
Y180-S i

Y180-S

8-bit Microprocessor
Synthesizable

Verilog HDL Model

User Manual

ii

Disclaimer

Systemyde International Corporation reserves the right to make changes at any
time, without notice, to improve design or performance and provide the best product
possible. Systemyde International Corporation makes no warrant for the use of its
products and assumes no responsibility for any errors which may appear in this document
nor does it make any commitment to update the information contained herein.

Systemyde International Corporation products are not authorized for use in life
support devices or systems unless a specific written agreement pertaining to such use is
executed between the manufacturer and the President of Systemyde International
Corporation. Nothing contained herein shall be construed as a recommendation to use any
product in violation of existing patents, copyrights or other rights of third parties. No
license is granted by implication or otherwise under any patent, patent rights or other
rights, of Systemyde International Corporation. All trademarks are trademarks of their
respective companies.

Copyright 1995, 2006 Systemyde International Corporation Livermore, Ca. All
rights reserved.

Systemyde International Corporation
www. systemyde. com

monted@systemyde.com

Y180-S 1

Revision History

Date Page(s) Description of revision

10/11/2006 1 Added two pages for this Revision History.
8 Corrected error in block diagram. Added FAULTB_

output, INTACKB_ output and deleted E_ output.
Corrected internal block-block connections.

12 Corrected typo in ED Page picture: IM 2 instruction.

10/15/2006 67-71 Added Appendix 1, Single Event Upset Tolerance.

10/17/2006 72 Added Appendix 2, Performance Estimates.

11/02/2006 67 - 76 Expanded Appendix 1 to include simulation results,
exit paths, etc. Added Appendix 3.

11/04/2006 70, 75-76 Corrected page fault picture. Corrected tile count per
final source code. Added to Appendix 3.

01/31/2007 12 Corrected mnemonic for ED-BB. Database corrections
to flag control (flags being updated inappropriately).

07/16/2007 n/a Database corrections to register write, alu control and
flag control (interrupt acknowledge interfering with
proper instruction execution).

03/17/2008 n/a Database correction to Z flag operation (fix zero test to
check both bytes for zero for word ADD, ADC and SBC
instructions).

07/10/2008 n/a Database correction to flag operation (to s, z, and v
unaffected with 16-bit add, c unaffected with byte inc and
dec).

2

Table of Contents

1 Introduction 6
2 Features 7
3 Functional Description 8

3.1 Block Diagram 8
3.2 Register Description 9
3.3 Flags Description 10
3.4 Instruction Maps 11

3.4.1 Main Code page 11
3.4.2 ED Code page 12
3.4.3 DD Code page 13
3.4.4 FD Code page 14
3.4.5 CB Code page 15
3.4.6 DD-CB Code page 16
3.4.7 FD-CB Code page 17

3.5 Execution Tables 18
3.5.1 Execution Table conventions 18
3.5.2 Instruction Opcode, Timing and Operation . . 19
3.5.3 Address Bus Contents 23
3.5.4 Next Machine State 27

4 Pin Descriptions 32
4.1 A_[15:0] (Address Bus) 33
4.2 AOEB_ (Address Output Enable). 33
4.3 BUSACKB_ (Bus Acknowledge). 33
4.4 BUSREQB_ (Bus Request) 33
4.5 CLEARB_ (Master Clear) 33
4.6 CLK_ (Clock) 34
4.7 CLKB_ (Clock-Bar) 34
4.8 COEB_ (Control Output Enable) 34
4.9 DIN_[7:0] (Data Input Bus) 34
4.10 DOEB_ (Data Output Enable) 33
4.11 DOUT_[7:0] (Data Output Bus) 35
4.12 FAULTB_ (Fault Detect) 35
4.13 HALTB_ (Halt Mode) 35
4.14 INTACKB_ (Interrupt Acknowledge) 35
4.15 INTB_ (Interrupt Request) 35
4.16 IOCB_ (I/O Control Select) 36
4.17 IORQB_ (I/O Request) 36
4.18 M1B_ (Machine Cycle 1) 36
4.19 M1E_ (Machine Cycle 1 Enable) 36
4.20 MREQB_ (Memory Request) 36
4.21 NMIB_ (Non-Maskable Interrupt Request) . . . 37
4.22 RDB_ (Read) 37
4.23 RESETB_ (Master Reset) 37
4.24 SLPB_ (Sleep Mode) 37

Y180-S 3

Table of Contents (continued)

4.25 ST_ (Status) 38
4.26 TRAPB_ (Trap) 38
4.27 WAITB_ (Wait Request) 38
4.28 WRB_ (Write) 38

5 Bus Cycles 39
5.1 Instruction Fetch (without Wait state) . . . 39
5.2 Instruction Fetch (with Wait state) . . . 40
5.3 Memory Read/Write (without Wait state) . . 41
5.4 Memory Read/Write (with Wait state) . . . 42
5.5 I/O Read/Write (without Wait state) . . . 43
5.6 I/O Read/Write (with Wait state) 44
5.7 Bus Request/Acknowledge (Entry) . . . 45
5.8 Bus Request/Acknowledge (Exit). . . . 46
5.9 Trap (Second Opcode) 47
5.10 Trap (Third Opcode) 48
5.11 Non-Maskable Interrupt Acknowledge . . . 49
5.12 Mode 1 Interrupt Acknowledge 50
5.13 Mode 2 Interrupt Acknowledge 51
5.14 Halt (Entry and Exit) 52
5.15 Sleep (Entry and Exit) 53
5.16 Fault Detect 54
5.17 Fault Detect (during Bus Release) . . . 55
5.18 Reset and Clear 56

6 Differences 57
7 Model Organization 59

7.1 Y180_TOP (Top Level Module) 59
7.2 PARAMS (Parameter Definition `include File) . . 59
7.3 IO_CTRL (I/O Interface Module) . . . 60
7.4 M_STATE (Machine State Module) . . . 60
7.5 CTR_CTL (Central Control Module) . . . 60
7.6 DATA_IO (Address and Data Module) . . . 60
7.7 REG_BYTE (Byte-wide Register in the Register File) . 60
7.8 REG_8BIT (Byte-wide General-Purpose Register) . 61

8 Test Suite 62
8.1 TOP_LEV (Top Level for Simulation) . . . 62
8.2 SETUP_HL (Initialization Pattern) . . . 62
8.3 INT_OPS (Interrupt Operation) 63
8.4 ALU_OPS (ALU Operation) 63
8.5 DAT_MOV (Data Movement Operation) . . 63
8.6 TRP_2ND (Trap on Second Byte Operation) . . 63
8.7 TRP_3RD (Trap on Third Byte Operation) . . 63
8.8 BIT_OPS (Bit Manipulation Operation) . . . 63
8.9 JMP_OPS (Jump Operation) 64
8.8 IO_OPS (I/O Operation) 64

4

Table of Contents (continued)

9 Installation 65
9.1 File Structure 65

Appendix 1: Single Event Upset Tolerance 66
A1.1 User-controlled Registers 66
A1.2 Continuously-clocked Flip-flops . . . 68
A1.3 State machines 69

A1.3.1 fetch_hld state machine . . . 69
A1.3.2 inta_hld state machine. . . . 70
A1.3.3 clock_cyc state machine . . . 70
A1.3.4 page_reg state machine . . . 70
A1.3.5 mach_cyc state machine . . . 72

Appendix 2: Performance Estimates 74
A2.1 Clock Frequency 74
A2.2 Instruction Frequency 74
A2.3 Gate Count 75

Appendix 3: Implementation Comments 76

Y180-S 5

1 Introduction

The Y180 is a synthesizable Verilog HDL model of the Z80180 CPU. It is
software and hardware compatible with the Z80180 CPU and is software compatible with
several other industry-standard processors. The Y180 is an original design, based on
publicly available documentation, that employs design techniques suitable for a
technology-independent implementation. It is a fully synchronous design that does not use
3-state busses. The design is structured in a way that allows its use either with or without
modification by the customer. The combinatorial logic portions of the design may be
implemented in either random logic or as a PLA, and control signals are treated
symbolically in the design to allow either encoded or unencoded implementations (the
default is encoded). The Y180 is accompanied by full design documentation, in the form
of a large spreadsheet, which describes nearly every facet of the internal operation of the
processor. This provides knowledgeable users the opportunity to customize the design for
unique application requirements.

The Y180 is a powerful medium-performance processor that executes 181
instructions and includes an undefined opcode trap for illegal opcodes. The device
contains a full complement of 8-bit arithmetic and logical instructions, and enough 16-bit
instructions to properly handle the 16-bit address range. Included are bit manipulation
instructions as well as an 8x8 multiply instruction. The device allows for other bus masters
and includes a powerful vectored interrupt capability. The Y180 can be easily integrated
with RAM, ROM or other application-specific logic to create a single-chip product. The
technology-independent nature of the design provides the full spectrum of design
alternatives relative to cost, power consumption and speed.

The Y180 is written in Verilog HDL and can be synthesized using any Verilog-
compatible logic synthesizer. The Y180 package includes full design documentation,
including a Verilog simulation and test suite.

6

2 Features

* Fully functional synthesizable Verilog HDL model of the Z80180 CPU

* Vendor and technology independent

* Software compatible with several industry-standard processors

* 181 Instructions, plus an undefined opcode trap

* Eight addressing modes

* 64K byte addressing capability

* 8 bit ALU with bit, byte and BCD operations

* 8x8 multiply instruction

* Powerful vectored interrupt capability

* Static, fully synchronous design

* Designed without 3-state busses

* Easily modified external interface

* Fully decoded state machines, with illegal state detection

* Full design documentation included

* Verilog simulation and test suite included

Y180-S 7

3 Functional Description

The Y180 is a general-purpose 8-bit microprocessor that is compatible with the
Zilog Z80180 CPU. The device contains an 8-bit ALU, numerous 8- and 16-bit registers,
a 64K byte addressing range, and a powerful vectored interrupt capability. The device
executes 181 instructions, and performs an undefined opcode trap on all illegal
instructions. The Y180 is completely software compatible with several industry-standard
processors.

The Y180 is designed without using 3-state buses internally for maximum
technology independence, and is a static, fully synchronous design. The Y180 is supplied
in the form of a synthesizable Verilog HDL model, which is independent of technology,
clock speed (within the limits of the chosen technology), and vendor.

3.1 Block Diagram

The figure below shows a simplified block diagram of the Y180, organized in the
same fashion as the Verilog HDL model is organized. The I/O Interface Module controls
all of the pins of the Y180, and translates the internal busses and signals into the externally
visible pins. The Machine State Module contains the machine cycle and clock cycle state
machines, which control the sequence and timing of everything that happens within the
Y180. The Central Control Module decodes the instruction and state information to
generate all of the internal control signals. And the Address and Data Module contains the
actual address and data manipulation portions of the Y180, including the ALU, the
register file, and the various busses and special purpose registers.

A_[15:0]

AOEB_
BUSACKB_
COEB_
DOEB_
DOUT_[7:0]
FAULTB_
HALTB_

IORQB_
M1B_
MREQB_
RDB_
SLPB_
ST_
TRAPB_
WRB_

data_in
add_reg

dout_reg
mach_cyc

clock_cyc
{page_reg, inst_reg}

IO_CTRL

CTR_CTL DATA_IOMACH_ST

BUSREQB_
CLEARB_

CLK_
CLKB_

DIN_[7:0]
INTB_
IOCB_
M1E_

NMIB_
RESETB_
WAITB_

I/O Interface Module

Central Control Module Address and Data ModuleMachine State Module

INTACKBB_

8

3.2 Register Description

The figure below shows the registers contained in the Y180 that are visible to the
programmer. The main registers have both a primary and an alternate version. The primary
register set consists of A, F, B, C, D, E, H, and L, while the alternate register set consists of
A', F', B', C', D', E', H', and L'. At any given time only one bank is active, and care must be
used when switching between banks, as there is no way for the programmer to check
which bank is active. The accumulator, A, is the destination for all 8-bit arithmetic and
logic operations, while the Flag register F contains the flag results of arithmetic and logic
operations. The other general-purpose registers can be paired, BC or DE or HL, to form
16-bit registers. There are two index registers, IX and IY, used for indexed addressing
mode. The I register holds the upper eight bits of the interrupt vector table address for use
in Interrupt Mode 2. The R register is left over from the original Z80 architecture, where it
was used to hold a refresh address for DRAMs. In the Y180 it is just another general
purpose register. The Stack pointer, SP, holds the address of the stack, and the Program
Counter, PC, holds the address of the currently executing instruction.

A
B
D
H

IX
IY

F
C
E
L

A'
B'
D'
H'

F'
C'
E'
L'

I R

SP
PC

Main Register Bank

Alternate Register Bank

Y180-S 9

3.3 Flags Description

The figure below shows the flags contained in the F register, which report the
results of instruction execution.

S Z H P/V N CU5 U3

S (Sign) The Sign flag stores the most significant bit of the result. This is used with
signed arithmetic, where the MSB is zero for positive numbers and one for
negative numbers.

Z (Zero) The Zero flag is set to one if the result of the operation is 0.

U5 (User) This is a user-defined flag. It is difficult to use however, because the only
way to access it is to Push the AF register pair onto the stack and then Pop it
back into some other register pair before testing the bit.

H (Half-Carry) The Half-Carry flag is used only by the DAA (Decimal Adjust
Accumulator) instruction to properly adjust the result of an arithmetic
operation on BCD numbers.

U3 (User) This is a user-defined flag. It is difficult to use however, because the only
way to access it is to Push the AF register pair onto the stack and then Pop it
back into some other register pair before testing the bit.

P/V (Parity/Overflow) The Parity/Overflow flag reports the parity of the result for logical
operations, with the flag set to one if the result has even parity and zero if
the result has odd parity. This bit reports the overflow status of arithmetic
operations. Overflow occurs when the two operands have the same sign
but the sign of the result is different. This means that the actual result
cannot be represented in the eight or sixteen bits allocated for the result.

N (Negative) The Negative flag records the type of the last arithmetic operation (add or
subtract) for use with the DAA instruction. The bit is set to one for
subtract operations and set to zero for add operations.

C (Carry) The Carry flag is set to one whenever there is a carry or borrow from the
most significant bit of the result of an arithmetic operation. This is useful
for implementing multiple precision arithmetic in software.

10

3.4 Instruction Maps

The following sections contain the opcode maps for the Y180. The most
significant nibble is indexed vertically in the tables, while the least-significant nibble is
indexed horizontally in the tables. Shaded opcodes are invalid and attempted execution of
these opcodes will result in a Trap. In these maps, d is an 8-bit signed displacement, e is
an 8-bit signed relative address, n is an 8-bit constant, and mn is a 16-bit constant.

3.4.1 Main Code Page

This table shows the main code page for the Y180. These instructions are all one
byte long unless they contain immediate data or addresses. The four bytes marked as esc
(for escape) are the first byte of multi-byte instructions, which are shown in subsequent
tables.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NOP
LD

BC,mn
LD

(BC),A
INC
BC

INC
B

DEC
B

LD
B,n

RLCA
EX

AF,AF'
ADD

HL,BC
LD

A,(BC)
DEC
BC

INC
C

DEC
C

LD
C,n

RRCA

1
DJNZ

e
LD

DE,mn
LD

(DE),A
INC
DE

INC
D

DEC
D

LD
D,n

RLA
JR
e

ADD
HL,DE

LD
A,(DE)

DEC
DE

INC
E

DEC
E

LD
E,n

RRA

2
JR

NZ,e
LD

HL,mn
LD

(mn),HL
INC
HL

INC
H

DEC
H

LD
H,n

DAA
JR
Z,e

ADD
HL,HL

LD
HL,(mn)

DEC
HL

INC
L

DEC
L

LD
L,n

CPL

3
JR

NC,e
LD

SP,mn
LD

(mn),A
INC
SP

INC
(HL)

DEC
(HL)

LD
(HL),n

SCF
JR
C,e

ADD
HL,SP

LD
A,(mn)

DEC
SP

INC
A

DEC
A

LD
A,n

CCF

4
LD
B,B

LD
B,C

LD
B,D

LD
B,E

LD
B,H

LD
B,L

LD
B,(HL)

LD
B,A

LD
C,B

LD
C,C

LD
C,D

LD
C,E

LD
C,H

LD
C,L

LD
C,(HL)

LD
C,A

5
LD
D,B

LD
D,C

LD
D,D

LD
D,E

LD
D,H

LD
D,L

LD
D,(HL)

LD
D,A

LD
E,B

LD
E,C

LD
E,D

LD
E,E

LD
E,H

LD
E,L

LD
E,(HL)

LD
E,A

6
LD
H,B

LD
H,C

LD
H,D

LD
H,E

LD
H,H

LD
H,L

LD
H,(HL)

LD
H,A

LD
L,B

LD
L,C

LD
L,D

LD
L,E

LD
L,H

LD
L,L

LD
L,(HL)

LD
L,A

7
LD

(HL),B
LD

(HL),C
LD

(HL),D
LD

(HL),E
LD

(HL),H
LD

(HL),L
HALT

LD
(HL),A

LD
A,B

LD
A,C

LD
A,D

LD
A,E

LD
A,H

LD
A,L

LD
A,(HL)

LD
A,A

8
ADD
A,B

ADD
A,C

ADD
A,D

ADD
A,E

ADD
A,H

ADD
A,L

ADD
A,(HL)

ADD
A,A

ADC
A,B

ADC
A,C

ADC
A,D

ADC
A,E

ADC
A,H

ADC
A,L

ADC
A,(HL)

ADC
A,A

9
SUB

B
SUB

C
SUB

D
SUB

E
SUB

H
SUB

L
SUB
(HL)

SUB
A

SBC
A,B

SBC
A,C

SBC
A,D

SBC
A,E

SBC
A,H

SBC
A,L

SBC
A,(HL)

SBC
A,A

A
AND

B
AND

C
AND

D
AND

E
AND

H
AND

L
AND
(HL)

AND
A

XOR
B

XOR
C

XOR
D

XOR
E

XOR
H

XOR
L

XOR
(HL)

XOR
A

B
OR
B

OR
C

OR
D

OR
E

OR
H

OR
L

OR
(HL)

