
Y80 Microprocessor
 Technical Manual

Disclaimer

Systemyde International Corporation reserves the right to make changes at any time, without notice, to
improve design or performance and provide the best product possible. Systemyde International Corporation
makes no warrant for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make any commitment to update the information contained herein.

Systemyde International Corporation products are not authorized for use in life support devices or systems
unless a specific written agreement pertaining to such use is executed between the manufacturer and the
President of Systemyde International Corporation. Nothing contained herein shall be construed as a recom-
mendation to use any product in violation of existing patents, copyrights or other rights of third parties. No
license is granted by implication or otherwise under any patent, patent rights or other rights, of Systemyde
International Corporation. All trademarks are trademarks of their respective companies.

Every effort has been made to ensure the accuracy of the information contain herein. If you find errors or
inconsistencies please bring them to our attention. In all cases, however, the Verilog HDL source code for
the Y90 design defines “proper operation”.

Copyright © 2011, Systemyde International Corporation. All rights reserved.

Notice:

“Z80” and “Zilog” are registered trademarks of Zilog, Inc. All uses of these terms in this document are to be
construed as adjectives, whether or not the noun “microprocessor”, “CPU” or “device” are actually present.

Table of Contents

Introduction ...3

Features ...5

Pin Descriptions ...7

External Timing11

Instruction Set ..25

Revison History

Date Changes Page(s)

3

Introduction

This book documents the operation of the Y80 microprocessor. The Y80 design is sup-
plied in Verilog HDL and can be implemented in any technology supported by a logic
synthesis tool that accepts Verilog HDL. Included in the design package is a test bench
that exercises all instructions, flag settings, and representative data patterns. The test pat-
terns should achieve at least 95% fault coverage.

The Y80 CPU was designed in a clean-room environment and is compatible with the
Zilog Z80 microprocessor. Only publicly available documentation was used to create this
design so there may be minor differences where the public documentation is misleading or
lacking. The instruction execution times are not identical between the two designs. The
Y80 CPU operates with a consistent two-clock-cycle machine cycle, while the Z80
microprocessor uses machine cycles that vary from three to seven clock cycles.

This document should always be used as the final word on the operation of the Y80 CPU,
but it is useful to refer to the Zilog documentation if the description given here is too cryp-
tic. The Z80 architecture is over thirty years old, so it is assumed that it is already at least
somewhat familiar to the reader.

The Y80 CPU is accompanied by full design documentation, in the form of a large spread-
sheet, which describes nearly every facet of the internal operation of the processor. This
provides knowledgeable users the opportunity to customize the design for unique applica-
tion requirements.

4

5

Features

* Fully functional synthesizable Verilog HDL version of the Z80 CPU

* Vendor and technology independent

* Software compatible with several industry-standard processors

* 189 instructions

* Eight addressing modes

* 64K byte memory addressing capability

* Separate 64K byte I/O address space

* 16 bit ALU with bit, byte and BCD operations

* Powerful vectored interrupt capability with separate interrupt vector input bus

* Static, fully synchronous design uses no 3-state buses

* Uniform 2 clock-cycle machine cycle

* Memory interface matches common FPGA and ASIC memory timing

* Separate I/O bus, compatible with AMBA Peripheral Bus

* Full design documentation included

* Verilog simulation and test suite included

6

Shown below are the registers visible to the programmer. The main registers have both a
primary and an alternate version. The primary register set consists of A, F, B, C, D, E, H,
and L, while the alternate register set consists of A', F', B', C', D', E', H', and L'. At any
given time only one bank is active, and care must be used when switching between banks,
as there is no way for the programmer to check which bank is active. The accumulator, A,
is the destination for all 8-bit arithmetic and logic operations, while the Flag register F
contains the flag results of arithmetic and logic operations. The other general-purpose reg-
isters can be paired, BC or DE or HL, to form 16-bit registers. There are two index regis-
ters, IX and IY, used for indexed addressing mode. The I register holds the upper eight bits
of the interrupt vector table address for use in Interrupt Mode 2. The R register is left over
from the original Z80 architecture, where it was used to hold a refresh address for
DRAMs. In the Y80 it is just another general purpose register. The Stack pointer, SP,
holds the address of the stack, and the Program Counter, PC, holds the address of the cur-
rently executing instruction.

A F

B C

D E Main Register Bank

H L

IX

IY

A’ F’

B’ C’ Alternate Register Bank

D’ E’

H’ L’

I R Special Function Registers

SP

PC

7

Pin Descriptions

The Y80 design does not attempt to match the signals or timing present on the Z80 micro-
processor. Rather, the interfaces and signals are optimized for use in either an ASIC or an
FPGA.

Memory and I/O use separate address and data buses in addition to the separate control
signals. The memory bus is designed to match typical ASIC and FPGA memory timing,
although it can be used with stand-alone memory devices just as easily. A separate inter-
rupt vector bus is provided for use with an interrupt controller. If desired, this interrupt
vector bus can be tied to either the memory or I/O input bus for operation more closely
resembling that of the original Z80.

The interface signals for the Y80 CPU are detailed below. Note that all inputs except the
two resets are sampled by the rising edge of the clock and all outputs change in response
to the rising edge of the clock.

clearb (input, active-Low) The Master (test) Reset signal is used to initialize all of the
flip-flops that are not initialized by the user reset signal. Most user-visible reg-
isters are not affected by the user reset, so this signal allows full initialization
for testing and simulation. This is an asynchronous signal that should be used
for Power-On Reset.

clkc (input, active-High) The CPU Clock connects to all flip-flops in the design.

dma_ack (output, active-High) The DMA Acknowledge signal is activated to indicate
that the processor has halted to allow another bus master to use the bus. The
iack_tran, io_addr_out, io_data_out, io_tran, mem_addr_out,
mem_data_out, mem_tran, reti_tran and t1 signals are all inactive (Low)
during this time. The processor will signal dma_ack while in the Halt state
without de-asserting the halt_tran signal. Interrupts are not sampled while the
dma_ack signal is active, so the exit from a coincident Halt state will be
deferred until the dma_ack signal is no longer active.

dma_req (input, active-High) The DMA Request signal requests that the processor halt to
allow another bus master to transfer data on the bus. The processor only

8

releases the bus between instructions, rather than between individual bus
transactions.

halt_tran (output, active-High) The Halt Transaction signal is activated by the Halt
instruction. While in the Halt state the CPU freezes and waits for an interrupt.
The iack_tran, io_addr_out, io_data_out, io_tran, mem_addr_out,
mem_data_out, mem_tran, reti_tran and t1 signals are all inactive (Low)
during this time.

