
Y90-180 Microprocessor
 Technical Manual

Disclaimer

Systemyde International Corporation reserves the right to make changes at any time, without notice, to
improve design or performance and provide the best product possible. Systemyde International Corporation
makes no warrant for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make any commitment to update the information contained herein.

Systemyde International Corporation products are not authorized for use in life support devices or systems
unless a specific written agreement pertaining to such use is executed between the manufacturer and the
President of Systemyde International Corporation. Nothing contained herein shall be construed as a recom-
mendation to use any product in violation of existing patents, copyrights or other rights of third parties. No
license is granted by implication or otherwise under any patent, patent rights or other rights, of Systemyde
International Corporation. All trademarks are trademarks of their respective companies.

Every effort has been made to ensure the accuracy of the information contain herein. If you find errors or
inconsistencies please bring them to our attention. In all cases, however, the Verilog HDL source code for
the Y90 design defines “proper operation”.

Copyright © 2010, 2012, 2013, 2016, Systemyde International Corporation. All rights reserved.

Notice:

“Z80”, “Z180” and “Zilog” are registered trademarks of Zilog, Inc. All uses of these terms in this document
are to be construed as adjectives, whether or not the noun “microprocessor”, “CPU” or “device” are actually
present.

Table of Contents

1. Introduction ...3

2. Features ...5

3. Pin Descriptions ..7

4. External Timing ..13

5. Instruction Set ...33

6. Memory Management Unit (MMU) ..135

7. Interrupt Control ...139

8. Direct Memory Access (DMA) ..141

9. Asynchronous Serial Communications Interface (ASCI) ..149

10. Programmable Reload Timer (PRT) ..157

11. Clocked Serial I/O (CSIO) ...161

12. System Functions ...165

13. I/O Register Addresses ..167

14. Top level Verilog Code ..169

Revison History

Date Changes Page(s)

11/14/2012 added nmiack_tran signal, updated top level Verilog code Ch 3, 14

12/20/2012 added tend0b and tend1b signal to signal description Ch 3

12/27/2012 Typo corrections in DMA registers Ch 8

01/03/2013
More corrections to DMA, made all signals (except for the reset
inputs) active-High

Ch 3, 8, 9, 13, 14

01/12/2013 Added table listing valid operating modes 147

01/15/2013 DMA register changes Ch 8

02/04/2013 tout operation 157, 158

04/22/2013 updated top-level code in appendix 173

04/23/2013 more typo corrections 137, 166

01/16/2015 type in MLT instruction encoding 90

3

Introduction

This book documents the operation of the Y90-180 microprocessor. The Y90-180 design
is supplied in Verilog HDL and can be implemented in any technology supported by a
logic synthesis tool that accepts Verilog HDL. Included in the design package is a test
bench that exercises all instructions, flag settings, and representative data patterns. The
test patterns should achieve at least 95% fault coverage.

The Y90-180 was designed in a clean-room environment and is an upgrade of the Zilog
Z180 series of microprocessors. Only publicly available documentation was used to create
this design so there may be minor differences where the public documentation is mislead-
ing or lacking. The instruction execution times are not identical between the two designs.
The Y90-180 operates with a consistent two-clock-cycle machine cycle, while the Z180
microprocessors use machine cycles that vary from three to seven clock cycles.

The Y90-180 design, depending on the version, may not implement all of the features or
operating modes of the Z180 architecture. In particular, almost all of the added peripheral
features present in the Z8S180 and Z8L180 are also present in the Y90-180. The Y90-180
contains the peripheral functions present in the original Z80180.

This document should always be used as the final word on the operation of the Y90-180,
but it is useful to refer to the Zilog documentation if the description given here is too cryp-
tic. The Z180 architecture is over thirty years old, so it is assumed that it is already at least
somewhat familiar to the reader.

The Y90-180 is accompanied by full design documentation, in the form of a large spread-
sheet, which describes nearly every facet of the internal operation of the processor. This
provides knowledgeable users the opportunity to customize the design for unique applica-
tion requirements.

4

5

Features

* Fully functional synthesizable Verilog HDL version of the Z180 MPU

* Vendor and technology independent

* 189 instructions, with eight addressing modes

* 64K byte (1M byte with MMU) memory addressing capability

* Separate 64K byte I/O address space

* 16 bit ALU with bit, byte and BCD operations

* Powerful vectored interrupt capability with separate interrupt vector input bus

* Static, fully synchronous design uses no 3-state buses

* Uniform 2 clock-cycle machine cycle

* Includes peripheral functions present in the original Z180:
 Two Direct Memory Access (DMA) channels
 Two Asynchronous Serial Communications Interface (ASCI) channels
 Two Programmable Reload Timer (PRT) channels
 One Clocked Serial I/O (CSIO) channel

* Memory interface matches common FPGA and ASIC memory timing

* Separate I/O bus, compatible with AMBA Peripheral Bus

* Illegal instruction detection

* Full design documentation included

* Verilog simulation and test suite included

6

Shown below are the registers visible to the programmer. The main registers have both a
primary and an alternate version. The primary register set consists of A, F, B, C, D, E, H,
and L, while the alternate register set consists of A', F', B', C', D', E', H', and L'. At any
given time only one bank is active, and care must be used when switching between banks,
as there is no way for the programmer to check which bank is active. The accumulator, A,
is the destination for all 8-bit arithmetic and logic operations, while the Flag register F
contains the flag results of arithmetic and logic operations. The other general-purpose reg-
isters can be paired, BC or DE or HL, to form 16-bit registers. There are two index regis-
ters, IX and IY, used for indexed addressing mode. The I register holds the upper eight bits
of the interrupt vector table address for use in Interrupt Mode 2. The R register is left over
from the original Z80 architecture, where it was used to hold a refresh address for
DRAMs. In the Y90-180 it is just another general purpose register. The Stack pointer, SP,
holds the address of the stack, and the Program Counter, PC, holds the address of the cur-
rently executing instruction.

A F

B C

D E Main Register Bank

H L

IX

IY

A’ F’

B’ C’ Alternate Register Bank

D’ E’

H’ L’

I R Special Function Registers

SP

PC

7

Pin Descriptions

The Y90-180 design does not attempt to match the signals or timing present on the Z180
microprocessor. Rather, the interfaces and signals are optimized for use in either an ASIC
or an FPGA.

Memory and I/O use separate address and data buses in addition to the separate control
signals. The memory bus is designed to match typical ASIC and FPGA memory timing,
although it can be used with stand-alone memory devices just as easily. A separate inter-
rupt vector bus is provided for use with an interrupt controller. If desired, this interrupt
vector bus can be tied to either the memory or I/O input bus for operation more closely
resembling that of the original Z180.

The original Z180 microprocessor multiplexes a number of pin functions because of pack-
age constraints. The Y90-180 makes no attempt to duplicate this signal multiplexing.

The interface signals for the Y90-180 are detailed below. Note that all inputs except the
two resets are sampled by the rising edge of the clock and all outputs change in response
to the rising edge of the clock.

cka0_in, cka1_in (inputs, active-High) The Async Clock In signals are the external clock
inputs for the two ASCI channels.

cka0_out, cka1_out (outputs, active-High) The Async Clock Out signals are the internal
clock outputs for the two ASCI channels.

cks_in (input, active-High) The Clocked Serial Clock In signal is the external clock input
for the CSIO channel.

cks_out (output, active-High) The Clocked Serial Clock Out signal is the internal clock
output for the CSIO channel.

clearb (input, active-Low) The Master (test) Reset signal is used to initialize all of the
flip-flops that are not initialized by the user reset signal. Most user-visible reg-
isters are not affected by the user reset, so this signal allows full initialization
for testing and simulation. This is an asynchronous signal that should be used
for Power-On Reset.

8

clkc (input, active-High) The CPU Clock connects to all flip-flops in the design.

cts0, cts1 (inputs, active-High) The Clear To Send signals are the transmit enable modem
controls for the two ASCI channels.

dcd0, dcd1 (inputs, active-High) The Data Carrier Detect signals are the receive enable
modem controls for the two ASCI channels.

dma_ack (output, active-High) The DMA Acknowledge signal is activated to indicate
that the processor has halted to allow another bus master to use the bus. The
iack_tran, io_addr_out, io_data_out, io_tran, mem_addr_out,
mem_data_out, mem_tran, nmiack_tran, reti_tran and t1 signals are all
inactive (Low) during this time, but the internal DMA controller will drive
these signals to perform data transfers. The processor will signal dma_ack
while in the Halt or Sleep state without de-asserting the halt_tran or
sleep_tran signals. Interrupts are not sampled while the dma_ack signal is
active, so the exit from a coincident Halt or Sleep state will be deferred until
the dma_ack signal is no longer active.

dma_req (input, active-High) The DMA Request signal requests that the processor halt to
allow an external bus master to transfer data on the bus. The processor only
releases the bus between instructions, rather than between individual bus
transactions. An external bus master has higher priority than the internal
DMA controller.

dreq0, dreq1 (inputs, active-High) These DMA Request signals are used by the internal
DMA controller to trigger or gate DMA transfers. These signals may be pro-
grammed to be edge- or level-sensitive.

en_prftch (input, active-High). The Enable Prefetch signal enables the prefetch operation.
Although the prefetch mode can be changed dynamically, it is recommended
that this signal be tied either High or Low. The prefetch mechanism increases
performance by prefetching an opcode byte during any address calculation
time. Only the prefix byte (0xCB, 0xDD, 0xED or 0xFD) of a multi-byte
instruction can actually be used after being prefetched.

halt_tran (output, active-High) The Halt Transaction signal is activated by the Halt
instruction. While in the Halt state the CPU freezes and waits for an interrupt.
The iack_tran, io_addr_out, io_data_out, io_tran, mem_addr_out,
mem_data_out, mem_tran, reti_tran and t1 signals are all inactive (Low)
during this time.

iack_tran (output, active-High) The Interrupt Acknowledge Transaction signal is acti-
vated to identify an interrupt acknowledge bus transaction. An interrupt

9

acknowledge occurs in response to an enabled Maskable Interrupt request.
During an interrupt acknowledge the interrupt vector data bus is sampled,
although the sampled value is only used in Interrupt Mode 0 or 2 with a
maskable interrupt request.

int0_req (input, active-High) The Interrupt 0 Request signal is the highest-priority
maskable interrupt request. Maskable interrupts can be enabled and disabled
under program control. This interrupt request is not latched, so it should
remain active until an interrupt acknowledge transaction occurs. This interrupt
request uses an externally-supplied interrupt vector in Interrupt Mode 0 or 2.

int1_req, int2_req (inputs, active-High) The Interrupt 1 (and 2) Request signals are addi-
tional maskable interrupt requests. These two interrupt requests use an inter-
nally-generated interrupt vector and force Interrupt Mode 2.

io_addr_out (output, 16-bit bus) The I/O Address Output bus carries the address of the I/
O port during an I/O transaction. This bus holds the current value until the
next I/O transaction or until the dma_ack signal is activated.

io_data_in (input, 8-bit bus) The I/O Data Input bus is sampled during the various I/O
input instructions. A separate bus allows peripherals to be connected without
loading the memory data bus.

io_data_out (output, 8-bit bus) The I/O Data Output bus carries the output data for I/O
output instructions. This bus holds the current value until the next output
instruction or until the dma_ack signal is activated.

io_read (output, active-High) The I/O Read signal indicates the direction of data transfer
during I/O transactions. High signals read and Low signals write. This signal
is valid only during I/O transactions.

io_strobe (output, active-High) The I/O Strobe signal is one clock cycle wide (in the
absence of Wait states) and identifies the data transfer clock cycle for I/O
transactions.

io_tran (output, active-High) The I/O Transaction signal is activated for all I/O transac-
tions.

ivec_data_in (input, 8-bit bus) The Interrupt Vector Data Input bus is sampled during
interrupt acknowledge transactions. If the interrupt acknowledge was for a
maskable interrupt and the CPU is in Interrupt Mode 2, this vector is used as a
pointer in the interrupt vector table to find the starting address of the interrupt
service routine. In Interrupt Mode 0 the vector is a one-byte RST instruction.

10

ivec_rd (output, active-High) The Interrupt Vector Read signal is one clock cycle wide (in
the absence of Wait states) and identifies the data transfer clock cycle for
interrupt acknowledge transactions.

mem_addr_out (output, 16-bit bus) The Memory Address Output bus carries the address
during memory read and write transactions. This bus holds the current value
until the next memory transaction.

mem_data_in (input, 8-bit bus) The Memory Data Input bus is sampled during memory
read transactions. A separate bus allows peripherals to be connected without
loading the memory data bus.

mem_data_out (output, 8-bit bus) The Memory Data Output bus carries the output data
for memory write transactions. This bus holds the current value until the next
output instruction.

mem_rd (output, active-High) The Memory Read signal is one clock cycle wide (in the
absence of Wait states) and identifies the data transfer clock cycle for memory
read transactions.

mem_tran (output, active-High) The Memory Transaction signal is activated for memory
read and write transactions. The mem_tran signal is active during the Halt
state but is inactive during the Sleep state and during DMA transfers.

mem_wr (output, active-High) The Memory Write signal is one clock cycle wide (in the
absence of Wait states) and identifies the data transfer clock cycle for memory
write transactions.

nmi_req (input, active-High) The Non-Maskable Interrupt Request signal unconditionally
interrupts the CPU. This request is internally latched, so that it can be as short
as one clock cycle wide.

nmiack_tran (output, active-High) The NMI Acknowledge Transaction signal is acti-
vated to identify an NMI acknowledge bus transaction. An NMI acknowledge
occurs in response to a Non-Maskable Interrupt request.

resetb (input, active-Low) The User Reset signal is used to initialize all state flip-flops
and some user registers (the I, R, PC and SP registers). This is an asynchro-
nous signal.

reti_tran (output, active-High) The Return From Interrupt transaction signal is activated
immediately after the second stack read transaction during the Return From
Interrupt (RETI) instruction. This signal may be used by an external interrupt
controller to re-enable interrupts, for example.