OR
A

CP
B

CP
C

CP
D

CP
E

CP
H

CP
L

CP
(HL)

CP
A

C
RET
NZ

POP
BC

JP
NZ,mn

JP
mn

CALL
NZ,mn

PUSH
BC

ADD
A,n

RST
0

RET
Z

RET
JP

Z,mn
esc

CALL
Z,mn

CALL
nn

ADC
A,n

RST
1

D
RET
NC

POP
DE

JP
NC,mn

OUT
(n),A

CALL
NC,mn

PUSH
DE

SUB
n

RST
20

RET
C

EXX
JP

C,mn
IN

A,(n)
CALL
C,mn

esc
SBC
A,n

RST
3

E
RET
PO

POP
HL

JP
PO,mn

EX
(SP),HL

CALL
PO,mn

PUSH
HL

AND
n

RST
4

RET
PE

JP
(HL)

JP
PE,mn

EX
DE,HL

CALL
PE,mn

esc
XOR

n
RST

5

F
RET

P
POP
AF

JP
P,mn

DI
CALL
P,mn

PUSH
AF

OR
n

RST 6
RET

M
LD

SP,HL
JP

M,mn
EI

CALL
M,mn

esc
CP
n

RST
7

Y180-S 11

3.4.2 ED Code Page

This table shows the code page for instructions whose first byte is EDh. These are
miscellaneous instructions that will usually not be used as often as those on the main code
page.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0
IN0

B,(n)
OUT0
(n),B

TST
B

IN0
C,(n)

OUT0
(n),C

TST
C

1
IN0

D,(n)
OUT0
(n),D

TST
D

IN0
E,(n)

OUT0
(n),E

TST
E

2
IN0

H,(n)
OUT0
(n),H

TST
H

IN0
L,(n)

OUT0
(n),L

TST
L

3
TST
(HL)

IN0
A,(n)

OUT0
(n),A

TST
A

4
IN

B,(C)
OUT
(C),B

SBC
HL,BC

LD
(mn),BC

NEG RETN
IM
0

LD
I,A

IN
C,(C)

OUT
(C),C

ADC
HL,BC

LD
BC,(mn)

MLT
BC

RETI
LD
R,A

5
IN

D,(C)
OUT
(C),D

SBC
HL,DE

LD
(mn),DE

IM
1

LD
A,I

IN
E,(C)

OUT
(C),E

ADC
HL,DE

LD
DE,(mn)

MLT
DE

IM
2

LD
A,R

6
IN

H,(C)
OUT
(C),H

SBC
HL,HL

LD
(mn),HL

TST
n

RRD IN L,(C)
OUT
(C),L

ADC
HL,HL

LD
HL,(mn)

MLT
HL

RLD

7
SBC

HL,SP
LD

(mn),SP
TSTIO

n
SLP

IN
A,(C)

OUT
(C),A

ADC
HL,SP

LD
SP,(mn)

MLT
SP

8 OTIM OTDM

9 OTIMR OTDMR

A LDI CPI INI OUTI LDD CPD IND OUTD

B LDIR CPIR INIR OTIR LDDR CPDR INDR OTDR

C

D

E

F

12

3.4.3 DD Code Page

This table shows the code page for instructions whose first byte is DDh. All
instructions on this code page imply the use of the IX register in one way or another. Note
that wherever the HL register is used in a main code page instruction, the corresponding
instruction on this code page uses either the IX register, or the indexed addressing mode
using the IX register.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0
ADD
IX,BC

1
ADD
IX,DE

2
LD

IX,mn
LD

(mn),IX
INC
IX

ADD
IX,IX

LD
IX,(mn)

DEC
IX

3
INC

(IX+d)
DEC

(IX+d)
LD

(IX+d),n
ADD
IX,SP

4
LD

B,(IX+d)
LD

C,(IX+d)

5
LD

D,(IX+d)
LD

E,(IX+d)

6
LD

H,(IX+d)
LD

L,(IX+d)

7
LD

(IX+d),B
LD

(IX+d),C
LD

(IX+d),D
LD

(IX+d),E
LD

(IX+d),H
LD

(IX+d),L
LD

(IX+d),A
LD

A,(IX+d)

8
ADD

A,(IX+d)
ADC

A,(IX+d)

9
SUB

(IX+d)
SBC

A,(IX+d)

A
AND

(IX+d)
XOR
(IX+d)

B
OR

(IX+d)
CP

(IX+d)

C esc

D

E
POP

IX
EX

(SP),IX
PUSH

IX
JP
(IX)

F
LD

SP,IX

Y180-S 13

3.4.4 FD Code Page

This table shows the code page for instructions whose first byte is FDh. All
instructions on this code page imply the use of the IY register in one way or another. This
code page is identical to the DD code page with the IY register substituted for the IX
register.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0
ADD
IY,BC

1
ADD
IY,DE

2
LD

IY,mn
LD

(mn),IY
INC
IY

ADD
IY,IY

LD
IY,(mn)

DEC
IY

3
INC

(IY+d)
DEC
(IY+d)

LD
(IY+d),n

ADD
IX,SP

4
LD

B,(IY+d)
LD

C,(IY+d)

5
LD

D,(IY+d)
LD

E,(IY+d)

6
LD

H,(IY+d)
LD

L,(IY+d)

7
LD

(IY+d),B
LD

(IY+d),C
LD

(IY+d),D
LD

(IY+d),E
LD

(IY+d),H
LD

(IY+d),L
LD

(IY+d),A
LD

A,(IY+d)

8
ADD

A,(IY+d)
ADC

A,(IY+d)

9
SUB

(IY+d)
SBC

A,(IY+d)

A
AND
(IY+d)

XOR
(IY+d)

B
OR

(IY+d)
CP

(IY+d)

C esc

D

E
POP

IY
EX

(SP),IY
PUSH

IY
JP
(IY)

F
LD

SP,IY

14

3.4.5 CB Code Page

This table shows the code page for instructions whose first byte is CBh. The
instructions on this code page are the majority of the shift, rotate and bit manipulation
instructions.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0
RLC

B
RLC

C
RLC

D
RLC

E
RLC

H
RLC

L
RLC
(HL)

RLC
A

RRC
B

RRC
C

RRC
D

RRC
E

RRC
H

RRC
L

RRC
(HL)

RRC
A

1
RL
B

RL
C

RL
D

RL
E

RL
H

RL
L

RL
(HL)

RL
A

RR
B

RR
C

RR
D

RR
E

RR
H

RR
L

RR
(HL)

RR
A

2
SLA

B
SLA

C
SLA

D
SLA

E
SLA

H
SLA

L
SLA
(HL)

SLA
A

SRA
B

SRA
C

SRA
D

SRA
E

SRA
H

SRA
L

SRA
(HL)

SRA
A

3
SRL

B
SRL

C
SRL

D
SRL

E
SRL

H
SRL

L
SRL
(HL)

SRL
A

4
BIT
0,B

BIT
0,C

BIT
0,D

BIT
0,E

BIT
0,H

BIT
0,L

BIT
0,(HL)

BIT
0,A

BIT
1,B

BIT
1,C

BIT
1,D

BIT
1,E

BIT
1,H

BIT
1,L

BIT
1,(HL)

BIT
1,A

5
BIT
2,B

BIT
2,C

BIT
2,D

BIT
2,E

BIT
2,H

BIT
2,L

BIT
2,(HL)

BIT
2,A

BIT
3,B

BIT
3,C

BIT
3,D

BIT
3,E

BIT
3,H

BIT
3,L

BIT
3,(HL)

BIT
3,A

6
BIT
4,B

BIT
4,C

BIT
4,D

BIT
4,E

BIT
4,H

BIT
4,L

BIT
4,(HL)

BIT
4,A

BIT
5,B

BIT
5,C

BIT
5,D

BIT
5,E

BIT
5,H

BIT
5,L

BIT
5,(HL)

BIT
5,A

7
BIT
6,B

BIT
6,C

BIT
6,D

BIT
6,E

BIT
6,H

BIT
6,L

BIT
6,(HL)

BIT
6,A

BIT
7,B

BIT
7,C

BIT
7,D

BIT
7,E

BIT
7,H

BIT
7,L

BIT
7,(HL)

BIT
7,A

8
RES
0,B

RES
0,C

RES
0,D

RES
0,E

RES
0,H

RES
0,L

RES
0,(HL)

RES
0,A

RES
1,B

RES
1,C

RES
1,D

RES
1,E

RES
1,H

RES
1,L

RES
1,(HL)

RES
1,A

9
RES
2,B

RES
2,C

RES
2,D

RES
2,E

RES
2,H

RES
2,L

RES
2,(HL)

RES
2,A

RES
3,B

RES
3,C

RES
3,D

RES
3,E

RES
3,H

RES
3,L

RES
3,(HL)

RES
3,A

A
RES
4,B

RES
4,C

RES
4,D

RES
4,E

RES
4,H

RES
4,L

RES
4,(HL)

RES
4,A

RES
5,B

RES
5,C

RES
5,D

RES
5,E

RES
5,H

RES
5,L

RES
5,(HL)

RES
5,A

B
RES
6,B

RES
6,C

RES
6,D

RES
6,E

RES
6,H

RES
6,L

RES
6,(HL)

RES
6,A

RES
7,B

RES
7,C

RES
7,D

RES
7,E

RES
7,H

RES
7,L

RES
7,(HL)

RES
7,A

C
SET
0,B

SET
0,C

SET
0,D

SET
0,E

SET
0,H

SET
0,L

SET
0,(HL)

SET
0,A

SET
1,B

SET
1,C

SET
1,D

SET
1,E

SET
1,H

SET
1,L

SET
1,(HL)

SET
1,A

D
SET
2,B

SET
2,C

SET
2,D

SET
2,E

SET
2,H

SET
2,L

SET
2,(HL)

SET
2,A

SET
3,B

SET
3,C

SET
3,D

SET
3,E

SET
3,H

SET
3,L

SET
3,(HL)

SET
3,A

E
SET
4,B

SET
4,C

SET
4,D

SET
4,E

SET
4,H

SET
4,L

SET
4,(HL)

SET
4,A

SET
5,B

SET
5,C

SET
5,D

SET
5,E

SET
5,H

SET
5,L

SET
5,(HL)

SET
5,A

F
SET
6,B

SET
6,C

SET
6,D

SET
6,E

SET
6,H

SET
6,L

SET
6,(HL)

SET
6,A

SET
7,B

SET
7,C

SET
7,D

SET
7,E

SET
7,H

SET
7,L

SET
7,(HL)

SET
7,A

Y180-S 15

3.4.6 DD-CB Code Page

This table shows the code page for instructions whose first two bytes are DDh,
followed by CBh. All instructions on this code page imply the use of the IX register in one
way or another. Note that wherever the HL register is used in a CB code page instruction,
the corresponding instruction on this code page uses either the IX register, or the indexed
addressing mode using the IX register.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0
RLC

(IX+d)
RRC
(IX+d)

1
RL

(IX+d)
RR

(IX+d)

2
SLA

(IX+d)
SRA

(IX+d)

3
SRL

(IX+d)

4
BIT

0,(IX+d)
BIT

1,(IX+d)

5
BIT

2,(IX+d)
BIT

3,(IX+d)

6
BIT

4,(IX+d)
BIT

5,(IX+d)

7
BIT

6,(IX+d)
BIT

7,(IX+d)

8
RES

0,(IX+d)
RES

1,(IX+d)

9
RES

2,(IX+d)
RES

3,(IX+d)

A
RES

4,(IX+d)
RES

5,(IX+d)

B
RES

6,(IX+d)
RES

7,(IX+d)

C
SET

0,(IX+d)
SET

1,(IX+d)

D
SET

2,(IX+d)
SET

3,(IX+d)

E
SET

4,(IX+d)
SET

5,(IX+d)

F
SET

6,(IX+d)
SET

7,(IX+d)

16

3.4.7 FD-CB Code Page

This table shows the code page for instructions whose first two bytes are FDh,
followed by CBh. All instructions on this code page imply the use of the IY register in one
way or another. This code page is identical to the DD-CB code page with the IY register
substituted for the IX register.

\LSB
MSB\

0 1 2 3 4 5 6 7 8 9 A B C D E F

0
RLC

(IY+d)
RRC

(IY+d)

1
RL

(IY+d)
RR

(IY+d)

2
SLA

(IY+d)
SRA

(IY+d)

3
SRL

(IY+d)

4
BIT

0,(IY+d)
BIT

1,(IY+d)

5
BIT

2,(IY+d)
BIT

3,(IY+d)

6
BIT

4,(IY+d)
BIT

5,(IY+d)

7
BIT

6,(IY+d)
BIT

7,(IY+d)

8
RES

0,(IY+d)
RES

1,(IY+d)

9
RES

2,(IY+d)
RES

3,(IY+d)

A
RES

4,(IY+d)
RES

5,(IY+d)

B
RES

6,(IY+d)
RES

7,(IY+d)

C
SET

0,(IY+d)
SET

1,(IY+d)

D
SET

2,(IY+d)
SET

3,(IY+d)

E
SET

4,(IY+d)
SET

5,(IY+d)

F
SET

6,(IY+d)
SET

7,(IY+d)

Y180-S 17

3.5 Execution Tables

The tables below show the operation of the Y180 in detail for all instructions and
exception conditions. These tables are a part of the spreadsheet included in the full
electronic documentation for the Y180, which contains things like ALU operations, bus
contents, internal register addresses, etc. The tables below should be sufficient for the
majority of users of the Y180, but if you intend to modify the Y180 for your application,
or merely want to understand the internal workings of the design, refer to the full
spreadsheet for more detailed information.

3.5.1 Execution Table Conventions

The conventions used in the instruction, opcode and operation columns of the
execution tables are as follows:

b bit select (000 = bit 0, 001 = bit 1, 010 = bit 2, 011 = bit 3, 100 = bit 4, 101 = bit 5,
110 = bit 6, 111 = bit 7)

cc condition code select (00 = NZ, 01 = Z, 10 = NC, 11 = C)
d 8-bit (signed) displacement
dd word register select (00 = BC, 01 = DE, 10 = IX, 11 = SP)
e 8-bit (signed) displacement
f condition code select (000 = NZ, 001 = Z, 010 = NC, 011 = C,

100 = PO, 101 = PE, 110 = P, 111 = M)
m MSB of a 16-bit constant
mn 16-bit constant
n 8-bit constant or LSB of a 16-bit constant
r, r' byte register select (000 = B, 001 = C, 010 = D, 011 = E, 100 = H,

101 = L, 111 = A)
ss word register select (00 = BC, 01 = DE, 10 = HL, 11 = SP)
v Restart address select (000 = 0000h, 001 = 0008h, 010 = 0010h, 011 = 0018h,

100 = 0020h, 101 = 0028h, 110 = 0030h, 111 = 0038h)
xx word register select (00 = BC, 01 = DE, 10 = IX, 11 = SP)
yy word register select (00 = BC, 01 = DE, 10 = IY, 11 = SP)
zz word register select (00 = BC, 01 = DE, 10 = HL, 11 = AF)

The conventions used in the flag columns of the execution tables are as follows:

- No change
* Updated per convention
0, 1 Reset to zero or set to one
IE Set to value of IEF 1 bit
P, V Reports the parity (P) or overflow (V) status of the result

18

3.5.2 Instruction Opcode, Timing and Operation

The execution table below shows the instruction or exception, the opcode, the
addressing mode, the number of machine cycles, the number and organization of the clock
cycles, the flags affected by the instruction, and the operation performed by the instruction
or exception.