iack_tran (output, active-High) The Interrupt Acknowledge Transaction signal is acti-
vated to identify an interrupt acknowledge bus transaction. An interrupt
acknowledge occurs in response to either a Non-Maskable Interrupt request or
an enabled Maskable Interrupt request. During an interrupt acknowledge the
interrupt vector data bus is sampled, although the sampled value is only used
in Interrupt Mode 2 with a maskable interrupt request.

int_req (input, active-High) The Interrupt Request signal is the maskable interrupt
request. Maskable interrupts can be enabled and disabled under program con-
trol. This interrupt request is not latched, so it should remain active until an
interrupt acknowledge transaction occurs.

io_addr_out (output, 16-bit bus) The I/O Address Output bus carries the address of the I/
O port during an I/O transaction. This bus holds the current value until the
next I/O transaction or until the dma_ack signal is activated.

io_data_in (input, 8-bit bus) The I/O Data Input bus is sampled during the various I/O
input instructions. A separate bus allows peripherals to be connected without
loading the memory data bus.

io_data_out (output, 8-bit bus) The I/O Data Output bus carries the output data for I/O
output instructions. This bus holds the current value until the next I/O transac-
tion or until the dma_ack signal is activated.

io_read (output, active-High) The I/O Read signal indicates the direction of data transfer
during I/O transactions. High signals read and Low signals write. This signal
is valid only during I/O transactions.

io_strobe (output, active-High) The I/O Strobe signal is one clock cycle wide (in the
absence of Wait states) and identifies the data transfer clock cycle for I/O
transactions.

io_tran (output, active-High) The I/O Transaction signal is activated for all I/O transac-
tions.

9

ivec_data_in (input, 8-bit bus) The Interrupt Vector Data Input bus is sampled during
interrupt acknowledge transactions. If the interrupt acknowledge was for a
maskable interrupt and the CPU is in Interrupt Mode 2, this vector is used as a
pointer in the interrupt vector table to find the starting address of the interrupt
service routine.

ivec_read (output, active-High) The Interrupt Vector Read signal is one clock cycle wide
(in the absence of Wait states) and identifies the data transfer clock cycle for
interrupt acknowledge transactions.

mem_addr_out (output, 16-bit bus) The Memory Address Output bus carries the address
during memory read and write transactions. This bus holds the current value
until the next I/O transaction or until the dma_ack signal is activated.

mem_data_in (input, 8-bit bus) The Memory Data Input bus is sampled during memory
read transactions. A separate bus allows peripherals to be connected without
loading the memory data bus.

mem_data_out (output, 8-bit bus) The Memory Data Output bus carries the output data
for memory write transactions. This bus holds the current value until the next
I/O transaction or until the dma_ack signal is activated.

mem_rd (output, active-High) The Memory Read signal is one clock cycle wide (in the
absence of Wait states) and identifies the data transfer clock cycle for memory
read transactions.

mem_tran (output, active-High) The Memory Transaction signal is activated for memory
read and write transactions. The mem_tran signal is active during the Halt
state but is inactive during DMA transfers.

mem_wr (output, active-High) The Memory Write signal is one clock cycle wide (in the
absence of Wait states) and identifies the data transfer clock cycle for memory
write transactions.

nmi_req (input, active-High) The Non-Maskable Interrupt Request signal unconditionally
interrupts the CPU. This request is internally latched, so that it can be as short
as one clock cycle wide.

resetb (input, active-Low) The User Reset signal is used to initialize all state flip-flops
and some user registers (the I, R, PC and SP registers). This is an asynchro-
nous signal.

reti_tran (output, active-High) The Return From Interrupt transaction signal is activated
immediately after the second stack read transaction during the Return From

10

Interrupt (RETI) instruction. This signal may be used by an external interrupt
controller to re-enable interrupts, for example.

t1 (output, active-High) The T1 signal is active during the first clock cycle of a bus trans-
action. This signal is inactive during the Halt state.

wait_req (input, active-High) The Wait Request signal temporarily halts the CPU, usually
to wait for memory access time to be met. The wait request is not honored
during the bus idle state, or while the halt_tran signal is active.

11

External Timing

The Y80 CPU uses a uniform two-clock-cycle machine cycle. This consistent timing sim-
plifies the design of logic external to the CPU makes it easier to track the state of the CPU.

The memory interface timing and signals are designed to make it easy to interface to stan-
dard ASIC and FPGA memories. It uses separate read and write strobes.

The I/O interface is very close to the AMBA Peripheral Bus (APB) to allow connection to
APB peripherals with a minimum of logic. It uses a single strobe with a separate direction
control. The only difference relative to the APB is the setup time for the write data. In the
APB the write data is setup one clock before the strobe; in this interface the write data
changes coincident with the leading edge of the strobe. In most cases this will not be a
problem.

The separate interrupt vector bus provides an easy way to connect to the optional interrupt
controller. The interrupt vector bus is used for Mode 2 maskable interrupts, so if this mode
is not used the vector input bus can be tied to ground and the vector strobe output ignored.

In the diagrams below only the relevant signals are shown for each transaction. All other
signals are either inactive or hold the previous value. Note that only one of the transaction
identifiers (mem_tran, io_tran, iack_tran, reti_tran, and halt_tran) can be active at a
time. If all are inactive, an idle bus transaction (usually for address calculation) is in
progress. The dma_ack signal also indicates that the bus is idle, in response to the
dma_req signal. The dma_ack signal can be active while halt_tran is active.

The wait_req input is only sampled for memory, I/O and interrupt acknowledge transac-
tions and is ignored in all other cases. Wait states will disrupt the two-clock-cycle machine
cycle rule. If this feature is important but wait states must be used, two wait states per
transaction is recommended. If memory access time is an issue it might be better to stretch
the first clock cycle of a transaction rather than add Wait states. The uniform two-clock
machine cycle makes it relatively straightforward to do this.

