
Systemyde International Corporation 05/2009

Pulse-Width Modulator

Features

Four-channel 10 bit pulse-width modulator

Spreading function for easier filtering

Servo mode via pulse swallowing

DMA request and dedicated DMA bus interface

Standard byte-wide interface

Description

The Pulse Width Modulator consists of a ten-bit free running counter, and four width
registers. Each PWM output is High for "n+1" counts out of the 1024-clock count cycle,
where "n" is the value held in the width register. The PWM output High time can optionally
be spread throughout the cycle to reduce ripple on the externally filtered PWM output.

The spreading function is implemented by dividing each 1024-clock cycle into four
quadrants of 256 clocks each. Within each quadrant, the Pulse Width Modulator uses the
eight MSBs of each pulse-width register to select the base width in each of the quadrants.
This is the equivalent to dividing the contents of the pulse-width register by four and using
this value in each quadrant.

Options are available to suppress the PWM output for seven-of-eight, three-of-four
and one-of-two iterations of the PWM counter The one-of-eight option works nicely with
R/C servos, which require a 1mS to 2mS pulse width and a 20mS period. This option gives
the full resolution for the pulse width while still meeting the period requirements.

DMA channels are usually designed to work with fixed I/O addresses. To allow DMA
control of the PWM, a separate PWM Block Access Register (PWBAR) and PWM Block
Pointer Register (PWBPR) are available. The pointer register contains the address of the
PWM register to be accessed via the access register. Each read or write of the access register
automatically increments the pointer register. This allows the DMA to write to a fixed
internal I/O location but still program all of the PWM registers.



Systemyde International Corporation 05/2009

Interface

module pwm_top (dreq_pwm, dreq2_pwm, pwblk_rbus, pwm_int, pwm_out, pwm_rbus, clkp, peri_addr,
pwblk_rd, pwblk_wr, pwm_inc, pwm_wr, pwrite_bus, resetb);

input clkp; /* main peripheral clock */
input pwblk_rd; /* pwm block access peripheral read strobe */
input pwblk_wr; /* pwm block access peripheral write strobe */
input pwm_inc; /* pwm counter increment */
input pwm_wr; /* pwm peripheral write strobe */
input resetb; /* internal reset */
input [3:0] peri_addr; /* internal peripheral address bus */
input [7:0] pwrite_bus; /* internal peripheral write bus */
output dreq_pwm; /* pwm dma request */
output dreq2_pwm; /* pwm dma request 2 */
output [3:1] pwm_int; /* pwm interrupt request bus */
output [3:0] pwm_out; /* pwm output bus */
output [7:0] pwblk_rbus; /* pwm block read data bus */
output [7:0] pwm_rbus; /* pwm read data bus */


