
41CL Memory Functions

© 2022, Systemyde International Corporation 1

41CL Memory Functions

41CL Memory Functions

© 2022, Systemyde International Corporation 2

Every effort has been made to ensure the accuracy of the information contained herein. If you find errors or
inconsistencies please bring them to our attention.

Copyright © 2022, Systemyde International Corporation. All rights reserved.

Notice:

“HP-41C”, “HP-41CV”, “HP-41CX” and “HP” are registered trademarks of Hewlett-Packard, Inc. All uses
of these terms in this document are to be construed as adjectives, whether or not the noun “calculator”,
“CPU” or “device” are actually present.

Acknowledgements:

Ángel Martin provided the CPYBNK function, as well as valuable feedback during the development of this
software.

41CL Memory Functions

© 2022, Systemyde International Corporation 3

Table of Contents

1. Introduction .. 5

2. Address Pointer Functions ..6

STOXP, STOYP, STOZP, STOTP (Store Address Pointer) 7
RCLXP, RCLYP, RCLZP, RCLTP (Recall Address Pointer)8
XP+, YP+, ZP+, TP+ (Increment Address Pointer) 8
XP+A (Add ALPHA Register to X Address Pointer)9
XP+X (Add X Register to X Address Pointer) .. 9
XP<>YP (Exchange X Address Pointer With Y Address Pointer) 10
YP-XP (Subtract X Address Pointer from Y Address Pointer) 10
RUPP (Roll Up Address Pointers) .. 11
RDNP (Roll Down Address Pointers) ... 11

3. General Memory Functions ..12

YDIFF? (Search for Differences) .. 12
YSRCH? (Search for Data) ...13
YPEEK+ (Read Word Using Pointer and Increment) 14
YPOKE+ (Write Word Using Pointer and Increment)14

4. Page Status Functions .. 15

PMEMCHK (Programmable Memory Status Check)16
MEMCHK (Memory Status Check) ..16
PMEMINI (Programmable Initialize Memory Status) 17
MEMINI (Initialize Memory Status) .. 17

5. CL Alternate Memory Functions ...18

PSTOM (Programmable Store to Alternate Memory Area)20
STOM (Store to Alternate Memory Area) ...20
PRCLM (Programmable Recall from Alternate memory Area)20
RCLM (Recall from Alternate Memory Area) ...20
PEXM (Programmable Exchange with Alternate Memory Area) 21
EXM (Exchange with Alternate Memory Area) ...21

6. Miscellaneous Functions ... 22

STDMSK (Standard Data Mask) ...22
STOMSK (Store Data Mask) .. 22
RCLMSK (Recall Data Mask) .. 23
DST+ (Increment Destination Address) .. 23
SRCDST+ (Increment Source/Destination Address Pair) 23

41CL Memory Functions

© 2022, Systemyde International Corporation 4

RCLBP, RCLGP, RCLPP (Recall System Pointer) 24
STOBP, STOGP, STOPP (Store System Pointer)24
CPYBNK (Copy Bank) ... 25

7. 41C Register Functions ... 26

REG2XP (Load Register Address to X Address Pointer)26
XP2REG (Translate X Address Pointer to Data Register Address)27
YPEEKR+ (Read Register Using Pointer and Increment) 27
YPOKER+ (Write Register Using Pointer and Increment)28
YPEEKR (Read Register Using Pointer) .. 28
YPOKER (Write Register Using Pointer) ...28
SETREG (Set Bits in Register Using Pointer) ..29
CLRREG (Clear Bits in Register Using Pointer) ..29
COMREG (Complement Bits in Register Using Pointer)30
LDREG (Load Register Using Pointers) ... 30
EXREG (Exchange Registers Using Pointers) .. 30

8. CL Configuration Functions .. 32

CFGINI (Initializae Alternate Configurations) .. 32

9. Error Messages ... 34

10. Revision History ..35

41CL Memory Functions

© 2022, Systemyde International Corporation 5

Introduction
The 41CL Memory Functions provide extra features and functions for directly accessing
the hardware (physical memory, registers or peripheral registers) of the 41CL. If you
rarely deal with the hardware resources of the 41CL these functions will probably not be
useful to you. The 41CL Memory Functions are independent of the normal 41CL Extra
Functions and 41CL Extreme Functions, and can be plugged into the 41CL on an as-
needed basis using the "YFNF" mnemonic to program the MMU.

This manual covers version -3A. Earlier versions of the 41CL Memory Functions
had a different set of functions and are no longer supported.

The 41CL Memory Functions are grouped into six categories:

1. The Address Pointer functions implement four address pointers, which allow easy
access to locations in memory without having to continually specify an address.

2. The General Memory functions include word-oriented PEEK and POKE functions that
use the address pointers, as well as functions to compare the contents of two regions of
physical memory, or find specific data in a region of physical memory.

3. The Page Status functions provide a way to keep track of which pages of physical
memory have been used, in either Flash or RAM.

4. The CL Expanded Memory functions provide a way to keep up to three alternate copies
(numbered 1, 2 and 3) of the regular 41C memory (number 0), either as backups or to
change the "personality" of your machine.

5. Most of the miscellaneous functions provide housekeeping for the remainder of the
41CL Memory Functions. One miscellaneous function provides a way to copy programs
for the secondary banks of physical modules, something that the regular 41CL Extra
Functions and 41CL Extreme Functions are not capable of doing.

6. The 41C Register functions allow easy access to the data registers and peripheral
registers of the 41C.

7. The CL Configuration functions allow you to initialize the MMU registers in memory
with a standard set of alternate configurations.

Some of the 41CL Memory Functions use dynamic paging, where code is transiently
loaded to Page 4 while the functions are executed. Any image loaded to Page 4 (like
Library-4) will be temporarily displaced by these functions and then restored before the
function finishes. No physical module that uses Page 4 should be present in the
calculator when using the 41CL Memory Functions. The HP-IL Module with the
Printer Function Switch in the “DISABLE” position uses Page 4.