12

Memory Read

The figure below shows the memory read transaction, without Wait states and with one
Wait state. Memory read transactions are used for both instruction and data fetch. There is
no separate instruction/data status indicator, although this status exists internally if it is
needed.

lkc

em_addr_out

em_data_in

em_tran

em_rd

ait_req

T1 T2

Valid

Valid

1

T1 T2

Valid

Valid

Tw

13

Memory Write

The figure below shows the memory write transaction, without Wait states and with one
Wait state.

lkc

em_addr_out

em_data_out

em_tran

em_wr

ait_req

T1 T2

Valid

Valid

1

T1 T2

Valid

Valid

Tw

14

I/O Read

The figure below shows an I/O read transaction, without Wait states and with one Wait
state.

lkc

o_addr_out

o_data_in

o_read

o_strobe

ait_req

T1 T2

Valid

Valid

1

T1 T2

Valid

Valid

Tw

o_tran

15

I/O Write

The figure below shows an I/O write transaction, without Wait states and with one Wait
state.

lkc

o_addr_out

o_data_out

o_tread

o_strobe

ait_req

T1 T2

Valid

Valid

1

T1 T2

Valid

Valid

Tw

o_tran

16

Interrupt Acknowledge

The figure below shows the interrupt acknowledge transaction, without Wait states and
with one Wait state.

lkc

vec_data_in

ack_tran

vec_rd

ait_req

T1 T2

Valid

1

T1 T2

Valid

Tw

17

Non-maskable Interrupt

The timing of a non-maskable interrupt acknowledge transaction is shown below. The
nmi_req input cannot be masked by software. This input must be sampled active by a ris-
ing edge of clkc to be recognized by the processor, but does not need to remain active until
the interrupt acknowledge transaction. In fact, to prevent an endless loop of acknowl-
edges, the nmi_req input must be de-asserted before the start of the fetch of the first
instruction of the service routine. The acknowledge sequence consists of an aborted
instruction fetch, the interrupt acknowledge, and two writes to push the contents of the
program counter onto the stack. Execution then begins at 0x0066 with an instruction fetch.
The non-maskable interrupt service routine must end with the RETN instruction to prop-
erly restore the state of the interrupt enable flag prior to the non-maskable interrupt.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC (low byte)PC (high byte)

PC-2 PC

T2 T1

0066

nmi_req

PC-1

Ignoredexecuteexecute

ivec_data_in

ivec_rd

Ignored

18

Interrupt Mode 0 or 1

The timing of a Mode 0 or Mode 1 interrupt acknowledge cycle is shown below. The
int_req input needs to remain active until the interrupt acknowledge transaction. The
acknowledge sequence consists of an aborted instruction fetch, the interrupt acknowledge,
and two writes to push the contents of the program counter onto the stack. Execution then
begins at address 0x0038 with an instruction fetch.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC (low byte)PC (high byte)

PC-2 PC

T2 T1

0038

int_req

PC-1

Ignoredexecuteexecute

ivec_data_in

ivec_rd

Ignored

19

Interrupt Mode 2

The timing of a Mode 2 maskable interrupt acknowledge is shown below. The int_req
input needs to remain active until the interrupt acknowledge transaction. The acknowledge
sequence consists of an aborted instruction fetch, the interrupt acknowledge, an address
calculation cycle, two reads of the interrupt vector table and two writes to push the con-
tents of the program counter onto the stack. The processor automatically jumps to the
address fetched from the interrupt vector table for the service routine. The upper eight bits
of the interrupt vector table starting address are held in the I register in the processor. Note
that the vector must be an even number. That is, the least significant bit of the vector must
be a zero.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

Vector TablePC-2 PC

T2 T1

Vector Table+1

int_req

PC-1

Ignoredexecuteexecute

ivec_data_in

ivec_rd

vector

T1 T2 T1

SP-1 SP-2

PC (low byte)PC (high byte)

T2 T1

start

T2

msblsb

20

The interrupt controller in the Y80 MPU necessarily samples the int_req_bus inputs,
which changes the timing slightly. The diagram below illustrates this change for Interrupt
Mode 2. Also shown is the timing of the int_ack_bus and the int_prio_out signals.

Although Interrupt Mode 2 is the preferred mode for use with the interrupt controller, the
design allows the use of any interrupt mode. In Interrupt Mode 0 or 1 it will be necessary
to use the int_ack_bus signals to externally latch the information about which interrupt is
being acknowledged. This is because Interrupt Modes 0 and 1 will branch to a common
interrupt service routine, rather than the individual routines possible in Interrupt Mode 2.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

Vector TablePC-2 PC

T2 T1

Vector Table+1

int_req

PC-1

Ignoredexecuteexecute

ivec_data_in

ivec_rd

vector

T1 T2 T1

SP-1 SP-2

PC (low byte)PC (high byte)

T2 T1

start

T2

msblsb

int_req_bus

int_ack_bus

int_prio_out

21

DMA Request/Acknowledge

The timing of a DMA request and acknowledge is shown below. Note that like an inter-
rupt, the dma_req signal is only sampled at the end of instructions. This guarantees that
all instructions are atomic.

The delay from the dma_req signal to the dma_ack signal is always at least one bus
cycle, irrespective of whether the processor is running, in the Halt state or in the Sleep
state. This implies that it is more efficient to transfer multiple bytes each time that the
dma_req signal is activated.

The dma_req signal can be asserted during the Halt or Sleep states. In this case the active
dma_req signal will take precedence over int_req or nmi_req and inhibit either of these
signals from causing an exit from the Halt or Sleep state. Once the dma_req signal is
deasserted any pending or future interrupt request will cause the exit from the Halt or
Sleep state.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

dma_req

dma_ack

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC-2 PC

T2 T1

PC-1

Ignoredexecuteexecute

T1 T2 T1 T2 T1

PC+1

T2

execute

PC0x00000

0x00000

0x00000

0x00000io_data_out

io_addr_out

22

The DMA request controller in the Y80 MPU necessarily samples the dma_req_bus
inputs, which changes the timing slightly. The diagram below illustrates this change. Also
shown is the timing of the dma_ack_bus and the dma_prio_out signals. In particular,
note that the leading edge of the dma_ack_bus signals are delayed by one clock cycle
from the normal dma_ack timing. The timing of the trailing edge of these signals is not
affected.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

dma_req

dma_ack

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC-2 PC

T2 T1

PC-1

Ignoredexecuteexecute

T1 T2 T1 T2 T1

PC+1

T2

execute

dma_req_bus

dma_ack_bus

drq_prio_out

0x00000 PC

0x00000

0x00000

0x00000io_data_out

io_addr_out

23

Halt state

The Halt state is entered when the HALT instruction is executed, as shown below. In the
Halt state the processor freezes, for an unlimited number of two clock cycle machine
cycles, with the halt_tran output active. The only way to exit the Halt state is with either
an interrupt (either nmi_req or int_req) or via reset. Note that int_req can only be used to
exit the Halt mode if interrupts are enabled when the HALT instruction is executed. The
timing for exiting the Halt state with an interrupt is also shown below.

If the Halt state is exited by an interrupt, the processor will resume instruction execution
(after the interrupt service routine) at the address of the instruction following the HALT
instruction. The minimum width of the halt_tran signal is two clock cycles.

