
XROM ROM Manual

© Ángel M. Martin Page1 of 14 18.07.2016

HP-41 Module

“XROM” ROM

 Overview

The XROM Module contains a collection of MCODE function utilities with the usability and

convenience themes in mind. Some are taken from relatively obscure modules, such as the

Proto-CODER and the NFCROM – and others are from bigger collections or less-known modules,

in an attempt to increase their usage and to provide a more portable vehicle for all users.

It comes without saying that thanks and credit should go to the original authors as listed in the

function table below, with the new functions shown in white background. For the most part the

other functions are modified only slightly to take advantage of Library#4 routines – which is

therefore required for this module. You’re nevertheless encouraged to read the original module

manuals for additional insights.

This module is designed to be used independently from others – except the Library#4. There’s

very little redundancy with the RAMPAGE or TOOLBOX modules, and therefore can also be used

as an extension to them.

XROM Function Description Author Source

31,00 -XROM ROM Section Header Ángel Martin This project

31,01 AFCN? _ Function Data Poul Kaarup PK Collection

31,02 ASRCH _ Fuction Data Klaus Huppertz Prisma Magazine 1/90

p2 31,03 CPUF CPU Frequency Doug Wilder BLDROM

31,04 JUMP1 _ Mcode J1 Codes Poul Kaarup PK Collection

31,05 JUMP3 _ Mcode J3 Codes Poul Kaarup PK Collection

31,06 HEX2ROM _ Hex to Xrom Greg McClure GJM ROM

31,07 HEX2RM+ _ ditto - appended Greg McClure GJM ROM

31,08 OSREV OS revision Nelson F. Crowle NFC ROM

31,09 PCAT _ Port Catalog Mark Power Debugger ROM

31,10 PROMT _ Custom Hex Prompt Nelson F. Crowle NFC ROM

31,11 ROM2HEX _ Xrom to Hex Greg McClure GJM ROM

31,12 ROM2HX+ _ Ditto - appended Greg McClure GJM ROM

31,13 SPLASH Splash Screen Nelson F. Crowle This project

31,14 XROM _ _:_ _ Call any Xrom function Clifford Stern Mcode for Beginners

31,15 XROM$ _ Lists XROM calls in program Klaus Huppertz Prisma Magazine 4/90

p8 31,16 ?LIB4 Lib#4 Existence Test Ángel Martin This project

31,17 -}-}-}-\/\/-}-} Section Header Ángel Martin This project

31,18 DEBUG Debug Clifford Stern Mcode for Beginners

31,19 LOOP Loop Clifford Stern Mcode for Beginners

XROM ROM Manual

© Ángel M. Martin Page2 of 14 18.07.2016

31,20 RSLCT Ram selection Clifford Stern Mcode for Beginners

31,21 -XROM RAM Section Header Ángel Martin This project

31,22 BJUMP _ _ Byte Jumper Nelson F. Crowle NFC ROM

31,23 BYTE _ _ _ Enters Byte Klaus Huppertz Prisma Mag 2-3/91

31,24 CDOWN _ _ Curtain Down Greg McClure GJM ROM

31,25 CUP _ _ Curtain Up Greg McClure GJM ROM

31,26 CURT? Finds Curtain location Poul Kaarup PK Collection

31,27 CURTAIN _ _ _ Sets curtain Poul Kaarup PK Collection

31,28 GETST _ _ Get Status XM File Ángel Martin This project

31,29 INSBYT# Insert Byte Fritz Ferwerda ML ROM

31,30 KAFLP KA Flip (all keys) Ángel Martin This project

31,31 KYFLP _ Key Flip Ángel Martin This project

31,32 KYOFF Suspend Key Fritz Ferwerda ML ROM

31,33 LB _ _ _ Load Byte Fritz Ferwerda ML ROM

13,34 LOADB _ _ RAM Byte Editor Nelson F. Crowle PCODER_1A

31,35 LODB _ _ Load Byte(s) Nelson F. Crowle NFC ROM

31,36 PC<>RTN Exchanges PC and RTN-1 W&W GmbH CCD Module

31,37 PRBYTES _ _ Print Buffer Bytes HP Co. HP-IL Devel

31,38 POPADR Pops RTN addr Håkan Thörgren RAMPage Module

31,39 POPRTN Pops complete RTN Stack Poul Kaarup PK Collection

31,40 PUSHRTN Pushes complete RTN stack Poul Kaarup PK Collection

31,41 RTN? any address in stack? Doug Wilder BLDROM

31,42 RTNS RTN Stack levels Ángel Martin This project

31,43 RCLBYT# Recall byte Fritz Ferwerda ML ROM

31,44 STOBYT# Store Byte Fritz Ferwerda ML ROM