11

rts0, rts1 (outputs, active-High) The Request To Send signals are modem control outputs
from the two ASCI channels.

rxa0, rxa1 (inputs, active-High) The Asynchronous Receive Data signals are the serial
data inputs for the two ASCI channels.

rxs (inputs, active-High) The Synchronous Receive Data signal is the serial data input for
the CSIO channel.

sleep_tran (output, active-High) The Sleep Transaction signal is activated by the Sleep
instruction. While in the Sleep state the CPU freezes and waits for an inter-
rupt. The iack_tran, io_addr_out, io_data_out, io_tran, mem_addr_out,
mem_data_out, mem_tran, reti_tran and t1 signals are all inactive (Low)
during this time.

t1 (output, active-High) The T1 signal is active during the first clock cycle of a bus trans-
action. This signal is inactive during the Halt and Sleep states.

tend0, tend1 (outputs, active-High) The DMA End Count Output signals are the terminal-
count outputs from the two DMA channels.

tout0, tout1 (outputs, active-High) The Terminal Count Output signals are the terminal-
count outputs from the two PRT channels.

txa0, txa1 (outputs, active-High) The Asynchronous Transmit Data signals are the serial
data outputs for the two ASCI channels.

txs (output, active-High) The Synchronous Transmit Data signal is the serial data output
for the CSIO channel.

wait_req (input, active-High) The Wait Request signal temporarily halts the CPU, usually
to wait for memory access time to be met. The wait request is not honored
while the dma_ack, halt_tran or sleep_tran signals are active.

12

13

External Timing

The Y90-180 uses a uniform two-clock-cycle machine cycle. This consistent timing sim-
plifies the design of logic external to the CPU makes it easier to track the state of the CPU.

The memory interface timing and signals are designed to make it easy to interface to stan-
dard ASIC and FPGA memories. It uses separate read and write strobes.

The I/O interface is very close to the AMBA Peripheral Bus (APB) to allow connection to
APB peripherals with a minimum of logic. It uses a single strobe with a separate direction
control. The only difference relative to the APB is the setup time for the write data. In the
APB the write data is setup one clock before the strobe; in this interface the write data
changes coincident with the leading edge of the strobe. In most cases this will not be a
problem.

The separate interrupt vector bus provides an easy way to connect to the optional interrupt
controller. The interrupt vector bus is used for Mode 0 and Mode 2 maskable interrupts, so
if these modes are not used the vector input bus can be tied to ground and the vector strobe
output ignored.

In the diagrams below only the relevant signals are shown for each transaction. All other
signals are either inactive or hold the previous value. Note that only one of the transaction
identifiers (mem_tran, io_tran, iack_tran, nmiack_tran, reti_tran, halt_tran and
sleep_tran) can be active at a time. If all are inactive, an idle bus transaction (usually for
address calculation) is in progress. If prefetch is enabled most address calculation idle
transactions are replaced by memory transactions. The dma_ack signal also indicates that
the bus is idle, in response to the dma_req signal. The dma_ack signal can be active
while either halt_tran or sleep_tran is active.

The wait_req input is only sampled for memory, I/O and interrupt acknowledge transac-
tions and is ignored in all other cases. Wait states will disrupt the two-clock-cycle machine
cycle rule. If this feature is important but wait states must be used, two wait states per
transaction is recommended. If memory access time is an issue it might be better to stretch
the first clock cycle of a transaction rather than add Wait states. The uniform two-clock
machine cycle makes it relatively straightforward to do this.

14

Memory Read

The figure below shows the memory read transaction, without Wait states and with one
Wait state. Memory read transactions are used for both instruction and data fetch. There is
no separate instruction/data status indicator, although this status exists internally if it is
needed.

lkc

em_addr_out

em_data_in

em_tran

em_rd

ait_req

T1 T2

Valid

Valid

1

T1 T2

Valid

Valid

Tw

15

Memory Write

The figure below shows the memory write transaction, without Wait states and with one
Wait state.

lkc

em_addr_out

em_data_out

em_tran

em_wr

ait_req

T1 T2

Valid

Valid

1

T1 T2

Valid

Valid

Tw

16

I/O Read

The figure below shows an I/O read transaction, without Wait states and with one Wait
state.

lkc

o_addr_out

o_data_in

o_read

o_strobe

ait_req

T1 T2

Valid

Valid

1

T1 T2

Valid

Valid

Tw

o_tran

17

I/O Write

The figure below shows an I/O write transaction, without Wait states and with one Wait
state.

lkc

o_addr_out

o_data_out

o_tread

o_strobe

ait_req

T1 T2

Valid

Valid

1

T1 T2

Valid

Valid

Tw

o_tran

18

Interrupt Acknowledge

The figure below shows the interrupt acknowledge transaction, without Wait states and
with one Wait state.

lkc

vec_data_in

ack_tran

vec_rd

ait_req

T1 T2

Valid

1

T1 T2

Valid

Tw

19

Prefetch

The figure below shows a typical instruction (a memory write) without the prefetch
enabled and with the prefetch enabled. The prefetch logic uses address calculation
machine cycles to look at the next opcode byte. If this opcode byte is one of the "prefix"
bytes (0xCB, 0xDD, 0xED or 0xFD) the logic buffers this byte and will not re-fetch it
when the current instruction completes. Only these four prefix bytes will be buffered, even
though there are other multi-byte opcodes. Attempting to prefetch for every multi-byte
opcode would be significantly more complicated, with marginal performance improve-
ment.

In practice, enabling the prefetch can improve execution time by about 5%, although this
obviously depends on the exact code being executed. If Wait states are being used prefetch
may not provide any performance gain, because of the Wait states added when prefetching
bytes that may later be discarded.

Note that even though an instruction may execute faster when the prefetch is enabled, this
instruction will still complete at the same time. However, the next instruction (the one
with the first byte prefetched) will complete earlier. This is shown in the diagrams below.

The prefetch can be enabled and disabled on the fly, because the en_prftch signal is sam-
pled during the t1 time of the fetch of the first byte of an instruction.

20

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC+2 PC+3

write data

PC PC+2

T2 T1

PC+4PC+1

Ignoredexecuteexecute

mem addr

executeexecute

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC+3 PC+4

write data

PC PC+2

T2 T1

PC+5PC+1

bufferexecuteexecute

mem addr

executeexecute

inst at PC

inst at PC+2

inst at PC+4

inst at PC

inst at PC+2

inst at PC+4

21

Illegal Instruction (2nd byte) Trap

The timing of an undefined second byte opcode trap is shown below. The fetch of the
undefined opcode is followed by three machine cycles that flush the pipeline and rewind
the Program Counter, an interrupt acknowledge cycle, and two writes to push the PC of
the undefined opcode to the stack. The processor then jumps to location 0x0000 and starts
fetching instructions.

Information about the trap is latched in the INT/TRAP Control Register. The start of the
illegal instruction in this case is the stacked PC value minus one.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

T1 T2 T1

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC+1 (low byte)PC+1 (high byte)

PC+1PC

trap

PC+2 PC

T2 T1

0000

IgnoredIgnored

ivec_data_in

ivec_rd

Ignored

22

Illegal Instruction (3rd byte) Trap

The timing of an undefined third byte opcode trap is shown below. The fetch of the unde-
fined opcode is followed by the normal Read cycle (all three-byte instructions use indexed
addressing), two machine cycles that flush the pipeline and rewind the Program Counter,
an interrupt acknowledge cycle, and two writes to push the PC of the undefined opcode to
the stack. The processor then jumps to location 0x0000 and starts fetching instructions.

Information about the trap is latched in the INT/TRAP Control Register. The start of the
illegal instruction in this case is the stacked PC value minus two.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

T1 T2 T1

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC+2 (low byte)PC+2 (high byte)

PC+1PC

disp

IX+d or IY+d PC

T2 T1

0000

trap

PC+2

Ignored

ivec_data_in

ivec_rd

Ignored

23

Non-maskable Interrupt

The timing of a non-maskable interrupt acknowledge transaction is shown below. The
nmi_req input cannot be masked by software. This input must be sampled active by a ris-
ing edge of clkc to be recognized by the processor, but does not need to remain active until
the interrupt acknowledge transaction. In fact, to prevent an endless loop of acknowl-
edges, the nmi_req input must be de-asserted before the start of the fetch of the first
instruction of the service routine. The acknowledge sequence consists of an aborted
instruction fetch, the interrupt acknowledge, and two writes to push the contents of the
program counter onto the stack. Execution then begins at 0x0066 with an instruction fetch.
The non-maskable interrupt service routine must end with the RETN instruction to prop-
erly restore the state of the interrupt enable flag prior to the non-maskable interrupt.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

nmiack_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC (low byte)PC (high byte)

PC-2 PC

T2 T1

0066

nmi_req

PC-1

Ignoredexecuteexecute

ivec_data_in

ivec_rd

Ignored

24

Interrupt Mode 0

The timing of a Mode 0 maskable interrupt acknowledge is shown below. The int0_req
signal needs to remain active until the interrupt acknowledge transaction. The acknowl-
edge sequence consists of an aborted instruction fetch, the interrupt acknowledge, and two
writes to push the contents of the program counter onto the stack. Execution then begins at
the restart address specified by the RST instruction fetched during the interrupt acknowl-
edge with an instruction fetch.

The use of an RST instruction is enforced by the hardware, which only uses bits 5-3 of the
ivec_data_in bus to decode one of the eight possible RST instructions.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC (low byte)PC (high byte)

PC-2 PC

T2 T1

RST

int_req

PC-1

Ignoredexecuteexecute

ivec_data_in

ivec_rd

RST n

25

Interrupt Mode 1

The timing of a Mode 1 interrupt acknowledge cycle is shown below. The int0_req input
needs to remain active until the interrupt acknowledge transaction. The acknowledge
sequence consists of an aborted instruction fetch, the interrupt acknowledge, and two
writes to push the contents of the program counter onto the stack. Execution then begins at
address 0x0038 with an instruction fetch.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

SP-1 SP-2

PC (low byte)PC (high byte)

PC-2 PC

T2 T1

0038

int_req

PC-1

Ignoredexecuteexecute

ivec_data_in

ivec_rd

Ignored

26

Interrupt Mode 2

The timing of a Mode 2 maskable interrupt acknowledge is shown below. The int0_req,
int1_req or int2_req input needs to remain active until the interrupt acknowledge transac-
tion. The acknowledge sequence consists of an aborted instruction fetch, the interrupt
acknowledge, an address calculation cycle, two reads of the interrupt vector table and two
writes to push the contents of the program counter onto the stack. The processor automati-
cally jumps to the address fetched from the interrupt vector table for the service routine.
The upper eight bits of the interrupt vector table starting address are held in the I register
in the processor. Note that the vector must be an even number. That is, the least significant
bit of the vector must be a zero.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

mem_wr

iack_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

Vector TablePC-2 PC

T2 T1

Vector Table+1

int_req

PC-1

Ignoredexecuteexecute

ivec_data_in

ivec_rd

vector

T1 T2 T1

SP-1 SP-2

PC (low byte)PC (high byte)

T2 T1

start

T2

msblsb

27

DMA Request/Acknowledge

The timing of a DMA request and acknowledge is shown below. Note that like an inter-
rupt, the dma_req signal is only sampled at the end of instructions. This guarantees that
all instructions are atomic.

The delay from the dma_req signal to the dma_ack signal is always at least one bus
cycle, irrespective of whether the processor is running, in the Halt state or in the Sleep
state. This implies that it is more efficient to transfer multiple bytes each time that the
dma_req signal is activated.

The dma_req signal can be asserted during the Halt or Sleep states. In this case the active
dma_req signal will take precedence over int_req or nmi_req and inhibit either of these
signals from causing an exit from the Halt or Sleep state. Once the dma_req signal is
deasserted any pending or future interrupt request will cause the exit from the Halt or
Sleep state.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

dma_req

dma_ack

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC-2 PC

T2 T1

PC-1

Ignoredexecuteexecute

T1 T2 T1 T2 T1

PC+1

T2

execute

PC0x00000

0x00000

0x00000

0x00000io_data_out

io_addr_out

28

Halt state

The Halt state is entered when the HALT instruction is executed, as shown below. In the
Halt state the processor freezes, for an unlimited number of two clock cycle machine
cycles, with the halt_tran output active. The only way to exit the Halt state is with either
an interrupt (either nmi_req, int_req or an internal interrupt) or via reset. Note that
int_req or an internal interrupt can only be used to exit the Halt mode if interrupts are
enabled when the HALT instruction is executed. The timing for exiting the Halt state with
an interrupt is also shown below.

If the Halt state is exited by an interrupt, the processor will resume instruction execution
(after the interrupt service routine) at the address of the instruction following the HALT
instruction. The minimum width of the halt_tran signal is two clock cycles.

The Halt state in this design is slightly different from that in the Z80 or Z180 microproces-
sors. In those designs the processor continues to fetch the Halt instruction during the Halt
state, leading to continued power dissipation. Since this operation requires the special step
of “rewinding” the PC, no attempt was made to match this operation. Rather, the Halt state
and the Sleep state are essentially identical, reducing the power consumption to a mini-
mum by minimizing the number of signals that are transitioning during these states.