41CL Memory Functions

© 2022, Systemyde International Corporation 6

Address Pointer Functions
Four address pointers are implemented to allow easy access to locations in 41CL
memory. These pointers are called the X Address Pointer (XP), the Y Address Pointer
(YP), the Z Address Pointer (ZP), and the T Address Pointer (TP). There are functions to
store, recall, increment, swap, subtract, roll up and roll down the pointers (similar to the
normal 41C stack.)

Address pointers can hold any value between 0x000000 and 0xFFFFFF, but all of the
functions that use address pointers to access a physical memory location automatically
verify that the physical memory address is valid. The ranges of acceptable physical
memory addresses are shown in the table below:

Lowest address Highest address

V2 Flash memory 0x000000 0x0FFFFF
V3/V4 Flash memory 0x000000 0x1FFFFF
V5 Flash memory 0x000000 0x3FFFFF

V2 RAM memory 0x800000 0x83FFFF
V3/V4/V5 RAM memory 0x800000 0x87FFFF

41C Register memory 0x800000 0x803FFF

The majority of functions in the 41CL Memory Functions only work with physical
addresses, but since not all physical memory addresses are valid, one invalid address
range has been reserved to serve as an alias for 41C peripheral registers. This address
range is shown in the table below.

Lowest address Highest address

41C Peripheral Registers 0xFFF000 0xFFFFFF

The underlined digits in the table above contain the actual address portion of the pointer.
This address alias is only allowed with the various 41C Register Functions and the
functions that increment or add to pointers. Incrementing or adding to an aliased
pointer only affects the least-significant digit, because each peripheral address
consists of a two-digit peripheral identifier and a one-digit register address.

Each of the address pointers are stored in two memory locations, as shown below. Even
though the address pointers are stored in separate memory locations, all pointer
operations with a normal pointer use the entire six digits of a pointer.

41CL Memory Functions

© 2022, Systemyde International Corporation 7

DataMemory address
4 3 2 1

X Address Pointer 0x804020 0 X2 X1 X0
0x804021 0 X5 X4 X3

Y Address Pointer 0x804022 0 Y2 Y1 Y0
0x804023 0 Y5 Y4 Y3

Z Address Pointer 0x804024 0 Z2 Z1 Z0
0x804025 0 Z5 Z4 Z3

T Address Pointer 0x804026 0 T2 T1 T0
0x804027 0 T5 T4 T3

STOXP
STOYP
STOZP
STOTP

(6-digit hex address in ALPHA register)

Executing STOXP (Store X Address Pointer) writes directly to the X Address Pointer at
addresses 0x804020 and 0x804021.

Executing STOYP (Store Y Address Pointer) writes directly to the Y Address Pointer at
addresses 0x804022 and 0x804023.

Executing STOZP (Store Z Address Pointer) writes directly to the Z Address Pointer at
addresses 0x804024 and 0x804025.

Executing STOTP (Store T Address Pointer) writes directly to the T Address Pointer at
addresses 0x804026 and 0x804027.

No range check is performed when a pointer is stored. Instead, any function that uses a
pointer automatically performs the appropriate range check before the function executes.

The data for these four commands is a normal six-digit hexadecimal number, as shown
below.

ALPHA register
6 5 4 3 2 1

Address Pointer value P5 P4 P3 P2 P1 P0

41CL Memory Functions

© 2022, Systemyde International Corporation 8

RCLXP
RCLYP
RCLZP
RCLTP

Executing RCLXP (Recall X Address Pointer) reads directly from the X Address Pointer
at addresses 0x804020 and 0x804021.

Executing RCLYP (Recall Y Address Pointer) reads directly from the Y Address Pointer
at addresses 0x804022 and 0x804023.

Executing RCLZP (Recall Z Address Pointer) reads directly from the Z Address Pointer
at addresses 0x804024 and 0x804025.

Executing RCLTP (Recall T Address Pointer) reads directly from the T Address Pointer
at addresses 0x804026 and 0x804027.

These four functions return with the contents of the address pointer in the display (Run
mode only) and the ALPHA register, formatted as shown below.

Display and ALPHA register
6 5 4 3 2 1

Address Pointer value P5 P4 P3 P2 P1 P0

XP+
YP+
ZP+
TP+

Executing XP+ (Increment X Address Pointer) increments the X Address Pointer by one.

Executing YP+ (Increment Y Address Pointer) increments the Y Address Pointer by one.

Executing ZP+ (Increment Z Address Pointer) increments the Z Address Pointer by one.

Executing TP+ (Increment T Address Pointer) increments the T Address Pointer by one.

All four of the pointer increment functions return with the new contents of the Address

41CL Memory Functions

© 2022, Systemyde International Corporation 9

pointer in both the display (Run mode only) and the ALPHA register, formatted as shown
below.

Display and ALPHA register
6 5 4 3 2 1

Address Pointer value P5 P4 P3 P2 P1 P0

XP+A

Executing XP+A (Add ALPHA Register to X Address Pointer) adds the hexadecimal
number in the ALPHA register to the X Address Pointer. The hex number in the ALPHA
register is treated as a 16's-complement value. That is, the number must be between
+8,388,607 and -8,388,608. This function allows the X Address Pointer to step forward or
backward through addresses in increments other than one.

The data for this command is a normal six-digit hex number, as shown below. Leading
zeros do not need to be present, so the number can be scaled as appropriate for an aliased
address.

ALPHA register
6 5 4 3 2 1

hex number D5 D4 D3 D2 D1 D0

This function returns with the new contents of the X Address Pointer in both the display
(Run mode only) and the ALPHA register, formatted as shown below.

Display and ALPHA register
6 5 4 3 2 1

X Address Pointer value X5 X4 X3 X2 X1 X0

XP+X

Executing XP+X (Add X Register to X Address Pointer) adds the number in the X
register to the X Address Pointer. The number in the X register must be between -999 and
999. This function allows the X Address Pointer to step forward or backward through

41CL Memory Functions

© 2022, Systemyde International Corporation 10

addresses in increments other than one.