31,45 SAVEST _ _ Saves Status in XM File Ángel Martin This project

31,46 STVIEW Stack View Ángel Martin This project

31,47 XMXEQ _ Calls program in XM Klaus Huppertz Prisma Mag 4/89 p14

31,48 XRCL _ _ Extended-Reg Recall Ángel Martin This project

31,49 XSTO _ _ Extended-Reg Store Ángel Martin This project

31,50 XX<> _ _ Extended-Reg Exchange Ángel Martin This project

Splash Screen. (by Nelson F. Crowle)

The ultimate display demo that unfortunately does not work on V41 but will beautifully show on

real machines (41-CL included). Watch the letters moving across the LCD window to form the

welcome message “#4 ON-LINE” . Seeing is believing!

XROM ROM Manual

© Ángel M. Martin Page3 of 14 18.07.2016

XROM to and from HEX bytes. (by Greg McClure)

Sometimes it is needed to translate between XROM indents (##,##) and the FOCAL bytes that

represent the XROM function (Ax, xx). Function HEX2ROM prompts H”A_”_ _ and expects three

hex digits (of which the first can’t be > 7). On successful entry of the 3rd hex digit the

corresponding XROM value will be placed into the Alpha register and displayed in the form:

“XROM_ _ , _ _” .

Function ROM2HEX does the reverse. It prompts ROM: _ _ , _ _ and expects 4 decimal values

(with max for the first pair is 31, and max for the second pair is 63). On successful entry of the

4th decimal digit the corresponding hex bytes will be placed in the Alpha register and displayed in

the form: “HEX’_ _:_ _”

If at any time during entry for any of these function the opposite function is desired, pressing the

“H” key will switch to the opposite routine (ROM2HEX<>HEX2ROM).

<-->

Appended to ALPHA versions

Function HEX2RM+ prompts H”A_”_ _ and expects three hex digits (of which the first can’t be

> 7). On successful entry of the 3rd hex digit the corresponding XROM value will be appended to

the Alpha register and displayed in the form: “XROM_ _ , _ _” .

Function ROM2HX+ does the reverse. It prompts ROM: _ _ , _ _ and expects 4 decimal values

(max for the first pair is 31, max for the second pair is 63). On successful entry of the 4th

decimal digit the corresponding hex bytes will be appended to the Alpha register and displayed in

the form: “HEX’_ _:_ _”

If at any time during entry for any of these function the opposite function is desired, pressing the

“H” key will toggle between opposite routines (ROM2HX+<>HEX2RM+).

Calling XROM Functions (Clifford Stern)

This is one of my favorite-ever functions: use it to call a function from any plug-in module by

entering the function id# numbers at the prompts. A beautiful example of superb MCODE

programming that uses the OS routines to its best.

XROM ROM Manual

© Ángel M. Martin Page 4 of 14 18.07.2016

Subroutine RTN Stack Functions.

This groups deals with the RTN Stack. The OS has provision for up to six levels of subroutines;

that is your FOCAL programs can have up to five chained XEQ calls to other programs or

subroutines.

The program pointer (PC) and the first two pending return addresses are stored in status

registers b(12), the third is stored as two halves on each register, and the remaining three in

status register a(11).

b(12):

R 3 A D R 2 A D R 1 P C N T

13 12 11 10 9 8 7 6 5 4 3 2 1 0

a(11):

A D R 6 A D R 5 A D R 4 A D

13 12 11 10 9 8 7 6 5 4 3 2 1 0

Getting Information on Subroutine Levels usage.

 RTN? is a test function that checks whether any return level exists. The result is YES/NO

depending on the case, and in a program execution the following line will be skipped it

false.

 RTNS returns the number of pending RTN levels to the X register. Obviously the result

will be zero if executed in manual mode, as no pending subroutines exist. The stack is

lifted.