The Halt state differs from the Sleep state only for the case where interrupts are disabled.
In the Halt state, if interrupts are disabled only the nmi_req or a reset (from any of the

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

iack_tran

halt_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC

T2 T1

int_req

PC+1

Ignored0x76

T1 T2 T1 T2 T1

SP-1

T2

0x0000

0x0000

0x0000

0x0000

io_addr_out

io_data_out

PC+1

29

various sources) will cause an exit from this state. In the Sleep state if interrupts are dis-
abled a rising edge on the int_req will force an exit from the Sleep state, with execution
continuing with the instruction following the SLP instruction.

30

Sleep state

The Sleep state is entered when the SLP instruction is executed, as shown below. In the
Sleep state the processor freezes, for an unlimited number of two clock cycle machine
cycles, with the sleep_tran output active. The only way to exit the Sleep state is with
either an interrupt (either nmi_req, int_req or an internal interrupt) or via reset. The
int_req signal or an internal interrupt can be used to exit the Sleep mode irrespective of
whether or not interrupts are enabled when the SLP instruction is executed.

The timing for exiting the Sleep state with an enabled interrupt or non-maskable interrupt
is shown below. In this case the processor will resume instruction execution (after the
interrupt service routine) at the address of the instruction following the SLP instruction.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

iack_tran

sleep_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC

T2 T1

int_req

PC+1

Ignored0x76

T1 T2 T1 T2 T1

SP-1

T2

31

In the case where the Sleep state exit is caused by a maskable interrupt while interrupts are
disabled the processor merely resumes execution at the address of the instruction follow-
ing the SLP instruction, without going through an interrupt service routine. Note that the
minimum width of the sleep_tran signal is two clock cycles.

clkc

mem_addr_out

mem_data_in

t1

mem_tran

mem_rd

iack_tran

sleep_tran

mem_data_out

T2 T1 T2 T1 T2 T1 T2 T1 T2 T1 T2 T1

PC

T2 T1

int_req

PC+1

0x76

T1 T2 T1T2

PC+2

32

Reset

The Reset state is entered immediately when the resetb signal goes Low, independent of
the current state, and this state continues until the first rising edge of clkc after the resetb
signal is de-asserted. At this rising edge there is a one clock cycle transient state to set up
the internal pipeline controls, and on the next clock the processor begins fetching the first
instruction from address 0x0000.

Software starting at location 0x0000 must be able to distinguish between reset, execution
of an RST 0 instruction or a trap. All of these cases cause the Program Counter to be reset
to 0x0000.

The minimum width of the resetb signal is set by the flip-flops used in the design. The
setup time for the resetb signal to the rising edge of the clkc signal is likewise determined
by the flip-flops used in the design.

The clearb signal has the same timing requirements as the resetb signal. The clearb sig-
nal should only be used in the power-on case, and only affects those flip-flops not affected
by the resetb signal.

clkc

Tany Tr

t1

T1

resetb

mem_addr_out 0000

Ts

mem_data_out 00

io_addr_out 0000

io_data_out 00

mem_tran

mem_rd

other outputs

33

Instruction Set

This chapter presents the assembly language syntax, addressing modes, flag settings,
binary encoding, and execution time for the Y90-180 instruction set. The entire instruction
set is presented in alphabetical order.

The assembly language syntax is identical to that used by the original Zilog assembler.
Different assembler programs may or may not use identical syntax. The syntax is pre-
sented generically at the beginning of each instruction, with the details presented for each
addressing mode later in each entry.

The operation of each instruction is specified in a format similar to Verilog HDL for min-
imum ambiguity, but no descriptive text or examples are included.

The effect of the instruction on each flag is listed, with a brief description. Normally the
flags are updated by the main operation of the instruction, but for some complex instruc-
tions different flags may be affected by different parts of the instruction. This is specified
in the description. The flags are organized as below in the F (Flag) register:

These flags have the following meanings:

S Z U5 H U3 P/V N C

Flag Meaning
S Sign (a copy of the MSB of the result).

Z Zero (indicating that the result was zero).

U5 Unused Bit 5 (an unused Flag register bit).

H Half-Carry (carry out of the lower nibble, used for BCD math).

U3 Unused Bit 3 (an unused Flag register bit).

P/V
Parity/Overflow (parity of the result, or arithmetic overflow; depends
on the instrcuction)

N Negative (add/subtract flag, necessary for BCD math)

C Carry (arithmetic carry, or shift linkage bit)

34

Fields in the instruction are listed using shortcuts for common fields. These shortcuts
should be self-explanatory in most cases, but will be detailed here for completeness.

The most common field in the instruction specifies a CPU register, employing the follow-
ing encoding:

Word registers are similarly encoded, although the exact encoding depends on the instruc-
tion:

The execution time for instructions is always a multiple of two clocks. Any number in
parentheses is the execution time when the prefetch is enabled, via the en_prftch signal
into the core. When enabled, the prefetch operation uses any address calculation time to
look at the first byte of the next instruction. If this instruction byte can be pre-decoded the
byte will be buffered for use when the current instruction finishes. This results in the exe-
cution time in parentheses. Only instructions that require more than one machine cycle to
execute can be pre-decoded.

rrr Register Selected
000 B

001 C

010 D

011 E

100 H

101 L

111 A (Accumulator)

dd, ss, tt, xx or yy dd, ss Register tt Register xx Register yy Register
00 BC BC BC BC

01 DE DE DE DE

10 HL HL IX IY

11 SP AF SP SP

35

ADC
Add With Carry

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

ADC A, src src: R, IM, IR, X

Operation: A <= A + src + CF

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic carry out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic carry out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: ADC A, r 10001rrr 2

IM: ADC A, n 11001110 4

----n---

IR: ADC A, (HL) 10001110 6 (4)

X: ADC A, (IX+d) or ADC A, (IY+d) 11y11101 10 (8)

10001110

----d---

36

ADC
Add With Carry (Word)

Notes:

1. The ss field uses the standard word register encoding.

ADC HL, src src: RR

Operation: HL <= HL + src + CF

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic carry out of bit 11; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic carry out of bit 15; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: ADC HL, ss 11101101 4

01ss1010

37

ADD
Add

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY

ADD A, src src: R, IM, IR, X

Operation: A <= A + src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic carry out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic carry out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: ADD A, r 10000rrr 2

IM: ADD A, n 11000110 4

----n---

IR: ADD A, (HL) 10000110 6 (4)

X: ADD A, (IX+d) or ADD A, (IY+d) 11y11101 10 (8)

10000110

----d---

38

ADD
Add (Word)

Notes:

1. The ss, xx and yy fields use the standard word register select encodings.

ADC dst, src dst: HL, IX, IY

src: RR

Operation: dst <= dst + src

Flags: S: Unaffected.

Z: Unaffected.

H: Set if arithmetic carry out of bit 11; cleared otherwise.

P/V: Unaffected.

N: Cleared.

C: Set if arithmetic carry out of bit 15; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: ADD HL, ss 00ss1001 2

ADC IX, xx 11011101 4

01xx1001

ADC IY, yy 11111101 4

01yy1001

39

AND
Logical AND

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY

AND A, src src: R, IM, IR, X

Operation: A <= A & src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set.

P/V: Set if parity of result even; cleared otherwise.

N: Cleared.

C: Cleared.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: AND A, r 10100rrr 2

IM: AND A, n 11100110 4

----n---

IR: AND A, (HL) 10100110 6 (4)

X: AND A, (IX+d) or AND A, (IY+d) 11y11101 10 (8)

10100110

----d---

40

BIT
Bit Test

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

3. The bbb field uses normal binary encoding.

4. For the original Z80, the S and C flags are undefined.

BIT b, src src: R, IR, X

Operation: Z <= ~src[b]

Flags: S: Unaffected.

Z: Set if tested bit is zero; cleared otherwise.

H: Set.

P/V: Unaffected.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: BIT b, r 11001011 4

01bbbrrr

IR: BIT b, (HL) 10100110 8 (6)

01bbb1110

X: BIT b, (IX+d) or BIT b, (IY+d) 11y11101 10

11001011

----d---

01bbb110

41

CALL
Call Subroutine

CALL dst dst: DA

Operation: SP <= SP - 2

(SP) <= PC

PC <= dst

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: CALL mn 11001101 10

----n---

----m---

42

CALL
Conditional Call Subroutine

Notes:

CALL cc, dst dst: DA

Operation: if (cc = true) begin

 SP <= SP - 2

 (SP) <= PC

 PC <= dst

 end

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: CALL cc, mn 11fff100 10/6

----n--- (taken/not taken)

----m---

1. Mnemonic Encoding (fff) Meaning Flag case

NZ 000 Non-zero Z = 0

Z 001 Zero Z = 1

NC 010 Non-carry C = 0

C 011 Carry C = 1

PO 100 Parity Odd P/V = 0

PE 101 Parity Even P/V = 1

P 110 Plus S = 0

M 111 Minus S = 1

43

CCF
Complement Carry Flag

Notes:

1. The default operation of the H flag for this instruction matches that of the original Z80 CPU. The original
Z180 CPU behaves differently, clearing the H flag for this instruction. To enable Z180 compatibility, use
the ‘define Z180_CCF option in the Verilog source code file version.v.

CCF

Operation: CF <= ~CF

Flags: S: Unaffected.

Z: Unaffected.

H: Copy of previous value of Carry flag.

P/V: Unaffected.

N: Cleared.

C: Set if previous Carry flag was zero; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

IM: CCF 00111111 2

44

CP
Compare

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

CP A, src src: R, IM, IR, X

Operation: A - src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Set.

C: Set if arithmetic borrow out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: CP A, r 10111rrr 2

IM: CP A, n 11111110 4

----n---

IR: CP A, (HL) 10111110 6 (4)

X: CP A, (IX+d) or CP (IY+d) 11y11101 10 (8)

10111110

----d---

45

CPD
Compare and Decrement

CPD

Operation: A - (HL)

HL <= HL - 1

BC <= BC - 1

Flags: S: Set if result of compare is negative, cleared otherwise.

Z: Set if result of compare is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3 during compare; cleared otherwise.

P/V: Set if result of BC decrement is non-zero; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPD 11101101 10 (8)

10101001

46

CPDR
Compare, Decrement and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine.

2. Interrupts are sampled during each memory read operation.

CPDR

Operation: A - (HL)

HL <= HL - 1

BC <= BC - 1

repeat if BC != 0 and A - (HL) != 0

Flags: S: Set if result of compare is negative, cleared otherwise.

Z: Set if result of compare is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3 during compare; cleared otherwise.

P/V: Set if result of BC decrement is non-zero; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPDR 11101101 8 + 4i

10111001

47

CPI
Compare and Increment

CPI

Operation: A - (HL)

HL <= HL + 1

BC <= BC - 1

Flags: S: Set if result of compare is negative, cleared otherwise.

Z: Set if result of compare is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3 during compare; cleared otherwise.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPI 11101101 10 (8)

10100001

48

CPIR
Compare, Increment and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

CPIR

Operation: A - (HL)

HL <= HL + 1

BC <= BC - 1

repeat if BC != 0 and A - (HL) != 0

Flags: S: Set if result of compare is negative, cleared otherwise.

Z: Set if result of compare is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3 during compare; cleared otherwise.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPIR 11101101 8 + 4i

10110001

49

CPL
Complement

CPL

Operation: A <= ~A

Flags: S: Unaffected.

Z: Unaffected.

H: Set.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

CPL 00101111 2

50

DAA
Decimal Adjust Accumulator

Notes:

DAA

Operation: A <= Decimal Adjust A

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: See table below.

P/V: Set if result has even parity; cleared otherwise.

N: Unaffected.

C: See table below.

Addressing
Modes

Assembly Syntax Encoding Clocks

DAA 00100111 2

Instruction
C before

DAA
A[7:4]

before DAA
H before

DAA
A[3:0]

before DAA
Number

added to A
C after
DAA

0 0-9 0 0-9 00 0

0 0-8 0 A-F 06 0

0 0-9 1 0-3 06 0

ADC, ADD or INC 0 A-F 0 0-9 60 1

0 9-F 0 A-F 66 1

0 A-F 1 0-3 66 1

1 0-2 0 0-9 60 1

1 0-2 0 A-F 66 1

1 0-3 1 0-3 66 1

0 0-9 0 0-9 00 0

DEC, NEG, SUB or SBC 0 0-8 1 6-F FA 0

1 7-F 0 0-9 A0 1

1 6-F 1 6-F 9A 1

51

DEC
Decrement

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

DEC dst dst: R, IR, X

Operation: dst <= dst - 1

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: DEC r 00rrr101 2

IR: DEC (HL) 00110101 8 (6)

X: DEC (IX+d) or DEC (IY+d) 11y11101 12 (10)

00110101

----d---

52

DEC
Decrement (Word)

Notes:

1. The dd field uses the standard word register encoding.

DEC dst dst: RR, IX, IY

Operation: dst <= dst - 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: DEC dd 00dd1011 2

IX, IY DEC IX or DEC IY 11y11101 4

00101011

53

DI
Disable Interrupt

Notes:

1. Interrupts are last sampled during the machine cycle that fetches this instruction.

DI

Operation: IFF1 <= 0

IFF2 <= 0

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DI 11110011 2

54

DJNZ
Decrement, Jump if Non-zero

Notes:

1. Relative to the address of this instruction, the jump range is -126 to +129. Relative to the address of the
next instruction, the jump range is -128 to +127.