The Halt state in this design is slightly different from that in the Z80 microprocessor. In
that design the processor continues to fetch the Halt instruction during the Halt state, lead-
ing to continued power dissipation. Since this operation requires the special step of
“rewinding” the PC, no attempt was made to match this operation. Rather, the Halt state
reduces the power consumption to a minimum by minimizing the number of signals that
are transitioning during this state.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

iack_tran

halt_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC

T2 T1

int_req

PC+1

Ignored0x76

T1 T2 T1 T2 T1

SP-1

T2

0x0000

0x0000

0x0000

0x0000

io_addr_out

io_data_out

PC+1

24

Reset

The Reset state is entered immediately when the resetb signal goes Low, independent of
the current state, and this state continues until the first rising edge of clkc after the resetb
signal is de-asserted. At this rising edge there is a one clock cycle transient state to set up
the internal pipeline controls, and on the next clock the processor begins fetching the first
instruction from address 0x0000.

Software starting at location 0x0000 must be able to distinguish between reset, execution
of an RST 0 instruction, a trap, or watch-dog time-out. All of these cases cause the Pro-
gram Counter to be reset to 0x0000. In the case of the Y90 MPU this information is avail-
able in the System Status Block.

The minimum width of the resetb signal is set by the flip-flops used in the design. The
setup time for the resetb signal to the rising edge of the clkc signal is likewise determined
by the flip-flops used in the design.

The clearb signal has the same timing requirements as the resetb signal. The clearb sig-
nal should only be used in the power-on case, and only affects those flip-flops not affected
by the resetb signal.

clkc

Tany Tr

t1

T1

resetb

mem_addr_out 0000

Ts

mem_data_out 00

io_addr_out 0000

io_data_out 00

mem_tran

mem_rd

other outputs

25

Instruction Set

This chapter presents the assembly language syntax, addressing modes, flag settings,
binary encoding, and execution time for the Y80 instruction set. The entire instruction set
is presented in alphabetical order.

The assembly language syntax is identical to that used by the original Zilog assembler.
Different assembler programs may or may not use identical syntax. The syntax is pre-
sented generically at the beginning of each instruction, with the details presented for each
addressing mode later in each entry.

The operation of each instruction is specified in a format similar to Verilog HDL for min-
imum ambiguity, but no descriptive text or examples are included.

The effect of the instruction on each flag is listed, with a brief description. Normally the
flags are updated by the main operation of the instruction, but for some complex instruc-
tions different flags may be affected by different parts of the instruction. This is specified
in the description. The flags are organized as below in the F (Flag) register:

These flags have the following meanings:

S Z U5 H U3 P/V N C

Flag Meaning
S Sign (a copy of the MSB of the result).

Z Zero (indicating that the result was zero).

U5 Unused Bit 5 (an unused Flag register bit).

H Half-Carry (carry out of the lower nibble, used for BCD math).

U3 Unused Bit 3 (an unused Flag register bit).

P/V
Parity/Overflow (parity of the result, or arithmetic overflow; depends
on the instrcuction)

N Negative (add/subtract flag, necessary for BCD math)

C Carry (arithmetic carry, or shift linkage bit)

26

Fields in the instruction are listed using shortcuts for common fields. These shortcuts
should be self-explanatory in most cases, but will be detailed here for completeness.

The most common field in the instruction specifies a CPU register, employing the follow-
ing encoding:

Word registers are similarly encoded, although the exact encoding depends on the instruc-
tion:

The execution time for instructions is always a multiple of two clocks.

rrr Register Selected
000 B

001 C

010 D

011 E

100 H

101 L

111 A (Accumulator)

dd, ss, tt, xx or yy dd, ss Register tt Register xx Register yy Register
00 BC BC BC BC

01 DE DE DE DE

10 HL HL IX IY

11 SP AF SP SP

27

ADC
Add With Carry

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

ADC A, src src: R, IM, IR, X

Operation: A <= A + src + CF

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic carry out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic carry out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: ADC A, r 10001rrr 2

IM: ADC A, n 11001110 4

----n---

IR: ADC A, (HL) 10001110 6

X: ADC A, (IX+d) or ADC A, (IY+d) 11y11101 10

10001110

----d---

28

ADC
Add With Carry (Word)

Notes:

1. The ss field uses the standard word register encoding.

ADC HL, src src: RR

Operation: HL <= HL + src + CF

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic carry out of bit 11; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic carry out of bit 15; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: ADC HL, ss 11101101 4

01ss1010

29

ADD
Add

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY

ADD A, src src: R, IM, IR, X

Operation: A <= A + src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic carry out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic carry out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: ADD A, r 10000rrr 2

IM: ADD A, n 11000110 4

----n---

IR: ADD A, (HL) 10000110 6

X: ADD A, (IX+d) or ADD A, (IY+d) 11y11101 10

10000110

----d---

30

ADD
Add (Word)

Notes:

1. The ss, xx and yy fields use the standard word register select encodings.

ADC dst, src dst: HL, IX, IY

src: RR

Operation: dst <= dst + src

Flags: S: Unaffected.

Z: Unaffected.

H: Set if arithmetic carry out of bit 11; cleared otherwise.

P/V: Unaffected.

N: Cleared.

C: Set if arithmetic carry out of bit 15; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: ADD HL, ss 00ss1001 2

ADC IX, xx 11011101 4

01xx1001

ADC IY, yy 11111101 4

01yy1001

31

AND
Logical AND

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY

AND A, src src: R, IM, IR, X

Operation: A <= A & src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set.

P/V: Set if parity of result even; cleared otherwise.

N: Cleared.

C: Cleared.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: AND A, r 10100rrr 2

IM: AND A, n 11100110 4

----n---

IR: AND A, (HL) 10100110 6

X: AND A, (IX+d) or AND A, (IY+d) 11y11101 10

10100110

----d---

32

BIT
Bit Test

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

3. The bbb field uses normal binary encoding.

4. For the original Z80, the S and C flags are undefined.

BIT b, src src: R, IR, X

Operation: Z <= ~src[b]

Flags: S: Unaffected.

Z: Set if tested bit is zero; cleared otherwise.

H: Set.

P/V: Unaffected.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: BIT b, r 11001011 4

01bbbrrr

IR: BIT b, (HL) 10100110 8

01bbb1110

X: BIT b, (IX+d) or BIT b, (IY+d) 11y11101 10

11001011

----d---

01bbb110

33

CALL
Call Subroutine

CALL dst dst: DA

Operation: SP <= SP - 2

(SP) <= PC

PC <= dst

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: CALL mn 11001101 10

----n---

----m---

34

CALL
Conditional Call Subroutine

Notes:

CALL cc, dst dst: DA

Operation: if (cc = true) begin

 SP <= SP - 2

 (SP) <= PC

 PC <= dst

 end

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: CALL cc, mn 11fff100 10/6

----n--- (taken/not taken)

----m---

1. Mnemonic Encoding (fff) Meaning Flag case

NZ 000 Non-zero Z = 0

Z 001 Zero Z = 1

NC 010 Non-carry C = 0

C 011 Carry C = 1

PO 100 Parity Odd P/V = 0

PE 101 Parity Even P/V = 1

P 110 Plus S = 0

M 111 Minus S = 1

35

CCF
Complement Carry Flag

CCF

Operation: CF <= ~CF

Flags: S: Unaffected.

