by them.

; R00 thru R02 are used by the program.

;

; Example: R03-R06 contain 10, 12, 15, 18.

; R10, R12, R15, R18 contain the data to sort (4, 3, 2, 1).

; X contains 3.006 as descriptor of pointer register set, then SORT is run.

; When done, SORT will change R03-R06 to contain 18, 15, 12, 10.

; R10, R12, R15, R18 will be unchanged.

;

01 *LBL "SORT"

02 *LBL 10

03 STO 00 ; 1ST VALUE POINTER

04 STO 01 ; 2ND VALUE POINTER

05 ISG 01

06 STO 02 ; SAVE 1ST POINTER

07 *LBL 00

08 RIND2 ; TTRKALL DOUBLE IND READS

09 1

10 X>Y?

11 GTO 01 ; SKIP SWAP

12 RCL IND 00 ; RECALL POINTERS

13 RCL IND 01

14 STO IND 00 ; REVERSE POINTERS

15 X<>Y

16 STO IND 01

17 *LBL 01

18 ISG 00 ; BUMP VALUE POINTERS

19 ISG 01

20 GTO 00 ; MORE TO COMPARE

21 RCL 02 ; GET CURRENT POINTERS SET

22 E-3

23 -

24 ENTER^

25 INT

26 1.001

27 *

28 X=Y?

29 GTO 02 ; DONE

30 RCL 02

31 GTO 10

32 *LBL 02

33 "DONE"

34 AVIEW

35 END

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 44 of 77

Appendix.- A trip down to Memory Lane.

From the HP-41 User’s Handbook.-

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 45 of 77

Say what, a Dynamic Display? The FIX ALL functionality.

Much more than a cosmetic affair, the ability to present only the non-zero decimal digits of a number

has the value to provide additional information on the result: to the limit of the calculator resolution
there are no further meaningful digits after the shown ones.

The FIX ALL feature is activated when you execute FIXALL (no arguments needed), and remains
active until you change the display setting again using the standard FIX, SCI, or ENG functions.

Note that the representation will apply to the mantissa of the numbers, even if their exponents

exceed E9; obviously limited by the numeric range of the calculator – which for the HP-41 is:

] -1 E100, -1 E-100 [{+}] 1 E-100, 1 E100 [

In case you’re curious, the algorithms used by FIXALL are described below. You’re also encouraged

to check the SandMath Manual – an excellent reference for the design criteria for the RCL math
functions. Note also that contrary to the SandMath’s case, on this module the I/O_SVC interrupt

polling technique is not used to link the standard RCL function with its extensions or the RCL Math

sub-functions. No need for that, since a dedicated RKL replacement is used instead of the native one
and our code takes complete control of the keyboard actions.

Formulas used – A general algorithm.

BCD numbers on the 41 platform are represented in the registers using the following convention:

 "s|abcdefghij|xyz",

with one digit for the mantissa sign, 10 digits for the mantissa, one for the exponent sign and two for

the exponent. This enables a numeric range between +/- 9,999999999 E99, with a "hole" around
zero defined by the interval:]-1E-99, 1 E99[

Let z# = number of mantissa digits equal to zero, starting from the most significant one (i.e. from
PT=3 to PT=12). Then the fix setting to use is a function of the number in X , represented as follows:

1. If number >=1 (or x="0") - Let XP = value of exponent (yz). Then we have:

 FIX = max { 0 , [(9-z#) + XP] }

2. If number < 1 (or x="9") - Let |XP| = (100 – xyz) . Then we have:

FIX = min { 9 , [(9-z#) + |XP|] }

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 46 of 77

Stack Shuffling, Sorting, and selective Editing. { SHFL }

There are several functions in the native set to handle the stack registers, and certainly this module
adds its dose of extensions and additions to the set, with the swap functions in particular being the

best exponent. Many ways to skin this cat, but just in case you longed for more abstraction the

function SHFL provides a general-purpose way to perform bulk stack alterations in a very convenient
manner.

, i.e:

SHFL prompts for five stack register letters, including the main XYZTL registers, or the Alpha
registers MNOP, or even the Q register. Once the prompt is filled the contents of the main stack will

be changed to reflect the sequence defined in the prompt. A few examples will clarify:

SHFL: XYZTL leaves things unchanged – i.e. the “do nothing in 10 bytes” choice.

SHFL: YZTXL performs the equivalent to RDN
SHFL: TXYZL is equivalent to the standard R^

SHFL: XXXXL fills the stack (except L) with the value in X

Other combinations will require two or more standard instructions or may not be easily possible
without adding several of them – especially if you include the ALPHA registers to the choices. In this

regard, the prompt allows Q(9) and the ALPHA registers as inputs, although a few considerations

must be made:

- Register M is always used to hold the master string itself.
- Registers N,O,P are widely available.

- Remark that you’ll be doing the equivalent to STO, but not to ASTO

- Register Q(9) is usually compromised, as it’s used as scratch by the OS

Additionally, and continuing with the ‘ZERO’ theme as surrogate stack option - you can also use the
digit zero “0” in the input prompts. This has the effect of clearing the corresponding stack register

during the execution of the function. For example:

SHFL: 00000 is equivalent to CLST, STO L

SHFL: YX00L is equivalent to X<>Y, RDN, RDN, CLX, RDN, CLX, RDN, RDN
SHFL: ZZT0P copies Z to X,Y, T to Z, clears T and puts P in the LastX

But wait, there’s more: in the latest revision the function also allows numeric digits in the prompt,
using [SHIFT] followed by the corresponding number key (0 – 9). This comes very handy to populate

the stack registers en masse, useful for index setting, etc.

 -> will enter 1 in X, 2 in Y, 3 in Z, etc…

Undoing the Stack re-arrangements

Pressing the [USER] key at the first prompt will undo the last stack re-arrangement, restoring the
contents it had before the previous execution of SHFL. In manual mode this will be shown as follows:

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 47 of 77

A Data Registers Shuffle. { R0R4 }

We’ve learned that entering numbers in the SHFL prompt is a shortcut to input those integer values

in the stack registers on the fly, while doing the actual re-sorting. Thus, they’re not to be confused
with Data Register numbers. R0R4 is the function to use if what you need is to re-arrange the
contents of data registers using either the stack or the registers themselves. R0R4 allows you to
redefine what goes into the first five data registers {R00 – R04}, choosing from the stack values or

from the existing contents of single-digit data registers {R00 – R09} as well.

 i e:

Simply enter the number of the data register (up to R09) or the letter of the stack/ALPHA register in
the five-field prompt to select the source of the data value for each field. Note the needed use of

[SHIFT] key to select either letters or numbers, as always. The input sequence defines the location

order as well.

Note that SHFL and R0R4 can be toggled pressing the [PRGM] key at the initial prompt:

Checking the results.

For a quick check of the results, you can press the [R/S] key to access use the “view” functionality.
This will show a sequential list of the stack registers in L-X-Y-Z-T order (or the first five data data

registers in R0R4’s case of course) – a nice complement to help you keep your bearings at all times.
Note that the sub-function STVIEW is always also available for an enumeration of the stack

registers. STVIEW is accessible pressing [R/S] at the main STK: launcher screen.