Instruction Opcode
byte 1

Opcode
byte 2

Opcode
byte 3

Opcode
byte 4

Addr
Mode

Mach
State

Clock cycles S Z H P
V

N C Operation

ADC A,(HL) 10001110 reg ind 2 6 (3,3) * * * V 0 * A = A + (HL) + CF

ADC A,(IX+d) 11011101 10001110 ----d--- index 5 14 (3,3,3,2,3) * * * V 0 * A = A + (IX+d) + CF

ADC A,(IY+d) 11111101 10001110 ----d--- index 5 14 (3,3,3,2,3) * * * V 0 * A = A + (IY+d) + CF

ADC A,n 11001110 ----n--- immed 2 6 (3,3) * * * V 0 * A = A + n + CF

ADC A,r 10001-r- reg 2 4 (3,1) * * * V 0 * A = A + r + CF

ADC HL,ss 11101101 01ss1010 reg 3 10 (3,3,4) * * * V 0 * HL = HL + ss + CF

ADD A,(HL) 10000110 reg ind 2 6 (3,3) * * * V 0 * A = A + (HL)

ADD A,(IX+d) 11011101 10000110 ----d--- index 5 14 (3,3,3,2,3) * * * V 0 * A = A + (IX+d)

ADD A,(IY+d) 11111101 10000110 ----d--- index 5 14 (3,3,3,2,3) * * * V 0 * A = A + (IY+d)

ADD A,n 11000110 ----n--- immed 2 6 (3,3) * * * V 0 * A = A + n

ADD A,r 10000-r- reg 2 4 (3,1) * * * V 0 * A = A + r

ADD HL,ss 00ss1001 reg 2 7 (3,4) - - - V 0 * HL = HL + ss

ADD IX,xx 11011101 00xx1001 reg 3 10 (3,3,4) - - - V 0 * IX = IX + xx

ADD IY,yy 11111101 00yy1001 reg 3 10 (3,3,4) - - - V 0 * IY = IY + yy

AND (HL) 10100110 reg ind 2 6 (3,3) * * 1 P 0 0 A = A & (HL)

AND (IX+d) 11011101 10100110 ----d--- index 5 14 (3,3,3,2,3) * * 1 P 0 0 A = A & (IX+d)

AND (IY+d) 11111101 10100110 ----d--- index 5 14 (3,3,3,2,3) * * 1 P 0 0 A = A & (IY+d)

AND n 11100110 ----n--- immed 2 6 (3,3) * * 1 P 0 0 A = A & n

AND r 10100-r- reg 2 4 (3,1) * * 1 P 0 0 A = A & r

BIT b,(HL) 11001011 01-b-110 reg ind 3 9 (3,3,3) - * 1 - 0 - (HL) & bit

BIT b,(IX+d)) 11011101 11001011 ----d--- 01-b-110 index 5 15 (3,3,3,3,3) - * 1 - 0 - (IX+d) & bit

BIT b,(IY+d)) 11111101 11001011 ----d--- 01-b-110 index 5 15 (3,3,3,3,3) - * 1 - 0 - (IY+d) & bit

BIT b,r 11001011 01-b--r- reg 2 6 (3,3) - * 1 - 0 - r & bit

CALL f,mn 11-f-100 ----n--- ----m--- immed
2 (F)
6 (T)

6 (3,3)
16 (3,3,3,1,3,3)

- - - - - -
if {f}

(SP-1) = PCH; (SP-2) = PCL; PC = mn; SP = SP-2

CALL mn 11001101 ----n--- ----m--- immed 6 16 (3,3,3,1,3,3) - - - - - - (SP-1) = PCH; (SP-2) = PCL; PC = mn; SP = SP-2

CCF 00111111 none 1 3 - - 0 - 0 * CF = ~CF

CP (HL) 10111110 reg ind 2 6 (3,3) * * * V 1 * A - (HL)

CP (IX+d) 11011101 10111110 ----d--- index 5 14 (3,3,3,2,3) * * * V 1 * A - (IX+d)

CP (IY+d) 11111101 10111110 ----d--- index 5 14 (3,3,3,2,3) * * * V 1 * A - (IY+d)

CP n 11111110 ----n--- immed 2 6 (3,3) * * * V 1 * A - n

CP r 10111-r- reg 2 4 (3,1) * * * V 1 * A - r

CPD 11101101 10101001 implied 4 12 (3,3,3,3) * * * * 1 - A - (HL); BC = BC-1; HL = HL-1

CPDR 11101101 10111001 implied
4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2)

* * * * 1 -
if {(BC != 0) | (A != (HL))} repeat:

A - (HL); BC = BC-1; HL = HL-1

CPI 11101101 10100001 implied 4 12 (3,3,3,3) * * * * 1 - A - (HL); BC = BC-1; HL = HL+1

CPIR 11101101 10110001 implied
4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2)

* * * * 1 -
if {(BC != 0) | (A != (HL))} repeat:

A - (HL); BC = BC-1; HL = HL+1

CPL 00101111 implied 1 3 - - 1 - 1 - A = ~A

DAA 00100111 implied 2 4 (3,1) * * * P - - Decimal Adjust Accumulator

DEC (HL) 00110101 reg ind 4 10 (3,3,1,3) * * * V 1 - (HL) = (HL) - 1

DEC (IX+d) 11011101 00110101 ----d--- index 7 18 (3,3,3,2,3,1,3) * * * V 1 - (IX+d) = (IX+d) -1

DEC (IY+d) 11111101 00110101 ----d--- index 7 18 (3,3,3,2,3,1,3) * * * V 1 - (IY+d) = (IY+d) -1

DEC IX 11011101 00101011 reg 3 7 (3,3,1) - - - - - - IX = IX - 1

DEC IY 11111101 00101011 reg 3 7 (3,3,1) - - - - - - IY = IY - 1

DEC r 00-r-101 reg 2 4 (3,1) * * * V 1 - r = r - 1

DEC ss 00ss1011 reg 2 4 (3,1) - - - - - - ss = ss - 1

DI 11110011 none 1 3 - - - - - - IEF1 = 0; IEF2 = 0

DJNZ j 00010000 --(j-2)- relative
3 (F)
4 (T)

7 (3,1,3)
9 (3,1,3,2)

- - - - - - B = B-1; if {B != 0} PC = PC + j

Y180-S 19

Instruction Opcode
byte 1

Opcode
byte 2

Opcode
byte 3

Opcode
byte 4

Addr
Mode

Mach
State

Clock cycles S Z H P
V

N C Operation

EI 11111011 none 1 3 - - - - - - IEF1 =1; IEF2 = 1

EX (SP),HL 11100011 implied 6 16 (3,3,3,1,3,3) - - - - - - H <-> (SP+1); L <-> (SP)

EX (SP),IX 11011101 11100011 implied 7 19 (3,3,3,3,1,3,3) - - - - - - IXH <-> (SP+1); IXL <-> (SP)

EX (SP),IY 11111101 11100011 implied 7 19 (3,3,3,3,1,3,3) - - - - - - IYH <-> (SP+1); IYL <-> (SP)

EX AF,AF' 00001000 implied 2 4 (3,1) - - - - - - AF <-> AF'

EX DE,HL 11101011 implied 1 3 - - - - - - DE <-> HL

EXX 11011001 implied 1 3 - - - - - - BC <-> BC'; DE <-> DE'; HL <-> HL'

HALT 01110110 none 1 3 - - - - - - CPU halted

IM 0 11101101 01000110 none 2 6 (3,3) - - - - - - No operation

IM 1 11101101 01010110 none 2 6 (3,3) - - - - - - Interrupt mode 1

IM 2 11101101 01011110 none 2 6 (3,3) - - - - - - Interrupt mode 2

IN A,(n) 11011011 ----n--- direct 3 9 (3,3,3) - - - - - - A = (An)

IN r,(C) 11101101 01-r-000 indirect 3 9 (3,3,3) * * 0 P 0 - r = (BC)

IN0 r,(n) 11101101 00-r-000 ----n--- direct 4 12 (3,3,3,3) * * 0 P 0 - r = (n)

INC (HL) 00110100 reg ind 4 10 (3,3,1,3) * * * V 0 - (HL) = (HL) + 1

INC (IX+d) 11011101 00110100 ----d--- index 7 18 (3,3,3,2,3,1,3) * * * V 0 - (IX+d) = (IX+d) + 1

INC (IY+d) 11111101 00110100 ----d--- index 7 18 (3,3,3,2,3,1,3) * * * V 0 - (IY+d) = (IY+d) + 1

INC IX 11011101 00100011 reg 3 7 (3,3,1) - - - - - - IX = IX + 1

INC IY 11111101 00100011 reg 3 7 (3,3,1) - - - - - - IY = IY + 1

INC r 00-r-100 reg 2 4 (3,1) * * * V 0 - r = r + 1

INC ss 00ss0011 reg 2 4 (3,1) - - - - - - ss = ss + 1

IND 11101101 10101010 implied 4 12 (3,3,3,3) - * - - * - (HL) = (BC); HL = HL-1; B = B-1

INDR 11101101 10111010 implied
4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2)

- 1 - - * - if {B != 0} repeat: (HL) = (BC); HL = HL-1; B = B-1

INI 11101101 10100010 implied 4 12 (3,3,3,3) - * - - * - (HL) = (BC); HL = HL+1; B = B-1

INIR 11101101 10110010 implied
4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2)

- 1 - - * - if {B != 0} repeat: (HL) = (BC); HL = HL+1; B = B-1

JP (HL) 11101001 implied 1 3 - - - - - - PC = HL

JP (IX) 11011101 11101001 implied 2 6 (3,3) - - - - - - PC = IX

JP (IY) 11111101 11101001 implied 2 6 (3,3) - - - - - - PC = IY

JP f,mn 11-f-010 ----n--- ----m--- immed
2 (F)
3 (T)

6 (3,3)
9 (3,3,3)

- - - - - - if {f} PC = mn

JP mn 11000011 ----n--- ----m--- immed 3 9 (3,3,3) - - - - - - PC = mn

JR cc,e 001cc000 --(e-2)- relative
2 (F)
3 (T)

6 (3,3)
8 (3,3,2)

- - - - - - if {cc} PC = PC + j

JR e 00011000 --(e-2)- relative 3 8 (3,3,2) - - - - - - PC = PC + j

LD (BC),A 00000010 implied 3 7 (3,1,3) - - - - - - (BC) = A

LD (DE),A 00010010 implied 3 7 (3,1,3) - - - - - - (DE) = A

LD (HL),n 00110110 ----n--- immed 3 9 (3,3,3) - - - - - - (HL) = n

LD (HL),r 01110-r- reg 3 7 (3,1,3) - - - - - - (HL) = r

LD (IX+d),n 11011101 00110110 ----d--- ----n--- immed 5 15 (3,3,3,3,3) - - - - - - (IX+d) = n

LD (IX+d),r 11011101 01110-r- ----d--- reg 5 15 (3,3,3,3,3) - - - - - - (IX+d) = r

LD (IY+d),n 11111101 00110110 ----d--- ----n--- immed 5 15 (3,3,3,3,3) - - - - - - (IY+d) = n

LD (IY+d),r 11111101 01110-r- ----d--- reg 5 15 (3,3,3,3,3) - - - - - - (Iy+d) = r

LD (mn),A 00110010 ----n--- ----m--- direct 5 13 (3,3,3,1,3) - - - - - - (mn) = A

LD (mn),HL 00100010 ----n--- ----m--- direct 6 16 (3,3,3,1,3,3) - - - - - - (mn) = L; (mn+1) = H

LD (mn),IX 11011101 00100010 ----n--- ----m--- direct 7 19 (3,3,3,3,1,3,3) - - - - - - (mn) = IXL; (mn+1) = IXH

LD (mn),IY 11111101 00100010 ----n--- ----m--- direct 7 19 (3,3,3,3,1,3,3) - - - - - - (mn) = IYL; (mn+1) = IYH

LD (mn),ss 11101101 01ss0011 ----n--- ----m--- direct 7 19 (3,3,3,3,1,3,3) - - - - - - (mn) = ssl; (mn+1) = ssh

LD A,(BC) 00001010 implied 2 6 (3,3) - - - - - - A = (BC)

LD A,(DE) 00011010 implied 2 6 (3,3) - - - - - - A = (DE)

LD A,(mn) 00111010 ----n--- ----m--- direct 4 12 (3,3,3,3) - - - - - - A = (mn)

LD A,I 11101101 01010111 implied 2 6 (3,3) * * 0 IE 0 - A = I

LD A,R 11101101 01011111 implied 2 6 (3,3) * * 0 IE 0 - A = R

LD dd,(mn) 11101101 01dd1011 ----n--- ----m--- direct 6 18 (3,3,3,3,3,3) - - - - - - ddl = (mn); ddh = (mn+1)

LD dd,mn 00dd0001 ----n--- ----m--- direct 3 9 (3,3,3) - - - - - - dd = mn

LD HL,(mn) 00101010 ----n--- ----m--- direct 5 15 (3,3,3,3,3) - - - - - - L = (mn); H = (mn+1)

LD I,A 11101101 01000111 implied 2 6 (3,3) - - - - - - I = A

LD IX,(mn) 11011101 00101010 ----n--- ----m--- direct 6 18 (3,3,3,3,3,3) - - - - - - IXL = (mn); IXH = (mn+1)

LD IX,mn 11011101 00100001 ----n--- ----m--- direct 4 12 (3,3,3,3) - - - - - - IX = mn

LD IY,(mn) 11111101 00101010 ----n--- ----m--- direct 6 18 (3,3,3,3,3,3) - - - - - - IYL = (mn); IYH = (mn+1)

LD IY,mn 11111101 00100001 ----n--- ----m--- direct 4 12 (3,3,3,3) - - - - - - IY = mn

20

Instruction Opcode
byte 1

Opcode
byte 2

Opcode
byte 3

Opcode
byte 4

Addr
Mode

Mach
State

Clock cycles S Z H P
V

N C Operation

LD r,(HL) 01-r-110 reg ind 2 6 (3,3) - - - - - - r = (HL)

LD r,(IX+d) 11011101 01-r-110 ----d--- index 5 14 (3,3,3,2,3) - - - - - - r = (IX+d)

LD r,(IY+d) 11111101 01-r-110 ----d--- index 5 14 (3,3,3,2,3) - - - - - - r = (IY+d)

LD R,A 11101101 01001111 implied 2 6 (3,3) - - - - - - R = A

LD r,n 00-r-110 ----n--- immed 2 6 (3,3) - - - - - - r = n

LD r,r' 01-r--r' reg 2 4 (3,1) - - - - - - r = r'

LD SP,HL 11111001 implied 2 4 (3,1) - - - - - - SP = HL

LD SP,IX 11011101 11111001 implied 3 7 (3,3,1) - - - - - - SP = IX

LD SP,IY 11111101 11111001 implied 3 7 (3,3,1) - - - - - - SP = IY

LDD 11101101 10101000 implied 4 12 (3,3,3,3) - - 0 * 0 - (DE) = (HL); BC = BC-1; DE = DE-1; HL = HL-1

LDDR 11101101 10111000 implied
4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2)

- - 0 * 0 -
if {BC != 0} repeat:

(DE) = (HL); BC = BC-1; DE = DE-1; HL = HL-1

LDI 11101101 10100000 implied 4 12 (3,3,3,3) - - 0 * 0 - (DE) = (HL); BC = BC-1; DE = DE+1; HL = HL+1

LDIR 11101101 10110000 implied
4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2)

- - 0 * 0 -
if {BC != 0} repeat:

(DE) = (HL); BC = BC-1; DE = DE+1; HL = HL+1

MLT ww 11101101 01ww1100 reg 3 16 (3,3,10) - - - - - - ww = wwl * wwh

NEG 11101101 01000100 implied 2 6 (3,3) * * * V 1 * A = 0 - A

NOP 00000000 none 1 3 - - - - - - No operation

OR (HL) 10110110 reg ind 2 6 (3,3) * * 0 P 0 0 A = A | (HL)

OR (IX+d) 11011101 10110110 ----d--- index 5 14 (3,3,3,2,3) * * 0 P 0 0 A = A | (IX+d)

OR (IY+d) 11111101 10110110 ----d--- index 5 14 (3,3,3,2,3) * * 0 P 0 0 A = A | (IY+d)

OR n 11110110 ----n--- immed 2 6 (3,3) * * 0 P 0 0 A = A | n

OR r 10110-r- reg 2 4 (3,1) * * 0 P 0 0 A = A | r

OTDM 11101101 10001011 implied 6 14 (3,3,1,3,3,1) * * * P * * (C) = (HL); HL = HL-1; B = B-1; C = C-1

OTDMR 11101101 10011011 implied
6 (F)
6 (T)

14 (3,3,1,3,3,1)
16 (3,3,1,3,3,3)

0 1 0 P * 0
if {B != 0} repeat:

(BC) = (HL); HL = HL-1; B = B-1; C = C-1

OTDR 11101101 10111011 implied
4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2)

- 1 - - * - if {B != 0} repeat: (BC) = (HL); HL = HL-1; B = B-1

OTIM 11101101 10000011 implied 6 14 (3,3,1,3,3,1) * * * P * * (C) = (HL); HL = HL+1; B = B-1; C = C-1

OTIMR 11101101 10010011 implied
6 (F)
6 (T)

14 (3,3,1,3,3,1)
16 (3,3,1,3,3,3)

0 1 0 P * 0
if {B != 0} repeat:

(BC) = (HL); HL = HL+1; B = B-1; C = C-1

OTIR 11101101 10110011 implied
4 (F)
5 (T)

12 (3,3,3,3)
14 (3,3,3,3,2)

- 1 - - * - if {B != 0} repeat: (BC) = (HL); HL = HL+1; B = B-1

OUT (C),r 11101101 01-r-001 indirect 4 10 (3,3,1,3) - - - - - - (BC) = r

OUT (n),A 11010011 ----n--- direct 4 10 (3,3,1,3) - - - - - - (An) = A

OUT0 (n),r 11101101 00-r-001 ----n--- direct 5 13 (3,3,3,1,3) - - - - - - (n) = r

OUTD 11101101 10101011 implied 4 12 (3,3,3,3) - * - - * - (BC) = (HL); HL = HL-1; B = B-1

OUTI 11101101 10100011 implied 4 12 (3,3,3,3) - * - - * - (BC) = (HL); HL = HL+1; B = B-1

POP IX 11011101 11100001 reg 4 12 (3,3,3,3) - - - - - - IXL = (SP); IXH = (SP+1); SP = SP + 2

POP IY 11111101 11100001 reg 4 12 (3,3,3,3) - - - - - - IYL = (SP); IYH = (SP+1); SP = SP + 2

POP zz 11zz0001 reg 3 9 (3,3,3) - - - - - - zzl = (SP); zzh = (SP+1); SP = SP + 2

PUSH IX 11011101 11100101 reg 5 14 (3,3,2,3,3) - - - - - - (SP-1) = IXH; (SP-2) = IXL; SP = SP - 2

PUSH IY 11111101 11100101 reg 5 14 (3,3,2,3,3) - - - - - - (SP-1) = IYH; (SP-2) = IYL; SP = SP - 2

PUSH zz 11zz0101 reg 4 11 (3,2,3,3) - - - - - - (SP-1) = zzh; (SP-2) = zzl; SP = SP - 2

RES b,(HL) 11001011 10-b-110 reg ind 5 13 (3,3,3,1,3) - - - - - - (HL) = (HL) & ~bit

RES b,(IX+d) 11011101 11001011 ----d--- 10-b-110 index 7 19 (3,3,3,3,3,1,3) - - - - - - (IX+d) = (IX+d) & ~bit

RES b,(IY+d) 11111101 11001011 ----d--- 10-b-110 index 7 19 (3,3,3,3,3,1,3) - - - - - - (IY+d) = (IY+d) & ~bit

RES b,r 11001011 10-b--r- reg 3 7 (3,3,1) - - - - - - r = r & ~bit

RET 11001001 implied 3 9 (3,3,3) - - - - - - PCL = (SP); PCH = (SP+1); SP = SP+2

RET f 11-f-000 implied
2 (F)
4 (T)

5 (3,2)
10 (3,3,1,3)

- - - - - - if {f} PCL = (SP); PCH = (SP+1); SP = SP+2

RETI 11101101 01001101 implied 4 12 (3,3,3,3) - - - - - - PCL = (SP); PCH = (SP+1); SP = SP+2

RETN 11101101 01000101 implied 4 12 (3,3,3,3) - - - - - - PCL = (SP); PCH = (SP+1); SP = SP+2

RL (HL) 11001011 00010110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * {CY,(HL)} = {(HL),CY}

RL (IX+d) 11011101 11001011 ----d--- 00010110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * {CY,(IX+d)} = {(IX+d),CY}

RL (IY+d) 11111101 11001011 ----d--- 00010110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * {CY,(IY+d)} = {(IY+d),CY}