 POPADR removes one pending routine address off the RTN stack and shifts the rest one

level down. No output to X is produced (so it’s more like XQ>GO despite its name).

 PC<>RTN exchanges the program counter and the first RTN address. In a running

program this causes the execution to jump back to the pending address and then return

to the calling point, i.e. it is effectively another way to execute the subroutine twice.

Extending the Subroutine Levels capacity. (by Poul Kaarup)

You can use these functions to push and pop the entire RTN stack into a buffer (id#7) in the I/O

area.

 PUSHRTN saves the contents of the RTN stack in the buffer and resets it to zero for an

extended RTN stack with 6 more levels capacity.

 POPRTN overwrites the current (extended) RTN stack with the buffer contents saved

previously (i.e. the original RTN stack).

These functions are obviously meant to be used as a pair. Note also that the buffer#7 will be

erased when you switch the calculator OFF.

XROM ROM Manual

© Ángel M. Martin Page 5 of 14 18.07.2016

Saving Status Registers in X-Memory.

You can use functions SAVEST _ _ and GETST _ _ to make backup copies of the status

registers into X-Memory files, and to restore their contents back to the status area. The functions

prompt for the number of status registers to include in those back-up files, which must be at

least one and not more than 16.

For example if you just want to save the stack registers T,Z,Y,X, and L then you’d enter “5” in

the prompt (since the count always starts with register T as the first one). The file name is

expected to be in ALPHA - thus register M (and possibly N) would be partially used by the

function itself.

These functions are programmable. In a running program the number of status registers is taken

from the program line after the function – which won’t be entered into the X register but as the

prompt value instead.

The Status files have a dedicated file type in X-Memory. If you’re using the AMC_OS/X Module,

then their entries will be marked with the ‘T” prefix during the enumeration:

Playing with Key Assignments.

This module adds a couple of brand-new KA-related routines that you may find interesting. Their

mission is to flip the key assignments on a given key or for the complete keyboard – so that the

shifted and un-shifted assignments are mutually toggled.

 KAFLP toggles all key assignments – turning shifted ones into non-shifted, and vice-

versa. This will only leave unassigned keys unchanged, but will reverse the assignments if

only one assignment exists for the keys.

 KYFLP_ prompts for a key to perform the same task on an individual key basis. The

prompt includes the back-arrow key but will ignore the toggle keys (ON/USER &

PRGM/ALPHA)

 KYOFF _ prompts for a key to temporarily suspend its user assignments. You can restore

them using LKAON from the AMC_OS/X or RAMPage modules.

In case you wonder why bother with this functionality, having the ability to toggle a key’s USER

key assignments becomes very handy if you have two function launchers assigned to that key. A

good example is with the SandMath, SandMatrix and 41Z modules – the three of them

“competing” for prime time on the [+] key. Flipping the assignments will save you a lot of

[SHIFT] key pressings to access the functions within those launchers.

XROM ROM Manual

© Ángel M. Martin Page 6 of 14 18.07.2016

A touch of PRISMA Utilities. (by Klaus Huppertz)

These four functions are interesting utility examples taken from PRISMA, the German User’s club

magazine. They were contributed by Klaus Huppertz.

ASRCH_ returns information on the function or FOCAL program which name is entered at the

prompt (or in ALPHA during a running program). The information returned is quite complete,

including the HEX number, the address and the type (User Code or, MCode). This version will

also look for PROGRAM files in X-Memory if no function OR focal program (in main memory)

exists with that name. –.For example, executing ASRCH on itself it returns: “9BFD M A7:C2”

BYTE _ _ _ is a byte-loading function, a very popular subject in the old days. It will let you enter

the byte with value in the prompt at the current program counter location (PC), no more no less.

Be careful where you perform the insertion as it may create havoc if you break the Label chain.

More about this subject in next section of the manual.

XROM$_ prompts for a FOCAL program and scans the program looking for all the XROM calls

included in it, showing either the section header for the module if it’s plugged in, or the XROM

function id# if the module is not present. The listing is sequential, and you need to press R/S to

see the next match. It’s therefore very handy to find out the XROM dependencies of your FOCAL

code. Note however that it will not work on FOCAL programs loaded in plug-in ROMs.