Program Usage.

Entering these functions in a program will follow the standard rule, i.e. the SHFL instruction will be

placed in a single program step. You need to remember to manually add the master string as ALPHA
step in the instruction *before* it.

If [ALPHA] is empty the [UNDO] functionality will be triggered to restore the stack contents as it was

prior to the previous execution of SHFL/R0R4. Note that a DATA ERROR message will come up (and
the program execution will halt) should that string contain any invalid character – but it will ignore

characters beyond the fifth one starting from the RIGHT of ALPHA (i.e register M).

Note that also in manual mode there’s the possibility to use the current content of ALPHA without

having to retype it at the prompts – all you need to do is just press [ALPHA] as a shortcut.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 48 of 77

Sorting is also possible

Revision K13 adds the SORT option to the set. Use it to do an ascending sort of the involved
registers: either the stack XYZT or registers {R00-R03}. This option is accessed by pressing the X<>Y

key in manual mode, or via the sub-functions SSORT and RSORT in the auxiliary FAT.

The original contents of the stack or data registers is saved in the buffer, so you can always use the

UNDO option to revert to the unsorted configuration.

SHFL and R0R4 U/I functionality

The picture below summarizes all options offered by the SHFL / R0R4 functions. Note how they’re

interrelated and complementary of each other using the different hot keys.

• For SHFL, the default selection prompts for Stack/Alpha register names. Use [SHFT] to enter

numeric values (from 0 to 9) into the target stack registers.

• For R0R4 the default selection prompts for Stack/Alpha register names. Use [SHIFT] to enter

Data Register numbers (from 0 to 9) into the target Data Regosters

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 49 of 77

The “Shadow Stack” concept.

The underpinnings of SHFL and R0R4 take full advantage of the “emergency storage” buffer –

whereby the stack registers are first copied to the buffer registers in the sequence defined by the

master string, and then they’re swapped with the stack in the “default” natural sequence X-Y-Z-T-L.
This is the most effective way (code-wise) to perform the shuffle, and speed-wise it adds no

significant penalty speed wise.

As a lateral thinking, you can use this design to make a copy of the stack to the buffer, not altering
its contents – in case you’d want to restore all the contents after some operation (via UNDO), or

simply as a safety backup. For this “blank” (no sorting) you need to enter the string “XYZTL” at the

prompt/ To make this even more convenient, the SHFL function has a hot-key that introduces the
default sequence {XYZTL} for you, no need to type it up. Simply press the [RADIX] key at the initial
prompt (with the five fields shown) and enjoy the show.

Likewise, there is also a pre-built default combination for R0R4 that really comes handy to save the

contents of the first five data registers into the Shadow buffer without altering their content.
Obviously, such combination is {01234}, and you can trigger it using the radix key at the prompt – no

need to type the five numbers at the prompt.

To restore the original values after you’ve used the stack or R0R4 for other purposes, just call bRCL
on the buffer registers following this arrangement:

X <–> bR5 T – bR2 ; R00 <–> bR5 R03 <–> bR2
Y <–> bR4 L – bR1 ; R01 <–> bR4 R04 <–> bR1

Z <–> bR3 ; R02 <–> bR3

Example. Copy the contents of the stack into Data Registers R00 to R04

A trivial application of R0R4 solves this case:

R0R4 “XYZTL” – or the reverse if preferred: R0R4 “LTZYX” to have them saved as follows:

R00: X

R01: Y

R02: Z
R03: T

R04: L

R00: L

R01: T

R02: Z
R03: Y

R04: X

Example: Enter the integer sequence 4, 5, 6, 7, 8 in data Registers R00 to R04

Here we use both SHFL and R0R4 to get this quickly done as follows:

SHFL 45678 enters the desired sequence in the stack

R0R4 XYZTL copies it to the data regs (and the shadow buffer)

Which may not be a very efficient way to get the job done in terms of the byte count, for that you’d

better stick to the classic approach “number, STO nn, number, STO nn…. “ – but on the other hand
it’s unbeatable in leaving the stack undisturbed (except the M-register in ALPHA obviously).

01 STO 00

02 RDN

03 STO 01
04 RDN

05 STO 02
06 RDN

07 STO 03

08 RDN

09 X<> L
10 STO 04

11 X<> L

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 50 of 77

Data Transfer between Stack, Alpha and Data registers.

The picture below shows a conceptual summary of SHFL (green arrows) and R0R4 (orange arrows)
used as data transfer functions – i.e. not taking advantage of their sorting capability. You can see

how they compare to the more direct functions (blue arrows) A<>ST, A<>RG, and ST<>RG also

available in this module.

Examples: Saving and Restoring Stack data to/from Buffer #7 (*)

 LBL “ST>B7 1
 X<> L 2
 bSTO 1 3
 X<> L 4
 bSTO 5 5
 RDN 6
 bSTO 4 7
 RDN 8
 bSTO 3 9
 RDN 10
 bSTO 2 11

 RDN 12
 RTN 13
 LBL “B7>ST 14
 bRCL 1 15
SIGN 16
bRCL 2 17
bRCL 3 18
bRCL 4 19
bRCL 5 20
END 21

(*) Note that LBL “ST>B7” is equivalent to SHFL “XYZTL”, and that “B7>ST” does the same as SHFL
UNDO. Thus these user routines are for illustrative example only.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 51 of 77

Example. The following example was provided by Didier Lachieze. A subroutine using only the stack
to calculate the sum of the proper divisors of the number in X, it returns this sum in X and the initial

number in Y.

 X Y Z T
01 *LBL “DVSM n
02 1 1 n
03 “XYXX” 1 n 1 1
04 SHFL
05 *LBL 05
06 ISG T - n s d
07 NOP
08 “YYZT” n n s d
09 SHFL
10 RC/ T n/d n s d
11 ?X< T
12 GTO 10
13 FRC? n/d n s d
14 GTO 10
15 ?X= T n/d n s d
16 GTO 00
17 RC+ T
18 *LBL 00
19 ST+ Z
20 GTO 05
21 *LBL 10
22 X<> Z s n n/d d

23 END

The first occurrence at steps 03/04 is replacing the two instructions STO Z, STO T, and the second
occurrence at steps 07/08 is also replacing two instructions: CLX, RCL Y. Note that for step 12 you’d

need the function FRC?, available in the SandMath module - or an equivalent function from your own
sources.

Equivalences with standard functions.

The table below shows the sequence of standard instructions equivalent to the different combinations

of the stack registers. Obviously, this doesn’t include support for the ALPHA registers and nor does it

have the option to enter integer values directly either, but it’s a good reference to have.

Table 3 – Stack manipulation examples from “Calculator Tips & routines”, pg 26 – by John E. Dearing.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 52 of 77

Shadow Buffer Registers Storage.

If you’ve ever run out of data registers and wished there was a “back-door” mechanism to use in
emergencies, then you should find this section interesting. These functions operate on a I/O buffer

(with id#7) located below the .END. and above the Key assignment area.