This function returns with the new contents of the X Address Pointer in both the display
(Run mode only) and the ALPHA register, formatted as shown below.

Display and ALPHA register
6 5 4 3 2 1

X Address Pointer value X5 X4 X3 X2 X1 X0

XP<>YP

Executing XP<>YP (Exchange X Address Pointer with Y Address Pointer) exchanges the
X Address Pointer with the Y Address Pointer.

This function returns with the new contents of the X Address Pointer in both the display
(Run mode only) and the ALPHA register, formatted as shown below.

Display and ALPHA register
6 5 4 3 2 1

X Address Pointer value X5 X4 X3 X2 X1 X0

YP-XP

Executing YP-XP (Subtract X Address Pointer from Y Address Pointer) subtracts the X
Address Pointer from the Y Address Pointer, but does not affect either pointer. Both
pointers are treated as unsigned numbers, but the result is a normal 6-digit 16's-
complement number. Aliased pointers are not allowed.

This function returns with the result of the subtraction in both the display (Run mode
only) and the ALPHA register, formatted as shown below.

Display and ALPHA register
6 5 4 3 2 1

difference between pointers D5 D4 D3 D2 D1 D0

41CL Memory Functions

© 2022, Systemyde International Corporation 11

RUPP

Executing RUPP (Roll Up Address Pointers) replaces the T Address Pointer with the Z
Address Pointer, the Z Address Pointer with the Y Address Pointer, the Y Address
Pointer with the X Address Pointer, and the X Address Pointer with the T Address
Pointer.

This function returns with the new contents of the X Address Pointer in both the display
(Run mode only) and the ALPHA register, formatted as shown below.

Display and ALPHA register
6 5 4 3 2 1

X Address Pointer value X5 X4 X3 X2 X1 X0

RDNP

Executing RDNP (Roll Down Address Pointers) replaces the X Address Pointer with the
Y Address Pointer, the Y Address Pointer with the Z Address Pointer, the Z Address
Pointer with the T Address Pointer, and the T Address Pointer with the X Address
Pointer.

This function returns with the new contents of the X Address Pointer in both the display
(Run mode only) and the ALPHA register, formatted as shown below.

Display and ALPHA register
6 5 4 3 2 1

X Address Pointer value X5 X4 X3 X2 X1 X0

41CL Memory Functions

© 2022, Systemyde International Corporation 12

General Memory Functions
The General Memory functions provide tools that make it easier to work directly with the
physical memory of the 41CL.

The new YPEEK+ and YPOKE+ functions use the X Address Pointer to hold the
address information, and automatically increment this pointer by one after each peek or
poke operation. This simplifies writing contiguous data to memory because you don’t
have to specify the address every time. Unlike the regular YPOKE function, the
YPOKE+ function works with both Flash memory and RAM, so be very careful to make
sure that the X Address Pointer contains the correct address.

The YDIFF? function allows you to compare the data in two regions of memory, while
the YSRCH? function allows you to search memory for a specific word of data. Both of
these functions use the Memory Mask Register to select which bits will contribute to the
compare or search.

YDIFF?

Executing YDIFF? (Search for Differences) compares the word at the address specified
by the X Address Pointer with the word at the address specified by the Y Address Pointer,
using the Memory Mask Register contents to select which bits to compare. Both pointers
are then incremented and the compare continues, until cancelled by a keyboard input.
This function is not programmable.

For each iteration, the X Address Pointer is displayed to show the progress of the search.
If the two words match, both pointers are incremented and the process repeats. If the two
words do not match both the X Address Pointer and the corresponding data value are
written to both the ALPHA register and the display and the function pauses to wait for a
keyboard input before continuing.

The display is formatted as shown below in the case of a difference:

Display and ALPHA Register
11 10 9 8 7 6 5 4 3 2 1

Physical address and data P5 P4 P3 P2 P1 P0 - D3 D2 D1 D0

The compares are stopped and restarted using the R/S key. Compares continue until
cancelled using the backspace key.

41CL Memory Functions

© 2022, Systemyde International Corporation 13

When this function is cancelled the last difference is displayed and is present in the
ALPHA register. If no difference has been found the last address compared, which is the
current X Address Pointer, is displayed but the ALPHA register is unaffected.

YSRCH? (4-digit hex word in ALPHA register)

Executing YSRCH? (Search for Data) compares the word at the address specified by the
X Address Pointer with the word in the ALPHA register, using the Memory Mask
Register contents to select which bits to compare. The pointer is then incremented and the
compare continues until cancelled by a keyboard input. This function is not
programmable.

The data to compare with memory is taken from the right-most four digits of the ALPHA
register. All other information in the ALPHA register is ignored.

ALPHA Register
4 3 2 1

Compare data D3 D2 D1 D0

For each iteration, the X Address Pointer is displayed to show the progress of the search.
If the two words do not match, the pointer is incremented and the process repeats. If the
two words match both the X Address Pointer and the corresponding data value are written
to the ALPHA register and the display and the function pauses to wait for a keyboard
input before continuing.

The display is formatted as shown below in the case of a match:

Display and ALPHA Register
11 10 9 8 7 6 5 4 3 2 1

Physical address and data P5 P4 P3 P2 P1 P0 - D3 D2 D1 D0

The search can be stopped and restarted using the R/S key. Searches continue until
cancelled using the backspace key.

When this function is cancelled the last match is displayed and is present in the ALPHA
register. If no difference has been found the search data is displayed and the ALPHA
register is unaffected.

41CL Memory Functions

© 2022, Systemyde International Corporation 14

YPEEK+

Executing YPEEK+ (Read Word Using Pointer and Increment Pointer) reads directly
from either Flash or RAM memory. This function uses the X Address Pointer to hold the
memory address information, and automatically increments this pointer after the read.