XMXEQ _is an X-Mem Program File caller – but one that allows the program file to be in any of

the X-Mem modules – the only limitation is that the code cannot cross the voids between

modules. Should such a contingency occur, the function will warn you with a “broken goose”

message:

The “NONEXISTENT” message will be shown if the file is not found or is not a PROGRAM file

Notice for all ALPHA prompting functions. - in manual mode the ALPHA prompt is offered

automatically, no need to press the ALPHA key to start typing it. In a running program the

function/program name is expected to be in ALPHA.

XROM ROM Manual

© Ángel M. Martin Page 7 of 14 18.07.2016

Curtain functions. (by Greg McClure)

The absolute register number that marks the location of R00 is often called the “curtain”. Its

value is kept in one of the system stack registers (c to be specific), as most synthetic

programmers know. The system moves this value up or down depending on how many registers

are specified with the SIZE instruction. A trick used by some synthetic programmers is to raise or

lower the value of the “curtain” in a program.

If the value is raised by n, then R0 thru Rn-1 are hidden, and Rn becomes R0, Rn+1 becomes

R1, etc. If the value is subsequently lowered by n (which must be done before exiting the

program for reasons explained next) then these hidden registers are recovered and the original

register numbers are restored.

Actually, when the “curtain” is raised in this way, the n registers affected temporarily become

program steps as far as the O/S is concerned. Since this could confuse the system when doing a

CAT 1, “curtain” raising and lowering should be used carefully. In addition, if a PACK occurs

while the “curtain” is raised like this, the hidden registers could easily (and probably will) change

values. If the “curtain” is raised to temporarily save registers, it should be lowered back before

doing these system functions (CAT 1 or PACK, or similar functions).

Conversely, if the “curtain” is lowered and not raised back to its original value, certain labels and

ENDs could be modified by simple RCL, STO and X<> instructions. This messes up the chain of

CAT 1 and can lead to MEMORY LOST. However, used properly, “curtain” manipulation can be of

great use to a programmer that needs to call a subroutine that uses the same registers as

another program.

 Function CURT? returns to the X-register the absolute address (in decimal)

corresponding to the current location of the curtain.

 Function CURTAIN _ _ _ sets the curtain to the absolute address entered either in the
three-digit prompt if used in manual mode, or contained in the X register when used in a
program; but always as a decimal number.

 Function CUP _ _ raises the curtain up. The function will prompt for the number of

registers to hide. If this function is entered in a program, the number of registers to hide

should be entered as a value after the CUP function. This will be interpreted as the

argument of CUP, not as a value to enter into X. It must be followed by a non-numeric

entry function or the CPU will get confused.

 Function CDOWN _ _ lowers the curtain down. The function will prompt for the number

of registers to restore. If this function is entered in a program, the number of registers

to restore should be entered as a value after the CDOWN function. This will be

interpreted as the argument of CDOWN, not as a value to enter into X. It must be

followed by a non-numeric entry function or the CPU will get confused.

XROM ROM Manual

© Ángel M. Martin Page 8 of 14 18.07.2016

Loading Bytes. (N. F. Crowle and others)

If you lived through the days of byte jumpers and load bytes’ challenges, you’ll no doubt have
fond memories of what it was like to work with synthetics and PPC ROM routines. Here’s a few
MCODE functions that should rekindle your appreciation for those chores, now from an MCODE
perspective.

A few functions come from the NFC ROM and the ProtoCoder_1A. Consider them modern day
versions of some of those vintage routines, with a usability and convenience twist added by the
MCODE implementation; as well as speed.

BJUMP __ is a byte jumper utility that prompts for the number of bytes to jump over, counted
from the current PC. If you see no use for this function you can go ahead and ignore it
altogether, but it sure would have been nice to have it back then…

LB _ _ _ is an MCODE version of the Load Bytes routines. Enter the byte value in decimal format
at its prompt, from 000 to 255 – to have the corresponding byte written in RAM at the current PC
location. See the byte table in appendix-1 for details.

LODB _ _((_ _), _ _) is a very ingenious approach to solve the multi-byte loader problem. This
function will prompt additional fields depending on the previous inputs – to complete the
sequence required for 2-byte and three-byte instructions. The inputs are expected in
Hexadecimal format, from 00 up to FF. See byte table for details.