RL r 11001011 00010-r- reg 3 7 (3,3,1) * * 0 P 0 * {CY,r} = {r,CY}

RLA 00010111 implied 1 3 - - 0 - 0 * {CY,A} = {A,CY}

RLC (HL) 11001011 00000110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * (HL) = {(HL)[6,0],(HL)[7]}; CY = (HL)[7]

RLC (IX+d) 11011101 11001011 ----d--- 00000110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IX+d) = {(IX+d)[6,0],(IX+d)[7]}; CY = (IX+d)[7]

RLC (IY+d) 11111101 11001011 ----d--- 00000110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IY+d) = {(IY+d)[6,0],(IY+d)[7]}; CY = (IY+d)[7]

RLC r 11001011 00000-r- reg 3 7 (3,3,1) * * 0 P 0 * r = {r[6,0],r[7]}; CY = r[7]

RLCA 00000111 implied 1 3 - - 0 - 0 * A = {A[6,0],A[7]}; CY = A[7]

Y180-S 21

Instruction Opcode
byte 1

Opcode
byte 2

Opcode
byte 3

Opcode
byte 4

Addr
Mode

Mach
State

Clock cycles S Z H P
V

N C Operation

RLD 11101101 01101111 implied 5 16 (3,3,3,4,3) * * 0 P 0 - A[3,0] = (HL)[7,4]; (HL) = {(HL)[3,0],A[3,0]}

RR (HL) 11001011 00011110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * {(HL),CY} = {CY,(HL)}

RR (IX+d) 11011101 11001011 ----d--- 00011110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * {(IX+d),CY} = {CY,(IX+d)}

RR (IY+d) 11111101 11001011 ----d--- 00011110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * {(IY+d),CY} = {CY,(IY+d)}

RR r 11001011 00011-r- reg 3 7 (3,3,1) * * 0 P 0 * {r,CY} = {CY,r}

RRA 00011111 implied 1 3 - - 0 - 0 * {A,CY} = {CY,A}

RRC (HL) 11001011 00001110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * (HL) = {(HL)[0],(HL)[7,1]}; CY = (HL)[0]

RRC (IX+d) 11011101 11001011 ----d--- 00001110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IX+d) = {(IX+d)[0],(IX+d)[7,1]}; CY = (IX+d)[0]

RRC (IY+d) 11111101 11001011 ----d--- 00001110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IY+d) = {(IY+d)[0],(IY+d)[7,1]}; CY = (IY+d)[0]

RRC r 11001011 00001-r- reg 3 7 (3,3,1) * * 0 P 0 * r = {r[0],r[7,1]}; CY = r[0]

RRCA 00001111 implied 1 3 - - 0 - 0 * A = {A[0],A[7,1]}; CY = A[0]

RRD 11101101 01100111 implied 5 16 (3,3,3,4,3) * * 0 P 0 - A[3,0] = (HL)[3,0]; (HL) = {A[3,0],(HL)[7,4]}

RST v 11-v-111 implied 4 11 (3,2,3,3) - - - - - - (SP-1) = PCH; (SP-2) = PCL; SP = SP - 2; PC = v

SBC (IX+d) 11011101 10011110 ----d--- index 5 14 (3,3,3,2,3) * * * V 1 * A = A - (IX+d) - CY

SBC (IY+d) 11111101 10011110 ----d--- index 5 14 (3,3,3,2,3) * * * V 1 * A = A - (IY+d) - CY

SBC A,(HL) 10011110 reg ind 2 6 (3,3) * * * V 1 * A = A - (HL) - CY

SBC A,n 11011110 ----n--- immed 2 6 (3,3) * * * V 1 * A = A - n - CY

SBC A,r 10011-r- reg 2 4 (3,1) * * * V 1 * A = A - r - CY

SBC HL,ss 11101101 01ss0010 reg 3 10 (3,3,4) * * * V 1 * HL = HL - ss - CF

SCF 00110111 none 1 3 - - 0 - 0 1 CF = 1

SET b,(HL) 11001011 11-b-110 reg ind 4 13 (3,3,3,1,3) - - - - - - (HL) = (HL) | bit

SET b,(IX+d) 11011101 11001011 ----d--- 11-b-110 index 7 19 (3,3,3,3,3,1,3) - - - - - - (IX+d) = (IX+d) | bit

SET b,(IY+d) 11111101 11001011 ----d--- 11-b-110 index 7 19 (3,3,3,3,3,1,3) - - - - - - (IY+d) = (IY+d) | bit

SET b,r 11001011 11-b--r- reg 3 7 (3,3,1) - - - - - - r = r | bit

SLA (HL) 11001011 00100110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * (HL) = {(HL)[6,0],0}; CY = (HL)[7]

SLA (IX+d) 11011101 11001011 ----d--- 00100110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IX+d) = {(IX+d)[6,0],0}; CY = (IX+d)[7]

SLA (IY+d) 11111101 11001011 ----d--- 00100110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IY+d) = {(IY+d)[6,0],0}; CY = (IY+d)[7]

SLA r 11001011 00100-r- reg 3 7 (3,3,1) * * 0 P 0 * r = {r[6,0],0}; CY = r[7]

SLP 11101101 01110110 none 3 8 (3,3,2) - - - - - - Sleep

SRA (HL) 11001011 00101110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * (HL) = {(HL)[7],(HL)[7,1]}; CY = (HL)[0]

SRA (IX+d) 11011101 11001011 ----d--- 00101110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IX+d) = {(IX+d)[7],(IX+d)[7,1]}; CY = (IX+d)[0]

SRA (IY+d) 11111101 11001011 ----d--- 00101110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IY+d) = {(IY+d)[7],(IY+d)[7,1]}; CY = (IY+d)[0]

SRA r 11001011 00101-r- reg 3 7 (3,3,1) * * 0 P 0 * r = {r[7],r[7,1]}; CY = r[0]

SRL (HL) 11001011 00111110 reg ind 5 13 (3,3,3,1,3) * * 0 P 0 * (HL) = {0,(HL)[7,1]}; CY = (HL)[0]

SRL (IX+d) 11011101 11001011 ----d--- 00111110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IX+d) = {0,(IX+d)[7,1]}; CY = (IX+d)[0]

SRL (IY+d) 11111101 11001011 ----d--- 00111110 index 7 19 (3,3,3,3,3,1,3) * * 0 P 0 * (IY+d) = {0,(IY+d)[7,1]}; CY = (IY+d)[0]

SRL r 11001011 00111-r- reg 3 7 (3,3,1) * * 0 P 0 * r = {0,r[7,1]}; CY = r[0]

SUB (HL) 10010110 reg ind 2 6 (3,3) * * * V 1 * A = A - (HL)

SUB (IX+d) 11011101 10010110 ----d--- index 5 14 (3,3,3,2,3) * * * V 1 * A = A - (IX+d)

SUB (IY+d) 11111101 10010110 ----d--- index 5 14 (3,3,3,2,3) * * * V 1 * A = A - (IY+d)

SUB n 11010110 ----n--- immed 2 6 (3,3) * * * V 1 * A = A - n

SUB r 10010-r- reg 2 4 (3,1) * * * V 1 * A = A - r

TST (HL) 11101101 00110100 reg ind 4 10 (3,3,1,3) * :* 1 P 0 0 A & (HL)

TST n 11101101 01100100 ----n--- immed 3 9 (3,3,3) * * 1 P 0 0 A & n

TST r 11101101 00-r-100 reg 3 7 (3,3,1) * * 1 P 0 0 A & r

TSTIO n 11101101 01110100 ----n--- direct 4 12 (3,3,3,3) * * 1 P 0 0 (C) & n

XOR (HL) 10101110 reg ind 2 6 (3,3) * * 0 P 0 0 A = [A & ~(HL)] | [~A & (HL)]

XOR (IX+d) 11011101 10101110 ----d--- index 5 14 (3,3,3,2,3) * * 0 P 0 0 A = [A & ~(IX+d)] | [~A & (IX+d)]

XOR (IY+d) 11111101 10101110 ----d--- index 5 14 (3,3,3,2,3) * * 0 P 0 0 A = [A & ~(IY+d)] | [~A & (IY+d)]

XOR n 11101110 ----n--- immed 2 6 (3,3) * * 0 P 0 0 A = [A & ~n] | [~A & n]

XOR r 10101-r- reg 2 4 (3,1) * * 0 P 0 0 A = [A & ~r] | [~A & r]

ZIACK1 none 3 9 (3,3,3) - - - - - -
(SP-1) = PCH; (SP-2) = PCL; SP = SP-2;

IEF2 = 0; IEF1 = 0; PC = 0038h

ZIACK2 none 6 16 (3,1,3,3,3,3) - - - - - -
(SP-1) = PCH; (SP-2) = PCL; SP = SP-2;

IEF2 = 0; IEF1 = 0; PC = (VT)

ZNMIACK none 4 11 (3,2,3,3) - - - - - -
(SP-1) = PCH; (SP-2) = PCL; SP = SP-2;

IEF2 = IEF1; IEF1 = 0; PC = 0066h

ZTRAP2 none 3 12 (6,3,3) - - - - - -
(SP-1) = PCH; (SP-2) = PCL; SP = SP-2; PC =

0000h

ZTRAP3 none 3 10 (4,3,3) - - - - - -
(SP-1) = PCH; (SP-2) = PCL; SP = SP-2; PC =

0000h

22

3.5.3 Address Bus Contents

The table below shows the contents of the Address Bus for each machine cycle.
The Address Bus is only valid during memory, I/O, and interrupt acknowledge cycles,
and is undefined during internal operation cycles. The default address output is the PC, so
this is what will usually be on the Address Bus during internal operation cycles.

Instruction if1 dly if2 of1 of2 if3 iop rd1 rd2 siop wr1 wr2 fiop

ADC A,(HL) PC HL

ADC A,(IX+d) PC PC PC xx IX+d

ADC A,(IY+d) PC PC PC xx IY+d

ADC A,n PC PC

ADC A,r PC xx

ADC HL,ss PC PC xx

ADD A,(HL) PC HL

ADD A,(IX+d) PC PC PC xx IX+d

ADD A,(IY+d) PC PC PC xx IY+d

ADD A,n PC PC

ADD A,r PC xx

ADD HL,ss PC xx

ADD IX,xx PC PC xx

ADD IY,yy PC PC xx

AND (HL) PC HL

AND (IX+d) PC PC PC xx IX+d

AND (IY+d) PC PC PC xx IY+d

AND n PC PC

AND r PC xx

BIT b,(HL) PC PC HL

BIT b,(IX+d)) PC PC PC PC IX+d

BIT b,(IY+d)) PC PC PC PC IY+d

BIT b,r PC PC

CALL f,mn PC PC PC xx SP-1 SP-2

CALL mn PC PC PC xx SP-1 SP-2

CCF PC

CP (HL) PC HL

CP (IX+d) PC PC PC xx IX+d

CP (IY+d) PC PC PC xx IY+d

CP n PC PC

CP r PC xx

CPD PC PC HL xx

CPDR PC PC HL xx xx

CPI PC PC HL xx

CPIR PC PC HL xx xx

CPL PC

DAA PC xx

DEC (HL) PC HL xx HL

DEC (IX+d) PC PC PC xx IX+d xx IX+d

DEC (IY+d) PC PC PC xx IY+d xx IY+d

DEC IX PC PC xx

DEC IY PC PC xx

DEC r PC xx

DEC ss PC xx

DI PC

DJNZ j PC xx PC xx

Y180-S 23

Instruction if1 dly if2 of1 of2 if3 iop rd1 rd2 siop wr1 wr2 fiop

EI PC

EX (SP),HL PC SP SP+1 xx SP+1 SP

EX (SP),IX PC PC SP SP+1 xx SP+1 SP

EX (SP),IY PC PC SP SP+1 xx SP+1 SP

EX AF,AF' PC xx

EX DE,HL PC

EXX PC

HALT PC

IM 0 PC PC

IM 1 PC PC

IM 2 PC PC

IN A,(n) PC PC An

IN r,(C) PC PC BC

IN0 r,(n) PC PC PC 0n

INC (HL) PC HL xx HL

INC (IX+d) PC PC PC xx IX+d xx IX+d

INC (IY+d) PC PC PC xx IY+d xx IY+d

INC IX PC PC xx

INC IY PC PC xx

INC r PC xx

INC ss PC xx

IND PC PC BC HL

INDR PC PC BC HL xx

INI PC PC BC HL

INIR PC PC BC HL xx

JP (HL) PC

JP (IX) PC PC

JP (IY) PC PC

JP f,mn PC PC PC

JP mn PC PC PC

JR cc,e PC PC xx

JR e PC PC xx

LD (BC),A PC xx BC

LD (DE),A PC xx DE

LD (HL),n PC PC HL

LD (HL),r PC xx HL

LD (IX+d),n PC PC PC PC IX+d

LD (IX+d),r PC PC PC xx IX+d

LD (IY+d),n PC PC PC PC IY+d

LD (IY+d),r PC PC PC xx IY+D

LD (mn),A PC PC PC xx mn

LD (mn),HL PC PC PC xx mn mn+1

LD (mn),IX PC PC PC PC xx mn mn+1

LD (mn),IY PC PC PC PC xx mn mn+1

LD (mn),ss PC PC PC PC xx mn mn+1

LD A,(BC) PC BC

LD A,(DE) PC DE

LD A,(mn) PC PC PC mn

LD A,I PC PC

LD A,R PC PC

LD dd,(mn) PC PC PC PC mn mn+1

LD dd,mn PC PC PC

LD HL,(mn) PC PC PC mn mn+1

LD I,A PC PC

LD IX,(mn) PC PC PC PC mn mn+1

LD IX,mn PC PC PC PC

LD IY,(mn) PC PC PC PC mn mn+1

LD IY,mn PC PC PC PC

24

Instruction if1 dly if2 of1 of2 if3 iop rd1 rd2 siop wr1 wr2 fiop

LD r,(HL) PC HL

LD r,(IX+d) PC PC PC xx IX+d

LD r,(IY+d) PC PC PC xx IY+d

LD R,A PC PC

LD r,n PC PC

LD r,r' PC xx

LD SP,HL PC xx

LD SP,IX PC PC xx

LD SP,IY PC PC xx

LDD PC PC HL DE

LDDR PC PC HL DE xx

LDI PC PC HL DE

LDIR PC PC HL DE xx

MLT ww PC PC xx

NEG PC PC

NOP PC

OR (HL) PC HL

OR (IX+d) PC PC PC xx IX+d

OR (IY+d) PC PC PC xx IY+d

OR n PC PC

OR r PC xx

OTDM PC PC xx HL 0C xx

OTDMR PC PC xx HL xx 0C xx

OTDR PC PC HL BC xx

OTIM PC PC xx HL 0C xx

OTIMR PC PC xx HL xx 0C xx

OTIR PC PC HL BC xx

OUT (C),r PC PC xx BC

OUT (n),A PC PC xx An

OUT0 (n),r PC PC PC xx 0n

OUTD PC PC HL BC

OUTI PC PC HL BC

POP IX PC PC SP SP+1

POP IY PC PC SP SP+1

POP zz PC SP SP+1

PUSH IX PC PC xx SP-1 SP-2

PUSH IY PC PC xx SP-1 SP-2

PUSH zz PC xx SP-1 SP-2

RES b,(HL) PC PC HL xx HL

RES b,(IX+d) PC PC PC PC IX+d xx IX+d

RES b,(IY+d) PC PC PC PC IY+d xx IY+d

RES b,r PC PC xx

RET PC xx SP SP+1 xx

RET f PC xx SP SP+1 xx

RETI PC PC xx SP SP+1

RETN PC PC SP SP+1

RL (HL) PC PC HL xx HL

RL (IX+d) PC PC PC PC IX+d xx IX+d

RL (IY+d) PC PC PC PC IY+d xx IY+d

RL r PC PC xx

RLA PC

RLC (HL) PC PC HL xx HL

RLC (IX+d) PC PC PC PC IX+d xx IX+d

RLC (IY+d) PC PC PC PC IY+d xx IY+d

RLC r PC PC xx

RLCA PC

Y180-S 25

Instruction if1 dly if2 of1 of2 if3 iop rd1 rd2 siop wr1 wr2 fiop

RLD PC PC HL xx HL

RR (HL) PC PC HL xx HL

RR (IX+d) PC PC PC PC IX+d xx IX+d

RR (IY+d) PC PC PC PC IY+d xx IY+d

RR r PC PC xx

RRA PC

RRC (HL) PC PC HL xx HL

RRC (IX+d) PC PC PC PC IX+d xx IX+d

RRC (IY+d) PC PC PC PC IY+d xx IY+d

RRC r PC PC xx

RRCA PC

RRD PC PC HL xx HL

RST v PC xx SP-1 SP-2

SBC (IX+d) PC PC PC xx HL

SBC (IY+d) PC PC PC xx IX+d

SBC A,(HL) PC IY+d

SBC A,n PC PC

SBC A,r PC xx

SBC HL,ss PC PC xx

SCF PC

SET b,(HL) PC PC HL xx HL

SET b,(IX+d) PC PC PC PC IX+d xx IX+d

SET b,(IY+d) PC PC PC PC IY+d xx IY+d

SET b,r PC PC xx

SLA (HL) PC PC HL xx HL

SLA (IX+d) PC PC PC PC IX+d xx IX+d

SLA (IY+d) PC PC PC PC IY+d xx IY+d

SLA r PC PC xx

SLP PC PC xx

SRA (HL) PC PC HL xx HL

SRA (IX+d) PC PC PC PC IX+d xx IX+d

SRA (IY+d) PC PC PC PC IY+d xx IY+d

SRA r PC PC xx

SRL (HL) PC PC HL xx HL

SRL (IX+d) PC PC PC PC IX+d xx IX+d

SRL (IY+d) PC PC PC PC IY+d xx IY+d

SRL r PC PC xx

SUB (HL) PC HL

SUB (IX+d) PC PC PC xx IX+d

SUB (IY+d) PC PC PC xx IY+d

SUB n PC PC

SUB r PC xx

TST (HL) PC PC xx HL

TST n PC PC PC

TST r PC PC xx

TSTIO n PC PC PC 0C

XOR (HL) PC HL

XOR (IX+d) PC PC PC xx IX+d

XOR (IY+d) PC PC PC xx IY+d

XOR n PC PC

XOR r PC xx

ZIACK1 SP-1 SP-2

ZIACK2 VT VT+1 xx SP-1 SP-2

ZNMIACK xx SP-1 SP-2

ZTRAP2 xx SP-1 SP-2

ZTRAP3 xx SP-1 SP-2

26

3.5.4 Next Machine State

The execution table below shows the sequence of machine cycles for each
instruction or exception condition. All instructions start with the Instruction Fetch 1 (IF1)
state, while exception conditions start with some kind of interrupt acknowledge state or
the instruction fetch where the illegal opcode was fetched, which are not shown in the
table. In each column is listed the next machine cycle for each instruction or exception.
The word "done" in a column means that the corresponding machine cycle is the last one
for that particular instruction or exception condition, and the next state will be either IF1
(for execution of another instruction) or an interrupt acknowledge cycle if an interrupt
condition is present. Where there are two entries listed in a column for an instruction, the
next state depends on the condition being tested in the instruction. The top entry
corresponds to the condition being false, while the bottom entry corresponds to the
condition being true. Shaded entries are not used for that particular instruction or
exception condition. The names and descriptions of the machine cycles are listed following
the table.

if1, if2 and if3 are instruction fetch cycles, for the first, second and third opcode
respectively.

dly is used only with DJNZ to speed operation by decrementing and
checking b before fetching the displacement.

of1 and of2 are the operand fetch cycles.

iop are internal operation cycles and can be up to 10 clocks long.

rd1 and rd2 are memory or I/O read cycles. rd2 is used for byte reads, and both
rd1 and rd2 are used for word reads.

siop are internal operation cycles and can be up to 5 clocks.

wr1 and wr2 are memory or I/O write cycles. wr2 is used for byte writes, and
both wr1 and wr2 are used for word writes.

fiop are internal operation cycles and can be up to 3 clocks long.