The X Address Pointer, prior to the increment, and the read data are returned in both the
display (Run mode only) and the ALPHA register in the format shown below. This is the
same format used by the normal YPEEK function.

Display and ALPHA Register
11 10 9 8 7 6 5 4 3 2 1

Physical address and data P5 P4 P3 P2 P1 P0 - D3 D2 D1 D0

YPOKE+ (4-digit hex write data in ALPHA register)

Executing YPOKE+ (Write Word Using Pointer & Increment Pointer) writes directly to
either Flash or RAM memory. This function uses the X Address Pointer to hold the
memory address information, and automatically increments this pointer after the write.

The data to write to memory is taken from the right-most four digits of the ALPHA
register. All other information in the ALPHA register is ignored. This allows this function
to use the same format as the normal YPOKE function.

ALPHA Register
4 3 2 1

Write data D3 D2 D1 D0

In Run mode, before writing to Flash this function requires user confirmation, by sending
FL WR OK? to the display. Pressing the R/S key confirms that the write should be
performed. Pressing any other key will cancel the function. If no key is pressed within 10
seconds the function will be cancelled and a NULLED error message will be written to
the display.

When writing to Flash memory the YPOKE+ function does not check for pre-existing
data in the Flash location, so be careful, and remember that writing Flash memory can
only change a "1" to a "0" and never vice-versa. This function does not allow writing to
the Operating System area (pages 0x000 to 0x007) of Flash memory.

41CL Memory Functions

© 2022, Systemyde International Corporation 15

Page Status Functions
The Page Status functions allow you to keep track of which pages of Flash or RAM have
been used. These functions cannot tell you what the pages are being used for; only
whether or not they might be empty.

These functions take advantage of the fact the memories on in the 41CL are sixteen bits
wide, while HP-41 instructions are only ten bits wide. Two of the otherwise unused bits
are used by the NEWT microprocessor for instruction-by-instruction control of the Turbo
mode, but the other four bits are not normally used, especially by the first word of a page.
The figure below shows how the bits are organized in a 41CL memory word.

nibble 3 nibble 2 nibble 1 nibble 0
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0
Status Turbo unused 10-bit HP-41 instruction

The two status bits in the upper nibble are used to indicate an unused page according to
the table below.

Status Meaning
0 0 Programmed Flash or RAM page
0 1 Reserved
1 0 Unprogrammed RAM page
1 1 Unprogrammed Flash page

Since an unprogrammed word of Flash contains 0xFFFF, and in the 41CL the Flash is
only written by page, if the two status bits are “11” the Flash page has almost certainly
not been programmed. If necessary, the YCRC function can be used to verify a
completely unprogrammed page of Flash memory. An unprogrammed page of Flash
memory will have a CRC of 0x53D36BD2.

Unfortunately, RAM can power up with any data so there is no automatic way to
determine that a page of RAM has not been used. The MEMINI function can be used to
initialize the first word of selected RAM pages with “10” in the status bits. Then if the
first word of a RAM page is ever written with normal HP-41 instructions or data, these
bits will automatically be changed to “00,” giving an indication that the page has been
used. This indication is not foolproof, because individual words of RAM can be written at
any time.

41CL Memory Functions

© 2022, Systemyde International Corporation 16

PMEMCHK (page address in ALPHA register)

Executing PMEMCHK (Programmable Memory Status Check) reads the contents of the
first word in the selected page and checks the status bits to see if the page may have been
used.

The figure below shows the formatting required for the address in the ALPHA register for
the PMEMCHK function.

ALPHA register
3 2 1

single address P5 P4 P3

When executed from the keyboard this function returns the page number and USED in
the display if the status bits indicate that the page has been used, and the page number and
UNUSED in the display if the status bits indicate that the page has not been used.

When PMEMCHK is used in a program, if the status bits indicate that the page has been
used the next program line will be executed; if the status bits indicate that the page has
not been used the next line in the program is skipped.

MEMCHK (first and last page address in ALPHA register)

Executing MEMCHK (Memory Status Check) reads the contents of the first word in each
selected page and checks the status bits to see if the page may have been used. A range of
pages is specified, and either Flash or RAM addresses are allowed. This function is not
programmable.

The figure below shows the formatting required for the address pair in the ALPHA
register for the MEMCHK function. This function also accepts the same single-address
format used by the PMEMCHK function.

ALPHA register
7 6 5 4 3 2 1

first last
address range P5 P4 P3 > P5 P4 P3

When executed, this function returns the page number and USED in the display if the
status bits indicate that the page has been used, and the page number and UNUSED in

41CL Memory Functions

© 2022, Systemyde International Corporation 17

the display if the status bits indicate that the page has not been used. If an address range is
specified the checks continue until halted with the R/S key. The checks can be stopped
and restarted using the R/S key. The function is cancelled using the backspace key.

PMEMINI (page address in ALPHA register)

Executing PMEMINI (Programmable Initialize Memory Status) writes bits 15 and 14 of
the first word the selected page to indicate that the page is unused. Because of the way
that Flash memory works, only RAM addresses are allowed. Note that the first five pages
of RAM (addresses 0x800 to 0x804) are used by the 41CL, and this function will not
allow those pages to be marked as unused.

The figure below shows the formatting required for the address in the ALPHA register for
the PMEMINI function.

ALPHA register
3 2 1

single address P5 P4 P3

MEMINI (first and last page address in ALPHA register)

Executing MEMINI (Initialize Memory Status) writes bits 15 and 14 of the first word of
each selected page to indicate that the page is unused. Either a single page or range of
pages may be specified, but only RAM addresses are allowed. This function is not
programmable. Note that the first five pages of RAM (addresses 0x800 to 0x804) are
used by the 41CL, and this function will not allow those pages to be marked as unused.

The figure below shows the formatting required for the address pair in the ALPHA
register for the MEMINI function. This function also accepts the same single-address
format used by the PMEMINI function.