Example: to enter REG IND 25 you can use the prompt values “99” and “99” at the initial and

subsequent prompts (see the display below at the point of the last digit input):

This function is not finished – but it works for the majority of 2- and 3-byte combinations as is. It
was later superseded by a more systematic RAM-editor version in the Proto-Coder ROM, which is
described below, but I think it still has a place for this module.

LOADB _ _ is a more capable RAM Editor that can be used to review and edit the contents at
the byte level. It takes the starting position from the current PC location, and presents a prompt
that shows the current register and byte number, as well as the byte value:

At this point you can use the [SHIFT]/[SST]keys to move up and down in memory, the [ENTER^]

key to null the byte at that location, the [RCL] key to input a new RAM address, the [R/S] key to

terminate the function and return to the OS, or the back-arrow key to edit the byte with a new

value. Be careful with the changes you make, and be aware that pressing back arrow will require

editing the byte value (i.e. no cancel from it).

XROM ROM Manual

© Ángel M. Martin Page 9 of 14 18.07.2016

INSBYT#, STOBYT#, and RCLBYT# are taken from the ML ROM and use a direct approach

to inserting, storing and recalling bytes in RAM. They expect the RAM location to be in the

“BRRR“ format (b: byte number within the register, from 0-6; RRR: absolute register address in

hex).

The RAM location needs to be formatted in the two Least-Significant Bytes of the X register (or Y-

register for INSBYT# and STOBYT#) as a binary number – which can be accomplished using

any direct hex entry function, such as PROMT described below.

Function INSBYT# SAVEBYT# RCLBYT#

X Input Byte value in decimal Bute value in decimal BRRR as binary

Y Input BRRR as binary BRRR as binary n/a

PROMT _ is a general-purpose, direct HEX entry function. The number of Hex digits to enter is

provided at its own prompt in manual mode, or in the X register if used in a program. The result

is placed in X as a binary number – with as many valid digits as the number of fields in the

prompt.

For example, to prepare the RAM location “60FF“ using PROMT, you first enter “4“ at the

function prompt and then the four hex digits of the address directly. The result is placed in the X

register ready for the byte functions to use.

Note: This function is very similar to HPROMPT, included both in the HEPAX and the Hepax_Dis-

Assembler Modules.

Function Information. (by Poul Kaarup)

AFCN?_ Displays information about a function in several sections or lines. R/S brings up the

next lines of information. Back-arrow aborts the function. The function name is to be entered at

the ALPHA prompt.

For native HP41 functions (like DEC):

 ADR= 132B the functions address
i.e. OS ROM

 DEC= 004,095 the decimal value
input to get DEC

 HEX= 04,5F the hexadecimal value
to get DEC

 MAINFRAME indicates a native HP41
function

For plug-in modules (like AFCN?):

 ADR= B295 the functions address ie
ROM

 DEC= 161,078 the decimal value
input to get AFCN?

 HEX= A1,4E the hexadecimal value
to get AFCN?

 XROM 05,14 XROM# for AFCN?

XROM ROM Manual

© Ángel M. Martin Page 10 of 14 18.07.2016

MCODE Jumps. (by Poul Kaarup)

These two functions are taken from the PK_Collection. With them you can find out the hex codes

corresponding to the jumping distances for type-3 jumps, or for jump-to locations for type-1

jumps.

Simply type the function name JUMP1 or JUMP3 to start building the prompts. The functions

are clever enough to only let you input the allowed characters, as follows:

 JUMP1_ shows a question mark “?” and waits for your input. At this point it expects

either “C” or “N” for the Carry- or not-Carry flavors, then you follow suit by entering

either “G” or “X’ for the GO or XEQ version of the jump.

 JUMP3_ shows “J” and waits for your input – which can only be either “C” or “N” for the

carry- and not-carry flavors; then you follow suit with “-“ or “+” to indicate the jumping

direction, and finally the distance value in bytes in HEX (!).

These functions are not programmable. The overlay below summarizes all the options for them

as described above. In all cases the back-arrow key will take you back to the previous stage of

the prompt, or terminate the function if already at the “root” level.

Note that a set of equivalent functions is available in the TOOLBOX module, as follows:

 JUMP1

JUMP3

 ?NC GO _ _ _ _

JC Value in X

 ?NC XQ _ _ _ _

JNC Value in X

 ?C GO _ _ _ _

 ?C XQ _ _ _ _

XROM ROM Manual

© Ángel M. Martin Page 11 of 14 18.07.2016

Extended Registers Storage.