Y180-S 27

Instruction if1 dly if2 of1 of2 if3 iop rd1 rd2 siop wr1 wr2 fiop

ADC A,(HL) rd2 done

ADC A,(IX+d) if2 of1 iop2 rd2 done

ADC A,(IY+d) if2 of1 iop2 rd2 done

ADC A,n of1 done

ADC A,r iop1 done

ADC HL,ss if2 iop4 done

ADD A,(HL) rd2 done

ADD A,(IX+d) if2 of1 iop2 rd2 done

ADD A,(IY+d) if2 of1 iop2 rd2 done

ADD A,n of1 done

ADD A,r iop1 done

ADD HL,ss iop4 done

ADD IX,xx if2 iop4 done

ADD IY,yy if2 iop4 done

AND (HL) rd2 done

AND (IX+d) if2 of1 iop2 rd2 done

AND (IY+d) if2 of1 iop2 rd2 done

AND n of1 done

AND r iop1 done

BIT b,(HL) if2 rd2 done

BIT b,(IX+d)) if2 of1 if3 rd2 done

BIT b,(IY+d)) if2 of1 if3 rd2 done

BIT b,r if2 done

CALL f,mn of1
done
of2

iop1 wr1 wr2 done

CALL mn of1 of2 iop1 wr1 wr2 done

CCF done

CP (HL) rd2 done

CP (IX+d) if2 of1 iop2 rd2 done

CP (IY+d) if2 of1 iop2 rd2 done

CP n of1 done

CP r iop1 done

CPD if2 rd2 siop3 done

CPDR if2 rd2 siop3
done
fiop2

done

CPI if2 rd2 siop3 done

CPIR if2 rd2 siop3
done
fiop2

done

CPL done

DAA iop1 done

DEC (HL) rd2 siop1 wr2 done

DEC (IX+d) if2 of1 iop2 rd2 siop1 wr2 done

DEC (IY+d) if2 of1 iop2 rd2 siop1 wr2 done

DEC IX if2 iop1 done

DEC IY if2 iop1 done

DEC r iop1 done

DEC ss iop1 done

DI done

DJNZ j dly of1
done
iop2

done

28

Instruction if1 dly if2 of1 of2 if3 iop rd1 rd2 siop wr1 wr2 fiop

EI done

EX (SP),HL rd1 rd2 siop1 wr1 wr2 done

EX (SP),IX if2 rd1 rd2 siop1 wr1 wr2 done

EX (SP),IY if2 rd1 rd2 siop1 wr1 wr2 done

EX AF,AF' iop1 done

EX DE,HL done

EXX done

HALT done

IM 0 if2 done

IM 1 if2 done

IM 2 if2 done

IN A,(n) of1 rd2 done

IN r,(C) if2 rd2 done

IN0 r,(n) if2 of1 rd2 done

INC (HL) rd2 siop1 wr2 done

INC (IX+d) if2 of1 iop2 rd2 siop1 wr2 done

INC (IY+d) if2 of1 iop2 rd2 siop1 wr2 done

INC IX if2 iop1 done

INC IY if2 iop1 done

INC r iop1 done

INC ss iop1 done

IND if2 rd2 wr2 done

INDR if2 rd2 wr2
done
fiop2

done

INI if2 rd2 wr2 done

INIR if2 rd2 wr2
done
fiop2

done

JP (HL) done

JP (IX) if2 done

JP (IY) if2 done

JP f,mn of1
done
of2

done

JP mn of1 of2 done

JR cc,e of1
done
iop2

done

JR e of1 iop2 done

LD (BC),A iop1 wr2 done

LD (DE),A iop1 wr2 done

LD (HL),n of1 wr2 done

LD (HL),r iop1 wr2 done

LD (IX+d),n if2 of1 of2 wr2 done

LD (IX+d),r if2 of1 iop3 wr2 done

LD (IY+d),n if2 of1 of2 wr2 done

LD (IY+d),r if2 of1 iop3 wr2 done

LD (mn),A of1 of2 iop1 wr2 done

LD (mn),HL of1 of2 iop1 wr1 wr2 done

LD (mn),IX if2 of1 of2 iop1 wr1 wr2 done

LD (mn),IY if2 of1 of2 iop1 wr1 wr2 done

LD (mn),ss if2 of1 of2 iop1 wr1 wr2 done

LD A,(BC) rd2 done

LD A,(DE) rd2 done

LD A,(mn) of1 of2 rd2 done

LD A,I if2 done

LD A,R if2 done

LD dd,(mn) if2 of1 of2 rd1 rd2 done

LD dd,mn of1 of2 done

LD HL,(mn) of1 of2 rd1 rd2 done

LD I,A if2 done

LD IX,(mn) if2 of1 of2 rd1 rd2 done

LD IX,mn if2 of1 of2 done

LD IY,(mn) if2 of1 of2 rd1 rd2 done

LD IY,mn if2 of1 of2 done

Y180-S 29

Instruction if1 dly if2 of1 of2 if3 iop rd1 rd2 siop wr1 wr2 fiop

LD r,(HL) rd2 done

LD r,(IX+d) if2 of1 iop2 rd2 done

LD r,(IY+d) if2 of1 iop2 rd2 done

LD R,A if2 done

LD r,n of1 done

LD r,r' iop1 done

LD SP,HL iop1 done

LD SP,IX if2 iop1 done

LD SP,IY if2 iop1 done

LDD if2 rd2 wr2 done

LDDR if2 rd2 wr2
done
fiop2

done

LDI if2 rd2 wr2 done

LDIR if2 rd2 wr2
done
fiop2

done

MLT ww if2 iop10 done

NEG if2 done

NOP done

OR (HL) rd2 done

OR (IX+d) if2 of1 iop2 rd2 done

OR (IY+d) if2 of1 iop2 rd2 done

OR n of1 done

OR r iop1 done

OTDM if2 iop1 rd2 wr2 fiop1 done

OTDMR if2 iop1 rd2 wr2 done
siop1
fiop3

done

OTDR if2 rd2 wr2
done
fiop2

done

OTIM if2 iop1 rd2 wr2 fiop1 done

OTIMR if2 iop1 rd2 wr2 done
siop1
fiop3

done

OTIR if2 rd2 wr2
done
fiop2

done

OUT (C),r if2 iop1 wr2 done

OUT (n),A of1 iop1 wr2 done

OUT0 (n),r if2 of1 iop1 wr2 done

OUTD if2 rd2 wr2 done

OUTI if2 rd2 wr2 done

POP IX if2 rd1 rd2 done

POP IY if2 rd1 rd2 done

POP zz rd1 rd2 done

PUSH IX if2 iop2 wr1 wr2 done

PUSH IY if2 iop2 wr1 wr2 done

PUSH zz iop2 wr1 wr2 done

RES b,(HL) if2 rd2 siop1 wr2 done

RES b,(IX+d) if2 of1 if3 rd2 siop1 wr2 done

RES b,(IY+d) if2 of1 if3 rd2 siop1 wr2 done

RES b,r if2 iop1 done

RET rd1 rd2 done

RET f
siop2
iop1

rd1 rd2 done done

RETI if2 rd1 rd2 done

RETN if2 rd1 rd2 done

RL (HL) if2 rd2 siop1 wr2 done

RL (IX+d) if2 of1 if3 rd2 siop1 wr2 done

RL (IY+d) if2 of1 if3 rd2 siop1 wr2 done

RL r if2 iop1 done

RLA done

RLC (HL) if2 rd2 siop1 wr2 done

RLC (IX+d) if2 of1 if3 rd2 siop1 wr2 done

RLC (IY+d) if2 of1 if3 rd2 siop1 wr2 done

RLC r if2 iop1 done

RLCA done

30

Instruction if1 dly if2 of1 of2 if3 iop rd1 rd2 siop wr1 wr2 fiop

RLD if2 rd2 siop4 wr2 done

RR (HL) if2 rd2 siop1 wr2 done

RR (IX+d) if2 of1 if3 rd2 siop1 wr2 done

RR (IY+d) if2 of1 if3 rd2 siop1 wr2 done

RR r if2 iop1 done

RRA done

RRC (HL) if2 rd2 siop1 wr2 done

RRC (IX+d) if2 of1 if3 rd2 siop1 wr2 done

RRC (IY+d) if2 of1 if3 rd2 siop1 wr2 done

RRC r if2 iop1 done

RRCA done

RRD if2 rd2 siop4 wr2 done

RST v iop2 wr1 wr2 done

SBC (IX+d) if2 of1 iop2 rd2 done

SBC (IY+d) if2 of1 iop2 rd2 done

SBC A,(HL) rd2 done

SBC A,n of1 done

SBC A,r iop1 done

SBC HL,ss if2 iop4 done

SCF done

SET b,(HL) if2 rd2 siop1 wr2 done

SET b,(IX+d) if2 of1 if3 rd2 siop1 wr2 done

SET b,(IY+d) if2 of1 if3 rd2 siop1 wr2 done

SET b,r if2 iop1 done

SLA (HL) if2 rd2 siop1 wr2 done

SLA (IX+d) if2 of1 if3 rd2 siop1 wr2 done

SLA (IY+d) if2 of1 if3 rd2 siop1 wr2 done

SLA r if2 iop1 done

SLP if2 iop2 done

SRA (HL) if2 rd2 siop1 wr2 done

SRA (IX+d) if2 of1 if3 rd2 siop1 wr2 done

SRA (IY+d) if2 of1 if3 rd2 siop1 wr2 done

SRA r if2 iop1 done

SRL (HL) if2 rd2 siop1 wr2 done

SRL (IX+d) if2 of1 if3 rd2 siop1 wr2 done

SRL (IY+d) if2 of1 if3 rd2 siop1 wr2 done

SRL r if2 iop1 done

SUB (HL) rd2 done

SUB (IX+d) if2 of1 iop2 rd2 done

SUB (IY+d) if2 of1 iop2 rd2 done

SUB n of1 done

SUB r iop1 done

TST (HL) if2 iop1 rd2 done

TST n if2 of1 done

TST r if2 iop1 done

TSTIO n if2 of1 rd2 done

XOR (HL) rd2 done

XOR (IX+d) if2 of1 iop2 rd2 done

XOR (IY+d) if2 of1 iop2 rd2 done

XOR n of1 done

XOR r iop1 done

ZIACK1 wr2 done

ZIACK2 rd2 done wr1 wr2 rd1

ZNMIACK wr1 wr2 done

ZTRAP2 wr1 wr2 done

ZTRAP3 wr1 wr2 done

Y180-S 31

4 Pin Descriptions

This section describes the pins of the Y180 model. All input pins are sampled by
CLK_, CLKB_, or both. All output pins come from flip-flops, although if a pin changes
on both edges of CLK_, the pin will be a simple combination of two flip-flop outputs. The
table below shows pin names, direction, function and sampling or changing CLK_ edge.

BUSACKB_

AOEB_

A_[15:0]

CLEARB_

CLKB_

DIN_[7:0]

Pin name Direction

Output

Function

Address Bus

Address Output Enable

Bus Acknowledge

Output

Output

BUSREQB_ Input Bus Request

CLK_

CLK_

Both

CLKB_

Sampled on

Input Master Clear CLKB_

CLK_ Input Clock

Input Clock-Bar

COEB_ Output Control Output Enable CLK_

Input Data Input Bus Both

DOEB_

DOUT_[7:0]

FAULTB_

HALTB_

INTB_

Output

Output

Output

Output

Input

CLK_

CLK_

CLK_

CLKB_

Data Output Enable

Data Output Bus

Fault

Halt Mode

Interrupt Request

IOCB_

IORQB_

M1B_

M1E_

MREQB_

NMIB_

Input

Output

Output

Input

Output

Input

I/O Control Select

I/O Request

Machine Cycle 1

Machine Cycle 1 Enable

Memory Request

Non-Maskable Interrupt Request

CLK_

CLK_

Both

Both

Changes on/

CLK_

CLKB_

RDB_

RESETB_

SLPB_

ST_

TRAPB_

WAITB_

WRB_

Output

Output

Output

Output

Output

Both

Both

CLK_

CLK_

CLK_

CLKB_

CLKB_

Input

Input

Read

Master Reset

Sleep Mode

Strobe

Trap

Wait Request

Write

INTACKB_ Output Interrupt Acknowledge CLK_

CLK_

32

4.1 A_[15:0] (Address Bus)

The 16 bit Address Bus is used to address memory and I/O. The address on this
bus will be valid throughout a memory or I/O cycle, but the contents are undefined during
internal operation cycles. The default address output is the Program Counter, so this is
what will usually be on the A_[15:0] during internal operation cycles.

4.2 AOEB_ (Address Output Enable)

The Address Output Enable signal can be used to control 3-state buffers on the
address bus external to the Y180. This signal will be active (Low) when the Y180 should
be driving the address bus and inactive (High) when the Y180 is releasing the bus for
another bus master to drive the address bus.

4.3 BUSACKB_ (Bus Acknowledge)

The Bus Acknowledge signal is active (Low) when the Y180 has relinquished
control of the address bus, data bus and control signals to another bus master in response
to a request on the BUSREQB_ signal.

4.4 BUSREQB_ (Bus Request)

When the Bus Request signal is active (Low), the Y180 will relinquish control of
the address bus, data bus and control signals upon completion of the current machine cycle
and then signal that it has done so by activating the BUSACKB_ signal. An external bus
master may then take control of these buses. The BUSREQB_ is the highest priority
request (except for RESETB_) that will be accepted by the Y180. BUSREQB_ cannot be
masked, and is higher priority than NMIB_.

4.5 CLEARB_ (Master Clear)

The Master Clear signal should be activated (Low) on power-up at the same time
as the RESETB_ signal, but only if the contents of the register file need to be initialized to
known values. CLEARB_ will reset all register file contents to all zeros, as opposed to
RESETB_, which only initializes a few registers. Do not active CLEARB_ at any other
time, unless you really want to clear the register file. In particular, if you are exiting Halt
mode or Sleep mode with reset, use RESETB_ only, unless register file data does not need
to be preserved.

Y180-S 33

4.6 CLK_ (Clock)

This is the master Clock input. All internal signals change state on the rising edge
of this clock, as it goes to the clock input of all internal flip-flops. A separate CLKB_
input is present on the Y180 to allow for compatibility with the Z180 timing on some
inputs as well as some outputs. But CLK_ is used exclusively for internal flip-flops. Care
should be exercised when routing CLK_ to minimize skew, and the buffer chosen must
have sufficient drive for the load presented by all of these flip-flops. Timing analysis
should always be performed after layout to verify proper operation.

4.7 CLKB_ (Clock-Bar)

This is the master Clock-Bar input. It is used only in the IO_CTRL module of the
Y180 to provide compatible timing. CLKB_ is the inverse of CLK_, and is only lightly
loaded. Only the rising edge of CLKB_ (which corresponds to the falling edge of CLK_)
is ever used. The design of the CLK_ and CLKB_ buffers depends on the target
technology for the Y180 and cannot be overemphasized.

4.8 COEB_ (Control Output Enable)

The Control Output Enable signal can be used to control 3-state buffers on the
various control signals external to the Y180. This signal will be active (Low) when the
Y180 should be driving these control signals and inactive (High) when the Y180 is
releasing the bus for another bus master to drive these control signals. Typically, these
control signals would consist of MREQB_, IORQB_, RDB_, and WRB_.

4.9 DIN_ [7:0] (Data Input Bus)

The 8 bit Data Input Bus is used to communicate data into the Y180. DIN_[7:0] is
latched by the rising edge of CLK_ for instruction fetch cycles and for the interrupt
acknowledge cycles in interrupt mode 0. In all other cases, the DIN_[7:0] is sampled by
the rising edge of CLKB_. The DIN_[7:0] and the DOUT_[7:0] may be combined
externally to the Y180, with the direction of this bus controlled by the DOEB_ signal.

4.10 DOEB_ (Data Output Enable)

The Data Output Enable signal can be used to control 3-state buffers on DOUT_[7:0]
external to the Y180, or to control the 3-state buffers on a bidirectional data bus external to
the Y180. This signal will be active (Low) when the Y180 should driving the data bus and
inactive (High) when the Y180 is either reading data from the bus or releasing the bus for
another bus master to drive.