The buffer holds seven extra registers for data storage, labeled bR1 to bR7 (therefore there’s no bR0

to speak of). Just enter the index for the extended register in the prompt and the data will be stored,

recalled, or exchanged with the stack X-register – as if they were standard data registers.

• bRCL _ recalls to the X register the content of the extended reg. whose index is provided in

the prompt, or in the next program line if used in a running program.

• bSTO _ stores the X-register in the extended reg. given in the prompt, or in the next

program line if used in a running program.

• bVIEW _ shows the contents of the buffer register with index given in the prompt.

• bX<> _ exchanges the contents of the X-register and the buffer reg. which index is
provided in the prompt, or in the next program line if used in a running program.

It you try to enter a non-valid index number (basically anything larger than 7) the prompt will be
maintained (without an error condition) until you either cancel the function or enter a valid value. In

program mode this would show a NONEXISTENT message and the execution will halt – so be careful

when you enter the parameter- which must be done manually for all sub-functions, and therefore
should always be within valid range.

You can navigate amongst these four functions using the RCL, STO, CHS and R/S keys

A Triple-duty buffer.

Besides the emergency storage registers, this buffer is also used for other two important purposes
within this module, and a third one in the Formula_Eval ROM - as described below:

1. Buffer registers bR1 and bR2 are shared by the RTN stack functions PUSHRTN and

POPRTN, so be careful not to override their content if both features need to be used

together.

2. The first five buffer registers are used as temporary storage place by the stack shuffle

function SHFL – as the most efficient way to re-arrange the stack registers on-the-fly (the
“shadow stack” as it’s been referred to sometimes).

3. All six buffer registers are used by the variable assignment in the Formula_Evaluation Module
done with functions LET=, GET=, and SWAP=. Very much like the emergency buffer but

with alphabetical labels “a” to “e”, and “F”.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 53 of 77

Buffer Header: warping around SELECT.

In a daring move, here’s where the emergency buffer and the Selected variable merge. As mentioned

before, the buffer header contains in digits <5:3> the information of the currently selected variable,
i.e. the data or stack register index marking such selection.

It was said in the previous section that the only valid input parameters for the buffer storage
functions were 1 to 7; but even if that’s conceptually correct it isn’t entirely true: extending the

definition to also include the value zero in the prompts, we can use the four functions described
before to work on the selected register as well.

It’s not the contents of the buffer header register which gets invoked, but the data register currently
under the selection setup – as pointed to by the marker in the header. It is as if the register bR0 was

an automatic INDirect operator for the four basic action: STO, RCL, VIEW and Exchange.

 Therefore:

• bRCL 0 recalls the value of the selected register to the X register in the stack. (SRCL)

• bSTO 0 stores the value in the X register in the selected register, same as SSTO

• bVIEW 0 shows the content of the selected register, i.e. is equivalent to SVIEW,

• bX<> 0 exchanges the selected value contents with that in X, therefore it’s equivalent to
 S<> ST_X - but coming the other way around – and saving bytes.

In case you didn’t notice it, the value zero for any sub-function parameter doesn’t need to get
explicitly entered in the program – thus it’s sufficient to just enter the sub-function without a non-

merged second line. The only restriction is that the program step that follows it cannot be a number –

which would be interpreted as its parameter otherwise.

So there you have it, yet another way to skin this cat – an interesting twist to the scheme, in case
you wondered how much interconnectivity can we get between the different functionality areas of the

module.

Remember that the buffer will be created when you switch the calculator ON the first time after

plugging in the WARP module.

Warning: This buffer is automatically created by the module on start-up, so the data contained in it
will survive a power-on/off cycle. This also applies to the selected variable used by SLCT.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 54 of 77

Bringing the Shadow Stack registers into the RKL fold.

Revision K11 of the WARP_Core module has added a seamless integration of the buffer registers {a-F}
as valid parameters for the extended comparison tests and exchange functions. Therefore, the buffer

registers can be used in the data comparison and exchange functions, as well as in the Recall in-place
Math operations such as RC+, RC-, RC* and RC/

In manual mode, pressing RADIX acts like a toggle between the STACK and BUFFER register selection;
thus, to access the buffer registers you need to press the RADIX key while the display shows the

STACK registers selection (i.e. twice in total). For example, using RKL and RKL IND:

,

 , ,

 , ,

The available choices are {A, B, C, D, E, F, and G}, entered by pressing the [A] – [E] keys in the top

row plus [F] and [G] in the second row. Note that the selected letter is briefly shown in the display as
a capital letter to distinguish it from the lower-case Stack registers {a-e}.

Note that though similar in scope, this vastly supersedes the bRCL sub-function described earlier,
which for starters didn’t have INDirect or Math capabilities at all.

When you’re editing a program, this action builds an argument index that will be saved as a program

step right after the main function. This index has all the information required for the function to do
the appropriate register selection at run time, as well as checking for its existence.

Not limited to the RKL situation at all, this functionality also applies to all testing and exchange
functions included in the module, for instance:

 ; ; etc.

It’s also possible to use a buffer register as SELCT’ed variable “S” as well, either directly or indirectly:

 ;

For INDirect addressing it’s understood that the pointer register can be in the stack or the shadow
buffer – but the value contained in it will always refer to a standard data register Rnn. By extension,

only the first pointer register used by RIND2, SIND2, and XIND2 can be a stack or shadow buffer

register.

This brings even more convenience and capability to the already powerful functionality provided by

the module. More choices at your disposal for a more flexible programming!

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 55 of 77

CODA: Finding the X-needle in the REG-haystack.

For those times when you’d like to know if a certain value is stored in the data register, the sub-
function FINDX (a.k.a. XF# 62) is available to do a cursory comparison looking for a match with the

value in the X-register. All data registers are checked, starting with R00 until the last one depending
on the current SIZE. The error message NONEXISTENT will be shown if the calculator SIZE is zero.

The function returns the number of the first data register found that contains the same value as the

X-Register. If none is found, the function puts -1 in X to signify a no-match situation. The stack is

lifted so the sought for value will be pushed to the Y-register upon completion.

Listed below are two FOCAL routines that do the same job as FINDX – albeit slower and using
auxiliary stack registers. It’s interesting to compare the standard approach (on the right) with the

alternate one (on the left) using the SELCT variable for indirect comparisons.

01 *LBL “XFND”
02 SIZE?
03 E
04 –
05 E3
06 /
07 SELCT (IND X)
08 243
09 *LBL 00
10 WF# (?S= Y)
11 39
12 114
13 GTO 02
14 ISG X
15 GTO 00
16 CLX
17 -1
18 RTN
19 *LBL 02
20 INT
21 END

01 *LBL “FNDX”
02 SIZE?
03 E
04 –
05 E3
06 /
07 *LBL 00
08 ?Y= (IND X)
09 243
10 GTO 02
11 ISG X
12 GTO 00
13 CLX
14 -1
15 RTN
16 *LBL 02
17 INT
18 END

Again, note how the instruction ?S= IND Y requires a three-line non-merged instruction, a good

exponent of the versatility of this implementation indeed. The only thing to be aware of is that if

you’re SSTíng the program it will halt the execution – since the O/S interprets that ?S= is not
programmable.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 56 of 77

Playing with Key Assignments.