ALPHA register
7 6 5 4 3 2 1

first last
address range P5 P4 P3 - P5 P4 P3

41CL Memory Functions

© 2022, Systemyde International Corporation 18

CL Alternate Memory Functions
The microprocessor used in the 41C and the NEWT microprocessor used in the 41CL are
capable of addressing 4096 registers of data memory, each consisting of seven bytes. The
41CL reserves four 4096-word pages of RAM to implement this register address space.
However, the 41C Operating System is only capable of accessing one fourth of the
microprocessor register address space, or one 4096-word page of RAM. This leaves three
pages of RAM unused, and the 41CL Memory Functions can use these RAM locations to
store alternate versions of the 41C register memory.

When using these Alternate Memory versions of the 41C register memory it is important
to remember that the register addresses used by the microprocessor are different from the
user-visible register addresses of the calculator, and the 41C Operating System normally
manages this memory resource. As a consequence, you should always be careful when
using these alternate versions of the 41C register memory. More information about how
the 41C Operating System uses its data memory can be found in the 41CL Memory
Reference, as well as a number of historical books and documents.

The functions here divide each of the three 4096-word pages of Alternate Memory into
sixteen 256-word sections, as shown below. Each of these sections can be individually
selected to be read, written or exchanged with the original 41C register memory. For
convenience, these functions also can use three mnemonic identifiers for the different
regions of this memory. This is also shown in the table.

Register
address 41C use Physical address Selector Identifier

000 - 03F OS use 0x800000 - 0x8000FF 0 S
040 - 07F 0x800100 - 0x8001FF 1
080 - 0BF

X Memory
0x800200 - 0x8002FF 2

X

0C0 - 0FF 0x800300 - 0x8003FF 3
100 - 13F 0x800400 - 0x8004FF 4
140 - 17F 0x800500 - 0x8005FF 5
180 - 1BF 0x800600 - 0x8006FF 6
1C0 - 1FF

Main Memory

0x800700 - 0x8007FF 7

M

200 - 23F 0x800800 - 0x8008FF 8
240 - 27F 0x800900 - 0x8009FF 9
280 - 2BF 0x800A00 - 0x800AFF 10
2C0 - 2FF

X Memory

0x800B00 - 0x800BFF 11
300 - 33F 0x800C00 - 0x800CFF 12
340 - 37F 0x800D00 - 0x800DFF 13
380 - 3BF 0x800E00 - 0x800EFF 14
3C0 - 3FF

X Memory

0x800F00 - 0x800FFF 15

X

41CL Memory Functions

© 2022, Systemyde International Corporation 19

The first section, with register addresses 0x000-0x03F, is used exclusively by the 41C
Operating System. This section is where the user-visible stack and ALPHA registers
reside, along with the flags and other information. In reality, only the first sixteen register
addresses in this section are visible to the Operating System, and the remainder is never
used. Be very careful when restoring or exchanging this section, because one of the
locations contains a bit pattern that the Operating System uses to determine whether or
not to signal the MEMORY LOST condition.

The two sections with register addresses 0x040-0x0BF are the memory normally found in
the HP Extended Functions/Memory module.

The five sections with register addresses 0x0C0-0x1FF are the Main Memory for the
41C. This is where key assignment buffers, alarm buffers, I/O buffers and User programs
are stored.

The four sections with register addresses 0x200-0x2FF are the memory found in the first
Extended Memory Module, while the four sections with register addresses 0x300-0x3FF
are the memory found in the second Extended Memory Module.

The easiest way to use these function to read, write and exchange with Alternate Memory
is useing the identifiers shown in the table. The S identifier selects the Status area of the
41C memory, while the M identifier selects the Main Memory area of the 41C memory,
and an X identifier selects the Extended Memory area of the 41C memory.

Any one, two, or three identifiers, in any order, can be used with the functions here to
select the section(s) on which to operate. The identifiers are taken from the three least-
significant digits of the ALPHA register.

ALPHA register
3 2 1

Identifiers I3 I2 I1

The selection information for these commands can also be specified explicitly with a
four-digit hex number. Each of the sixteen bits in this hex number corresponds to a
section, as was also shown in the table above. This hex number is taken from the ALPHA
register.

ALPHA Register
4 3 2 1

Block selector value D3 D2 D1 D0

41CL Memory Functions

© 2022, Systemyde International Corporation 20

This means that an S identifier is the same as 0x0001 when using a hex number, an M
identifier is the same as 0x00F8 when using a hex number, and an X identifier is the same
as 0xFF06 when using a hex number.

Only the values 1, 2 and 3 are valid for the Alternate Memory selection for these
functions.

PSTOM (alternate memory in X register, identifier in ALPHA register)

Executing PSTOM (Programmable Store to Alternate Memory Area) copies data from
the default memory area to the corrresponding locations in the Alternate Memory Area as
selected by the contents of the X Register.

STOM (prompts for alternate memory, identifier in ALPHA register)

Executing STOM (Store to Alternate Memory Area) copies data from the default memory
area to the corrresponding locations in the Alternate Memory Area as selected by the
prompt. This function is not programmable.

PRCLM (alternate memory in X register, identifier in ALPHA register)

Executing PRCLM (Programmable Recall from Alternate Memory Area) copies data
from the Alternate Memory Area as selected by the contents of the X Register to the
corresponding locations in the default memory area.

RCLM (prompts for alternate memory, identifier in ALPHA register)

Executing RCLM (Recall from Alternate Memory Area) copies data from the Alternate
Memory Area as selected by the prompt to the corresponding locations in the default
memory area. This function is not programmable.

41CL Memory Functions

© 2022, Systemyde International Corporation 21

PEXM (alternate memory in X register, identifier in ALPHA register)

Executing PEXM (Programmable Exchange with Alternate Memory Area) exchanges
data from the Alternate Memory Area as selected by the contents of the X Register with
the corresponding locations in the default memory area.

EXM (prompts for alternate memory, identifier in ALPHA register)

Executing EXM (Exchange with Alternate Memory Area) exchanges data from the
Alternate Memory Area as selected by the prompt with the corresponding locations in the
default memory area. This function is not programmable.