Z: Unaffected.

H: Copy of previous value of Carry flag.

P/V: Unaffected.

N: Cleared.

C: Set if previous Carry flag was zero; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

IM: CCF 00111111 2

36

CP
Compare

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

CP A, src src: R, IM, IR, X

Operation: A - src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Set.

C: Set if arithmetic borrow out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: CP A, r 10111rrr 2

IM: CP A, n 11111110 4

----n---

IR: CP A, (HL) 10111110 6

X: CP A, (IX+d) or CP (IY+d) 11y11101 10

10111110

----d---

37

CPD
Compare and Decrement

CPD

Operation: A - (HL)

HL <= HL - 1

BC <= BC - 1

Flags: S: Set if result of compare is negative, cleared otherwise.

Z: Set if result of compare is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3 during compare; cleared otherwise.

P/V: Set if result of BC decrement is non-zero; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPD 11101101 10

10101001

38

CPDR
Compare, Decrement and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine.

2. Interrupts are sampled during each memory read operation.

CPDR

Operation: A - (HL)

HL <= HL - 1

BC <= BC - 1

repeat if BC != 0 and A - (HL) != 0

Flags: S: Set if result of compare is negative, cleared otherwise.

Z: Set if result of compare is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3 during compare; cleared otherwise.

P/V: Set if result of BC decrement is non-zero; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPDR 11101101 8 + 4i

10111001

39

CPI
Compare and Increment

CPI

Operation: A - (HL)

HL <= HL + 1

BC <= BC - 1

Flags: S: Set if result of compare is negative, cleared otherwise.

Z: Set if result of compare is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3 during compare; cleared otherwise.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPI 11101101 10

10100001

40

CPIR
Compare, Increment and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

CPIR

Operation: A - (HL)

HL <= HL + 1

BC <= BC - 1

repeat if BC != 0 and A - (HL) != 0

Flags: S: Set if result of compare is negative, cleared otherwise.

Z: Set if result of compare is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3 during compare; cleared otherwise.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPIR 11101101 8 + 4i

10110001

41

CPL
Complement

CPL

Operation: A <= ~A

Flags: S: Unaffected.

Z: Unaffected.

H: Set.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPL 00101111 2

42

DAA
Decimal Adjust Accumulator

Notes:

DAA

Operation: A <= Decimal Adjust A

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: See table below.

P/V: Set if result has even parity; cleared otherwise.

N: Unaffected.

C: See table below.

Addressing
Modes

Assembly Syntax Encoding Clocks

DAA 00100111 2

Instruction
C before

DAA
A[7:4]

before DAA
H before

DAA
A[3:0]

before DAA
Number

added to A
C after
DAA

0 0-9 0 0-9 00 0

0 0-8 0 A-F 06 0

0 0-9 1 0-3 06 0

ADC, ADD or INC 0 A-F 0 0-9 60 1

0 9-F 0 A-F 66 1

0 A-F 1 0-3 66 1

1 0-2 0 0-9 60 1

1 0-2 0 A-F 66 1

1 0-3 1 0-3 66 1

0 0-9 0 0-9 00 0

DEC, NEG, SUB or SBC 0 0-8 1 6-F FA 0

1 7-F 0 0-9 A0 1

1 6-F 1 6-F 9A 1

43

DEC
Decrement

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

DEC dst dst: R, IR, X

Operation: dst <= dst - 1

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: DEC r 00rrr101 2

IR: DEC (HL) 00110101 8

X: DEC (IX+d) or DEC (IY+d) 11y11101 12

00110101

----d---

44

DEC
Decrement (Word)

Notes:

1. The dd field uses the standard word register encoding.

DEC dst dst: RR, IX, IY

Operation: dst <= dst - 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: DEC dd 00dd1011 2

IX, IY DEC IX or DEC IY 11y11101 4

00101011

45

DI
Disable Interrupt

Notes:

1. Interrupts are last sampled during the machine cycle that fetches this instruction.

DI

Operation: IFF1 <= 0

IFF2 <= 0

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DI 11110011 2

46

DJNZ
Decrement, Jump if Non-zero

Notes:

1. Relative to the address of this instruction, the jump range is -126 to +129. Relative to the address of the
next instruction, the jump range is -128 to +127.

DJNZ e

Operation: B <= B - 1

if (B != 0) PC <= PC + e (where PC is the PC of this instruction)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DJNZ e 00010000 6

--(e-2)-

47

EI
Enable Interrupt

Notes:

1. Interrupts are first sampled during the fetch of the next instruction. If an interrupt is pending this instruc-
tion fetch will be ignored and an interrupt acknowledge cycle started.

EI

Operation: IFF1 <= 1

IFF2 <= 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

EI 11111011 2

48

EX
Exchange with Top-of-Stack

Notes:

1. y = 0 selects IX and y = 1 selects IY

EX (SP), src src: HL, IX, IY

Operation: (SP) <=> L or IXL or IYL

(SP+1) <=> H or IXH or IYH

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

EX (SP), HL 11100011 12

EX (SP), IX or EX (SP), IY 11y11101 14

11100011

49

EX AF, AF’
Exchange Accumulator

Notes:

1. No data is actually moved. Instead the registers are renamed.

EX AF, AF’

Operation: AF <=> AF’

Flags: S: Replaced by alternate flag.

Z: Replaced by alternate flag.

H: Replaced by alternate flag.

P/V: Replaced by alternate flag.

N: Replaced by alternate flag.

C: Replaced by alternate flag.

Addressing
Modes

Assembly Syntax Encoding Clocks

EX AF, AF’ 00001000 2

50

EX
Exchange (Word)

EX DE, HL

Operation: DE <=> HL

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

EX DE, HL 11101011 2

51

EXX
Exchange Register Bank

Notes:

1. No data is actually moved. Instead the registers are renamed.

EXX

Operation: BC <=> BC’

DE <=> DE’

HL <=> HL’

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

EXX 11011001 2

52

HALT
Halt

Notes:

1. The CPU halts with an idle bus until an interrupt is requested. The address pushed to the stack during the
interrupt acknowledge is the address of the next instruction. During Halt the mem_addr_out and
io_addr_out are driven with 0x0000, and the mem_data_out and io_data_out are driven with 0x00.