DJNZ e

Operation: B <= B - 1

if (B != 0) PC <= PC + e (where PC is the PC of this instruction)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DJNZ e 00010000 6

--(e-2)-

55

EI
Enable Interrupt

Notes:

1. Interrupts are first sampled during the fetch of the next instruction. If an interrupt is pending this instruc-
tion fetch will be ignored and an interrupt acknowledge cycle started.

EI

Operation: IFF1 <= 1

IFF2 <= 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

EI 11111011 2

56

EX
Exchange with Top-of-Stack

Notes:

1. y = 0 selects IX and y = 1 selects IY

EX (SP), src src: HL, IX, IY

Operation: (SP) <=> L or IXL or IYL

(SP+1) <=> H or IXH or IYH

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

EX (SP), HL 11100011 12 (10)

EX (SP), IX or EX (SP), IY 11y11101 14 (12)

11100011

57

EX AF, AF’
Exchange Accumulator

Notes:

1. No data is actually moved. Instead the registers are renamed.

EX AF, AF’

Operation: AF <=> AF’

Flags: S: Replaced by alternate flag.

Z: Replaced by alternate flag.

H: Replaced by alternate flag.

P/V: Replaced by alternate flag.

N: Replaced by alternate flag.

C: Replaced by alternate flag.

Addressing
Modes

Assembly Syntax Encoding Clocks

EX AF, AF’ 00001000 2

58

EX
Exchange (Word)

EX DE, HL

Operation: DE <=> HL

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

EX DE, HL 11101011 2

59

EXX
Exchange Register Bank

Notes:

1. No data is actually moved. Instead the registers are renamed.

EXX

Operation: BC <=> BC’

DE <=> DE’

HL <=> HL’

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

EXX 11011001 2

60

HALT
Halt

Notes:

1. The CPU halts with an idle bus until an interrupt is requested. The address pushed to the stack during the
interrupt acknowledge is the address of the next instruction. During Halt the mem_addr_bus and
io_addr_bus are driven with 0x0000, and the mem_data_bus and io_data_bus are driven with 0x00.

HALT

Operation: activate Halt signal and wait for interrupt

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

HALT 01110110 4 + 2n

61

IM
Interrupt Mode

Notes:

1. Interrupt Mode 0 expects an RST instruction on the ivec_bus during the interrupt acknowledge cycle.
Only an RST instruction is allowed.

2. Interrupt Mode 1 always jumps to location 0x0038 in response to a maskable interrupt request.

3. Interrupt Mode 2 uses the interrupt vector returned on the ivec_bus during an interrupt acknowledge
cycle, along with the contents of the I register, to access an interrupt vector table in memory. The address
stored at the selected location in the interrupt vector table is the starting addess of the interrupt service rou-
tine. Note that the least-significant bit of the interrupt vector must be zero to account for the two-byte entries
in the interrupt vector table.

IM i

Operation: Set Interrupt Mode i

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IM 0 11101101 4

01000110

IM 1 11101101 4

01010110

IM 2 11101101 4

01011110

62

IN
Input

IN A, src src: DA

Operation: A <= I/O(A:n)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IN A, (n) 11011011 8 (6)

----n---

63

IN
Input

Notes:

1. The rrr field uses the standard register select encoding

IN r, (C) dst: R

Operation: r <= I/O(BC)

Flags: S: Set if the input data is negative; cleared otherwise.

Z: Set if the input data is zero; cleared otherwise.

H: Cleared.

P/V: Set if the parity of the input data is even; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IN r, (C) 11101101 8 (6)

01rrr000

64

IN0
Input (page 0)

Notes:

1. The rrr field uses the standard register select encoding

2. This instruction is not present in the original Z80, but is a feature of the Z180.

IN0 r, (n) dst: R

Operation: r <= I/O(0:n)

Flags: S: Set if input byte is negative; cleared otherwise.

Z: Set if input byte is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of input byte is even; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IN0 r, (n) 11101101 10 (8)

00rrr000

----n---

65

INC
Increment

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

INC dst dst: R, IR, X

Operation: dst <= dst + 1

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic carry out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: INC r 00rrr100 2

IR: INC (HL) 00110100 8 (6)

X: INC (IX+d) or INC (IY+d) 11y11101 12 (10)

00110100

----d---

66

INC
Increment (Word)

Notes:

1. The dd field uses the standard word register encoding.

INC dst dst: RR, IX, IY

Operation: dst <= dst + 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: INC ss 00dd0011 2

IX, IY INC IX or INC IY 11y11101 4

00100011

67

IND
Input and Decrement

Notes:

1. For the original Z80, the S, H and P/V flags are undefined.

IND

Operation: (HL) <= I/O(BC)

B <= B - 1

HL <= HL -1

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IND 11101101 10 (8)

10101010

68

INDR
Input, Decrement and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each I/O read operation.

3. For the original Z80, the S, H and P/V flags are undefined.

INDR

Operation: (HL) <= I/O(BC)

B <= B - 1

HL <= HL -1

repeat if B != 0

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

INDR 11101101 8 + 4i

10111010

69

INI
Input and Increment

Notes:

1. For the original Z80, the S, H and P/V flags are undefined.

INI

Operation: (HL) <= I/O(BC)

B <= B - 1

HL <= HL + 1

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

INI 11101101 10 (8)

10100010

70

INIR
Input, Increment and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each I/O read operation.

3. For the original Z80, the S, H and P/V flags are undefined.

INIR

Operation: (HL) <= I/O(BC)

B <= B - 1

HL <= HL + 1

repeat if B != 0

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

INIR 11101101 8 + 6i

10110010

71

JP
Jump

Notes:

1. The indirect jumps use the contents of the register directly for the jump address.

JP dst dst: IM, IR

Operation: PC <= dst

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: JP (HL) 11101001 4

JP (IX) or JP (IY) 11y11101 6

11101001

IM: JP mn 11000011 8

----n---

----m---

72

JP
Conditional Jump

Notes:

JP cc, mn

Operation: if (cc = true) PC <= mn

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IM: JP cc, mn 11fff010 8 (taken)

----n--- 6 (not taken)

----m---

1. Mnemonic Encoding (fff) Meaning Flag case

NZ 000 Non-zero Z = 0

Z 001 Zero Z = 1

NC 010 Non-carry C = 0

C 011 Carry C = 1

PO 100 Parity Odd P/V = 0

PE 101 Parity Even P/V = 1

P 110 Plus S = 0

M 111 Minus S = 1

73

JR
Jump Relative

Notes:

1. Relative to the address of this instruction, the jump range is -126 to +129. Relative to the address of the
next instruction, the jump range is -128 to +127.

JR e

Operation: PC <= PC + e (where PC is the PC of this instruction)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

JR e 00011000 6

--(e-2)-

74

JR
Conditional Jump Relative

Notes:

1. Relative to the address of this instruction, the jump range is -126 to +129. Relative to the address of the
next instruction, the jump range is -128 to +127.

JR cc, e

Operation: if (cc = true) PC <= PC + e (where PC is the PC of this instruction)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

JR cc, e 001cc000 6 (taken)

--(e-2)- 4 (not taken)

1. Mnemonic Encoding (cc) Meaning Flag case

NZ 00 Non-zero Z = 0

Z 01 Zero Z = 1

NC 10 Non-carry C = 0

C 11 Carry C = 1

75

LD
Load Accumulator from Memory

LD A, src src: DA, IR

Operation: A <= src

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: LD A, (mn) 00111010 10 (8)

----n---

----m---

IR: LD A, (BC) 00001010 6 (4)

LD A, (DE) 00011010 6 (4)

76

LD
Load Accumulator from Special Register

LD A, src src: special register

Operation: A <= src

Flags: S: Set if the contents of the Special Register is negative; cleared otherwise.

Z: Set if the contents of the Special Register is zero; cleared otherwise.

H: Cleared.

P/V: Loaded with the contents if the IFF2 interrupt enable flag.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LD A, I 11101101 4

01010111

LD A, R 11101101 4

01011111

77

LD
Load Memory from Accumulator

LD dst, A dst: DA, IR

Operation: dst <= A

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: LD (mn), A 00110010 10 (8)

----n---

----m---

IR: LD (BC), A 00000010 6 (4)

LD (DE), A 00010010 6 (4)

78

LD
Load Memory with Immediate

Notes:

1. y = 0 selects IX and y = 1 selects IY

LD dst, n dst: IR, X

Operation: dst <= n

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LD (HL), n 00110110 6

----n---

X: LD (IX+d), n or LD (IY+d), n 11y11101 10

00110110

----d---

----n---

79

LD
Load Memory from Register

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

LD dst, r dst: IR, X

Operation: dst <= r

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IR: LD (HL), r 01110rrr 6 (4)

X: LD (IX+d), r or LD (IY+d), r 11y11101 10 (8)

01110rrr

80

LD
Load Memory from Register (Word)

Notes:

1. The ss field uses the standard word register encoding.

LD (mn), src src: HL, RR, IX, IY

Operation: (mn) <= src

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

HL: LD (mn), HL 00100010 12 (10)

----n---

----m---

RR: LD (mn), ss 11101101 14 (12)

01ss0011

----n---

----m---

IX, IY: LD (mn), IX or LD (mn), IY 11y11101 14 (12)

00100010

----n---

----m---

81

LD
Load Register

Notes:

1. The rdr, rsr and rrr fields use the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

LD r, src dst: R, IM, IR, X

Operation: r <= src

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: LD rd, rs 01rdrrsr 2

IM LD r, n 00rrr110 4

----n---

IR: LD r, (HL) 01rrr110 6 (4)

X: LD r, (IX+d) or LD r, (IY+d) 11y11101 10 (8)

01rrr110

----d---

82

LD
Load Register Immediate (Word)

Notes:

1. The dd field uses the standard word register encoding.

2. y = 0 selects IX and y = 1 selects IY

LD dst, mn dst: RR, IX, IY

Operation: dst <= mn

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

IM: LD dd, mn 00dd0001 6

----n---

----m---

LD IX, mn or LD IY, mn 11y11101 8

00100001

----n---

----m---

83

LD
Load Register (Word)

Notes:

1. The dd field uses the standard word register encoding.

LD dst, (mn) dst: RR, IX, IY

Operation: dst <= (mn)

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

DA: LD HL, (mn) 00101010 12 (10)

----n---

----m---

LD dd, (mn) 11101101 14 (12)

01dd1011

----n---

----m---

LD IX, (mn) or LD IY, (mn) 11y11101 14 (12)

00101010

----n---

----m---

84

LD
Load Special Register from Accumulator

LD dst, A dst: special register

Operation: dst <= A

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LD I, A 11101101 4

01000111

LD R, A 11101101 4

01001111

85

LD
Load Stack pointer

Notes:

2. y = 0 selects IX and y = 1 selects IY

LD SP, src src: HL, IX, IY

Operation: SP <=src

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LD SP, HL 11111001 2

LD SP, IX or LD SP, IY 11y11101 4

11111001

86

LDD
Load and Decrement

LDD

Operation: (DE) <= (HL)

BC <= BC - 1

DE <= DE - 1

HL <= HL -1

Flags: S: Unaffected.

Z: Unaffected.

H: Cleared.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDD 11101101 10 (8)

10101000

87

LDDR
Load, Decrement and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

LDDR

Operation: (DE) <= (HL)

BC <= BC - 1

DE <= DE - 1

HL <= HL -1

repeat if BC != 0

Flags: S: Unaffected.

Z: Unaffected

H: Cleared.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDDR 11101101 8 + 4i

10111010

88

LDI
Load and Increment

INI

Operation: (DE) <= (HL)

BC <= BC - 1

DE <= DE + 1

HL <= HL + 1

Flags: S: Unaffected.

Z: Unaffected.

H: Cleared.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDI 11101101 10 (8)

10100000

89

LDIR
Input, Increment and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

LDIR

Operation: (DE) <= (HL)

BC <= BC - 1

DE <= DE + 1

HL <= HL + 1

repeat if BC != 0

Flags: S: Unaffected.

Z: Unaffected.

H: Cleared.

P/V: Set if result of decrementing BC is non-zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

LDIR 11101101 8 + 4i

10110000

90

MLT
Multiply

Notes:

1. The ss field uses the standard word register encoding.

2. This is an unsigned multiply.

3. A compile-time option exists to change the execution time to 4 clock cycles. This option should only be
selected if the technology supports fast carry chains, as it uses a parallel 8x8 multiplier.

4. This instruction is not present in the original Z80, but is a feature of the Z180.

MLT src src: R

Operation: src <= srch * srcl

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: MLT ss 11101101 14

01ss1100 (note 3)

91

NEG
Negate

NEG

Operation: A <= 0 - A

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow (A was 0x80 before inst); cleared otherwise.

N: Cleared.

C: Set if arithmetic borrow out of bit 7 (A was not 0x00 before inst); cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

NEG 11101101 4

00100100

92

NOP
No Operation

NOP

Operation: none

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

NOP 00000000 2

93

OR
Logical OR

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

OR A, src src: R, IM, IR, X

Operation: A <= A | src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Cleared.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: OR A, r 10110rrr 2

IM: OR A, n 11110110 4

----n---

IR: OR A, (HL) 10110110 6 (4)

X: OR A, (IX+d) or OR A, (IY+d) 11y11101 10 (8)

10110110

----d---

94

OTDM
Output and Decrement Multiple

Notes:

1. This instruction is not present in the original Z80, but is a feature of the Z180.

OTDM

Operation: I/O(0,C) <= (HL)

B <= B - 1

C <= C - 1

HL <= HL -1

Flags: S: Set if the result of decrementing B is negative; cleared otherwise.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Set if there is a borrow out of bit 3 while decrementing B; cleared otherwise.