41CL Memory Functions

© 2022, Systemyde International Corporation 22

Miscellaneous Functions
Some of the General Memory functions require data masking information to control
which bits of the memory data are to be used by the functions. The Memory Mask
Register is used to store this information. Functions are provided to store, recall, and
preconfigure this mask information.

A number of functions in the 41CL Memory Functions, the 41CL Extra Functions and
41CL Extreme Functions use page addresses or page address pairs in the ALPHA register.
Two functions are provided to increment these types of addresses to reduce keystrokes
and program sizes.

One miscellaneous function is included that allows copying code from bank-switched
modules. Normally only the first bank is visible to code not running in the image, but the
CPYBNK function overcomes this limitation.

STDMSK

Executing STDMSK (Standard Data Mask) writes 0x03FF directly to the Memory Mask
Register at address 0x804026. This is the correct mask value to use when searching or
comparing 10-bit HP-41 instructions. The Memory Mask Register is not automatically
initialized.

STOMSK (4-digit hex mask value in ALPHA register)

Executing STOMSK (Store Data Mask) writes directly to the Memory Mask Register at
address 0x804026. Only Memory Mask Register bit positions containing a one will
contribute to a search or compare. So, to search/compare the entire 16 bits, use a mask
value of 0xFFFF.

The data for this function is a normal four-digit hex number, as shown below. If the
ALPHA register contains more than four digits, only the four rightmost digits will be
used.

ALPHA Register
4 3 2 1

Memory Mask value M3 M2 M1 M0

41CL Memory Functions

© 2022, Systemyde International Corporation 23

RCLMSK

Executing RCLMSK (Recall Data Mask) reads directly from the Memory Mask Register
at address 0x804026.

This function returns with the mask value in both the display (Run mode only) and the
ALPHA register, formatted as shown below.

Display and
ALPHA Register

4 3 2 1

Memory Mask value M3 M2 M1 M0

DST+ (page address in ALPHA register)

Executing DST+ (Increment Destination Address) increments the page address in the
ALPHA register by one, moving to the next page. This is useful when using functions
that require a page address, particularly in programs. This function can also be used to
increment a 41C register address in the ALPHA register.

The figure below shows the formatting required for the address in the ALPHA register for
the DST+ function. In Run mode the new address is displayed in the same format.

ALPHA register
3 2 1

single address P5 P4 P3

SRCDST+ (source and destination page address in ALPHA register)

Executing SRCDST+ (Increment Source/Destination Address Pair) increments both
addresses in a typical source/destination address pair in the ALPHA register by one,
moving to the next pages. This is useful when using functions that require a source and
destination address pair, particularly in programs.

The figure below shows the formatting required for the addresses in the ALPHA register

41CL Memory Functions

© 2022, Systemyde International Corporation 24

for the SRCDST+ function. In Run mode the new address is displayed in the same
format.

ALPHA register
7 6 5 4 3 2 1

source destination
source and destination addresses P5 P4 P3 > P5 P4 P3

RCLBP
RCLGP
RCLPP

Executing RCLBP (Recall Memory Buffer Pointer) loads the contents of the Memory
Buffer Pointer to the X Address Pointer.

Executing RCLGP (Recall GET Buffer Pointer) loads the contents of the GET Buffer
Pointer to the X Address Pointer.

Executing RCLPP (Recall PUT Buffer Pointer) loads the contents of the PUT Buffer
Pointer to the X Address Pointer.

The Memory Buffer Pointer, GET Buffer Pointer and PUT Buffer Pointer always point at
the Memory Buffer Page at page address 0x805.

STOBP
STOGP
STOPP

Executing STOBP (Store Memory Buffer Pointer) loads the contents of the X Address
Buffer Pointer to the Memory Buffer Pointer.

Executing STOGP (Store GET Buffer Pointer) loads the contents of the X Address
Buffer Pointer to the GET Buffer Pointer.

Executing STOPP (Store PUT Buffer Pointer) loads the contents of the X Address Buffer
Pointer to the PUT Buffer Pointer.

The Memory Buffer Pointer, GET Buffer Pointer and PUT Buffer Pointer always point at
the Memory Buffer Page at page address 0x805, even though the upper three nibbles of

41CL Memory Functions

© 2022, Systemyde International Corporation 25

the X Address Pointer are stored by these commands.

CPYBNK (prompts for bank, plus source and destination pages)

Executing CPYBNK (Copy Bank) copies the code from any bank of one page to the main
bank in another page. The destination page should be RAM for the copy to occur. This
function is most useful when copying banked code from a physical module into 41CL
memory, because the normal YMCPY function is only able to copy from bank 1 of a
physical module.

41CL Memory Functions

© 2022, Systemyde International Corporation 26

41C Register Functions
The 41C Register functions allow direct access to the entire 41C register address space,
including the registers that are not normally accessable by the 41C Operating System.
Data registers can be accessed using the physical address of the register. Peripheral
registers can only be access using the alias capability of the register pointers.

Each 41C data register consists of seven bytes of information, and in the 41CL the entire
41C register memory is mapped to dedicated pages in physical memory, with each
register occupying four words of RAM. A 41C data register address is twelve bits (three
hex digits) in length, for a total of 4096 registers.

Two functions translate between the normal three-digit hex 41C data register address and
the corresponding physical memory address in the X Address Pointer. The X Address
Pointer (and the Y Address Pointer, if necessary) are used to access the register(s) in
physical memory. Remember that the physical 41C register address is different from the
user-visible register addresses of the calculator.

Peripheral registers are also seven bytes, but are addressed slightly differently from data
registers. While peripheral registers are still three digits in length, normally a 41C
peripheral will decode the upper two digits as a "peripheral identifier" and then use the
least-significant digit to select a register within the peripheral.