HALT

Operation: activate Halt signal and wait for interrupt

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

HALT 01110110 4 + 2n

53

IM
Interrupt Mode

Notes:

1. Interrupt Mode 0 always jumps to location 0x0038 in response to a maskable interrupt request.

2. Interrupt Mode 1 always jumps to location 0x0038 in response to a maskable interrupt request.

3. Interrupt Mode 2 uses the interrupt vector returned on the ivec_bus during an interrupt acknowledge
cycle, along with the contents of the I register, to access an interrupt vector table in memory. The address
stored at the selected location in the interrupt vector table is the starting addess of the interrupt service rou-
tine. Note that the least-significant bit of the interrupt vector must be zero to account for the two-byte entries
in the interrupt vector table.

IM i

Operation: Set Interrupt Mode i

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IM 0 11101101 4

01000110

IM 1 11101101 4

01010110

IM 2 11101101 4

01011110

54

IN
Input

IN A, src src: DA

Operation: A <= I/O(A:n)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IN A, (n) 11011011 8

----n---

55

IN
Input

Notes:

1. The rrr field uses the standard register select encoding

IN r, (C) dst: R

Operation: r <= I/O(BC)

Flags: S: Set if the input data is negative; cleared otherwise.

Z: Set if the input data is zero; cleared otherwise.

H: Cleared.

P/V: Set if the parity of the input data is even; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IN r, (C) 11101101 8

01rrr000

56

INC
Increment

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

INC dst dst: R, IR, X

Operation: dst <= dst + 1

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic carry out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: INC r 00rrr100 2

IR: INC (HL) 00110100 8

X: INC (IX+d) or INC (IY+d) 11y11101 12

00110100

----d---

57

INC
Increment (Word)

Notes:

1. The dd field uses the standard word register encoding.

INC dst dst: RR, IX, IY

Operation: dst <= dst + 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: INC ss 00dd0011 2

IX, IY INC IX or INC IY 11y11101 4

00100011

58

IND
Input and Decrement

Notes:

1. For the original Z80, the S, H and P/V flags are undefined.

IND

Operation: (HL) <= I/O(BC)

B <= B - 1

HL <= HL -1

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IND 11101101 10

10101010

59

INDR
Input, Decrement and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each I/O read operation.

3. For the original Z80, the S, H and P/V flags are undefined.

INDR

Operation: (HL) <= I/O(BC)

B <= B - 1

HL <= HL -1

repeat if B != 0

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

INDR 11101101 8 + 4i

10111010

60

INI
Input and Increment

Notes:

1. For the original Z80, the S, H and P/V flags are undefined.

INI

Operation: (HL) <= I/O(BC)

B <= B - 1

HL <= HL + 1

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

INI 11101101 10

10100010

61

INIR
Input, Increment and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each I/O read operation.

3. For the original Z80, the S, H and P/V flags are undefined.

INIR

Operation: (HL) <= I/O(BC)

B <= B - 1

HL <= HL + 1

repeat if B != 0

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

INIR 11101101 8 + 6i

10110010

62

JP
Jump

Notes:

1. The indirect jumps use the contents of the register directly for the jump address.

JP dst dst: IM, IR

Operation: PC <= dst

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: JP (HL) 11101001 4

JP (IX) or JP (IY) 11y11101 6

11101001

IM: JP mn 11000011 8

----n---

----m---

63

JP
Conditional Jump

Notes:

JP cc, mn

Operation: if (cc = true) PC <= mn

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IM: JP cc, mn 11fff010 8 (taken)

----n--- 6 (not taken)

----m---

1. Mnemonic Encoding (fff) Meaning Flag case

NZ 000 Non-zero Z = 0

Z 001 Zero Z = 1

NC 010 Non-carry C = 0

C 011 Carry C = 1

PO 100 Parity Odd P/V = 0

PE 101 Parity Even P/V = 1

P 110 Plus S = 0

M 111 Minus S = 1

64

JR
Jump Relative

Notes:

1. Relative to the address of this instruction, the jump range is -126 to +129. Relative to the address of the
next instruction, the jump range is -128 to +127.

JR e

Operation: PC <= PC + e (where PC is the PC of this instruction)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

JR e 00011000 6

--(e-2)-

65

JR
Conditional Jump Relative

Notes:

1. Relative to the address of this instruction, the jump range is -126 to +129. Relative to the address of the
next instruction, the jump range is -128 to +127.

JR cc, e

Operation: if (cc = true) PC <= PC + e (where PC is the PC of this instruction)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

JR cc, e 001cc000 6 (taken)

--(e-2)- 4 (not taken)

1. Mnemonic Encoding (cc) Meaning Flag case

NZ 00 Non-zero Z = 0

Z 01 Zero Z = 1

NC 10 Non-carry C = 0

C 11 Carry C = 1

66

LD
Load Accumulator from Memory

LD A, src src: DA, IR

Operation: A <= src

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: LD A, (mn) 00111010 10 (8)

----n---

----m---

IR: LD A, (BC) 00001010 6

LD A, (DE) 00011010 6

67

LD
Load Accumulator from Special Register

LD A, src src: special register

Operation: A <= src

Flags: S: Set if the contents of the Special Register is negative; cleared otherwise.

Z: Set if the contents of the Special Register is zero; cleared otherwise.

H: Cleared.

P/V: Loaded with the contents if the IFF2 interrupt enable flag.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LD A, I 11101101 4

01010111

LD A, R 11101101 4

01011111

68

LD
Load Memory from Accumulator

LD dst, A dst: DA, IR

Operation: dst <= A

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: LD (mn), A 00110010 10 (8)

----n---

----m---

IR: LD (BC), A 00000010 6

LD (DE), A 00010010 6

69

LD
Load Memory with Immediate

Notes:

1. y = 0 selects IX and y = 1 selects IY

LD dst, n dst: IR, X

Operation: dst <= n

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LD (HL), n 00110110 6

----n---

X: LD (IX+d), n or LD (IY+d), n 11y11101 10

00110110

----d---

----n---

70

LD
Load Memory from Register

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

LD dst, r dst: IR, X

Operation: dst <= r

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LD (HL), r 01110rrr 6

X: LD (IX+d), r or LD (IY+d), r 11y11101 10

01110rrr

71

LD
Load Memory from Register (Word)

Notes:

1. The ss field uses the standard word register encoding.

LD (mn), src src: HL, RR, IX, IY

Operation: (mn) <= src

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

HL: LD (mn), HL 00100010 12

----n---

----m---

RR: LD (mn), ss 11101101 14

01ss0011

----n---

----m---

IX, IY: LD (mn), IX or LD (mn), IY 11y11101 14

00100010

----n---

----m---

72

LD
Load Register

Notes:

1. The rdr, rsr and rrr fields use the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

LD r, src dst: R, IM, IR, X

Operation: r <= src

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LD rd, rs 01rdrrsr 2

IM LD r, n 00rrr110 4

----n---

IR: LD r, (HL) 01rrr110 6

X: LD r, (IX+d) or LD r, (IY+d) 11y11101 10

01rrr110

----d---

73

LD
Load Register Immediate (Word)