34

4.11 DOUT_ [7:0] (Data Output Bus)

The 8 bit Data Output Bus is used to communicate data from the Y180.
DOUT_[7:0] changes on the rising edge of CLK_ and is valid only for the duration of the
write cycle.

4.12 FAULTB_ (Fault Detect)

The Fault Detect signal is active (Low) for one clock cycle whenever the main
Y180 state machine has been detected in an illegal state. The main Y180 state machine is
completely decoded to determine the next state, and any unused state always transitions
to the Fault state. The Fault state exits directly to the IF1 state.

4.13 HALTB_ (Halt Mode)

The Halt Mode signal is active (Low) while the Y180 is in Halt mode or Sleep
mode. Halt mode is entered when the HALT instruction is executed, while Sleep mode is
entered when the SLP instruction is executed. In either case, the Y180 will remain in this
mode until either a RESETB_, INTB_ or NMIB_ occurs.

4.14 INTACKB_ (Interrupt Acknowledge)

The Interrupt Acknowledge signal is active (Low) for one clock cycle at the start
of an interrupt acknowledge bus cycle. This signal is not activated during an NMI
acknowledge cycle.

4.15 INTB_ (Interrupt Request)

When the Interrupt Request input is active (Low) at the end of the current
instruction, and neither BUSREQB_ or NMIB_ is active, the Y180 will perform an
interrupt acknowledge cycle and go to the interrupt service routine. The particular
interrupt acknowledge cycle depends on the interrupt mode of the Y180, and the request
will be ignored if interrupts are not enabled in the Y180.

Y180-S 35

4.16 IOCB_ (I/O Control Select)

The I/O Control Select signal controls the timing of the IORQB_ and RDB_
signals during an I/O transaction. If the IOCB_ signal is Low, these two control signals go
active (Low) during I/O transactions on the rising edge of CLK_. If the IOCB_ signal is
High, these two control signals go active one half of a clock cycle earlier in the I/O
transaction, on the rising edge of CLKB_. The trailing edge of these two control signals
is not affected by the state of the signal.

4.17 IORQB_ (I/O Request)

The I/O Request signal is active (Low) during I/O cycles, and also during interrupt
acknowledge cycles when the interrupt vector or instruction should be placed on the
DIN_[7:0].

4.18 M1B_ (Machine Cycle 1)

The Machine Cycle 1 signal is active (Low) during instruction fetch cycles. It will
be active during all instruction fetch cycles if the M1E_ signal is High. The M1B_ signal is
always activated during interrupt acknowledge cycles.

4.19 M1E_ (Machine Cycle 1 Enable)

The Machine Cycle 1 Enable signal controls the operation of the M1B_ signal. If
the M1E_ signal is High, the M1B_ signal will be activated for every instruction fetch. If
the M1E_ signal is Low, the M1B_ signal will not be activated for instruction fetches.
This signal has no effect on the operation of the M1B_ signal during interrupt
acknowledge cycles, where it is always active.

4.20 MREQB_ (Memory Request)

The Memory Request signal is active (Low) during memory cycles, and also
during non-maskable interrupt acknowledge cycles.

36

4.21 NMIB_ (Non-Maskable Interrupt Request)

When the Non-Maskable Interrupt Request input is active (Low) for two
successive rising edges of CLKB_, this information is latched and at the end of the current
instruction the Y180 will perform a non-maskable interrupt acknowledge cycle and jump
to location 0066h for the NMI service routine. The NMI service routine should be
terminated with the RETN instruction for proper handling of the maskable interrupt. If
BUSREQB_ is active concurrently with the NMIB_, BUSREQB_ will be given priority.

4.22 RDB_ (Read)

The Read signal is active (Low) during memory and I/O read cycles, and also
during non-maskable interrupt acknowledge cycles.

4.23 RESETB_ (Master Reset)

The Master Reset signal should be activated (Low) on power-up and at any other
time where initializing the Y180 to a known state is necessary. RESETB_ forces all output
signals inactive, resets all internal state machines, clears the Program Counter, Stack
Pointer, I register and R register. If the remaining registers need to be initialized to known
states, the CLEARB_ signal should be simultaneously active.

4.24 SLPB_ (Sleep Mode)

The Sleep Mode signal is active (Low) while the Y180 is in Sleep mode. Sleep
mode is entered when the SLP instruction is executed. The Y180 will remain in Sleep
mode until either a RESETB_, INTB_ or NMIB_ occurs.

4.25 ST_ (Status)

The Status signal is used to aid in decoding of the current machine cycle, especially
when the M1E_ has disabled the activation of the M1B_ signal. The ST_ signal is always
active (Low) during the first instruction fetch cycle of an instruction, and also during the
Halt Mode.

Y180-S 37

4.26 TRAPB_ (Trap)

The Trap signal is active (Low) for one clock cycle whenever the Y180 has
encountered an undefined opcode. If TRAPB_ is active while the RDB_ signal is High, the
undefined opcode occurred in the second byte of the instruction, while if TRAPB_ is
Active while the RDB_ signal is Low, the undefined opcode occurred in the third byte of
the instruction.

4.27 WAITB_ (Wait Request)

When the Wait Request input is active (Low) during a read, write, or interrupt
acknowledge cycle, the cycle is extended for the duration of the WAITB_ Low time, one
clock cycle at a time. The cycle then finishes when the WAITB_ signal returns High. This
allows slow memory or peripheral device time to respond to bus cycles.

4.28 WRB_ (Write)

The Write signal is active (Low) during memory and I/O write cycles.

38

5 Bus Cycles

The figures below show the various bus cycles for the Y180. Throughout the
figures, only the relevant pins are shown.

5.1 Instruction Fetch (without Wait state)

The timing for an instruction fetch cycle is shown below. This bus cycle is three
clock cycles long, with the WAITB_ input sampled at the falling edge of CLK_ in T2, and
the DIN_ bus sampled at the rising edge of CLK_ in T3. The ST_ signal is Low only for
the fetch of the first byte of an instruction, and the M1B_ signal is asserted Low during
instruction fetch cycles only if the M1E_ input is High.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

M1B_

MREQB_

RDB_

WAITB_

ST_

T1 T2 T3

Valid

Y180-S 39

5.2 Instruction Fetch (with Wait state)

The timing for an instruction fetch cycle with one Wait state is shown below. This
bus cycle is four clock cycles long, with the WAITB_ input sampled at the falling edge of
CLK_ in both T2 and TW, and the DIN_ bus sampled at the rising edge of CLK_ in T3.
All control signals are stretched by the insertion of the Wait state.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

M1B_

MREQB_

RDB_

WAITB_

ST_

T1 T2 TW T3

Valid

40

5.3 Memory Read/Write (without Wait State)

The timing for a memory read or memory write cycle is shown below. These bus
cycles are three clock cycles long, with the WAITB_ input sampled at the falling edge of
CLK_ in T2. In the case of memory read, the DIN_ bus sampled at the falling edge of
CLK_ in T3 and the RDB_ signal is activated. In the case of memory write, the DOUT_
bus is driven with valid data for the duration of a memory write cycle and the WRB_ and
DOEB_ signals are activated. The DOEB_ signal can be used to control buffer direction
if a 3-state bus is used externally to the model.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

DOUT_[7:0]

MREQB_

RDB_

WRB_

WAITB_

DOEB_

T1 T2 T3

Valid

Y180-S 41

5.4 Memory Read/Write (with Wait State)

The timing for a memory read or memory write cycle is shown below. These bus
cycles are three clock cycles long, with the WAITB_ input sampled at the falling edge of
CLK_ in T2. In the case of memory read, the DIN_ bus sampled at the falling edge of
CLK_ in T3 and the RDB_ signal is activated. In the case of memory write, the DOUT_
bus is driven with valid data for the duration of a memory write cycle and the WRB_ and
DOEB_ signals are activated. The DOEB_ signal can be used to control buffer direction
if a 3-state bus is used externally to the model.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

DOUT_[7:0]

MREQB_

RDB_

WRB_

WAITB_

DOEB_

T1 T2 TW T3

Valid

42

5.5 I/O Read/Write (without Wait State)

The timing for an I/O read or I/O write cycle is shown below. These bus cycles are
four clock cycles long (three plus an automatic Wait state), with the WAITB_ input
sampled at the falling edge of CLK_ in TW. In the case of I/O read, the DIN_ bus sampled
at the falling edge of CLK_ in T3 and the RDB_ signal is activated. In the case of I/O
write, the DOUT_ bus is driven with valid data for the duration of a I/O write cycle and
the WRB_ and DOEB_ signals are activated. The IORQB_ signal is used to distinguish
I/O read and write cycles from memory read and write cycles. Note that the timing of the
leading edge of IORQB_ and RDB_ are controlled by the IOCB_ input. Also note that the
timing of the E_ signal is different for I/O read and I/O write.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

DOUT_[7:0]

IORQB_

RDB_

WRB_

WAITB_

DOEB_

T1 T2 TW T3

IOCB_=0IOCB_=1

IOCB_=0IOCB_=1

Valid

Y180-S 43

5.6 I/O Read/Write (with Wait State)

The timing for an I/O read or I/O write cycle with one inserted Wait state is shown
below. These bus cycles are five clock cycles long (three plus one automatic plus one
inserted Wait state), with the WAITB_ input sampled at the falling edge of CLK_ in TW.
All of the control signals are stretched by the insertion of the Wait state.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

DOUT_[7:0]

IORQB_

RDB_

WRB_

WAITB_

DOEB_

T1 T2 TW TW

IOCB_=0IOCB_=1

IOCB_=0IOCB_=1

T3

Valid

44

5.7 Bus Request/Acknowledge (Entry)

The timing of the release of processor control of the bus is shown below. The
Y180 can release the bus at the completion of any machine cycle. None of the Y180
signals actually go floating; rather, the various output enable signals go inactive and the
BUSACKB_ signal is activated.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

DOUT_[7:0]

BUSREQB_

BUSACKB_

AOEB_

COEB_

DOEB_

T2 or Ti T3 or Ti TX TX

Y180-S 45

5.8 Bus Request/Acknowledge (Exit)

The timing for resumption of processor control of the bus is shown below. The
Y180 can reacquire the bus during any clock cycle of the bus release phase. The various
output enable signals go active and the BUSACKB_ signal is deactivated.

of the release of processor control of the bus is shown below. The Y180 can
release the bus at the completion of any machine cycle. None of the Y180 signals actually
go floating; rather, the various output enable signals go inactive and the BUSACKB_
signal is activated.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

DOUT_[7:0]

BUSREQB_

BUSACKB_

AOEB_

COEB_

DOEB_

T2TX TX T1

46

5.9 Trap (second opcode byte)

The timing of an undefined second byte opcode trap is shown below. The fetch of
the undefined opcode is followed by the Trap cycle, five internal operation cycles, and two
normal write cycles to push the PC of the undefined opcode to the stack. The processor
then jumps to location 0000h and starts fetching instructions. The TRAPB_ information
should be latched outside the CPU to distinguish this case from the normal reset case. The
second byte opcode trap can be distinguished from the third byte opcode trap by the
timing of the TRAPB_ signal. The start of the illegal instruction in this case is the stacked
PC value minus one.

CLK_

A_[15:0]

DIN_[7:0]

M1B_

MREQB_

RDB_

WRB_

TRAPB_

T1 T2 T3

DOUT_[7:0]

TTP Ti Ti Ti Ti Ti T1 T2 T3 T1 T2 T3

SP-1 SP-2

PCLPCH

PC+1PC

Undefined opcode

Y180-S 47

5.10 Trap (third opcode byte)

The timing of an undefined third byte opcode trap is shown below. The fetch of the
undefined opcode is followed by the normal Read cycle (all three-byte instructions use
indexed addressing) with an embedded Trap cycle, four internal operation cycles, and two
normal write cycles to push the PC of the undefined opcode to the stack. The processor
then jumps to location 0000h and starts fetching instructions. The TRAPB_ information
should be latched outside the CPU to distinguish this case from the normal reset case. The
third byte opcode trap can be distinguished from the second byte opcode trap by the
timing of the TRAPB_ signal. The start of the illegal instruction in this case is the stacked
PC value minus two.

CLK_

A_[15:0]

DIN_[7:0]

M1B_

MREQB_

RDB_

WRB_

TRAPB_

T1 T2 T3

DOUT_[7:0]

T1 T2 TTP T3 Ti Ti T1 T2 T3 T1 T2 T3

SP-1 SP-2

PCLPCH

IX+d or IY+dPC

Undefined opcode

Ti Ti

48

5.11 Non-Maskable Interrupt Acknowledge

The timing of a Non-Maskable interrupt acknowledge cycle is shown below. The
NMIB_ input is edge-sensitive and cannot be masked by software. NMIB_ must be
sampled Low for two consecutive falling edges of CLK_ to be recognized by the
processor. The NMI acknowledge cycle looks exactly like an instruction fetch for the first
three clock cycles, except that the data bus is ignored. These three clock cycles are
followed by two internal operation cycles and two write cycles to push the contents of the
program counter onto the stack. Execution then begins at 0066h with an instruction fetch.
The NMI service routine must end with the RETN instruction to properly restore the state
of the interrupt enable flag prior to the NMI.

CLK_

A_[15:0]

DIN_[7:0]

M1B_

MREQB_

RDB_

WRB_

NMIB_

T1 T2 T3

DOUT_[7:0]

Ti Ti T1 T2 T3 T1 T2 T3

SP-1 SP-2

PCLPCH

PC

Ignored

0066h

T1

Y180-S 49

5.12 Mode 1 Interrupt Acknowledge

The timing of a Mode 1 interrupt acknowledge cycle is shown below. The Mode 1
interrupt acknowledge cycle consists of a three clock cycle (plus two automatic Wait
states) special bus cycle, followed by two normal write cycles to push the contents of the
PC onto the stack. The processor then jumps to location 0038h for the service routine.
The INTACKB_ signal is activated during T1 of the special bus cycle.

CLK_

A_[15:0]

DIN_[7:0]

M1B_

IORQB_

MREQB_

WRB_

INTB_

INTACKB_

T1 T2 T3

DOUT_[7:0]

TW T1 T2 T3 T1 T2 T3

SP-1 SP-2

PCLPCH

PC

TW T1

0038h

50

5.13 Mode 2 Interrupt Acknowledge

The timing of a Mode 2 interrupt acknowledge cycle is shown below. The Mode 2
interrupt acknowledge cycle consists of a three clock cycle (plus two automatic Wait
states) special bus cycle which reads a vector from the data bus, an internal operation
cycle, followed by two normal write cycles to push the contents of the PC onto the stack,
followed by two normal read cycles to fetch the interrupt jump table entry corresponding
to the vector fetched during the special bus cycle. The INTACKB_ signal is activated
during T1 of the special bus cycle.

The processor automatically jumps to the address fetched from the interrupt jump
table for the service routine. The upper eight bits of the interrupt jump table starting
address are held in the I register in the processor. Note that the vector must be an even
number. That is, the least significant bit of the vector must be a zero.

CLK_

A_[15:0]

DIN_[7:0]

M1B_

IORQB_

MREQB_

WRB_

INTB_

INTACKB_

T1 T2 T3

DOUT_[7:0]

TW T1 T2 T3 T1 T2 T3

SP-1 SP-2

PCLPCH

PC

TW Ti

RDB_

T1 T2 T3 T1 T2 T3

Vector Vector+1

Addr LSB Addr MSBVector LSB

Y180-S 51

5.14 Halt Entry and Exit

The Halt mode is entered when the HALT instruction is executed, as shown
below. In the Halt mode the processor continuously performs Halt cycles, which are three
clock cycle bus cycles identical to instruction fetch cycles except that the HALTB_ output
is Low. In the Halt mode Bus release (through BUSREQB_ and BUSACKB_) can still
occur, but the only way to exit the Halt mode is with either an interrupt (NMIB_ or
INTB_) or via reset. The timing for exiting the Halt mode via INTB_ is shown below.
Note that INTB_ can only be used to exit the Halt mode interrupts are enabled when the
HALT instruction is executed. If the Halt mode is exited via NMIB_ or INTB_, the
processor will resume instruction execution (after the interrupt service routine) at the
address of the instruction following the HALT instruction.

CLK_

A_[15:0]

DIN_[7:0]

MREQB_

HALTB_

INTACKB_

T1 T2 T3

M1B_

T3 T1

PC

T1 T2

RDB_

PC+1

76h

INTB_

HALT mode Interrupt
Acknowledge

52

5.15 Sleep Entry and Exit

The Sleep mode is entered when the SLP instruction is executed, as shown below.
In the Sleep mode the processor continuously performs Sleep cycles, which are single
clock cycle bus cycles identical to internal operation cycles except that both the HALTB_
output and SLPB_ outputs are Low. In the Sleep mode Bus release (through BUSREQB_
and BUSACKB_) can still occur, but the only way to exit the Sleep mode is with either an
interrupt (NMIB_ or INTB_) or via reset. The timing for exiting the Sleep mode via
INTB_ is shown below. Note that INTB_ can only be used to exit the Sleep mode
interrupts are enabled when the SLP instruction is executed. If the Sleep mode is exited
via NMIB_ or INTB_, the processor will resume instruction execution (after the interrupt
service routine) at the address of the instruction following the SLP instruction.

CLK_

A_[15:0]

DIN_[7:0]

MREQB_

HALTB_

SLPB_

TST2 TS

M1B_

T3 T1

PC

Ti Ti

RDB_

FFFFh

76h

INTB_

Sleep mode Interrupt
Acknowledge

PC+1

Y180-S 53

5.16 Fault Detect

The timing of a fault condition is shown below. The Y180 main state machine is
completely decoded, so it should never be able to enter an illegal state. However, should
any illegal state be decoded the logic automatically transitions to a fault state for one
clock cycle. The FAULTB_ signal is activated during the state, and then operation is
resumed with an IF1 machine cycle.

CLK_

CLKB_

State

FAULTB_

T1T (any) T (any) FAULT

IF1FAULTany illegal

54

5.17 Fault Detect (during Bus Release)

The timing if fault condition is detected during Bus Release is shown below. The
Y180 activates the FAULTB_ signal immediately upon regaining the bus.