Those 41C Register functions that require data expect a fourteen-digit hex number in the
ALPHA register, as shown below. Because the display can only show twelve digits, the
two most-significant digits will scroll out of the display to the left. Leading zeros do not
need to be present, and if the ALPHA register is empty, a value of all zeros will
automatically be used by the functions.

ALPHA Register
14 13 12 11 10 9 8 7 6 5 4 3 2 1

D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

REG2XP (3-digit hex register address in ALPHA register)

Executing REG2XP (Load Register Address to X Address Pointer) converts a three-digit
hexadecimal 41C data register address to the actual physical address of that register and
loads the result to the X Address Pointer.

The 41C register address for this function is a normal three-digit hex number, as shown

41CL Memory Functions

© 2022, Systemyde International Corporation 27

below. If the ALPHA register contains more than three digits, only the three right-most
digits will be used.

ALPHA Register
3 2 1

Physical 41C register address R2 R1 R0

XP2REG

Executing XP2REG (Translate X Address Pointer to Data Register Address) converts
the physical address in the X Address Pointer to a 41C data register address.

This function returns with the 41C register address in both the display (Run mode only)
and the ALPHA register, formatted as shown below.

Display and
ALPHA Register

3 2 1

Physical 41C register address R2 R1 R0

YPEEKR+

Executing YPEEKR+ (Read Register Using Pointer and Increment Pointer) reads
directly from the 41C data register area of RAM memory or the 41C peripheral register.
This function uses the X Address Pointer to hold the register address information, and
automatically increments this pointer to the next register address after the read.

The register data is returned in both the display (Run mode only) and the ALPHA register
in the format shown below.

Display and ALPHA Register
14 13 12 11 10 9 8 7 6 5 4 3 2 1

R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

41CL Memory Functions

© 2022, Systemyde International Corporation 28

YPOKER+ (14-digit hex value in ALPHA register)

Executing YPOKER+ (Write Register Using Pointer and Increment Pointer) writes
directly to the 41C data register area of RAM memory or to the 41C peripheral register.
This function uses the X Address Pointer to hold the register address information, and
automatically increments this pointer to the next register address after the write.

The data written to the register is returned in the display (Run mode only) and the
ALPHA register in the format shown below.

Display and ALPHA Register
14 13 12 11 10 9 8 7 6 5 4 3 2 1

R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

YPEEKR

Executing YPEEKR (Read 41C Register Using Pointer) reads directly from the 41C data
register area of RAM memory or the 41C peripheral register. This function uses the X
Address Pointer to hold the register address information. The X Address Pointer is not
affected by this function.

The register data is returned in both the display (Run mode only) and the ALPHA register
in the format shown below.

Display and ALPHA Register
14 13 12 11 10 9 8 7 6 5 4 3 2 1

R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

YPOKER (14-digit hex value in ALPHA register)

Executing YPOKER (Write 41C Register Using Pointer) writes directly to the 41C data
register area of RAM memory or to the 41C peripheral register. This function uses the X
Address Pointer to hold the register address information. The X Address Pointer is not
affected by this function.

The data written to the register is returned in the display (Run mode only) and the

41CL Memory Functions

© 2022, Systemyde International Corporation 29

ALPHA register in the format shown below.

Display and ALPHA Register
14 13 12 11 10 9 8 7 6 5 4 3 2 1

R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

SETREG (14-digit hex value in ALPHA register)

Executing SETREG (Set bits in Register Using Pointer) writes the 41C data or
peripheral register addressed by the X Address Pointer with the logical-OR of the register
data and the data in the ALPHA register. In other words, for each bit position in the
ALPHA register that is set to one, the corresponding bit in the 41C register will be set to
one. All other 41C register bits are not affected.

The data written to the register is returned in the display (Run mode only) and the
ALPHA register in the format shown below.

Display and ALPHA Register
14 13 12 11 10 9 8 7 6 5 4 3 2 1

R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

CLRREG (14-digit hex value in ALPHA register)

Executing CLRREG (Clear bits in 41C Register Using Pointer) writes the 41C data or
peripheral register addressed by the X Address Pointer with the logical-AND of the
register data and the inverse of the data in the ALPHA register. In other words, for each
bit position in the ALPHA register that is set to one, the corresponding bit in the 41C
register will be set to zero. All other 41C register bits are not affected.

The data written to the register is returned in the display (Run mode only) and the
ALPHA register in the format shown below.

Display and ALPHA Register
14 13 12 11 10 9 8 7 6 5 4 3 2 1

R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

41CL Memory Functions

© 2022, Systemyde International Corporation 30

COMREG (14-digit hex value in ALPHA register)

Executing COMREG (Complement bits in Register Using Pointer) writes the 41C data
or peripheral register addressed by the X Address Pointer with the logical-XOR of the
register data and the data in the ALPHA register. In other words, for each bit position in
the ALPHA register that is set to one, the corresponding bit in the 41C register will be
complemented. All other 41C register bits are not affected.

The data written to the register is returned in the display (Run mode only) and the
ALPHA register in the format shown below.

Display and ALPHA Register
14 13 12 11 10 9 8 7 6 5 4 3 2 1

R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

LDREG

Executing LDREG (Load Register Using Pointers) writes the 41C data register
addressed by the Y Address Pointer with the data from the 41C data register addressed by
the X Address Pointer. The register addressed by the X Address Pointer is unaffected.
41C peripheral registers are not allowed for this function.

The data written to the register is returned in the display (Run mode only) and the
ALPHA register in the format shown below.

Display and ALPHA Register
14 13 12 11 10 9 8 7 6 5 4 3 2 1

R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

EXREG

Executing EXREG (Exchange Registers Using Pointers) exchanges the data in the 41C
data register addressed by the Y Address Pointer with the data from the 41C data register
addressed by the X Address Pointer. 41C peripheral registers are not allowed for this
function.

41CL Memory Functions

© 2022, Systemyde International Corporation 31

The data written to the register addressed by the X Address Pointer is returned in the
display (Run mode only) and the ALPHA register in the format shown below.