P/V: Set if the parity of the result of decrementing B is even; cleared otherwise.

N: Set if the byte transferred is negative; cleared otherwise.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTDM 11101101 10 (8)

10001011

95

OTDMR
Output, Decrement Multiple and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

OTDMR

Operation: I/O(BC) <= (HL)

B <= B - 1

C <= C - 1

HL <= HL -1

repeat if B != 0

Flags: S: Set if the result of decrementing B is negative; cleared otherwise.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Set if there is a borrow out of bit 3 while decrementing B; cleared otherwise.

P/V: Set if the parity of the result of decrementing B is even; cleared otherwise.

N: Set if the byte transferred is negative; cleared otherwise.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTDMR 11101101 8 + 4i

10011011

96

OTDR
Output, Decrement and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

3. For the original Z80, the S, H and P/V flags are undefined.

OTDR

Operation: I/O(BC) <= (HL)

B <= B - 1

HL <= HL -1

repeat if B != 0

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTDR 11101101 8 + 4i

10111011

97

OTIM
Output and Increment Multiple

Notes:

1. This instruction is not present in the original Z80, but is a feature of the Z180.

OTIM

Operation: I/O(BC) <= (HL)

B <= B - 1

C <= C + 1

HL <= HL + 1

Flags: S: Set if the result of decrementing B is negative; cleared otherwise.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Set if there is a borrow out of bit 3 while decrementing B; cleared otherwise.

P/V: Set if the parity of the result of decrementing B is even; cleared otherwise.

N: Set if the byte transferred is negative; cleared otherwise.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTIM 11101101 10 (8)

10000011

98

OTIMR
Output, Increment Multiple and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

3. This instruction is not present in the original Z80, but is a feature of the Z180.

OTIMR

Operation: I/O(BC) <= (HL)

B <= B - 1

C <= C + 1

HL <= HL + 1

repeat if B != 0

Flags: S: Set if the result of decrementing B is negative; cleared otherwise.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Set if there is a borrow out of bit 3 while decrementing B; cleared otherwise.

P/V: Set if the parity of the result of decrementing B is even; cleared otherwise.

N: Set if the byte transferred is negative; cleared otherwise.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTIMR 11101101 8 + 4i

10010011

99

OTIR
Output, Increment and Repeat

Notes:

1. This instruction can be interrupted after each iteration. The address saved on the stack in this case is the
address of this instruction, allowing completion of the instruction after the interrupt service routine

2. Interrupts are sampled during each memory read operation.

3. For the original Z80, the S, H and P/V flags are undefined.

OTIR

Operation: I/O(BC) <= (HL)

B <= B - 1

HL <= HL + 1

repeat if B != 0

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Set if result of decrementing B is zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OTIR 11101101 8 + 4i

10110011

100

OUT
Output

OUT dst, A dst: DA

Operation: I/O(A:n) <= A

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUT (n), A 11010011 8 (6)

----n---

101

OUT
Output

Notes:

1. The rrr field uses the standard register select encoding

OUT (C), r src: R

Operation: I/O(BC) <= r

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUT (C), r 11101101 8 (6)

01rrr001

102

OUT0
Output (page 0)

Notes:

1. The rrr field uses the standard register select encoding

2. This instruction is not present in the original Z80, but is a feature of the Z180.

OUT0 (n), r src: R

Operation: I/O(0,n) <= r

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUT0 (n), r 11101101 10 (8)

00rrr001

----n---

103

OUTD
Output and Decrement

Notes:

1. For the original Z80, the S, H and P/V flags are undefined.

OUTD

Operation: I/O(BC) <= (HL)

B <= B - 1

HL <= HL -1

Flags: S: Unaffected.

Z: Set if result of decrementing B is zero; cleared otherwise.

H: Unaffected.

P/V: Unaffected.

N: Set.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUTD 11101101 10 (8)

10101011

104

OUTI
Output and Increment

Notes:

1. For the original Z80, the S, H and P/V flags are undefined.

OUTI

Operation: I/O(BC) <= (HL)

B <= B - 1

HL <= HL + 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Set if result of decrementing B is zero; cleared otherwise.

N: Cleared.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

OUTI 11101101 10 (8)

10100011

105

POP
Pop from Stack

Notes:

1. The tt field uses the standard word register encoding.

2. y = 0 selects IX and y = 1 selects IY

POP dst dst: RR, IX, IY

Operation: dst[lsb] <= (SP)

dst[msb] <= (SP+1)

SP <= SP + 2

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: POP tt 11tt0001 8 (6)

IX, IY POP IX or POP IY 11y11101 10 (8)

11100001

106

PUSH
Push to Stack

Notes:

1. The tt field uses the standard word register encoding.

2. y = 0 selects IX and y = 1 selects IY

PUSH src src: RR, IX, IY

Operation: (SP-1) <= src[msb]

(SP-2) <= src[lsb]

SP <= SP - 2

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: PUSH tt 11tt0101 8 (6)

IX, IY PUSH IX or PUSH IY 11y11101 10 (8)

11100101

107

RES
Bit Reset

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

3. The bbb field uses normal binary encoding.

RES b, dst src: R, IR, X

Operation: dst[b] <= 0

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RES b, r 11001011 4

10bbbrrr

IR: RES b, (HL) 10100110 10 (8)

10bbb1110

X: RES b, (IX+d) or RES (IY+d) 11y11101 12 (10)

11001011

----d---

10bbb110

108

RET
Return from Subroutine

RET

Operation: PC[lsb] <= (SP)

PC[msb] <= (SP+1)

SP <= SP + 2

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RET 11001001 10

109

RET
Conditional Return from Subroutine

Notes:

RET cc

Operation: if (cc = true) begin

 PC[lsb] <= (SP)

 PC[msb] <= (SP+1)

 SP <= SP + 2

 end

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RET cc 11fff000 10 (taken)

2 (not taken)

1. Mnemonic Encoding (fff) Meaning Flag case

NZ 000 Non-zero Z = 0

Z 001 Zero Z = 1

NC 010 Non-carry C = 0

C 011 Carry C = 1

PO 100 Parity Odd P/V = 0

PE 101 Parity Even P/V = 1

P 110 Plus S = 0

M 111 Minus S = 1

110

RETI
Return from Interrupt

Notes:

1. This instruction activates the dedicated RETI signal out of the core.

RETI

Operation: PC[lsb] <= (SP)

PC[msb] <= (SP+1)

SP <= SP + 2

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RETI 11101101 12

01001101

111

RETN
Return from Non-Maskable Interrupt

RETN

Operation: PC[lsb] <= (SP)

PC[msb] <= (SP+1)

SP <= SP + 2

IFF2 <= IFF1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RETN 11001001 12

01000101

112

RL
Rotate Left

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

RL src src: R, IR, X

Operation: {CF, src} <= {src, CF}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RL r 11001011 4

00010rrr

IR: RL (HL) 10100110 10 (8)

00010110

X: RL (IX+d) or RL (IY+d) 11y11101 12 (10)

11001011

----d---

00010110

113

RLA
Rotate Left Accumulator

RLA

Operation: {CF, A} <= {A, CF}

Flags: S: Unaffected

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

RLA 00010111 2

114

RLC
Rotate Left Circular

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

RLC src src: R, IR, X

Operation: {CF, src} <= {src, src[7]}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RLC r 11001011 4

00000rrr

IR: RLC (HL) 10100110 10 (8)

00000110

X: RLC (IX+d) or RLC (IY+d) 11y11101 12 (10)

11001011

----d---

00000110

115

RLCA
Rotate Left Circular Accumulator

RLCA

Operation: {CF, A} <= {A, A[7]}

Flags: S: Unaffected

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

RLCA 00000111 2

116

RLD
Rotate Left Digit

RLD

Operation: {A, (HL)} <= {A[7:4], (HL), A[3:0]}

Flags: S: Set if A is negative after the operation; cleared otherwise.

Z: Set if A is zero after the operation; cleared otherwise.

H: Cleared.

P/V: Set if parity of A is even after the operation; cleared otherwise.

N: Cleared.

C: Unaffected

Addressing
Modes

Assembly Syntax Encoding Clocks

RLD 11101101 10 (8)

01101111

117

RR
Rotate Right

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

RR src src: R, IR, X

Operation: {src, CF} <= {CF, src}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RR r 11001011 4

00011rrr

IR: RR (HL) 10100110 10 (8)

00011110

X: RR (IX+d) or RR (IY+d) 11y11101 12 (10)

11001011

----d---

00011110

118

RRA
Rotate Right Accumulator

RRA

Operation: {A, CF} <= {CF, A}

Flags: S: Unaffected

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

RRA 00011111 2

119

RRC
Rotate Right Circular

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

RRC src src: R, IR, X

Operation: {src, CF} <= {src[0], src}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: RRC r 11001011 4

00001rrr

IR: RRC (HL) 10100110 10 (8)

00001110

X: RRC (IX+d) or RRC (IY+d) 11y11101 12 (10)

11001011

----d---

00001110

120

RRCA
Rotate Right Circular Accumulator

RRCA

Operation: {A, CF} <= {A[0], A}

Flags: S: Unaffected

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

RRCA 00001111 2

121

RRD
Rotate Right Digit

RRD

Operation: {A, (HL)} <= {A[7:4], (HL)[3:0], A[3:0], (HL)[7:4]}

Flags: S: Set if A is negative after the operation; cleared otherwise.

Z: Set if A is zero after the operation; cleared otherwise.

H: Cleared.

P/V: Set if parity of A is even after the operation; cleared otherwise.

N: Cleared.

C: Unaffected

Addressing
Modes

Assembly Syntax Encoding Clocks

RRD 11101101 10 (8)

01100111

122

RST
Restart

Notes:

RST v

Operation: SP <= SP - 2

 (SP) <= PC

 PC <= v

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

RST v 11vvv111 8

1. Mnemonic Encoding (vvv) Restart Address

0 000 0x0000

0x8 001 0x0008

0x10 010 0x0010

0x18 011 0x0018

0x20 100 0x0020

0x28 101 0x0028

0x30 110 0x0030

0x38 111 0x0038

123

SBC
Subtract With Carry

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

SBC A, src src: R, IM, IR, X

Operation: A <= A - src - CF

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic borrow out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SBC A, r 10011rrr 2

IM: SBC A, n 11011110 4

----n---

IR: SBC A, (HL) 10011110 6 (4)

X: SBC A, (IX+d) or SBC A, (IY+d) 11y11101 10 (8)

10011110

----d---

124

SBC
Subtract With Carry (Word)

Notes:

1. The ss field uses the standard word register encoding.

SBC HL, src src: RR

Operation: HL <= HL - src - CF

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 11; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic carry out of bit 15; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

RR: SBC HL, ss 11101101 4

01ss0010

125

SCF
Set Carry Flag

CCF

Operation: CF <= 1

Flags: S: Unaffected.

Z: Unaffected.

H: Cleared.

P/V: Unaffected.

N: Cleared.

C: Set.

Addressing
Modes

Assembly Syntax Encoding Clocks

SCF 00110111 2

126

SET
Bit Set

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

3. The bbb field uses normal binary encoding.

SET b, dst src: R, IR, X

Operation: dst[b] <= 1

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SET b, r 11001011 4

11bbbrrr

IR: SET b, (HL) 10100110 10 (8)

11bbb1110

X: SET b, (IX+d) or SET b, (IY+d) 11y11101 12 (10)

11001011

----d---

11bbb110

127

SLA
Shift Left Arithmetic

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

SLA src src: R, IR, X

Operation: {CF, src} <= {src, 0}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 7.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SLA r 11001011 4

00100rrr

IR: SLA (HL) 10100110 10 (8)

00100110

X: SLA (IX+d) or SLA (IY+d) 11y11101 12 (10)

11001011

----d---

00100110

128

SLP
Sleep

Notes:

1. The CPU halts, with an idle bus, until an interrupt is requested. During Sleep the mem_addr_bus and
io_addr_bus are driven with 0x0000, and the mem_data_bus and io_data_bus are driven with 0x00.

2. In the case of an NMI or enabled maskable interrupt the address pushed to the stack during the interrupt
acknowledge is the address of the next instruction.

3. If interrupts are disabled a maskable interrupt request during Sleep causes the CPU to resume execution
with the next instruction. This saves time when restarting from Sleep.

4. This instruction is not present in the original Z80, but is a feature of the Z180.

SLP

Operation: activate SLEEP signal and wait for interrupt

Flags: S: Unaffected.

Z: Unaffected.

H: Unaffected.

P/V: Unaffected.

N: Unaffected.

C: Unaffected.

Addressing
Modes

Assembly Syntax Encoding Clocks

SLP 11101101 6 + 2n

01110110

129

SRA
Shift Right Arithmetic

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

SRA src src: R, IR, X

Operation: {src, CF} <= {src[7], src}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SRA r 11001011 4

00101rrr

IR: SRA (HL) 10100110 10 (8)

00101110

X: SRA (IX+d) or SRA (IY+d) 11y11101 12 (10)

11001011

----d---

00101110

130

SRL
Shift Right Logical

Notes:

1. The rrr field uses the standard register select encoding.

2. y = 0 selects IX and y = 1 selects IY.