Notes:

1. The dd field uses the standard word register encoding.

2. y = 0 selects IX and y = 1 selects IY

LD dst, mn dst: RR, IX, IY

Operation: dst <= mn

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IM: LD dd, mn 00dd0001 6

----n---

----m---

LD IX, mn or LD IY, mn 11y11101 8

00100001

----n---

----m---

74

LD
Load Register (Word)

Notes:

1. The dd field uses the standard word register encoding.

LD dst, (mn) dst: RR, IX, IY

Operation: dst <= (mn)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: LD HL, (mn) 00101010 12

----n---

----m---

LD dd, (mn) 11101101 14

01dd1011

----n---

----m---

LD IX, (mn) or LD IY, (mn) 11y11101 14

00101010

----n---

----m---

75

LD
Load Special Register from Accumulator

LD dst, A dst: special register

Operation: dst <= A

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LD I, A 11101101 4

01000111

LD R, A 11101101 4

01001111

76

LD
Load Stack pointer

Notes:

2. y = 0 selects IX and y = 1 selects IY

LD SP, src src: HL, IX, IY

Operation: SP <=src

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LD SP, HL 11111001 2

LD SP, IX or LD SP, IY 11y11101 4

11111001

77

LDD
Load and Decrement

LDD

Operation: (DE) <= (HL)

BC <= BC - 1

DE <= DE - 1

HL <= HL -1

Flags: S: Unaffected.

Z: Unaffected.

H: Cleared.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDD 11101101 10

10101000

78

LDDR
Load, Decrement and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

LDDR

Operation: (DE) <= (HL)

BC <= BC - 1

DE <= DE - 1

HL <= HL -1

repeat if BC != 0

Flags: S: Unaffected.

Z: Unaffected

H: Cleared.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDDR 11101101 8 + 4i

10111010

79

LDI
Load and Increment

INI

Operation: (DE) <= (HL)

BC <= BC - 1

DE <= DE + 1

HL <= HL + 1

Flags: S: Unaffected.

Z: Unaffected.

H: Cleared.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDI 11101101 10

10100000

80

LDIR
Input, Increment and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

LDIR

Operation: (DE) <= (HL)

BC <= BC - 1

DE <= DE + 1

HL <= HL + 1

repeat if BC != 0

Flags: S: Unaffected.

Z: Unaffected.

H: Cleared.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDIR 11101101 8 + 4i

10110000

81

NEG
Negate

NEG

Operation: A <= 0 - A

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow (A was 0x80 before inst); cleared otherwise.

N: Cleared.

C: Set if arithmetic borrow out of bit 7 (A was not 0x00 before inst); cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

NEG 11101101 4

00100100

82

NOP
No Operation

NOP

Operation: none

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

NOP 00000000 2

83

OR
Logical OR

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

OR A, src src: R, IM, IR, X

Operation: A <= A | src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Cleared.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: OR A, r 10110rrr 2

IM: OR A, n 11110110 4

----n---

IR: OR A, (HL) 10110110 6

X: OR A, (IX+d) or OR A, (IY+d) 11y11101 10

10110110

----d---

84

OTDR
Output, Decrement and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

3. For the original Z80, the S, H and P/V flags are undefined.

OTDR

Operation: I/O(BC) <= (HL)

B <= B - 1

HL <= HL -1

repeat if B != 0

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTDR 11101101 8 + 4i

10111011

85

OTIR
Output, Increment and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

3. For the original Z80, the S, H and P/V flags are undefined.

OTIR

Operation: I/O(BC) <= (HL)

B <= B - 1

HL <= HL + 1

repeat if B != 0

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Set if result of decrementing B is zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTIR 11101101 8 + 4i

10110011

86

OUT
Output

OUT dst, A dst: DA

Operation: I/O(A:n) <= A

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUT (n), A 11010011 8

----n---

87

OUT
Output

Notes:

1. The rrr field uses the standard register select encoding

OUT (C), r src: R

Operation: I/O(BC) <= r

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUT (C), r 11101101 8

01rrr001

88

OUTD
Output and Decrement

Notes:

1. For the original Z80, the S, H and P/V flags are undefined.

OUTD

Operation: I/O(BC) <= (HL)

B <= B - 1

HL <= HL -1

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUTD 11101101 10

10101011

89

OUTI
Output and Increment

Notes:

1. For the original Z80, the S, H and P/V flags are undefined.

OUTI

Operation: I/O(BC) <= (HL)

B <= B - 1

HL <= HL + 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Set if result of decrementing B is zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUTI 11101101 10

10100011

90

POP
Pop from Stack

Notes:

1. The tt field uses the standard word register encoding.

2. y = 0 selects IX and y = 1 selects IY

POP dst dst: RR, IX, IY

Operation: dst[lsb] <= (SP)

dst[msb] <= (SP+1)

SP <= SP + 2

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: POP tt 11tt0001 8

IX, IY POP IX or POP IY 11y11101 10

11100001

91

PUSH
Push to Stack

Notes:

1. The tt field uses the standard word register encoding.

2. y = 0 selects IX and y = 1 selects IY

PUSH src src: RR, IX, IY

Operation: (SP-1) <= src[msb]

(SP-2) <= src[lsb]

SP <= SP - 2

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: PUSH tt 11tt0101 8

IX, IY PUSH IX or PUSH IY 11y11101 10

11100101

92

RES
Bit Reset

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

3. The bbb field uses normal binary encoding.

RES b, dst src: R, IR, X

Operation: dst[b] <= 0

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RES b, r 11001011 4

10bbbrrr

IR: RES b, (HL) 10100110 10

10bbb1110

X: RES b, (IX+d) or RES (IY+d) 11y11101 12

11001011

----d---

10bbb110

93

RET
Return from Subroutine

RET

Operation: PC[lsb] <= (SP)

PC[msb] <= (SP+1)

SP <= SP + 2

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RET 11001001 10

94

RET
Conditional Return from Subroutine

Notes:

RET cc

Operation: if (cc = true) begin

 PC[lsb] <= (SP)

 PC[msb] <= (SP+1)

 SP <= SP + 2

 end

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RET cc 11fff000 10 (taken)

2 (not taken)

1. Mnemonic Encoding (fff) Meaning Flag case

NZ 000 Non-zero Z = 0

Z 001 Zero Z = 1

NC 010 Non-carry C = 0

C 011 Carry C = 1

PO 100 Parity Odd P/V = 0

PE 101 Parity Even P/V = 1

P 110 Plus S = 0

M 111 Minus S = 1

95

RETI
Return from Interrupt

Notes:

1. This instruction activates the dedicated RETI signal out of the core.

RETI

Operation: PC[lsb] <= (SP)

PC[msb] <= (SP+1)

SP <= SP + 2

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RETI 11101101 12

01001101

96

RETN
Return from Non-Maskable Interrupt

RETN

Operation: PC[lsb] <= (SP)

PC[msb] <= (SP+1)

SP <= SP + 2

IFF2 <= IFF1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RETN 11001001 12

01000101

97

RL
Rotate Left

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

RL src src: R, IR, X

Operation: {CF, src} <= {src, CF}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RL r 11001011 4

00010rrr

IR: RL (HL) 10100110 10

00010110

X: RL (IX+d) or RL (IY+d) 11y11101 12

11001011

----d---

00010110

98

RLA
Rotate Left Accumulator

RLA

Operation: {CF, A} <= {A, CF}

Flags: S: Unaffected

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

RLA 00010111 2

99

RLC
Rotate Left Circular

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

RLC src src: R, IR, X

Operation: {CF, src} <= {src, src[7]}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RLC r 11001011 4

00000rrr

IR: RLC (HL) 10100110 10

00000110

X: RLC (IX+d) or RLC (IY+d) 11y11101 12

11001011

----d---

00000110

100

RLCA
Rotate Left Circular Accumulator

RLCA

Operation: {CF, A} <= {A, A[7]}

Flags: S: Unaffected

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

RLCA 00000111 2

101

RLD
Rotate Left Digit

RLD

Operation: {A, (HL)} <= {A[7:4], (HL), A[3:0]}

Flags: S: Set if A is negative after the operation; cleared otherwise.

Z: Set if A is zero after the operation; cleared otherwise.

H: Cleared.

P/V: Set if parity of A is even after the operation; cleared otherwise.

N: Cleared.

C: Unaffected

Addressing
Modes

Assembly Syntax Encoding Clocks

RLD 11101101 10

01101111

102

RR
Rotate Right

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

RR src src: R, IR, X

Operation: {src, CF} <= {CF, src}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RR r 11001011 4

00011rrr

IR: RR (HL) 10100110 10

00011110

X: RR (IX+d) or RR (IY+d) 11y11101 12

11001011

----d---

00011110

103

RRA
Rotate Right Accumulator

RRA

Operation: {A, CF} <= {CF, A}

Flags: S: Unaffected

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

RRA 00011111 2

104

RRC
Rotate Right Circular

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

RRC src src: R, IR, X

Operation: {src, CF} <= {src[0], src}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RRC r 11001011 4

00001rrr

IR: RRC (HL) 10100110 10

00001110

X: RRC (IX+d) or RRC (IY+d) 11y11101 12

11001011

----d---

00001110

105

RRCA
Rotate Right Circular Accumulator

RRCA

Operation: {A, CF} <= {A[0], A}

Flags: S: Unaffected

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

RRCA 00001111 2

106

RRD
Rotate Right Digit

RRD

Operation: {A, (HL)} <= {A[7:4], (HL)[3:0], A[3:0], (HL)[7:4]}

Flags: S: Set if A is negative after the operation; cleared otherwise.

Z: Set if A is zero after the operation; cleared otherwise.

H: Cleared.

P/V: Set if parity of A is even after the operation; cleared otherwise.

N: Cleared.

C: Unaffected

Addressing
Modes

Assembly Syntax Encoding Clocks

RRD 11101101 10

01100111

107

RST
Restart

Notes:

RST v

Operation: SP <= SP - 2

 (SP) <= PC

 PC <= v

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RST v 11vvv111 8

1. Mnemonic Encoding (vvv) Restart Address

0 000 0x0000

0x8 001 0x0008

0x10 010 0x0010

0x18 011 0x0018

0x20 100 0x0020

0x28 101 0x0028

0x30 110 0x0030

0x38 111 0x0038

108

SBC
Subtract With Carry

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

SBC A, src src: R, IM, IR, X

Operation: A <= A - src - CF

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic borrow out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SBC A, r 10011rrr 2

IM: SBC A, n 11011110 4

----n---

IR: SBC A, (HL) 10011110 6

X: SBC A, (IX+d) or SBC A, (IY+d) 11y11101 10

10011110

----d---

109

SBC
Subtract With Carry (Word)

Notes:

1. The ss field uses the standard word register encoding.

SBC HL, src src: RR

Operation: HL <= HL - src - CF

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 11; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic carry out of bit 15; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: SBC HL, ss 11101101 4

01ss0010

110

SCF
Set Carry Flag

CCF

Operation: CF <= 1

Flags: S: Unaffected.

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Set.

Addressing
Modes

Assembly Syntax Encoding Clocks

SCF 00110111 2

111

SET
Bit Set

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

3. The bbb field uses normal binary encoding.

SET b, dst src: R, IR, X

Operation: dst[b] <= 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SET b, r 11001011 4

11bbbrrr

IR: SET b, (HL) 10100110 10

11bbb1110

X: SET b, (IX+d) or SET b, (IY+d) 11y11101 12

11001011

----d---

11bbb110

112

SLA
Shift Left Arithmetic

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

SLA src src: R, IR, X

Operation: {CF, src} <= {src, 0}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SLA r 11001011 4

00100rrr

IR: SLA (HL) 10100110 10

00100110

X: SLA (IX+d) or SLA (IY+d) 11y11101 12

11001011

----d---

00100110

113

SRA
Shift Right Arithmetic

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

SRA src src: R, IR, X

Operation: {src, CF} <= {src[7], src}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SRA r 11001011 4

00101rrr

IR: SRA (HL) 10100110 10

00101110

X: SRA (IX+d) or SRA (IY+d) 11y11101 12

11001011

----d---

00101110

114

SRL
Shift Right Logical

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

SRL src src: R, IR, X

Operation: {src, CF} <= {0, src}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SRL r 11001011 4

00111rrr

IR: SRL (HL) 10100110 10

00111110

X: SRL (IX+d) or SRL (IY+d) 11y11101 12

11001011

----d---

00111110

115

SUB
Subtract

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

SUB A, src src: R, IM, IR, X

Operation: A <= A - src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic borrow out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SUB A, r 10010rrr 2

IM: SUB A, n 11010110 4

----n---

IR: SUB A, (HL) 10010110 6

X: SUB A, (IX+d) or SUB A, (IY+d) 11y11101 10

10010110

----d---

116

XOR
Logical Exclusive-OR

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

XOR A, src src: R, IM, IR, X

Operation: A <= A ^ src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Cleared.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: XOR A, r 10101rrr 2

IM: XOR A, n 11101110 4

----n---

IR: XOR A, (HL) 10101110 6

X: XOR A, (IX+d) or XOR A, (IY+d) 11y11101 10

10101110

----d---