CLK_

CLKB_

A_[15:0]

DIN_[7:0]

DOUT_[7:0]

BUSREQB_

BUSACKB_

AOEB_

COEB_

DOEB_

T1TX TX FAULT

FAULTB_

Y180-S 55

5.18 Reset and Clear

The Reset state is entered when the RESETB_ pin is Low for two consecutive
rising edges of CLKB_, as shown below. On the next rising edge of CLK_ after
RESETB_ has been sampled Low twice, the Y180 enters the Reset state, independent of
the current machine cycle or clock cycle. It remains in the Reset state until after RESETB_
is sampled High. At that time, the Y180 begins fetching instructions from location 0000h.
The Reset state clears all of the state machines internal to the Y180. It also resets the PC,
SP, I and R registers, selects Interrupt Mode 0, and disables the maskable interrupts. If
CLEARB_ is asserted Low coincident with RESETB_, all of the other registers in the
Y180 are reset also. RESETB_ should always be asserted on power-up, and may be used
to exit from the Halt mode or Sleep mode also.

CLK_

A_[15:0]

AOEB_

DOEB_

RESETB_

SLPB_

Tr T1

COEB_

T2

Address

Tr Tr

HALTB_

0000h

CLEARB_

Reset state Instruction fetch
at location 0000h

56

6 Differences

This section describes the differences between the Y180 and the Z80180. Most of
the differences are related to input or output timing or operation. With the exception of
IM 0 and RETI, instruction results and clock cycle timing are identical between the two
devices.

AOENB_ The Y180 provides an AOENB_ output for control of an external 3-state
Address bus. The Y180 Address Bus, A_[15:0], is always driven. The
Z80180 address bus is 3-state.

CLEARB_ The Y180 provides a CLEARB_ input to initialize all of the register file.
This input can be quite useful for simulation, but is not strictly necessary
for the final design and can be tied High with no ill effect. The Z80180 has
no such reset mechanism.

CLK_ The Y180 requires both CLK_ and CLKB_, although the CLKB_ input is
used only in the I/O interface module. CLKB_ is required to match the
timing characteristics of the Z80180, which changes outputs and samples
inputs on both edges of the clock.

COENB_ The Y180 provides a COENB_ output for control of external 3-state
buffers on the control signals. Y180 control signals are always driven. The
Z80180 control signals are 3-state.

DOENB_ The Y180 employs separate data input and output busses, DIN_[7:0] and
DOUT_[7:0], and a Data Output Enable signal, DOENB_, to control an
external bidirectional bus, if desired. The DOUT_ bus changes only on the
rising edge of CLK_. The Z80180 employs a bidirectional data bus, and in
the output mode the leading edge of the data changes on the falling edge
of the clock. The timing of the Y180's DOENB_ signal is such that the
timing of an external bidirectional bus, if implemented, will match that of
the Z80180.

FAULTB_ The Y180 contains a dedicated output that is activated if an illegal state is
detected in the main state machine. This output is normally used to reset
the device or force a non-maskable interrupt.

IOCB_ The Y180 utilizes an IOCB_ input to control the timing of the RDB_ and
IORQB_ outputs during I/O operations. In the Z80180, the timing of these
two signals is controlled by a bit in a register external to the CPU. This
register can be created for complete compatibility, and its output tied to the
IOCB_ input of the Y180.

INTACKB_ The Y180 provides a dedicated output to signal the start of an interrupt
acknowledge bus cycle. This signal is one clock cycle long, during T1 of
the interrupt acknowledge cycle.

Y180-S 57

M1E_ The Y180 utilizes an M1E_ input to control the operation of the M1B_
signal for compatibility with the Z80180. In the Z80180, the operation of
the /M1 signal is controlled by a bit in a register external to the CPU. This
register can be created for complete compatibility, and its output tied to the
M1 E_ input of the Y180.

NMIB_ The Y180 requires that NMIB_ be Low for two consecutive rising edges
of CLKB_ after being sampled High. The latest that these two rising edges
of CLKB_ can occur, and still be accepted at the end of the current
machine cycle, is during the two clocks preceding the last clock cycle of a
machine cycle. This different than the timing for the Z80180, which
catches the falling edge of /NMI as late as one-half clock before the last
clock cycle of a machine cycle. The Y180 timing is more robust, acting as
"glitch filter" on this edge-sensitive input.

RESETB_ The Y180 requires that RESETB_ be Low for two consecutive rising
edges of CLKB_, and responds on the next rising edge of CLK_ after it is
sampled Low for the second time. On exiting the Reset state, the Y180
starts fetching the instruction at location 0000h one and one-half clock
cycles after sampling RESETB_ High. This is different from the six clock
cycle minimum Low time requirement and the two and one-half clock
cycle response time for the Z80180.

SLPB_ The Y180 provides a separate SLPB_ output to indicate that the device is
in the Sleep mode. The Z80180 requires decoding of the state of several
outputs to indicate that the device is in Sleep mode. Note that the Y180
provides the same encoding on the outputs, but using the SLPB_ output is
easier.

TRAPB_ The Y180 provides a separate TRAPB_ output to indicate that the device
has fetched an illegal opcode. The two different cases of a Trap can be
distinguished by the state of the RDB_ signal when TRAPB_ is Low. The
Z80180 provides a register, outside of the CPU to hold the trap
information. This external register can be easily created and written via the
TRAPB_ signal for compatibility.

IM 0 The Y180 does not implement Interrupt Mode 0. Interrupt Mode 1 is the
default instead. The IM 0 (ED-46) instruction is still recognized, but is
treated as a NOP.

RETI The Y180 does not implement the Z80180 special bus operation for the
RETI instruction, where the RETI instruction is re-fetched on the bus with
special timing for external Z80-compatible peripheral devices. Instead, the
RETI acts like the Z80 version of the instruction, which is identical to the
normal RET instruction.

58

7 Model Organization

The organization of the Y180 Verilog HDL model is identical to that shown in the
block diagram of section 3.1. That is, there is a Top Level Module which contains the four
main modules of the device. Each module is flat, except for the Address and Data Module,
which uses two byte-wide register modules. Even though there are only three hierarchical
levels in the overall model, each module is structured into a number of self-contained
sections for easy modification.

Symbolic label definitions are used, rather than hard encoding, in almost all cases
in the design. Those cases where the hard encoding is used are listed below. In all cases
where hard encoding is not used, the symbolic label definitions can be changed, to provide
unencoded signals, or just different encodings. When modifying symbolic label
definitions, only the `include file that contains all of the parameter definitions needs to be
modified.

7.1 Y180_TOP (Top Level Module)

Y180_TOP is the Top Level Module for the device. It contains only the pins and
the four main modules of the Y180. Note that no symbolic labels are used at this level, and
all of the pins of the device use capital letters followed by an underscore.

7.2 PARAMS (Parameter Definition `include File)

PARAMS is the parameter definition `include file for the device. It contains all of
the symbolic label definitions used in the design and is called with an `include in each of
the four main modules of the device. If you want to modify the symbolic label definitions,
only this file needs to be modified. As mentioned previously, some of the encodings must
not be modified. These are described below, and are clearly marked with warning
comments in this file.

The page register encoding, which identifies which code page the instruction is on,
must not be modified, as it seldom treated symbolically. The encoding for the page register
has been carefully chosen to simplify the decoding of groups of similar instructions on
different pages.

The register address encoding should not be modified, unless the encoded register
address generators in the Central Control Module are also modified, because a portion of
the address is taken directly from bits in the opcode in these address generators.

Obviously, the definition of TRUE and FALSE should not be changed.

Y180-S 59

7.3 IO_CTRL (I/O Interface Module)

IO_CTRL is the I/O Interface Module for the device. This module translates
between the external pins and the internal busses and signals of the Y180. This is the only
module which uses CLKB_ and consists primarily of flip-flops to translate timing. This is
where RESETB_ is translated into the internal signal resetb. Because resetb goes to nearly
every flip-flop in the Y180, it will be heavily loaded. This is the only signal, besides the
clock, that will require special attention when implemented.

7.4 M_STATE (Machine State Module)

M_STATE is the Machine State Module for the device. This module contains the
machine cycle state machine, the clock cycle state machine, and the interrupt enable and
mode flip-flops. As mentioned previously, the clock cycle state machine was carefully
designed to minimize state transitions and should not be modified.

7.5 CTR_CTL (Central Control Module)

CTR_CTL is the Central Control Module for the device. This module is purely
combinatorial, and can be implemented as either random logic, microcode, or a
combination of both. The only inputs to this module are the page register, the instruction
register, the machine cycle state and the clock cycle state.

7.6 DATA_IO (Address and Data Module)

DATA_IO is the Address and Data Module for the device. This module contains
the ALU, Program Counter, Instruction Register, Page Register, Flag Registers, register
file and temporary registers. This is where all of the address and data manipulation is done
in the Y180. This is the only module in the Y180, other than the Top Level Module, which
contains other modules.

7.7 REG_BYTE (Byte-wide Register in the Register File)

REG_BYTE is a byte-wide register for use in the register file. A unique register is
used for the register file to allow it to be replaced with something other than flip-flops if
desired. Note that the majority of registers in the register file are reset by the clearb signal,
which is derived from the CLEARB_ input. If CLEARB_ is not used in your design, these
registers do not need to allow for reset. The Stack Pointer, I and R registers are reset by
the resetb signal, however.

60

7.8 REG_8BIT (Byte-wide General-Purpose Register)

REG_8BIT is a byte-wide general-purpose register for use other than in the
register file. It is merely a grouping of eight flip-flops that is used for convenience in the
Verilog HDL description.

Y180-S 61

8 Test Suite

The Y180 Verilog HDL model includes a complete test suite to verify proper
operation of the device both before and after implementation. The test suite verifies the
proper operation of every valid instruction, trap on every illegal opcode, proper operation
with and without Wait states for every instruction, proper operation with Bus Request
before and after every possible machine cycle, all interrupt modes and proper flag
operation. Running the test suite requires virtually no user intervention.

The test suite does not test every instruction in conjunction with interrupt and
NMI, but rather checks every group of instructions sharing a common interrupt or NMI
Verilog description. The test suite does not currently check for the proper timing of every
input and output. This was done manually during the development of the test suite, and
the model is believed correct as supplied. If exhaustive input and output timing
verification is desired, the top level model can be modified to check this.

It is a relatively straightforward process to trace the inputs and output during
simulation to generate vector files suitable for use with ATE testers. Another alternative
is to allow the synthesis tool to insert scan test logic during the synthesis process.

8.1 TOP_LEV (Top Level for Simulation)

TOP_LEV is the top level module for simulation. It contains the Y180 module
itself, a read memory which is loaded with the program to be executed, a compare
memory which is loaded with the compare data for the program, the clock generator, a pair
of reset tasks, a couple of tasks useful for debugging, interrupt and NMI generators, a
Wait generator, a Bus Request generator, and a compare error flag and counter.

The top level as supplied runs through the entire test suite without Wait or Bus
Request, followed by a pass with one wait state in every bus cycle, followed by a pass
where Bus Request is active all the time and is released for one clock cycle at a time to
allow only one machine cycle to be executed between bus requests. The Bus Request pass
is several times longer than an individual pass and can be eliminated if necessary by editing
the file so that the patterns are not executed while the variable DISABLE_BREQ is zero.

8.2 SETUP_HL (Initialization Pattern)

SETUP_HL is a short pattern used to initialize the HL register pair before starting
the first pattern. Executing this pattern first makes it possible to rearrange the order of the
remaining patterns. This is because several of the patterns require HL to contain a jump
address at the start of the pattern. In a similar fashion, the HL register pair is initialized at
the end of every pattern.

Every pattern ends with what would be an infinite loop at location 0C0h. This

62

loop is detected by a test in TOP_LEV and used to load the next pattern. Any patterns
that you add to the test suite should attempt to follow this convention.

8.3 INT_OPS (Interrupt Operation)

INT_OPS checks all of the interrupt modes and NMI for all of the possible cases.
This pattern is also used to check that the two input options, M1 Enable and I/O Control
are functioning correctly. Sleep mode and Halt mode are also checked in this pattern.

8.4 ALU_OPS (ALU Operation)

ALU_OPS checks all of the data manipulation instructions and flag results. Every
data manipulation instruction is individually checked, usually more than once, to ensure
both proper operation and flag results. Both byte and 16-bit instructions are checked in
this pattern.

8.5 DAT_MOV (Data Movement Operation)

DAT_MOV checks all of the data movement instructions, both internal and
external. Every data movement instruction is individually checked, usually more than
once, to ensure both proper operation and no adverse consequences (improper decoding,
for example). Both byte and 16-bit instructions are checked in this pattern, but the block
move instructions are checked in a separate pattern.

8.6 TRP_2ND (Trap on Second Byte Operation)

TRP_2ND checks all of the two-byte illegal opcodes. Each two-byte illegal
opcode is individually checked for a trap and no adverse consequences.

8.7 TRP_3RD (Trap on Third Byte Operation)

TRP_3RD checks all of the three-byte illegal opcodes. Each three-byte illegal
opcode is individually checked for a trap and no adverse consequences.

8.8 BIT_OPS (Bit Manipulation Operation)

BIT_OPS checks all of the bit operations. Each bit operation instruction is
individually checked for both proper operation and proper flag results, with no adverse
consequences.

Y180-S 63

8.9 JMP_OPS (Jump Operation)

JMP_OPS checks all of the program flow instructions. Each Jump or Call
instruction is individually checked, including the taken/not taken case if it is a conditional
instruction. This is where Restart, Return and DJNZ are checked.

8.10 IO_OPS (I/O Operation)

IO_OPS checks all of the individual and block I/O instructions. The block move
instructions are also checked here. Both the looping and terminating case of the block
instructions are checked.

64

9 Installation

The Y180 Verilog HDL Model was developed on a PC, using Microsoft Excel 97
for the spreadsheet, Microsoft Word for the text, and VCSi for the verification. The
model uses only synthesizeable constructs and contains nothing unique to the simulator
used for the development.

The standard method of providing the Y180 Verilog HDL Model is as text files,
since this will be compatible with the majority of destinations. The file structure of the
design is shown below.

The design spreadsheet will be provided in Microsoft Excel 97 format files.
Should the documentation (this manual) be required in machine-readable format other
than the default Acrobat Portable Document Format (pdf), it will be provided in
Microsoft Word format.

Y180-S 65

9.1 File structure

design: ctr_ctl.v
data_io.v
io_ctrl.v
m_state.v
params.v
reg_8bit.v
reg_byte.v
top_lev.v (testbench)
y 180_top.v

memory: alu_ops.vm
alu_opsd. vm
bit_ops.vm
bit_opsd.vm
dat_mov.vm
dat_movd.vm
int_ops.vm
int_opsd.vm
io_ops.vm
io_opsd.vm
jmp_ops.vm
jmp_opsd.vm
setup_hl.vm
trp_2nd.vm
trp_2ndd.vm
trp_3rd.vm
trp_3rdd.vm

testing: alu_ops.s
(sources) alu_opsd.s

bit_ops.s
bit_opsd.s
dat_mov.s
dat_movd.s
int_ops.s
int_opsd.s
io_ops.s
io_opsd.s
jmp_ops.s
jmp_opsd.s
setup_hl.s
trp_2nd.s
trp_2ndd.s
trp_3rd.s
trp_3rdd.s

66

Appendix 1: Single-Event Upset Tolerance

The Y180 has been designed to detect and flag illegal states caused by single
event upsets. In addition, all illegal states have a defined exit path that will return to a
legal state. Note that it is not possible to detect transitions between most legal states
caused by single event upsets. These types of errors will usually only be manifest as
erroneous data or improper operation sequences, and are beyond the scope of this
discussion.

The remainder of this appendix will discuss the various types of flip-flops in the
Y180 design.

A1.1 User-controlled Registers

There are two types of user-controlled registers. First are the usual CPU registers
that are visible to (and controlled directly by) the program. Second are the internal
temporary registers that are used during instruction execution to hold data, intermediate
results and addresses. All of these types of registers can store any data pattern, and as a
result they do not have any illegal states. All of the user-controlled registers are listed
below, along with their width and use.

Name Width Used for:

inst_reg 8 bits The current instruction.
pch_reg 8 bits High byte of the Program Counter
pcl_reg 8 bits Low byte of the Program Counter
tout_reg 8 bits Temporary data register. Holds intermediate results.
dout_reg 8 bits Write data for write transactions.
addh_reg 8 bits High byte of address for output.
addl_reg 8 bits Low byte of address for output.
dath_reg 8 bits High byte of input data (immediate or from memory/IO).
datl_reg 8 bits Low byte of input data.
ainh_reg 8 bits High byte of ALU temporary input register.
ainl_reg 8 bits Low byte of ALU temporary input register.
aout_reg 8 bits Low byte of ALU output register.
mout_reg 8 bits High byte of ALU output register.
lcarry 1 bit Latched byte carry bit for 16-bit operations.
ma_reg 8 bits CPU primary bank A register.
mf_reg 8 bits CPU primary bank F register.
aa_reg 8 bits CPU alternate bank A register.
af_reg 8 bits CPU alternate bank F register.
mb_reg 8 bits CPU primary bank B register.
mc_reg 8 bits CPU primary bank C register.
md_reg 8 bits CPU primary bank D register.
me_reg 8 bits CPU primary bank E register.

Y180-S 67

Name Width Used for:

mh_reg 8 bits CPU primary bank H register.
ml_reg 8 bits CPU primary bank L register.
ab_reg 8 bits CPU alternate bank B register.
ac_reg 8 bits CPU alternate bank C register.
ad_reg 8 bits CPU alternate bank D register.
ae_reg 8 bits CPU alternate bank E register.
ah_reg 8 bits CPU alternate bank H register.
al_reg 8 bits CPU alternate bank L register.
sh_reg 8 bits High byte of CPU SP register.
sl_reg 8 bits Low byte of CPU SP register.
xh_reg 8 bits High byte of CPU IX register.
xl_reg 8 bits Low byte of CPU IX register.
yh_reg 8 bits High byte of CPU IY register.
yl_reg 8 bits Low byte of CPU IY register.
i_reg 8 bits CPU I register.
r_reg 8 bits CPU R register.
malt_dehl 1 bit Control bit: rename primary bank DE and HL registers.
aalt_dehl 1 bit Control bit: rename alternate bank DE and HL registers.
alt_af 1 bit Control bit: select alternate/primary AF registers.
alt_bank 1 bit Control bit: select alternate/primary BC/DE/HL registers.
ief1 1 bit CPU IEF1 (Interrupt Enable Flag 1) bit.
ief2 1 bit CPU IEF2 (Interrupt Enable Flag 2) bit.
int_md 1 bit CPU IM (Interrupt Mode) bit.
norm_data 8 bits Data bus input register.