SRL src src: R, IR, X

Operation: {src, CF} <= {0, src}

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Data from bit 0.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SRL r 11001011 4

00111rrr

IR: SRL (HL) 10100110 10 (8)

00111110

X: SRL (IX+d) or SRL (IY+d) 11y11101 12 (10)

11001011

----d---

00111110

131

SUB
Subtract

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

SUB A, src src: R, IM, IR, X

Operation: A <= A - src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set if arithmetic borrow out of bit 3; cleared otherwise.

P/V: Set if arithmetic overflow; cleared otherwise.

N: Cleared.

C: Set if arithmetic borrow out of bit 7; cleared otherwise.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: SUB A, r 10010rrr 2

IM: SUB A, n 11010110 4

----n---

IR: SUB A, (HL) 10010110 6 (4)

X: SUB A, (IX+d) or SUB A, (IY+d) 11y11101 10 (8)

10010110

----d---

132

TST
Test

Notes:

1. The rrr field uses the standard register select encoding

2. This instruction is not present in the original Z80, but is a feature of the Z180.

TST src src: R, IM, IR

Operation: A & src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Cleared.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: TST r 11101101 4

00rrr100

IM: TST n 11101101 6

01100100

----n---

IR: TST (HL) 11101101 8 (6)

00110100

133

TSTIO
Test I/O

Notes:

1. This instruction is not present in the original Z80, but is a feature of the Z180.

TSTIO n

Operation: I/O(0,C) & n

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Set.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Cleared.

Addressing
Modes

Assembly Syntax Encoding Clocks

TSTIO n 11101101 10

01110100

----n---

134

XOR
Logical Exclusive-OR

Notes:

1. The rrr field uses the standard register select encoding

2. y = 0 selects IX and y = 1 selects IY

XOR A, src src: R, IM, IR, X

Operation: A <= A ^ src

Flags: S: Set if result is negative; cleared otherwise.

Z: Set if result is zero; cleared otherwise.

H: Cleared.

P/V: Set if parity of result is even; cleared otherwise.

N: Cleared.

C: Cleared.

Addressing
Modes

Assembly Syntax Encoding Clocks

R: XOR A, r 10101rrr 2

IM: XOR A, n 11101110 4

----n---

IR: XOR A, (HL) 10101110 6 (4)

X: XOR A, (IX+d) or XOR A, (IY+d) 11y11101 10 (8)

10101110

----d---

135

Memory Management Unit

The Memory Management Unit (MMU) expands the logical address space of 64K bytes
(16-bit address) to a physical address space of 1M bytes (20-bit address), using variable-
sized segments.

MMU Features:

- Three memory segments, aligned on 4k boundaries

- Two eight-bit base registers, one implied base register of 0x00

MMU Registers

Register Name Mnemonic I/O address R/W Reset

MMU Common Base Register CBR 0x0038 R/W 00000000

MMU Bank Base Register BBR 0x0039 R/W 00000000

MMU Common/Bank Area Register CBAR 0x003A R/W 11110000

136

MMU Register Descriptions

Common Base Register (CBR) (Address = 0x0038)

Bit(s) Value Description

7:0
Eight bits of physical address offset to use if:

CBAR[7:4] <= Addr[15:12]

Bank Base Register (BBR) (Address = 0x0039)

Bit(s) Value Description

7:0
Eight bits of physical address offset to use if:

CBAR[3:0] <= Addr[15:12] < CBAR[7:4]

MMU Common/Bank Area Register (CBAR) (Address = 0x003A)

Bit(s) Value Description

7:4 Write Boundary value for switching from BBR to CBR for translation.

3:0 Write Boundary value for switching from none to BBR for translation.

137

MMU Operation Details

The Memory Management Unit divides the 64K logical address space into three variable-
sized segments, with each segment a multiple of 4K bytes. Depending on the MMU pro-
gramming one, two, or all three segments may be used at once.

Only two of the segments can be relocated, using a base register in the MMU. The third
segment always starts at logical address 0x0000. The figure below shows the typical case
of three segments:

Physical Address[19:12] = Addr[15:12] + CBR

CBAR[7:4] sets boundary

Common Area 1

0xFFFFF

Physical Address[19:12] = Addr[15:12] + BBR

CBAR[3:0] sets boundary

Bank Area

Common Area 0

0x00000

138

139

Interrupt Control

The Interrupt Control (ICTL) manages all of the on-chip and external interrupt requests. It
automatically prioritizes interrupt requests and generates interrupt vectors where appropri-
ate.

Interrupt Control Features:

- Fixed prioritization of all interrupt requests.

- Relocatable interrupt vectors for all on-chip peripherals.

- Individual enables for external interrupt requests (int0_req, int1_req and int2_req).

- Automatic selection of Interrupt Mode 2 for internal and two external interrupt requests.

Interrupt Control Registers

Register Name Mnemonic I/O address R/W Reset

Interrupt Vector Low Register IL 0x0033 R/W 00000000

Interrupt/Trap Control Register ITC 0x0034 R/W 00111001

140

Interrupt Control Register Descriptions

Interrupt Vector Low Register (IL) (Address = 0x0033)

Bit(s) Value Description

7:5

These are the three most-significant bits of the interrupt vector returned during
an interrupt acknowledge transaction for the on-chip interrupts, as well as for the
int1_req and int2_req inputs. The other bits of the vector are:

 int1_req: 00000

 int2_req: 00010

 prt0: 00100

 prt1: 00110

 dma0: 01000

 dma1: 01010

 csio: 01100

 asci0: 01110

 asci1: 10000

Note that int0_req does not automatically use Interrupt Mode 2, and if a vector is
required for this interrupt request it must be externally supplied.

4:0 These bits are reserved and should always be written with zeros.

Interrupt/Trap Control Register (ITC) (Address = 0x0034)

Bit(s) Value Description

7 0 No illegal instruction fetch since last write of zero to this bit.

1
An illegal instruction has been fetched. This status is latched until this bit is
written with zero.

6 0 Last illegal instruction fetch was a two-byte opcode.

1 Last illegal instruction fetch was a three-byte opcode.

5:3 These bits are reserved. Reads always return ones.

2 0 Disable int2_req interrupt request.

1 Enable int2_req interrupt request.

1 0 Disable int1_req interrupt request.

1 Enable int1_req interrupt request.

0 0 Disable int0_req interrupt request.

1 Enable int0_req interrupt request.

141

Direct Memory Access

Two Direct memory Access (DMA) channels provide memory-to-memory, memory-to-I/
O and I/O-to-memory data transfers in parallel with CPU operation. The two channels are
not identical, but have similar capabilities.

DMA Features:

- 20-bit physical memory address, 16-bit I/O address

- Channel 0 supports memory-memory and memory-I/O transfers

- Channel 1 supports only memory-I/O transfers

- Memory address increment, decrement, or fixed

- I/O address always fixed

- Maximum transfer length of 65,536 bytes

- dreq (external request) input for each channel, programmable edge- or level-sensitive

- tend (Transfer End or DMA Complete) output for each channel

- Mode to toggle between channels, which allows simulating scatter/gather operation

142

DMA Registers

Note: The reset value for bit 7-4 in the DMA/Wait Control Register can be changed using
a compile option. The default, shown here, selects the maximum number of internally-
generated Wait states for both memory and I/O. A compile option exists to disable all
internally-generated Wait states as a result of a Reset.

Register Name Mnemonic I/O address R/W Reset

DMA Source Address Register 0 Low SAR0L 0x0020 R/W xxxxxxxx

DMA Source Address Register 0 High SAR0H 0x0021 R/W xxxxxxxx

DMA Source Address Register 0 Page SAR0P 0x0022 R/W 00000000

DMA Destination Address Register 0 Low DAR0L 0x0023 R/W xxxxxxxx

DMA Destination Address Register 0 High DAR0H 0x0024 R/W xxxxxxxx

DMA Destination Address Register 0 Page DAR0P 0x0025 R/W 00000000

DMA Byte Count Register 0 Low BCR0L 0x0026 R/W xxxxxxxx

DMA Byte Count Register 0 High BCR0H 0x0027 R/W xxxxxxxx

DMA Memory Address Register 1 Low MAR1L 0x0028 R/W xxxxxxxx

DMA Memory Address Register 1 High MAR1H 0x0029 R/W xxxxxxxx

DMA Memory Address Register 1 Page MAR1P 0x002A R/W 0000xxxx

DMA I/O Address Register 1 Low IAR1L 0x002B R/W xxxxxxxx

DMA I/O Address Register 1 High IAR1H 0x002C R/W xxxxxxxx

DMA I/O Address Register 1 Page IAR1P 0x002D R/W 00000000

DMA Byte Count Register 1 Low BCR1L 0x002E R/W xxxxxxxx

DMA Byte Count Register 1 High BCR1H 0x002F R/W xxxxxxxx

DMA Status Register DSTAT 0x0030 R/W 00110010

DMA Mode Register DMODE 0x0031 R/W 11000001

DMA/Wait Control Register DCNTL 0x0032 R/W 11110000

143

DMA Register Descriptions

Note: When the DMA 0 Source Address is an I/O address, two bits of the SAR0P register
select the source for the DMA Request signal, according to the table below. The corre-
sponding address of the ASCI Receive Data Register must be written to the DMA Source
Address Register when DMA 0 is connected to an ASCI Receive Data Ready signal. Mod-
ifying the source of the DMA Request signal should only be done while the DMA channel
is disabled.

DMA Source Address Register 0 (SAR0L) (Address = 0x0020)

(SAR0H) (Address = 0x0021)

(SAR0P) (Address = 0x0022)

Bit(s) Value Description

23:20 These bits are reserved and will always be read as zero.

19:16 DMA 0 source address page.

15:8 DMA 0 source address MSByte.

7:0 DMA 0 source address LSByte.

SAR0P[17:16] DMA Request when SAR is I/O

00 dreq0

01 ASCI0 Receive Data Ready

10 ASCI1 Receive Data Ready

11 dreq1

144

Note: When the DMA 0 Destination Address is an I/O address, two bits of the DAR0P
register select the source for the DMA Request signal, according to the table below. The
corresponding address of the ASCI Transmit Data Register must be written to the DMA
Destination Address Register when DMA 0 is connected to an ASCI Transmit Data Ready
signal. Modifying the source of the DMA Request signal should only be done while the
DMA channel is disabled.

DMA Destination Address Register 0 (DAR0L) (Address = 0x0023)

(DAR0H) (Address = 0x0024)

(DAR0P) (Address = 0x0025)

Bit(s) Value Description

23:20 These bits are reserved and will always be read as zero.

19:16 DMA 0 destination address page.

15:8 DMA 0 destination address MSB.

7:0 DMA 0 destination address LSB.

DAR0P[17:16] DMA Request when DAR is I/O

00 dreq0

01 ASCI0 Transmit Data Ready

10 ASCI1 Transmit Data Ready

11 dreq1

DMA Byte Count Register 0 (BCR0L) (Address = 0x0026)

(BCR0H) (Address = 0x0027)

Bit(s) Value Description

15:8 DMA 0 byte count MSB.

7:0 DMA 0 byte count LSB.

145

Note: Modifying the source of the DMA Request signal should only be done while the
DMA channel is disabled.

DMA Memory Address Register 1 (MAR1L) (Address = 0x0028)

(MAR1H) (Address = 0x0029)

(MAR1P) (Address = 0x002A)

Bit(s) Value Description

23:20 These bits are reserved and will always be read as zero.

19:16 DMA 1 memory address page.

15:8 DMA 1 memory address MSB.

7:0 DMA 1 memory address LSB.

DMA I/O Address Register 1 (IAR1L) (Address = 0x002B)

(IAR1H) (Address = 0x002C)

(IAR1P) (Address = 0x002D)

Bit(s) Value Description

23 0 DMA channels are independent.

1
Toggle between channels at terminal count. Automatically switches selected
internal request between channels.

22 0
DMA 0 is the currently selected channel. This bit is valid only when the channel
toggle function is enabled in this register.

1
DMA 1 is the currently selected channel. This bit is valid only when the channel
toggle function is selected in this register.

21:18 These bits are reserved, but are R/W.

17:16 00 DMA 1 is controlled by dreq1.

01
DMA 1 connected to ASCI0 (receive if DMA 1 source is I/O, transmit if DMA 1
destination is I/O).

10
DMA 1 connected to ASCI1 (receive if DMA 1 source is I/O, transmit if DMA 1
destination is I/O).

11 DMA 1 is controlled by dreq0.

15:8 DMA 1 I/O address MSB.

7:0 DMA 1 I/O address LSB.

146

DMA Byte Count Register 1 (BCR1L) (Address = 0x002E)

(BCR1H) (Address = 0x002F)

Bit(s) Value Description

15:8 DMA 1 byte count MSB.

7:0 DMA 1 byte count LSB.

DMA Status Register (DSTAT) (Address = 0x0030)

Bit(s) Value Description

7 0
Disable DMA 1. An interrupt will be requested while this bit is cleared and DMA
1 interrupts are enabled.

1
Enable DMA 1. Note that this bit can only be updated if bit 5 is cleared during
the write.

6 0
Disable DMA 0. An interrupt will be requested while this bit is cleared and DMA
0 interrupts are enabled.

1
Enable DMA 0. Note that this bit can only be updated if bit 4 is cleared during
the write.

5 0 Allow bit 7 of this register to be updated with this write.

(wr-only) 1
Do not allow bit 7 of this register to be updated with this write. This bit always
returns one when read.

4 0 Allow bit 6 of this register to be updated with this write.

(wr-only) 1
Do not allow bit 6 of this register to be updated with this write. This bit always
returns one when read.