Display and ALPHA Register
14 13 12 11 10 9 8 7 6 5 4 3 2 1

R13 R12 R11 R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

41CL Memory Functions

© 2022, Systemyde International Corporation 32

Configuration Functions
The 41CL supports fifteen alternate configurations, where each configuration is a set of
MMU programming that selects the images plugged into pages 4 through F. Populating
these fifteen alternate configurations can be a time-consuming process, so the the
CFGINI function initializes twelve of the alternate configurations with a set of images
that you may find useful, either directly or as a starting point for your own custom
configurations.

In addition, aliases for these different configurations have been implemented in the Image
Database (IMDB) to make it easier to remember which configuration is which. Of course
you are still free to customize your 41CL as you like.

CFGINI

Executing CFGINI (Initialize Alternate Configurations) loads twelve of the alternate
configurations according to the table below.

The table below shows how alternate configurations 4 through F are initialized by this
function. Alternate configurations 1 through 3 are not affected.

Configuration
PLUG 9PWR 9MTH 9SCI 9INF 9PRG 9ELE 9MEC 9MAP 9PLY 9BGM 9CST 9HIL
Page 4 5 6 7 8 9 10 11 12 13 14 15

4 4LIB 4LIB 4LIB 4LIB 4LIB 4LIB 4LIB 4LIB 4LIB 4LIB 4LIB 4LIB
5
6 OSX3 OSX3 OSX3 OSX3 OSX3 OSX3 OSX3 OSX3 OSX3
7 YFNX YFNX YFNX YFNX YFNX YFNX YFNX YFNX YFNX YFNX YFNX
8 PWRX SERI 16CS YUPS METX YUPS OSX3
9 WARP

SM44
SLVF CRTO 16CS

ETS5 ETS3
5MAD

CHES
YFNF

A XPMM FRML RCSN PPOK
DEV2

B 4TBX
4MTI

XTAT PWRX
EEFD ETS4 WORD

FUNS

MAZZ EXTI
C ROMX UNIT UNIT CITY RUBK EXIO
D HEP2

Z4DL CURV BASI
CIRC MCHN CLND 4WIN

RGME
YFNX

E ADVG EPTC RNDZ EENG MENG SUD1
F ZMAT ELIX NONL ETS9 NBOD CRTO

AGAM GSWP DACQ

Almost all of these alternate configurations assume that the 41CL Extreme Functions will
be loaded in page 7, but starting with version -4D of the 41CL Library Functions, the
41CL Extreme Functions do not need to be in the same pages between primary and
alternate configurations. This greatly simplifies switching configurations.

41CL Memory Functions

© 2022, Systemyde International Corporation 33

If you do not want any of the pages of an alternate configuration loaded when switching
configurations, mark the appropriate pages as Locked in the MMU to prevent them from
being modified. For example, if you don't normally use OSX3 or want to use a printer,
just Lock page 6 to prevent it from being loaded from an alternate configuration. The
same will be true for page 4 and an HP-IL module with the printer disabled.

These alternate configurations are just a starting point, and given the wide variety of
images available in the 41CL, you may find yourself customizing them to suit your own
individual tastes or needs. The "9xxx" aliases used with the PLUG function in the 41CL
Extreme Functions work independent of the contents of the alternate configurations.
Alternate configurations 1-3 are also assigned aliases: "9CFA" for alternate configuration
1, "9CFB" for alternate configuration 2, and "9BAS" for alternate configuration 3.

The simplest way to customize an alternate configuration is to load the default contents,
modify everything to suit your needs, and then write it back to the desired alternate
configuration. The only caveat is that you must be careful with the 41CL Extreme
Functions (YFNX), because you cannot move this image while executing functions
contained within the image. Moving YFNX requires disabling the MMU to perform the
move.

It is also possible to customize the alternate configurations by writing directly to the
corresponding MMU registers in RAM. This is significantly more complicated than the
method described above, and is not recommended.

The MMU registers are not affected by the MEMORY LOST condition, but may be lost
when the batteries are removed from the 41CL. If you have customized your alternate
configurations you may want to create a backup copy by copying the MMU page in RAM
(page 0x804) to an unused page in Flash memory for permanent storage.

41CL Memory Functions

© 2022, Systemyde International Corporation 34

Error Messages
The table below list all possible error messages returned by the 41CL Memory Functions,
along with the meaning of the message.

Error Message Function Meaning

MEMCHK
MEMINI

PMEMCHK
PMEMINI
YDIFF?
YPEEK+
YPOKE+
YSRCH?

Address is outside of valid
Flash or RAM address range

ADDR ERROR
XP2REG

YPEEKR+
YPOKER+
SETREG
CLRREG
COMREG
LDREG
EXREG

Address is not in 41C register range
(0x800000- 0x803FFF),

is an unaligned to a 41C register address,
or is an improper aliased address

All functions
using hex Invalid hexadecimal digit

DATA ERROR PEXM
PRCLM
PSTOM

Invalid Alternate Memory selection

DST=ROM PMEMINI
MEMINI

Destination address in Flash

FMT ERROR
MEMCHK
MEMINI

SRCDST+
Format error in address pair

NO BANK CPYBNK Bank does not exist
NONEXISTENT XP+X Number in X register out of range

PMEMINI
MEMINI

Attempted operation on
Operating System area of RAMOS AREA

YPOKE+
Attempted operation on

Operating System area of Flash

SRC=ROM PMEMINI
MEMINI

Source address in Flash

SSS>DDD MEMCHK
MEMINI

Start address greater than Finish address

41CL Memory Functions

© 2022, Systemyde International Corporation 35

Revision History
12/26/2018 Version -3A original issue.
08/14/2019 Typo in table on P. 32
08/26/2019 Elaborated the CFGINI function operation.
12/06/2019 Modify format for double-sided printing.
12/23/2020 Add sentence about mnemonic for loading the MMU.
03/01/2022 Adjust configurations for XROM conflicts