This module includes a couple of brand-new KA-related routines that you may find interesting. Their

mission is to flip the key assignments on a given key or for the complete keyboard – so that the
shifted and un-shifted assignments are mutually toggled.

• KAFLP toggles all key assignments – turning shifted ones into non-shifted, and vice-versa.

This will only leave unassigned keys unchanged, but will reverse the assignments if only one

assignment exists for the keys.

• KYFLP_ prompts for a key to perform the same task on an individual key basis. The prompt

includes the back-arrow key but will ignore the toggle keys (ON/USER & PRGM/ALPHA)

In case you wonder why bother with this functionality, having the ability to toggle a key’s USER key

assignments becomes very handy if you have two function launchers assigned to that key.

A good example is with the SandMath, SandMatrix and 41Z modules – the three of them “competing”

for prime time on the [+] key. Flipping the assignments will save you a lot of [SHIFT] key pressings

to access the functions within those launchers.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 57 of 77

 Saving Status Registers in X-Memory.

You can use sub-functions SAVEST and GETST to make backup copies of the status registers into X-

Memory files, and to restore their contents back to the status area. The functions prompt for the
number of status registers to include in those back-up files, which must be at least one and not more

than 16. In manual operation the function won’t allow you to enter values above 16 (first prompt

must be 0/1; second prompt 0-6). If you use “00” then the complete 16 registers will be used instead.

For example if you just want to save the stack registers {T,Z,Y,X, and L} then you’d enter “05” in the
prompt (since the count always starts with register T as the first one). The file name is expected to

be in ALPHA - thus register M (and possibly N) would be partially used by the function itself.

Exercise caution when the upper stack registers are included, which will have dramatic effect in your

program pointer and RTN stack in register a(11) and b(12); or stack assignments in registers |-(10)
and e(15). Also don’t underestimate the ability of a bad cold start in register c(12) to cause a

MEMORY LOST condition when treated roughly.

These functions are programmable. In a running program the file name is expected in ALPHA, and

the number of status registers is taken from the program line after the sub-function’s index (must be
added manually) – which won’t be entered into the X register but as the prompt value instead. Yes,

that’s right: a triple non-merged lines case!

Note: The Status files have a dedicated file type in X-Memory. If you’re using
the AMC_OS/X Module, then their entries will be marked with the “T” prefix

during the enumeration:

See the figure on the right showing the Stack register
allocation within the X-Mem Data file. This particular
example only goes up to 8(P), but in general you can
save all the status registers, until 15(e) inclusive.

Appendix. Duplicates in other Modules.

Some functions are also available in other advanced modules, as shown below:

Function Available in: And also in:

GETST _ _ RAMPage ROM PowerCL

SAVEST _ _ RAMPage ROM PowerCL

KAFLP _ RAMPage ROM XROM ROM

PUSHRTN XROM ROM RECURSE Module

POPRTN XROM ROM RECURSE Module

ROM2HEX _ _,_ _ XROM ROM GJM ROM

HEX2ROM “A_”_ _ XROM ROM GJM ROM

AIRCL _ _ ALPHA ROM SandMath

PGCAT _ AMC_OS/X Power_CL

BFVIEW _ RAMPage ROM Power_CL

CSST ToolBox Power_CL

File End Marker

Register P(8)

Register O(7)

Register N(6)

Register M(5)

Register L(4)

Register X(3)

Register Y(2)

Register Z(1)

Register T(0)

FL Header Reg

FL Name Reg

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 58 of 77

XROM to-and-from HEX bytes. (by Greg McClure)

Sometimes it is needed to translate between XROM indents (##,##) and the FOCAL bytes that

represent the XROM function (Ax, xx). Function HEX2ROM prompts H”A_”_ _ and expects three
additional hex digits (of which the first can’t be > 7). On successful entry of the 3rd hex digit the

corresponding XROM value will be displayed in the form: “XROM_ _ , _ _” .

Function ROM2HEX does the reverse. It prompts ROM: _ _ , _ _ and expects four decimal values

(of which max for the first pair is 31, and max for the second pair is 63). On successful entry of the
4th decimal digit the corresponding hex bytes will be displayed in the form: “HEX’_ _:_ _”

If at any time during entry for any of these functions the opposite function is desired, pressing the

“H” key will switch to the opposite routine (ROM2HEX<>HEX2ROM) – going back to the beginning

of the data entry sequence.

<-->

Note that these functions are intelligent enough to discard illegal combinations of input values during

the parameter entry – so you can’t enter non-existing choices. This is of course non-withstanding the
synthetic two-byte OS functions, but that’s an entirely different subject.

Note that the result string is not placed in ALPHA – but you may use the function DTOA to move it

there. Once the resulting string is in ALPHA it can be further used for register storage or any other
string manipulation you require.

The table below shows the correspondences between the XROM id# and the HEX codes. Note that
the first 64 entries are used by some synthetic multi-byte mainframe functions.

XROM id#

Hex Code XROM id#

Hex Code XROM id#

Hex Code XROM id#

Hex Code

XROM 00 A0:00-:3F XROM 08 A2:00-:3F XROM 16 A4:00-:3F XROM 24 A6:00-:3F

XROM 01 A0:40-:7F XROM 09 A2:40-:7F XROM 17 A4:40-:7F XROM 25 A6:40-:7F

XROM 02 A0:80-:BF XROM 10 A2:80-:BF XROM 18 A4:80-:BF XROM 26 A6:80-:BF

XROM 03 A0:C0-:FF XROM 11 A2:C0-:FF XROM 19 A4:C0-:FF XROM 27 A6:C0-:FF

XROM 04 A1:00-:3F XROM 12 A3:00-:3F XROM 20 A5:00-:3F XROM 28 A7:00-:3F

XROM 05 A1:40-:7F XROM 13 A3:40-:7F XROM 21 A5:40-:7F XROM 29 A7:40-:7F

XROM 06 A1:80-:BF XROM 14 A3:80-:BF XROM 22 A5:80-:BF XROM 30 A7:80-:BF

XROM 07 A1:C0-:FF XROM 15 A3:C0-:FF XROM 23 A5:C0- :FF XROM 31 A7:C0-:FF

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 59 of 77

Saving and Restoring the RTN Stack. (by Poul Kaarup)

The return stack can hold up to six addresses for subroutines, which is adequate for the vast majority

of user code programs. Should that not suffice, the pair of functions described below can be used to
extend that limit up to 12 addresses, effectively doubling he return capacity of the OS.

• PUSHRTN saves the current RTN stack into a memory buffer (with id#=7). Once saved, the

current RTN stack is cleared (reset anew) so you have six more levels for your program.

• POPRTN restores from the buffer the RTN stack saved previously, effectively overwriting the

current one at the moment of calling this call.

The program pointer (PC) and the first two pending return addresses are stored in status registers
b(12), the third is stored as two halves on each register, and the remaining three in status register

a(11). Note that these functions will not save the Program Pointer information.