A1.2 Continuously-clocked Flip-flops

Continuously-clocked flip-flops are just what the name implies: flip-flops that are
updated on every clock cycle. In the Y180 design, this type of flip-flop is used to
synchronize input signals, to delay (and synchronize) a decoded signal, or to create a
signal clocked by the opposite edge of the clock. The response of these flip-flops to a
single-event upset will persist for only one clock cycle, and will usually create a
condition that will be visible on the external signals of the device. All of the
continuously-clocked flip-flops are listed below, along with their width and use.

Name Width Used for:

t2n_cycle 1 bit Delayed version of the T2 clock cycle. Generates the auto
wait during interrupt acknowledge cycles.

pre_hold & 1 bit \ These two flip-flops sample and synchronize the
hold 1 bit / BUSREQB_ input signal.
pre_clr1 & 1 bit \ These three flip-flops sample and synchronize the
pre_clr2 & 1 bit | CLEARB_ input signal.
clear_reg 1 bit /

68

Name Width Used for:

pre_intrpt & 1 bit \ These two flip-flops sample and synchronize the
intrpt 1 bit / INTB_ input signal.
pre_nmi1 & 1 bit \ These four flip-flops sample and synchronize the
pre_nmi2 & 1 bit | NMIB_ input signal.
pre_nmi3 & 1 bit |
nmi 1 bit /
cpu_wait 1 bit This flip-flop samples the WAITB_ input.
aoe_reg 1 bit This flip-flop generates the AOEB_ and COEB_

output signals.
busack_alt & 1 bit \ These two flip-flops create the BUSACB_ output
busack_reg 1 bit / signal.
doe_alt & 1 bit \ These two flip-flops create the DOEB_ output
doe_reg 1 bit / signal.
fault_reg 1 bit This flip-flop generates the FAULTB_ output signal.
halt_reg 1 bit This flip-flop generates the HALTB_ output signal.
inta_reg 1 bit This flip-flop generates the INTACKB_ output signal.
iorq_alt & 1 bit \ These two flip-flops create the IORQB_ output
iorq_reg 1 bit / signal.
m1_reg 1 bit This flip-flop generates the M1B_ output signal.
mreq_alt 1 bit This flip-flop generates the MREQB_ output signal.
rd_alt & 1 bit \ These two flip-flops create the RDB_ output
rd_reg 1 bit / signal.
sleep_reg 1 bit This flip-flop generates the SLEEPB_ output signal.
st_alt 1 bit This flip-flop generates the ST_ output signal.
trap_reg 1 bit This flip-flop generates the TRAPB_ output signal.
wr_alt & 1 bit \ These two flip-flops create the WRB_ output
wr_reg 1 bit / signal.

A1.3 State Machines

The Y180 contains five different state machines, but only two of these state
machines have illegal states. Each state machine will be discussed separately below.

A1.3.1 fetch_hld State Machine

The fetch_hld state machine is really only a single bit and is used only during bus-
release operation. During the bus-release phase of operation, this bit stores whether or not
the first clock after a bus release will be an instruction fetch cycle. This status is used
only during the last clock cycle of the bus release phase.

Y180-S 69

A1.3.2 inta_hld State Machine

The inta_hld state machine is also only a single bit and is also used only during
bus-release operation. During the bus-release phase of operation, this bit stores whether
or not the first clock after a bus release will be an interrupt acknowledge cycle. This
status is used only during the last clock cycle of the bus release phase.

A1.3.3 clock_cyc State Machine

The clock_cyc state machine is three bits wide, and tracks the clock cycle within a
machine cycle. There are no unused states in this state machine, although the default
(reset) state is used only while in reset. Because there is a specific sequence of clock
cycles for each machine cycle, any illegal state transition in clock_cyc should result in
improper instruction execution and perhaps illegal combinations of external output
signals. The clock_cyc state is always fully decoded and is updated on every clock cycle.

A1.3.4 page_reg State Machine

The page_reg state machine is four bits wide, and encodes which page is being
used for an instruction (main page, CB/DD/ED/FD page, or DD-CB/FD-CB page) or the
type of interrupt or trap acknowledge cycle that is running. Only twelve of the sixteen
possible values for page_reg are valid. Two of the illegal values are used by the control
section to control the loading of page_reg but will never appear as page_reg values in
normal operation. The two remaining values are also illegal and will never appear in
normal operation. The table below shows the coding for the page_reg state machine. This
coding must not be modified, because it is not decoded symbolically in the control
section.

STATE CODING bit 3 flip bit 2 flip bit 1 flip bit 0 flip
MAINPG 4'b0000, NMIPG DDPAGE CBPAGE HOLDPG
HOLDPG 4'b0001,
CBPAGE 4'b0010, TRP2PG DDCBPG MAINPG EDPAGE
EDPAGE 4'b0011, TRP3PG FDCBPG HOLDPG CBPAGE
DDPAGE 4'b0100, nulpgc MAINPG DDCBPG FDPAGE
FDPAGE 4'b0101, nulpgd HOLDPG FDCBPG DDPAGE
DDCBPG 4'b0110, INT1PG CBPAGE DDPAGE FDCBPG
FDCBPG 4'b0111, INT2PG EDPAGE FDPAGE DDCBPG
NMIPG 4'b1000, MAINPG nulpgc TRP2PG INTRPG
INTRPG 4'b1001,
TRP2PG 4'b1010, CBPAGE INT1PG NMIPG TRP3PG
TRP3PG 4'b1011, EDPAGE INT2PG INTRPG TRP2PG
nulpgc 4'b1100,
nulpgd 4'b1101,

INT1PG 4'b1110, DDCBPG TRP2PG nulpgc INT2PG
INT2PG 4'b1111, FDCBPG TRP3PG nulpgd INT1PG

70

This table also shows the effect of flipping a single bit of page_reg. All of the
shaded results are illegal values, and will result in the FAULTB_ output being activated.
Note that because they can never occur in normal operation, the four reserved values are
shaded to indicate that they will be detected. The reults shaded orange were simulated.

An illegal value for page_reg will result in the execution of the default state
sequence for the mach_cyc state machine, because there will be no legal page_reg to
control the sequence. The default next machine state for each current machine state is
shown in the table below.

STATE CODING
Default
NEXT

IF1 6'b000001 OF1
DLY 6'b000010 OF1
IF2 6'b000100 TRAP
OF1 6'b000111 OF2
RD1 6'b001000 RD2
RD2 6'b001011 IF1
OF2 6'b001101 IF1
IOP1 6'b001110 IF1
WR1 6'b010101 WR2
WR2 6'b010110 IF1
IF3 6'b011000 RD2

FIOP3 6'b011001 FIOP2
FIOP2 6'b011010 FIOP1
FIOP1 6'b011011 IF1
RRST 6'b011100 IF1
IOP10 6'b011101 IOP9
IOP9 6'b100000 IOP8
IOP8 6'b100001 IOP7
IOP7 6'b100010 IOP6
IOP6 6'b100011 IOP5
IOP5 6'b100100 IOP4
IOP4 6'b100101 IOP3
IOP3 6'b100110 IOP2
IOP2 6'b100111 IOP1

SIOP5 6'b101001 SIOP4
SIOP4 6'b101010 SIOP3
SIOP3 6'b101011 SIOP2
SIOP2 6'b101100 SIOP1
SIOP1 6'b101101 WR2
TRAP 6'b110000 SIOP5
INTA 6'b111000 OF1
NMIA 6'b111001 SIOP2

FAULT 6'b111010 IF1
HLT 6'b111110 HLT
SLP 6'b111111 SLP

All others any unused FAULT

Depending on the state of the mach_cyc state machine when an illegal value

Y180-S 71

occurs in the page_reg coding, it may take up to nineteen clock cycles (the maximum for
any instruction) to recover and begin fetching the next instruction. It is important to note
that neither the HLT (Halt) nor SLP (Sleep) machine states can be reached from the
default state sequence, because these two states are persistent and can only be exited with
an interrupt. The FAULTB_ output will be active for the entire time that the page_reg
value is illegal.

A1.3.5 mach_cyc State Machine

The mach_cyc state machine is six bits wide and encodes the machine cycle. Of
the sixty-four possible values for mach_cyc, thirty-five encode valid states. In addition,
nine of the illegal values are used by the control section to enable a "jump" in the
machine state, where there are multiple possibilities for the next state. None of these
"jump" values are valid mach_cyc states though, and will never appear as mach_cyc
values in normal operation. The remaining twenty possible values for mach_cyc are also
illegal.

If an illegal value occurs in the mach_cyc state the control section will, by default,
select the FAULT state for the next machine state. If the WAITB_ input is being sampled
at the time the transition to the FAULT state will be delayed until the WAITB_ input is
sampled High. Similarly, if the BUSREQB_ input is Low at the time that an illegal state
is detected the transition to the FAULT state will be delayed until the BUSREQB_ input
is sampled High. Note that the FAULTB_ output will be active whenever the mach_cyc
state machine is illegal.

If neither of these inputs is active when the illegal value in the mach_cyc state is
detected the transition to the FAULT state will occur at the end of the current machine
cycle. This will be the next clock edge if the clock_cyc state machine is in state T4 (used
for single-clock machine cycles) or the next clock edge after the clock_cyc state machine
reaches the T3 state.

The FAULT state persists for only one clock cycle and then execution is resumed
with the normal IF1 (or interrupt acknowledge or bus release) sequence. It is left to
external circuitry to take any further action.

The table below shows the coding for the mach_cyc state machine. This coding
should not be modified, because it has been carefully chosen to maximize the detection of
illegal states. In particular, the coding is such that no bit-flip can result in a HLT ot SLP
machine state.

This table also shows the effect of flipping a single bit of mach_cyc. All of the
shaded results are illegal values, and will result in the FAULTB_ output being activated.
Note that because they can never occur in normal operation, the twenty-nine reserved
values are shaded to indicate that they will be detected. The reults shaded orange were
simulated.

72

STATE CODING bit 5 flip bit 4 flip bit 3 flip bit 2 flip bit 1 flip bit 0 flip
nul00 6'b000000,
IF1 6'b000001, IOP8 JMP05 nul09 nul05 nul03 nul00
DLY 6'b000010, IOP7 JMP06 nul0A nul06 nul00 nul03
nul03 6'b000011,
IF2 6'b000100, IOP5 nul14 nul0C nul00 nul06 nul05

nul05 6'b000101,
nul06 6'b000110,
OF1 6'b000111, IOP2 nul17 nul0F nul03 nul05 nul06
RD1 6'b001000, nul28 IF3 nul00 nul0C nul0A nul09
nul09 6'b001001,
nul0A 6'b001010,
RD2 6'b001011, SIOP3 FIOP1 nul03 nul0F nul09 nul0A

nul0C 6'b001100,
OF2 6'b001101, SIOP1 IOP10 nul05 nul09 nul0F nul0C
IOP1 6'b001110, nul2E nul1E nul06 nul0A nul0C nul0F
nul0F 6'b001111,

JMP04 6'b010000,
JMP05 6'b010001,
JMP06 6'b010010,
JMP08 6'b010011,
nul14 6'b010100,
WR1 6'b010101, JMP09 nul05 IOP10 JMP05 nul17 nul14
WR2 6'b010110, nul36 nul06 nul1E JMP06 nul14 nul17
nul17 6'b010111,
IF3 6'b011000, INTA RD1 JMP04 RRST FIOP2 FIOP3

FIOP3 6'b011001, NMIA nul09 JMP05 IOP10 FIOP1 IF3
FIOP2 6'b011010, FAULT nul0A JMP06 nul1E IF3 FIOP1
FIOP1 6'b011011, nul3B RD2 JMP08 nul1F FIOP3 FIOP2
RRST 6'b011100,
IOP10 6'b011101, nul3D OF2 nul15 FIOP3 nul1F RRST
nul1E 6'b011110,
nul1F 6'b011111,
IOP9 6'b100000, RRST TRAP nul28 IOP5 IOP7 IOP8
IOP8 6'b100001, IF1 JMP01 SIOP5 IOP4 IOP6 IOP9
IOP7 6'b100010, DLY JMP03 SIOP4 IOP3 IOP9 IOP6
IOP6 6'b100011, nul03 JMP07 SIOP3 IOP2 IOP8 IOP7
IOP5 6'b100100, IF2 JMP02 SIOP2 IOP9 IOP3 IOP4
IOP4 6'b100101, nul05 JMP09 SIOP1 IOP8 IOP2 IOP5
IOP3 6'b100110, nul06 nul36 nul2E IOP7 IOP5 IOP2
IOP2 6'b100111, OF1 nul37 nul2F IOP6 IOP4 IOP3
nul28 6'b101000,
SIOP5 6'b101001, nul09 NMIA IOP8 SIOP1 SIOP3 nul28
SIOP4 6'b101010, nul0A FAULT IOP7 nul2E nul28 SIOP3
SIOP3 6'b101011, RD2 nul3B IOP6 nul2F SIOP5 SIOP4
SIOP2 6'b101100, nul0C nul3C IOP5 nul28 nul2E SIOP1
SIOP1 6'b101101, OF2 nul3D IOP4 SIOP5 nul2F SIOP2
nul2E 6'b101110,
nul2F 6'b101111,
TRAP 6'b110000, JMP04 IOP9 INTA JMP02 JMP03 JMP01
JMP01 6'b110001,
JMP03 6'b110010,
JMP07 6'b110011,
JMP02 6'b110100,
JMP09 6'b110101,
nul36 6'b110110,
nul37 6'b110111,
INTA 6'b111000, IF3 nul28 TRAP nul3C FAULT NMIA
NMIA 6'b111001, FIOP3 SIOP5 JMP01 nul3D nul3B INTA

FAULT 6'b111010,
nul3B 6'b111011, FIOP1 SIOP3 JMP07 NMIA NMIA nul3A
nul3C 6'b111100,
nul3D 6'b111101,
HLT 6'b111110, nul1E nul2E nul36 FAULT nul3C SLP
SLP 6'b111111; nul1F nul2F nul37 nul3B nul3D HLT

Y180-S 73

Appendix 2: Performance Estimates

The Y180 design, being supplied in Verilog HDL format, cannot be specified like
a physical design can. Only estimates can be provided, and these estimates will be a
function of the target technology, the synthesis tool used, and the type of physical
implementation (standard cell, gate array or FPGA). This Appendix will provide one data
point for estimating performance.

A2.1 Clock Frequency

The Y180 design does not make use of any pipelining or pre-decoding. Rather, it
is a straightforward implementation of the Z80180 instruction set and timing. As a result,
the logic paths can be fairly long. which limits the achievable clock frequency. High
clock-frequency performance was never a design goal.

That said, however, it should be quite possible to match the performance of a
physical Z80180 even in an FPGA implementation. Synthesis results targeting an Actel
ProASIC+ FPGA show an expected clock frequency in excess of 11MHz.

A2.2 Instruction Frequency

The Y180 uses variable-length instructions, ranging from one byte to four bytes in
length. In addition, the execution time for instructions varies from three to nineteen
clocks (excluding the block transfer instructions). This makes estimating instruction
frequency very difficult. As a first order approximation, we assume the following mix of
instructions:

30% register operation instructions, 4 clocks each
10% load immediate byte instructions, 6 clocks each
10% load 16-bit memory instructions, 16 clocks each
10% subroutine call instructions, 16 clocks each
10% subroutine return instructions, 9 clocks each
10% jump instructions, 9 clocks each
10% stack push instructions, 11 clocks each
10% stack pop instructions, 9 clocks each

With this (admittedly artificial) instruction mix, the Y180 will require 8.8 clocks
per instruction. Assuming a 10MHz clock frequency, this results in roughly 1.1MIPS. Of
course this number assumes no wait states, negligible interrupt activity and negligible bus
release activity.

74

A2.3 Gate Count

The gate count for the Y180 is a function of the synthesis tool employed and the
targeted operating frequency. However, we know that a minimum of 359 flip-flops are
required, although the synthesis tool may replicate flip-flops to meet timing requirements.

Targeting the Y180 to an Actel ProASIC+ with maximum frequency requires
roughly 4,600 logic tiles. Roughly 4,500 logic tiles are required when targeting the same
device with minimum frequency.

Y180-S 75

Appendix 3: Implementation Comments

No special synthesis directives or options are required. Do not allow the synthesis
tool to automatically change the coding for state machines. The coding has been carefully
chosen with single-event upset tolerance in mind.

No special placement directives are required. In our experience current place-and-
route tools do a reasonable job for designs this small. Of course, if you want to group
state machine bits or funtional units it may have a routing benefit.

One way to use the FAULTB_ output would be to drive the NMIB_ input to the
CPU. This should be completely safe if the fault condition is the only source for a non-
maskable interrupt. However, if other sources contribute to the NMIB_ input, one special
set of circumstances should be taken into account. The issue arises because the NMIB_
input is effectively edge-triggered. If the CPU is in the Halt state waiting for an interrupt,
and a machine state upset occurs during exactly the clock cycle that should be registering
an edge on the NMIB_ input, the mach_cyc state machine will transition to the Fault state
without registering the edge on NMIB_. If the FAULTB_ output does not cause another
falling edge on the NMIB_ input, the only way to exit the Halt state will be through a
normal interrupt. One solution to this potential problem is to generate the NMIB_ input
using an XOR function instead of the usual AND function. This will guarantee that the
FAULTB_ output creates a falling edge on the NMIB_ input.

The CPU continues operating even though a Fault condition has been registered.
Depending on the type of fault, the CPU may continue through the default machine state
sequence. Because of this, it may be appropriate for external logic to inhibit write
operations or read operations that trigger actions in external logic until the CPU is
returned to normal operation via a non-maskable interrupt or reset.

76