3 0 Disable DMA 1 interrupt.

1 Enable DMA 1 interrupt.

2 0 Disable DMA 0 interrupt.

1 Enable DMA 0 interrupt.

1 This bit is reserved and always returns one when read.

0 0
DMA is disabled. This bit is cleared by a Non-maskable Interrupt request
(nmi_req) to inhibit DMA operation during the NMI service routine.

(rd-only) 1
DMA is enabled. This bit is not set directly, but will be set whenever either bit 7
or bit 6 of this register are written with 1.

147

Note: The DMA Mode Register should only be modified while DMA 0 is disabled. Not
all combinations of source and destination are valid. See the table below:

DMA Mode Register (DMODE) (Address = 0x0031)

Bit(s) Value Description

7:6 These bits are reserved and always return one when read.

5:4 00
DMA 0 destination is memory. Auto-increment destination address after each
transfer.

01
DMA 0 destination is memory. Auto-decrement destination address after each
transfer.

10 DMA 0 destination is memory, with a fixed address.

11 DMA 0 destination is I/O, with a fixed address.

3:2 00 DMA 0 source is memory. Auto-increment source address after each transfer.

01 DMA 0 source is memory. Auto-decrement source address after each transfer.

10 DMA 0 source is memory, with a fixed address.

11 DMA 0 source is I/O, with a fixed address.

1 0 DMA 0 memory-to-memory transfers are one byte at a time.

1 DMA 0 memory-to-memory transfers burst for the entire byte count.

0 This bit is reserved and always returns one when read.

DMODE[5:4] DMODE[3:2] Transfer type

00 00 Memory (autoinc) -> Memory (autoinc)

00 01 Memory (autodec) -> Memory (autoinc)

00 10 Memory (fixed address) -> Memory (autoinc)

00 11 I/O (fixed address) -> Memory (autoinc)

01 00 Memory (autoinc) -> Memory (autodec)

01 01 Memory (autodec) -> Memory (autodec)

01 10 Memory (fixed address) -> Memory (autodec)

01 11 I/O (fixed address) -> Memory (autodec)

10 00 Memory (autoinc) -> Memory (fixed address)

10 01 Memory (autodec) -> Memory (fixed address)

10 10 Invalid

10 11 Invalid

11 00 Memory (autoinc) -> I/O (fixed address)

11 01 Memory (autodec) -> I/O (fixed address)

11 10 Invalid

11 11 Invalid

148

Note: Bits 3-0 of the DMA/Wait Control Register should only be modified while the
DMA is disabled.

DMA/Wait Control Register (DCNTL) (Address = 0x0032

Bit(s) Value Description

7:6 00 Memory transfers have 0 wait states.

01 Memory transfers have 1 wait state.

10 Memory transfers have 2 wait states.

11 Memory transfers have 3 wait states.

5:4 00 I/O transfers have 0 wait states.

01 I/O transfers have 1 wait state.

10 I/O transfers have 2 wait states.

11 I/O transfers have 3 wait states.

3 0
dreq1 is level-sensitive. DMA transfers continue as long as the dreq1 signal is
active. To terminate on a particular DMA transfer, the dreq1 signal should be de-
asserted before the start of the final DMA write transfer.

1

dreq1 is edge-sensitive. One DMA transfer per inactive-to-active edge on dreq1.
Note that inactive-to-active edges must not occur more often that the DMA
channel is capable of transferring a byte. The edge-detector is cleared during the
last clock of a DMA write transfer.

2 0
dreq0 is level-sensitive. DMA transfers continue as long as the dreq0 signal is
active. To terminate on a particular DMA transfer, the dreq0 signal should be de-
asserted before the start of the final DMA write transfer.

1

dreq0 is edge-sensitive. One DMA transfer per inactive-to-active edge on dreq0.
Note that inactive-to-active edges must not occur more often that the DMA
channel is capable of transferring a byte. The edge-detector is cleared during the
last clock of a DMA write transfer.

1 0 DMA 1 transfers are memory-to-I/O.

1 DMA 1 transfers are I/O-to-memory.

0 0 DMA 1 memory address auto-increments and I/O address is fixed.

1 DMA 1 memory address auto-decrements and I/O address is fixed.

149

Async Serial

Each of the two Async Serial Communications Interface (ASCI) channels provide asyn-
chronous communications capabilities.

ASCI Features:

- Full-duplex, 7 or 8 bits/character

- Optional odd or even parity

- Optional multiprocessor bit

- One or two transmit Stop bits (receive is always one Stop bit)

- One byte of buffering in each receiver and transmitter

- Automatic operation with on-chip DMA

- Overrun Error, Framing Error and Parity Error detection

- 16x or 64x sampling clock (does not support 1x sampling clock of Z8L180)

- cts, dcd and rts modem control signals for both channels

- Detect and send Break

- External clock input, dedicated divider, or programmable 16-bit divider for baud-rate

150

ASCI Registers

Register Name Mnemonic I/O address R/W Reset

ASCI Control Register A, Channel 0 CNTLA0 0x0000 R/W 0001x000

ASCI Control Register A, Channel 1 CNTLA1 0x0001 R/W 0001x000

ASCI Control Register B, Channel 0 CNTLB0 0x0002 R/W x0x00111

ASCI Control Register B, Channel 1 CNTLB1 0x0003 R/W x0x00111

ASCI Status Register, Channel 0 STAT0 0x0004 R/W 00000xx0

ASCI Status Register, Channel 1 STAT1 0x0005 R/W 00000xx0

ASCI Transmit Data Register, Channel 0 TDR0 0x0006 R/W xxxxxxxx

ASCI Transmit Data Register, Channel 1 TDR1 0x0007 R/W xxxxxxxx

ASCI Receive Data Register, Channel 0 RDR0 0x0008 R/W xxxxxxxx

ASCI Receive Data Register, Channel 1 RDR1 0x0009 R/W xxxxxxxx

ASCI Extension Control Register, Channel 0 ECNTL0 0x0012 R/W 00000000

ASCI Extension Control Register, Channel 1 ECNTL1 0x0013 R/W 00000000

ASCI Time Constant Low Register, Channel 0 TCL0 0x001A R/W 00000000

ASCI Time Constant High Register, Channel 0 TCH0 0x001B R/W 00000000

ASCI Time Constant Low Register, Channel 1 TCL1 0x001C R/W 00000000

ASCI Time Constant High Register, Channel 1 TCH1 0x001D R/W 00000000

151

ASCI Register Descriptions

ASCI Control Register A (CNTLA0) (Address = 0x0000)

(CNTLA1) (Address = 0x0001)

Bit(s) Value Description

7 0 Never filter receive bytes based on the state of the MP bit.

1
If multiprocessor mode is enabled, only bytes with the MP bit set to one are
transferred to the receive buffer.

6 0 Disable the receiver. This selection is forced by IOSTOP mode.

1 Enable the receiver.

5 0 Disable the transmitter. This selection is forced by IOSTOP mode.

1 Enable the transmitter.

4 0 Drive the corresponding rts output active (High).

1 Drive the corresponding rts output inactive (Low).

3 0
Either multiprocessor mode is disabled, or the last received MP bit was set to
zero.

(read) 1 Multiprocessor mode is enabled and the last received MP bit was set to one.

3 0 Clear all receive error flags (Overrun, Framing Error and Parity Error).

(write) 1 No effect.

2 0 7 bits per character.

1 8 bits per character.

1 0
Disable parity generation and parity checking. This bit is ignored when the
multiprocessor mode is enabled.

1 Enable parity generation and parity checking.

0 0 Transmit 1 Stop bit. The receiver always checks for one Stop bit.

1 Transmit 2 Stop bits.

152

ASCI Control Register B (CNTLB0) (Address = 0x0002)

(CNTLB1) (Address = 0x0003)

Bit(s) Value Description

7 0 In multiprocessor mode, transmit a zero (signifying data) in the MP bit position.

1
In multiprocessor mode, transmit a one (signifying an address) in the MP bit
position.

6 0 Disable multiprocessor mode.

1
Enable multiprocessor mode. In multiprocessor mode there is no parity, but the
parity bit location is used to tag the data as either data (MP bit is zero) or an
address (MP bit is one).

5 0 The corresponding cts input is active (High).

(read) 1 The corresponding cts input is inactive (Low).

5 0 System clock divided by 10 drives the internal data rate selection.

(write) 1 System clock divided by 30 drives the internal data rate selection.

4 0 Even parity.

1 Odd parity.

3 0 Sampling clock rate of 16x.

1 Sampling clock rate of 64x.

2:0 000 Data rate set by internal clock, used directly.

001 Data rate set by internal clock, divided by 2.

010 Data rate set by internal clock, divided by 4.

011 Data rate set by internal clock, divided by 8.

100 Data rate set by internal clock, divided by 16.

101 Data rate set by internal clock, divided by 32.

110 Data rate set by internal clock, divided by 64.

111 Data rate set by external clock (cka_in), used directly.

153

ASCI Status Register (STAT0) (Address = 0x0004)

(STAT1) (Address = 0x0005)

Bit(s) Value Description (Async mode only)

7 0 The receive buffer is empty.

1

The receive buffer is full. This bit is cleared by reading the ASCI Receive Data
Register, while the corresponding dcd input is inactive (Low) and during
IOSTOP mode. If receive interrupts are enabled, an interrupt is requested while
this bit is set. The interrupt is cleared when the receive buffer is empty.

6 0 The receive buffer was not overrun.

1
The receive buffer was overrun. This bit is cleared while the corresponding dcd
input is inactive (Low), during IOSTOP mode, and by writing a 0 to bit 3 of the
ASCI Control Register A.

5 0 The received byte did not have a parity error.

1
The received byte had a parity error. This bit is cleared while the corresponding
dcd input is inactive (Low), during IOSTOP mode, and by writing a 0 to bit 3 of
teh ASCI Control Register A.

4 0 The received byte did not have a framing error.

1
The received byte had a framing error. This bit is cleared while the corresponding
dcd input is inactive (Low), during IOSTOP mode, and by writing a 0 to bit 3 of
the ASCI Control Register A.

3 0 Disable receive interrupts.

1

Enable receive interrupts. A receive interrupt is requested whenever the receive
buffer is full, any of the receive error bits are set, or the dcd signal went from
inactive (Low) to active (High), independent of whether or not the receiver is
enabled,

2 0 The corresponding dcd input is active (High).

(rd-only) 1
The corresponding dcd input is inactive (Low). This bit remains set for the first
read of this register after a Low-to-High transition on the dcd input so that
software can always register that this transition has occurred.

1 0 The transmit buffer is full.

1

The transmit buffer is empty. This bit is cleared by writing to the ASCI Transmit
Data Register. This bit is set while the corresponding cts input is inactive (Low)
and during IOSTOP mode. If enabled, an interrupt is requested while this bit is
set. The transmit interrupt is cleared when the transmit buffer is full.

0 0 Disable transmit interrupts.

1

Enable transmit interrupts. A transmit interrupt is requested whenever the
transmit buffer is empty. A byte written to the transmit buffer may immediately
be transferred to the transmit shift register, creating another transmit buffer
empty condition.

154

ASCI Transmit Data Register (TDR0) (Address = 0x0006)

(TDR1) (Address = 0x0007)

Bit(s) Value Description

7:0 Read
Returns the contents of the transmit buffer, independent of whether or not the
byte has been transmitted. Reading the transmit buffer does not affect the
transmission of the byte.

Write Loads the transmit buffer with a data byte for transmission.

ASCI Receive Data Register (RDR0) (Address = 0x0008)

(RDR1) (Address = 0x0009)

Bit(s) Value Description

7:0 Read Returns the contents of the receive buffer.

Write Loads the receive buffer with a byte, but only if the buffer is currently empty.

ASCI Time Constant Low Register (TCL0) (Address = 0x001A)

(TCL1) (Address = 0x001C)

Bit(s) Value Description

7:0
Eight LSBs of the divider that generates the serial clock for the channel. This
divider is not used unless enabled in the ASCI Extension Control Register.

ASCI Time Constant High Register (TCH0) (Address = 0x001B)

(TCH1) (Address = 0x001D)

Bit(s) Value Description

7:0
Eight MSBs of the divider that generates the serial clock for the channel. This
divider is not used unless enabled in the ASCI Extension Control Register. The
divider counts with a period of 2*({TCH,TCL}+2).

155

ASCI Extension Control Register (ECNTL0) (Address = 0x0012)

(ECNTL1) (Address = 0x0013)

Bit(s) Value Description

7 0 Normal operation for receive data interrupt: interrupt while receive buffer full.

1 No interrupt while receive buffer full. Used with receive DMA transfers.

6 0
Enable the corresponding dcd signal as a receive auto-enable. This is default,
backwards-compatible operation.

1
Disable the corresponding dcd signal as a receive auto-enable. This is equivalent
to setting the dcd signal active (High).

5 0
Enable the corresponding cts signal as a transmit auto-enable. This is the default,
backwards-compatible operation.

1
Disable the corresponding cts signal as a transmit auto-enable. This is equivalent
to setting the cts signal active (High).

4 This bit is reserved and should always be written as zero.

3 0 Disable 16-bit baud rate generator counter.

1
Enable 16-bit baud rate generator counter. This overrides the selection for the
internal divider or external cka_in signal in CNTLB[2:0].

2 0 Disable the Break feature. This is the default, backwards-compatible operation.

1 Enable the Break feature (detection and generation of Break).

1 0 No Break detected.

(rd-only) 1
Break Detected. This bit remains set for the duration of the Break condition. A
receive interrupt will be generated at the start of the break condition as the first
byte is transferred to the receive buffer.