This is shown in the figure below:

a(11):

A D R 6 A D R 5 A D R 4 A D

13 12 11 10 9 8 7 6 5 4 3 2 1 0 nibble

b(12):

R 3 A D R 2 A D R 1 P C N T

13 12 11 10 9 8 7 6 5 4 3 2 1 0 nibble

Obviously these two functions are meant to be used as a pair, in combination. Note also that because
buffer#7 is used for the Stack shuffling too, you should refrain from calling SHFL and the direct

buffer access while the extended return addresses are held in bR1 and bR2.

Because these functions use the first two registers in the “emergency buffer”, you can always use the

buffer recall function bRCL to inspect the contents of the *stored* RTN stack – and compare it with
the *current* one, for example:

bRCL 1

RCL b

X=Y?

bRCL 2

RCL a

X=Y?

Two other functions dealing with the RTN stack are also available in the secondary FAT, as follows:

• RTN? Is a test function that checks whether there are pending returns in the stack. The
result is YES/NO, skipping the next line in a program when false.

• RTNS recalls the number of pending subroutine levels to the X register, which by definition
is an integer between 0 to six.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 60 of 77

LIFO X-Functions. (by Doug Wilder)

The LIFO (Last In First Out) functions require extended functions memory to operate. The LIFO is

located only in the first file in extended memory and must have a minimum size of one register and a
maximum size of 120 registers. This structure allows maximum transfer speed, even faster than main

memory, and does not require register numbers.

LIFO initialization: Create a first file in extended memory (recommended size is 16 to 32 registers) or

if the first file currently in extended memory is of a suitable size, it may be used for the LIFO. Use a
sequence similar to: "BUFFER" 28 CRFLD (the name is arbitrary). The function LIFOINI converts the

first file in extended memory to the LIFO file type, any data in the file is unrecoverable.

If you’re using the AMC_OS/X Module (always highly recommended), this is shown in a CAT#4 listing

with an “L” character in the file type, i.e.:

LIFOINI:

Converts the first file in extended memory to LIFO structure and initialize pointers.

After LIFOINI has been successfully executed without error, the stack is ready for use. LIFOINI may

be executed again to reset the pointers. Ideally, LIFOINI would be only executed from the keyboard,
however it may also be used in a main program, the uppermost or top driver program.

LIFO functions:

Z: is X and Y (complex data) , T: is Stack (XYZT), F: is Flags, A: is ALPHA, and R: is the RTN stack

If the stack lift is disabled, POPX and POPZ do not cause a lift, eg, CLX, POPZ does not modify the

Z and T registers. For multi-register push and pop functions, a “LIFO LIMIT” error leaves the stack in
an unknown state and the LIFO pointer is left in an unknown state. For POPA or POPF, if a “DATA

ERROR” occurs the Alpha/Flag register has not been modified yet the LIFO pointer is left in an
unknown state.

Alpha data and Flag data are typed data, that is: one cannot pop numeric or Flag data into Alpha.

Stack data is not typed: any type of data may be poped into the XYZT stack.

With an LIFO it is possible to write user code subroutines which simulate monadic functions, for

example; do a push stack at entry, put the result in LASTX, then POPST and X<>L RTN.

It is also possible to write interrupting alarms which actually do something, they can push the

stack/LASTX/Alpha/Flags at entry and recover them at exit. Thank’s to HP for the forthought to not
interrupt a running program when the stack lift is disabled.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 61 of 77

POP of data into the stack is very fast unless a printer is attached, in which case the POP can be
greatly slowed due to printer interface. For example a POPST in trace mode will do a full stack

printout which can consume up to two seconds. In a running program, clearing F55 will greatly speed
things up although trace capability will be lost.

These functions will report “NO XFM LIFO” if a lifo file does not exist. In that case you’ll need to
create it first and then try again.

Finally, one must remember the basic rule for LIFO stack usage: whatever gets pushed MUST be

poped and in reverse order! Otherwise we get what is known as a "memory leak" and eventual LIFO
LIMIT error.

Launcher implementation

These functions are implemented in a LIFO launcher, with two components depending of the POP or

PUSH actions. Each action is invoked by the corresponding sub-function POP and PUSH, in the

auxiliary FAT. This means they are accessed via the WF$ and WF# sub-function launchers, as usual.
The sub-function index is automatically entered by the function in program mode.

POP = WF# 97

PUSH = WF# 98

You can use the [SHIFT] key to toggle between them in run mode.

 -→

Function I A F X Z T R

PUSH* LIFOINI PUSHA PUSHF PUSHX PUSHZ PUSHST PUSHRTN

POP* LIFOINI POPA POPF POPF POPZ POPST POPRTN

Notice that the option “R” stands for the POPRTN and PUSHRTN sub-functions, which use the I/O
Buffer #7 and not the LIFO X-File

In a program each of the options in the launcher prompt needs to be manually added as a third
program line, following the WF# and index# program steps. For instance, the code snippet below

saves the contents of the ALPHA register using PUSHA:

 nn WF#

 nn+1 98
 nn+2 2

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 62 of 77

Loading Bytes in RAM. (Nelson F. Crowle)

If you lived through the days of byte jumpers and load bytes’ challenges, you’ll no doubt have
fond memories of what it was like to work with synthetics and PPC ROM routines. A few
functions come from the NFC ROM and the ProtoCoder_1A. Consider them “modern day”
versions (if such can be said of 30-year old code!) of some of those vintage routines, with a
usability and convenience twist added by the MCODE implementation; as well as speed.

LODB _ _((_ _), _ _) is a very ingenious approach to solving the multi-byte loader problem.
This function will prompt additional fields depending on the previous inputs – to complete the
sequence required for 2-byte and three-byte instructions. The inputs are expected in
Hexadecimal format, from 00 up to FF. See byte table in next page for details.

Example: to enter REG IND 25 you can use the prompt values “99” and “99” at the initial and

subsequent prompts (see the display below at the point of the last digit input):

 →

Example: Use this function to compile a 3-byte GOTO; note the prompt field will have 4 fields to input
the next two bytes (for the jump address and the LBL number):

Make sure you have your copy of the Byte Table handy to provide the input parameters for the
prompts.

Note: This function is not finished – but it works for the majority of 2- and 3-byte combinations
as-is. It was later superseded by a more systematic RAM-editor version in the Proto-Coder ROM,
which is described below, but I think its ingenious approach deserves a place on this module.

LOADB _ _ is a more capable RAM Editor (this one is from the Proto Coder_1A ROM) that can
be used to review and edit the contents at the byte level. It takes the starting position from the
current PC location, and presents a prompt that shows the current register and byte number, as
well as the current word value in hex at that address:

At this point you can use the [SHIFT]/[SST]keys to move up and down in memory, the [ENTER^]
key to null the byte at that location, the [RCL] key to input a new RAM address, the [R/S] key to
terminate the function and return to the OS, or the back-arrow key enables the value field to edit
the byte with a new value.