If you’ve ever run out of data registers and wished there was a “back-door” mechanism to use in
emergencies, then you should find this section interesting. These functions operate on a I/O
buffer located below the .END. and above the Key assignment area.

The buffer holds five extra registers for standard data storage, labeled XR-01 to XR-05 (therefore
there’s no XR-00 to speak of). Just enter the index for the extended register in the prompt and
the data will be stored, recalled, or exchanged with the stack X-register – as if they were
standard data registers.

 XRCL _ _ recalls to the X register the content of the extended reg. which index is
provided in the prompt, or in the next program line if used in a running program.

 XSTO _ _ stores the X-register in the extended reg. given in the prompt, or in the next
program line if used in a running program.

 XX<> _ _ exchanges the contents of the X-register and the extended reg. which index is
provided in the prompt, or in the next program line if used in a running program.

It you enter a non-valid index number (basically anything except 1,2,3,4,5) the prompt will be

maintained - without an error condition – until you either cancel the function or enter a valid

value. In program mode this will show a NONEXISTENT message and the execution will halt.

The buffer will be created the first time you save data in the extended registers, or attempt to

retrieve it from them. The buffer registers XR-01 and XR-02 are shared by the RTN stack

PUSH/POP functions, so be careful not to override their content if both features need to be used

together. This buffer is not automatically created by the XROM module so the data will not

survive a power-on/off cycle.

XROM ROM Manual

© Ángel M. Martin Page 12 of 14 18.07.2016

Other Functions. (Diverse authors)

PRBYTES Prints the bytes in an I/O buffer in hexadecimal format. The bytes are printed starting

from the buffer pointer and terminating and the end of the buffer. If the HP-82143A printer is

plugged in, it’ll be used for printing. If not, the HP-IL printer will be used only if flag 33 is clear

and there is no other controller on the loop. The mode switch on either printer must be set to

TRACE or NORM, or flag 15 or flag 16 must be set for HP-IL printers other than the HP 82162A. if

neither printer is present, the bytes will be displayed at about two bytes per second. Pressing

[R/S] will exit the function. Pressing any other key will slow the display rate to about one byte

per second.

Note that this version of PRBYTES is a prompting function. It will accept as input in its prompt

any buffer id# on the I/O area, and not only the IL-Devel buffer type (with id# 12). If other

buffer type is used, the pointer will be taken as 0 (top of the buffer) and the enumeration will

only work properly assuming the buffer size is a multiple of seven.

PCAT Accesses a CATalog enumeration starting at the page provided in the function prompt. For

example, press “5” to start with the TIME Module, or “7” to commence at page-7. The catalog

will only show the header functions (those which names start with a hyphen), so it’s up to you to

stop it and press ENTER^ to see the functions included under each section.

CPUF returns a suitable surrogate for the CPU frequency. This function is a curious gem, although

I’m not completely sure I managed to transcribe it well. It’s supposed to return the number of

CPU cycles per second, so I thought it’d be ideal for the CL given the different TURBO modes.

Alas, it always returns the same value (1,126.316), irrespective of the TURBO setting. This is

about 6 times bigger than the normal HP-41 result, (167,333) for what is worth. We have Doug

Wilder to thank (again) for writing it, using the Time module to keep pace with things.

OSREV shows the revisions of the three OS ROMS in pages 0-2, for example for an unmodified

41-CX it returns:

XROM ROM Manual

© Ángel M. Martin Page 13 of 14 18.07.2016

Debugging functions. (Clifford Stern)

These three functions are taken from Ken Emery’s book “MCODE for Beginners“. Refer to that

source for additional information on usage and limitations. Also you should be aware that Mark

Power‘s DEBUGGER Module is a vastly superior approach to this purposes!!

 DEBUG Inserts a break-point in an MCODE program and halts execution at that point,

allowing you to see the CPU registers and pointers

 LOOP Allows you to debug a loop within an MCODE program

 RSLCT Allows you to see the RAMSLCT pointer and the T register

XROM ROM Manual

© Ángel M. Martin Page 14 of 14 18.07.2016

Appendix 0.- HP-41 Byte Table