Be careful with the changes you make and be aware that pressing back arrow will require editing
the byte value (ior pressing R/S). The byte address will not automatically increase after editing,
so you’re can see the result.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 63 of 77

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 64 of 77

Copying code from bank-switched ROMS. { CPYBNK }

There are almost no tools available to extract or copy code from a bank switched ROM. When faced

with that challenge I typically used ad-hoc modifications of Warren Furlow’s routine CB, posted at:
http://www.hp41.org/LibView.cfm?Command=View&ItemID=317

That routine is specific for fixed source and destination pages, as well as only useful for the second
bank. Writing a more general-purpose function was always on my mind, and finally here it is at last.

Obviously to be successful the destination must be a Q-RAM (MLDL or CL).

CPYBNK is a prompting function. It has a customized prompt with three distinct sections that are
shown on the screen as the data entry progresses. The parameters entered are as follows:

- Bank number, an integer decimal from 1 to 4

- Source page, an hex value from 0 to F

- Destination page, same as above.

The function is smart enough to know what the first prompt must be, thus it’ll simply ignore non-

allowed values, presenting the same prompt again. You can use the back-arrow key to cancel at any
moment. Once the bank number is entered the prompt requests the “FROM:TO” pages, as denoted

by the underscore characters on both sides of the colon. The screens below show this at different

stages of the process:

The copy is always made into the main bank of the destination page (bank-1). This is typically a Q-
RAM page in an MLDL (or a RAM page on the CL) thus only supports one bank. Besides the practical

usage is intended to copy elusive, hard-to-reach code buried into secondary banks – therefore it
wouldn’t appear very sensible to copy it into equally obscure destinations.

The main bank is the first one; therefore you can use “1” to select it. In this case the function does
the same as CPYPGE in the PowerCL, or COPYROM in the HEPAX module..

CPYBNK is also clever enough to exclude its own banks either as source or destination pages. This is

needed to avoid the copy process colliding with the execution of its MCODE. Furthermore, it’ll always
prevent the O/S area as destination, and it will perform a Q-RAM test to ensure the destination page

is write-enabled.

Lastly, if the source ROM doesn’t have the chosen bank an error message is shown and the execution
aborts. More than just a convenient feature, this is vital to ensure that the execution doesn’t activate

a non-existing bank – which could create all kinds of havoc if the location of the missing bank is
already occupied in RAM or FLASH by other modules. See below the error messages for these

conditions:

http://www.hp41.org/LibView.cfm?Command=View&ItemID=317

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 65 of 77

New X-Mem File Pointer Functions.

A few new record pointer functions are included to complement the original set from the Extended

Functions module. The intent was to facilitate the operation of the Equation Library FOCAL programs,
saving some steps here and there and providing more flexibility in their use.

The functions are shown on the table below:-

Function Description Input Output

REC- Move pointer one position down none Pointer moved

REC+ Move pointer one position up None Pointer moved

REC+X Advance Pointer in Record Number of positions in X Pointer is moved

The pointer functions mostly deal with updating the file header location where the pointer position is

saved. They verify that the chosen position is within the boundaries of the ASCII file and adjust it

accordingly. See the File Header diagram below for details:

T A D R - C H R R E C S Z E

13 12 11 10 9 8 7 6 5 4 3 2 1 0

An interesting challenge arises because the ASCII file records are of variable length, so there isn’t a
constant number of characters per record. This is handled by reading the record-length nybble,

located at the beginning of each record.

Shown below is a text file of three records: ABC, ABCDEFGHI, and ABCDEFG. At the start of each

record is an extra byte indicating the length of each record, which can be up to 254 chars long. The
“*” at the end of the file indicates the end of the current contents of the file.

Which is shown in the Editor as this (record length and last char bytes are invisible):

For comparison purposes the standard approach used by the original X-Functions always requires
recalling the pointer first using RCLPT(A), adding or subtracting the number of positions using the

stack, and resetting the pointer using SEEKPT(A). This alters the stack registers and requires
multiple steps per action – as opposed to using new pointer functions, with a more straightforward

method. for example, REC+ is functionally equivalent to (but has none of the shortcomings of):

RCLPT(A), INT , 1 , + , SEEKPT(A)

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 66 of 77

If you’re interested in the details go ahead and check the MCODE listing below.

The final call to [RTN3] gives the show away: this routine is located in the third bank of the
WARP_Core, and as such the code needs to switch back to the main bank before yielding to the OS.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 67 of 77

Other Utilities

PROMT – General Prompting X: number of prompts

PROMT _ is a general-purpose, direct HEX entry function. The number of Hex digits to enter is
provided at its own prompt in manual mode, or in the X register if used in a program. The result
is placed in X as a binary number – with as many valid digits as the number of fields in the
prompt.

For example, to prepare the RAM location “60FF“ using PROMT, you first enter “4“ at the
function prompt and then the four hex digits of the address directly. The result is placed in the X
register ready for the byte functions to use.

Note: This function is very similar to HPROMPT, included both in the HEPAX and the Hepax Dis-
Assembler Modules.

arning: you should be aware that these functions use the X register for scratch

ALPHB - Alphabetizing ALPHA ALPHA: Text
A<>A – ALPHA Reversal ALPHA: Text

Never too late for exciting ALPHA routines - ALPHB and A<>A are utility functions written by
Poul Kaarup. Use them to reverse or sort the contents of the ALPHA register alphabetically,
either in descending (UF 00 clear) or ascending (UF 00 set) order. A neat little example of
utilization of the standard OS routines, make sure you don’t miss it!

Example: sort ALPHA alphabetically when its contents is “HP-41CX”

CF 00, WF$ “ALPHB”

SF 00, WF$ “ALPHB”

Example: Reverse the contents of ALPHA with the text “RECURSION”

WF$ “A<>A” => “”

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 68 of 77

IOBUS – Bus enumeration Prompt: 1, 2, 3

IOBUS is a shrank-down version of the function with same name available in the PowerCL_Extreme
module. It scans the complete I/O bus (i.e. the ROM pages) looking for pages matching the selected

criteria. In this version the choices are limited to four: (0) empty pages – a.k.a BFREE, (1) used pages
– a.k.a. BUSED, (2) bank-switched pages – a.k.a BANKED, and (3) current ROM id# list (a.k.a.

ROMLST). Any other input will trigger the “DATA ERROR” message.

.

• ROMLST produces a list in Alpha with the XROM id#’s of the plugged modules on the system,
so you can check for dups. Because of the 24-char limit in the Alpha string, only the last 8

modules will be shown – sufficient in the majority of cases, especially considering that pages 3,
4, and 5 are most likely unique because of being dedicated to the X-Functions, the Library#4,

and the Time Module.

 Example: winning Lotto combination or ROM list?

• BANKED presents a colon-separated string of numbers (in hex) corresponding to those

pages with a bank-switched configuration, as defined in the ROM signature characters. The

official convention is not strictly followed by the (very few) authors of the few bank-switched
ROMs, but the number of banks should be marked in characters 2/3/4 of the ROM signature.

An example with both the PowerCL and the SandMath_4x4 plugged returns the following:-
Can you explain the presence of the “5”? Hurry, time’s ticking out!

,

• BFREE and BUSED will present colon-separated strings of hex numbers corresponding to

those free or used pages in the calculator. Obviously the OS will always be listed by BUSED,
which is a nice clue to quickly tell which particular string you’re looking at. See for instance

the examples bellow showing a pretty decent configuration:

 for the free pages, and

 for the used pages.

The strings are compiled using the display and transferred to ALPHA upon completion. For
full-house configurations the list of used pages will take up more characters than those

allowed in the display – and the string will be scrolled to the left, dropping the first three
pages in the worst case. Since those hold the OS (always there) there’s no real information

loss.

The strings can have “holes”, as this is totally dependent on the modules plugged. Some of

them use the upper part of the port (like the Zenrom), or just simply due to the physical
locations used.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 69 of 77

ST<> - Bulk REG Access Prompt: First Data Register

These three utilities (ST<>, STO and RCL) come very handy to exchange or access the contents

of the statistical registers and the stack all at once. The XYZTL stack registers are used as data
source or destination respectively.

Note also that there’s a quick shortcut to RCL from the main RKL prompt – using the CHS key.

 , =>

A<>ST – ALPHA and Stack Exchange No Input
A<>RG - ALPHA and Data Regs Swap Prompt: First Data Register
ST<>RG – Stack and Register Exchange Prompt: First Data Register

Even though these functions are included in other modules they fully fit the “Total Rekall”
theme and therefore are added to the WARP_Core as well. Not much to write home about
but a handy and effective way to manage the data across the Stack, ALPHA, and Data
Registers.

FWIW here’s again the diagram showing the overlap between these direct data exchange
functions compared with the Selected scheme in the Shadow buffer:

A<>RG and ST<>RG are prompting functions, allowing both Stack and INDirect
arguments. You need to enter the first of the five data Registers block used for the
exchange, as follows:

T <-> Rn
Z <-> R(n+1)
Y <-> R(n+2)
X <-> R(n+3)
L <-> R(n+4)

And:

M <-> Rn
N <-> R(n+1)
O <-> R(n+2)
P <-> R(n+3)
Q <-> R(n+4)

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 70 of 77

EASTER - Easter Sunday Date. X: Date in current format

A classic amongst calculator aficionados, this super-fast MCODE version was written by Kari Pasanen.
Simply enter the year in X and call EASTER to see it replaced with the date of Easter Sunday in the

current date format (either MDY or DMY). X is saved in LastX (and EASTER’s sub-function code will be
saved in the LastF buffer as well).

For example, for 2020

MDY => 4.122020, i.e. April 12th.
DMY => 12.042020

BFVIEW - Buffer Contents Viewer X: Buffer id#

Do you feel the urge to inspect the contents of the LAST-7 buffer, or any other one for that matter?

Then you’re in luck, using BFVIEW that’s just a quick sub-function call away: enter the buffer id#

and issue the call in your favorite way either with WF#, WF$ or XEQ$ (the Chef’s recommendation
of course). The Buffer registers will be shown sequentially with a small pause in-between each.

Here’s a complete buffer id# table for your reference:

Buffer id# Module / EPROM Reason

1 David Assembler MCODE Labels already existing

2 David Assembler MCODE Labels referred to

3 Eramco RSU-1B ASCII data pointers

4 Eramco RSU-1A Data File pointers

5 CCD Module, Advantage Seed, Word Size, Matrix Name

6
Formula Evaluation Operands and Operators

Extended IL (Skwid) Accessory ID of current device

7
Extended IL (Skwid) Printing column number & Width

WARP Core, Formula Eval Shadow Stack

8 41Z Module Complex Stack and Mode

9 SandMath, PowerCL, WARP ... Last Function data, LAST-five

10 Time Module Alarms Information

11
HP-16C Emulator 64-bit Data and stack

Plotter Module Data and Barcode parameters

12 IL-Development; CMT-200 IL Buffer and Monitoring

13 CMT-300, FORTH-41 Status Info, FORTH Code

14 Advantage, SandMath INTEG & SOLVE scratch

15 Key Assignments

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 71 of 77

PGCAT - Page Catalog No Input

A real must-have, for those still not using the AMC_OS/X (say what?), PGCAT is also included for
your convenience. This is the best way to sequentially enumerate the ROMS plugged in your system

only showing the ROM header function (first one in the FAT). It shows “NO ROM” when blank, and
“NO FAT” for pages with a proper id# but no functions in them (such as blank HEPAX RAM pages for

instance). You can press and hold any key (other than R/S) at any time to pause the enumeration.`

PGCAT is taken from the HEPAX Module (called BCAT there, within the HEPAX sub-functions group)

- and written by Steen Petersen. PGCAT enumerates the first function of each page, starting with
page 3. The enumeration can be stalled pressing any key other than R/S or ON, but the individual

functions won’t be listed.

PGCAT Lists the first function of every ROM block (i.e. Page),

starting with Page 3 in the 41 CX or Page 5 in the other
models (C/CV). The listing will be printed if a printer is

connected and user flag 15 is enabled.

- Non-empty pages will show the first function in the

FAT, or “NO FAT” if such is the case
- Empty pages will show the “NO ROM” message next

to their number.
- Blank RAM pages will also show “NO FAT”, indicating

their RAM-in-ROM character.

No input values are necessary. This function doesn’t have a

“manual mode” (using [R/S]) but the displaying sequence will
be halted while any key (other than [R/S] or [ON]) is being

depressed, resuming its normal speed when it’s released
again.

See on the right the printout output from PGCAT using J-F
Garnier’s PIL-Box and the ILPER PC program, showing a nice

traceability of the pressed keys:

XROM$ - XROM Function Decoder ALPHA: User Prog Name

Written by Klaus Huppertz this function was published in PRISMA magazine, April 1990.
XROM$_ prompts for a FOCAL program name (or gets it from ALPHA in a running program) and
scans the program code looking for all the XROM calls included in it, showing either the section
header for the module if it’s plugged in, or the XROM function id# if the module is not present.
The listing is sequential, and you need to press [SST] to see the next match (any other key will
terminate the function). It’s therefore very handy to find out the XROM dependencies of your
FOCAL code. Note however that it will not work on FOCAL programs loaded in plug-in ROMs.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 72 of 77

CSST -View Program ALPHA: User Prog Name

CSST sequentially displays the program steps of the program pointed at by the Program Counter
(PC). It’s equivalent to using the SST key multiple times, and thus its name.

This function is programmable, operating in single-step mode or in back-step mode depending on

whether the user flag 0 is cleared or set. The back-arrow key terminates the display of program lines,

yielding to normal keyboard operation in RUN mode, or transferring control to the running FOCAL
program that executed CSST. In the latter case, the program execution resumes with the currently

displayed line (i.e. it has moved the program pointer).

The [ON] key toggles between single-step operation to back-step operation and vice-versa. The “0”
annunciator is visible in the display whenever back-step operation is in effect.

The delay between lines shown can be adjusted by pressing any keyboard key, see the table below
taken from the original article in PPCJ V9N7 p49 (refer there for further details). To use it, position

first the PC at the target location (using GTO or similar). Note that the display time increases linearly
from the top key down to the bottom key in a given key column on the keyboard, and continues to

increase on the next column to the right. Furthermore (staying on the same row of keys), pressing

the key one column right of the selected key will roughly double the selected display time.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 73 of 77

Multiple Stack Register Tests. { X=YZ? , X=YZT? }

These functions are derivatives of the original X=Y? test. They provide further control to your
program flow choices by allowing second and third chance options when the first condition X=Y? is

false – thus they’re not different from X=Y? when the such condition is true.

Their behavior is defined below – note that the testing is done sequentially, starting with X,Y, then

X,Z, and finally X,T. The rule of thumb is “one program line will be skipped each time a test is false,
and until the first true one is found (it any)”

X=YZ? X EQUAL TO Y OR Z

Tests if X is equal to Y or Z, with the following possible results:

• No program lines are skipped if X=Y

• Skips one program line if first test (X=Y) is false but the second (X=Z) is true

• Skips two program lines if second test (X=Z) is also false

X=YZT? X EQUAL TO Y, Z OR T

Tests if X is equal to Y,Z or T, with the following results:

• No program lines are skipped if X=Y

• Skips one program line if first test (X=Y) is false but the second (X=Z) is true

• Skips two program lines if first & second tests (X=Y, X=Z) are false but the third is true.

• Skips three program lines if the three tests (X=Y, X=Z, and X=T) are false

DETEXT – Decoding Synthetic Text Lines ALPHA: Program NAME

This function scans a user code program looking for synthetic text lines and prints the byte codes in
the peripheral HP-IL printer when found. The Program Name must be in ALPHA. If ALPHA is empty,

then the current program will be decoded.

The program does a good job discerning between “normal” text lines and those with non-keyable

characters (on the original machine, that is). Note that it must reside in RAM memory, thus you’d
need first to COPY it when it resides in a plug-in module.

DETEXT was contributed by Ross Wentworth and first published in PPCCJ V12N1 p34. Unfortunately,
the original article did not include the Hex codes for the MCODE instructions so it took a bit longer

than needed to reconstruct…

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 74 of 77

?MEM – Resource Viewer

Ever wondered how many data registers are available for programs, or how big the I/O buffers
section is at a given time? Those two and a few more are easy to find out with ?MEM, which produces

two screens with the following information:

• Size screen, showing the space used by Data Regisdters, I/O Buffers, and Key Assignments

• Memory screen, showing available regs in Main and X-Memory

 ;

Note that the Memory screen remains in ALPHA, whereas the Size screen is displayed in the LCD. This

is important as its contents will be lost when you switch ALPHA ON to access the Memory screen.
Obviously on the DM-41X this limitation doesn’t exist, as you can see below:

METRON - Keeping the Beat X: Beats per minute

Last but not least, here’s a cool beat-keeping utility written by Mark Power (see DataFile V9N4 p18)

to help with your musical chores. Use it as a metronome replacement for your out-of-town rehearsals,
just enter the beat in X and call METRON .

Note that the time module is required for proper operation.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 75 of 77

 Appendix. - Internal Data Field structure for Extended Prompts. -

There are five main categories that support the extended prompting facility, as follows:

(1) Register Swaps; (2) RKL & RCL Math; (3) Comparison Tests; (4) Select/Case Support; and (5)
Double INDirection. All of them share the same main core code that provides support for INDirect

addressing, Stack registers or the combination of both - therefore it’s important to have the input

data structured in such a way that is compatible with all use cases. The different requirements for the
function execution are summarized below:

• RCL Math needs descriptors for the type of arithmetic operation and source data register

• Register Swaps needs descriptors for source and destination registers

• Comparison tests need descriptors for the operator and source and destination regs

• Select/Case functions need descriptors of the #S variable and the operator

• Double Indirection needs descriptors for RLC/STO, multiplicity order, and source register

To be able to use the same core code, all these must be arranged in a common scheme that is

compatible with all functions. Besides, it needs to survive calls to partial key entry sequences (that
overwrite the Status bits), and cannot utilize system flags 3 and 4 – used to signal running program

and PRGM mode entry conditions.

The table below describes such arrangement, which basically uses all status bits, the C.MS and
C<12> digits, The Mantissa and S&X for function address and hot-key tables. The fields are stored in

the “Data Configuration Register”, which is populated by the routines and saved in the stack register

9(Q) as temporary repository. - See footnote (*)

Besides those the code also borrows F11 and F12 temporarily to single case special cases such as
AIRCL, ?CASE, and SELCT – always taking good care to restore their default values upon termination.

Register Swaps RCL Math Comparison Tests Select/Case Multiple INDirection

`C<12> digit is cleared C<12> digit = “F” C<12> digit = 2, 4, 6,8…

 Hot-key Table address in [S&X] field; Function Address in [ADR] field.

All Flags configured in Q<7:8> field

Clears F0 Sets F0 F0 set: <> case

n/a n/a F1 set: Main RKL F1 set: “#” case F1 set: “#” case

F2 Clear Sets F2 F2 set: “=” case F2 set: “=” case

F3 set: PRGM data entry

F4 set: SST execution; (F13: program running)

n/a

F5 set: RCL+ F5 set: “>” case F5 set: “>” case
n/a

F6 set: RCL^ F6 set: “<=” case F6 set: “<=” case

F7 set: RCL* F7 set: “<” tests F7 set: “<” tests F7 set: SIND2 case

F8 Used by [BCDBIN] All Clear: “>=” case All Clear: “>=” case F8 Used by [FNCTXT]

Register Swaps RCL Math Comparison Tests Select/Case Multiple INDirection

C.MS holds Stack Reg# ; C<12> holds flag for category

[MS] =0: T-Register

n/a

[MS] =0: T-Register

n/a

[MS] =1: Z-Register [MS] =1: Z-Register

[MS] =2: Y-Register [MS] =2: Y-Register

[MS] =3: X-Register [MS] =3: X-Register

[MS] =4: L-Register [MS] =4: L-Register

[MS] =5: M-Register [MS] =5: M-Register

[MS] =6: N=Register [MS] =6: N=Register

[MS] =7: O-Register [MS] =7: O-Register

[MS] =8: P-Register [MS] =8: P-Register

[MS] =9: Q-Register [MS] =9: Q-Register

[MS = A-F FOR {a-e} [MS = A-F FOR {a-e}

(*) Q-Note: The Q-register contents is overwritten during the Stack Comparison in Manual mode;
 therefore, they’re meant to be used in running programs only.

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 76 of 77

The block diagram below shows the top-level structure of the workflow:

Once the manual U/I interface parses the choices the work is not done; it now needs to dispatch the
execution to the appropriate function branch, which is also determined by looking at the status bits
and configuration data. This is tricky but all needed information is contained in the input variables,
providing reliable operation. The diagram below shows the logic between the involved subroutines:

Total_Rekall – Dare to Compare – WARP_Core+

© Ángel Martin – February 2023 Page 77 of 77

Appendix.- Dare to Compare: 84 functions at your fingertips !

 -→

 -→

 -→

 -→

 -→

 -→

 -→

 -→

 -→

 -→

 -→

 -→

If “Zero” is the foster child, then the selected variable is the surrogate stack member!

Q-Note: The Q-register contents is overwritten during the Stack Comparison in Manual mode;
 therefore, they’re meant to be used in running programs only.