0 0 No effect.

1
Send Break, by forcing the corresponding txa signal Low. Software must time
the duration of the break.

156

157

Prog. Reload Timer

The Programmable Reload Timer (PRT) provides two identical, independent 16-bit timers
for pulse or waveform generation.

PRT Features:

- 16-bit down-counter with automatic reload on terminal count

- clocked at clkc/20 rate

- tout0 (Timer Out 0) signal is always toggled by timer terminal count

- tout1 (Timer Out 1) signal can be set or cleared by software, and toggled by timer termi-
nal count

PRT Registers

Register Name Mnemonic I/O address R/W Reset

Timer Data Register 0L TMDR0L 0x000C R/W 11111111

Timer Data Register 0H TMDR0H 0x000D R/W 11111111

Timer Reload Register 0L RLDR0L 0x000E R/W 11111111

Timer Reload Register 0H RLDR0H 0x000F R/W 11111111

Timer Control Register TCR 0x0010 R/W 00000000

Timer Data Register 1L TMDR1L 0x0014 R/W 11111111

Timer Data Register 1H TMDR1H 0x0015 R/W 11111111

Timer Reload Register 1L RLDR1L 0x0016 R/W 11111111

Timer Reload Register 1H RLDR1H 0x0017 R/W 11111111

158

PRT Register Descriptions

Timer Control Register (TCR) (Address = 0x0010)

Bit(s) Value Description

7 0
This bit is cleared by first reading the TCR, followed by a reading either
TMDR1L or TMDR 1H.

(rd-only) 1
Timer 1 has decremented to 0x0000. If enabled, an interrupt will be requested
while this bit is set.

6 0
This bit is cleared by first reading the TCR, followed by reading either TMDR0L
or TMDR 0H.

(rd-only) 1
Timer 0 has decremented to 0x0000. If enabled, an interrupt will be requested
while this bit is set.

5 0 Disable Timer 1 interrupt.

1 Enable Timer 1 interrupt.

4 0 Disable Timer 0 interrupt.

1 Enable Timer 0 interrupt.

3:2 00 No effect tout signal.

01 tout1 signal toggles on corresponding count reaches 0x0000.

10 tout1 signal is set Low.

11 tout1 signal is set High.

1 0 Disable Timer 1 counting.

1 Enable Timer 1 counting.

0 0 Disable Timer 0 counting.

1 Enable Timer 0 counting.

Timer Data Register Low (TMDR0L) (Address = 0x000C)

(TMDR1L) (Address = 0x0014)

Bit(s) Value Description

7:0 Read
Returns the LSB of the current count value. Reading this register latches the
MSB for reading in the TMDRH, so the count should always be read LSB-first.

Write
Loads the LSB of the counter. Used to set the initial value for the counter. The
counter will automatically reload from the RLDR after reaching a count of
0x0000.

159

Timer Data Register High (TMDR0H) (Address = 0x000D)

(TMDR1H) (Address = 0x0015)

Bit(s) Value Description

7:0 Read
Returns the MSB of the current count value. Reading the TMDRL automatically
latches the MSB for reading in this register to guarantee a valid 16-bit value.

Write
Loads the MSB of the counter. Used to set the initial value for the counter. The
counter will automatically reload from the RLDR after reaching a count of
0x0000.

Timer Reload Register Low (RLDR0L) (Address = 0x000E)

(RLDR1L) (Address = 0x0016)

Bit(s) Value Description

7:0
LSB of the reload value for the counter. The reload value is automatically loaded
into the counter after the count of 0x0000.

Timer Reload Register High (RLDR0H) (Address = 0x000F)

(RLDR1H) (Address = 0x0017)

Bit(s) Value Description

7:0
MSB of the reload value for the counter. The reload value is automatically
loaded into the counter after the count of 0x0000.

160

161

Clocked Serial I/O

The Clocked Serial I/O (CSIO) port provides simple high-speed half-duplex serial com-
munications.

CSIO Features:

- Half-duplex, 8 bits/character

- Common transmit/receive data register

- External clock input or dedicated divider

- Separate cks_in (CSIO Clock In) and cks_out (CSIO Clock Out) signals.

CSIO Registers

Register Name Mnemonic I/O address R/W Reset

CSIO Control/Status Register CNTR 0x000A R/W 0000x111

CSIO Transmit/Receive Register TRDR 0x000B R/W 00000000

162

CSIO Register Descriptions

CSIO Control/Status Register (CNTR) (Address = 0x000A)

Bit(s) Value Description

7 0
Transmit or receive operation started. This bit is cleared by a read or write of the
TRDR. This bit is also cleared in IOSTOP mode.

(rd-only) 1
Transmit or receive operation complete. If enabled, an interrupt is requested
while this bit is set.

6 0 Disable CSIO interrupt.

1 Enable CSIO interrupt.

5:4 00
Transmit or receive operation complete. These bits are cleared by the CSIO to
indicate that the transmit or receive operation is complete. These bits are also
cleared in IOSTOP mode.

01 Start receive operation.

10 Start transmit operation.

11 This bit combination is invalid and will be ignored if written.

3 This bit is reserved and should always be written as zero.

2:0 000 Internal clock, clkc/20 rate.

001 Internal clock, clkc/40 rate.

010 Internal clock, clkc/80 rate.

011 Internal clock, clkc/160 rate.

100 Internal clock, clkc/320 rate.

101 Internal clock, clkc/640 rate.

110 Internal clock, clkc/1280 rate.

111 External clock (must be slower than clkc/20).

CSIO Transmit/Receive Data Register (TRDR) (Address = 0x000B)

Bit(s) Value Description

7:0 Read
Returns the received byte. This register is not buffered, so data is not valid until
the receive operation is signalled complete. Note that the rxs input is still shifted
in during a transmit operation.

Write
Loads a byte for transmission. This register is not buffered, so data written to this
register while a receive or transmit operation is in progress will corrupt the
receive or transmit data.

163

Timing

The CSIO port uses a clock that is synchronized to the clkc signal, which means the clock
signal is not used directly for either transmit or receive data. The falling edge of the CSIO
clock (whether external or internal) is used to both send the transmit data and sample the
receive data. The figure below shows the timing for the external clock case. Note that the
CSIO clock is limited to a maximum rate of clkc/13 in this case.

The timing for the internal clock case is shown in the figure below. Note that the CSIO
clock is limited to a maximum rate of clkc/11 in this case. Note that the register selection
available to the programmer limit the maximum rate to clkc/20.

clkc

cks_in

tx_clk

txs

rxs

rx_clk

earliest next transition

te register bit

re register bit (for last bit)

(for last bit)

clkc

cks_out

tx_clk

txs

rxs

rx_clk

te register bit

re register bit (for last bit)

(for last bit)

earliest next transition

164

165

System Functions

The System Functions block contains three of the four system-level functions present in
the original Z80180. The Memory Refresh function is not included, as modern DRAMs
usually contain internal refresh circuitry.

SYS Features

- Relocatable on-chip I/O (starting at address 0x0000, 0x0040, 0x0080 or 0x00C0)

- Free Running Counter counts down at clkc/10 rate

- I/O Stop mode

SYS Registers

Register Name Mnemonic I/O address R/W Reset

Free Running Counter FRC 0x0018 R/W 11111111

I/O Control Register ICR 0x003F R/W 111xxxxx

166

SYS Register Descriptions

Free Running Counter (FRC) (Address = 0x0018)

Bit(s) Value Description

7:0
Current value of Free Running Counter. This counter decrements at a clkc/10
rate.

I/O Control Register (BBR) (Address = 0x0039)

Bit(s) Value Description

7:6 00 Internal I/O address range is 0x0000 - 0x003F.

01 Internal I/O address range is 0x0040 - 0x007F.

10 Internal I/O address range is 0x0080 - 0x00BF.

11 Internal I/O address range is 0x00C0 - 0x00FF.

5 0 Normal I/O operation.

1
I/O Stop mode. This mode disables the receiver, transmitter and BRG in the
ASCI channels, immediately halts the CSIO port, and immediately disables the
timers in the PRT and FRC.

4:0 These bits are reserved and will always be read as ones.

167

Register Addresses

The table below lists all of the on-chip I/O registers in the Y90-180 along with their mne-
monic, I/O address and reset state.

Register Name Mnemonic I/O address R/W Reset

ASCI Control Register A, Channel 0 CNTLA0 0x0000 R/W 0001x000

ASCI Control Register A, Channel 1 CNTLA1 0x0001 R/W 0001x000

ASCI Control Register B, Channel 0 CNTLB0 0x0002 R/W x0x00111

ASCI Control Register B, Channel 1 CNTLB1 0x0003 R/W x0x00111

ASCI Status Register, Channel 0 STAT0 0x0004 R/W 00000xx0

ASCI Status Register, Channel 1 STAT1 0x0005 R/W 00000xx0

ASCI Transmit Data Register, Channel 0 TDR0 0x0006 R/W xxxxxxxx

ASCI Transmit Data Register, Channel 1 TDR1 0x0007 R/W xxxxxxxx

ASCI Receive Data Register, Channel 0 RDR0 0x0008 R/W xxxxxxxx

ASCI Receive Data Register, Channel 1 RDR1 0x0009 R/W xxxxxxxx

CSIO Control/Status Register CNTR 0x000A R/W 0000x111

CSIO Transmit/Receive Register TRDR 0x000B R/W 00000000

Timer Data Register 0L TMDR0L 0x000C R/W 11111111

Timer Data Register 0H TMDR0H 0x000D R/W 11111111

Timer Reload Register 0L RLDR0L 0x000E R/W 11111111

Timer Reload Register 0H RLDR0H 0x000F R/W 11111111

Timer Control Register TCR 0x0010 R/W 00000000

Reserved 0x0011

ASCI Extension Control Register, Channel 0 ECNTL0 0x0012 R/W 00000000

ASCI Extension Control Register, Channel 1 ECNTL1 0x0013 R/W 00000000

Timer Data Register 1L TMDR1L 0x0014 R/W 11111111

Timer Data Register 1H TMDR1H 0x0015 R/W 11111111

Timer Reload Register 1L RLDR1L 0x0016 R/W 11111111

Timer Reload Register 1H RLDR1H 0x0017 R/W 11111111

Free Running Counter FRC 0x0018 R/W 11111111

Reserved 0x0019

168

ASCI Time Constant Low Register, Channel 0 TCL0 0x001A R/W 00000000

ASCI Time Constant High Register, Channel 0 TCH0 0x001B R/W 00000000

ASCI Time Constant Low Register, Channel 1 TCL1 0x001C R/W 00000000

ASCI Time Constant High Register, Channel 1 TCH1 0x001D R/W 00000000

Reserved 0x001E

Reserved 0x001F

DMA Source Address Register 0 Low SAR0L 0x0020 R/W xxxxxxxx

DMA Source Address Register 0 High SAR0H 0x0021 R/W xxxxxxxx

DMA Source Address Register 0 Page SAR0P 0x0022 R/W 00000000

DMA Destination Address Register 0 Low DAR0L 0x0023 R/W xxxxxxxx

DMA Destination Address Register 0 High DAR0H 0x0024 R/W xxxxxxxx

DMA Destination Address Register 0 Page DAR0P 0x0025 R/W 00000000

DMA Byte Count Register 0 Low BCR0L 0x0026 R/W xxxxxxxx

DMA Byte Count Register 0 High BCR0H 0x0027 R/W xxxxxxxx

DMA Memory Address Register 1 Low MAR1L 0x0028 R/W xxxxxxxx

DMA Memory Address Register 1 High MAR1H 0x0029 R/W xxxxxxxx

DMA Memory Address Register 1 Page MAR1P 0x002A R/W 0000xxxx

DMA I/O Address Register 1 Low IAR1L 0x002B R/W xxxxxxxx

DMA I/O Address Register 1 High IAR1H 0x002C R/W xxxxxxxx

DMA I/O Address Register 1 Page IAR1P 0x002D R/W 00000000

DMA Byte Count Register 1 Low BCR1L 0x002E R/W xxxxxxxx

DMA Byte Count Register 1 High BCR1H 0x002F R/W xxxxxxxx

DMA Status Register DSTAT 0x0030 R/W 00110010

DMA Mode Register DMODE 0x0031 R/W 11000001

DMA/Wait Control Register DCNTL 0x0032 R/W 11110000

Interrupt Vector Low Register IL 0x0033 R/W 00000000

Interrupt/Trap Control Register ITC 0x0034 R/W 00111001

Reserved 0x0035

Reserved (Refresh Control not implemented) 0x0036

Reserved 0x0037

MMU Common Base Register CBR 0x0038 R/W 00000000

MMU Bank Base Register BBR 0x0039 R/W 00000000

MMU Common/Bank Area Register CBAR 0x003A R/W 11110000

Reserved 0x003B

Reserved 0x003C

Reserved 0x003D

Reserved 0x003E

I/O Control Register ICR 0x003F R/W 00000000

169

Top Level Verilog Code

The Verilog code for the y90-180 is shown below to illustrate how the individual modules
connect.

/***/
/** **/
/** COPYRIGHT (C) 2013, SYSTEMYDE INTERNATIONAL CORPORATION, ALL RIGHTS RESERVED **/
/** **/
/** z180-style mpu Rev 0.0 04/17/2013 **/
/** **/
/***/
module y90_180 (cka0_out, cka1_out, cks_ext, cks_out, dma_ack, halt_tran, iack_tran,
 io_addr_out, io_data_out, io_read, io_strobe, io_tran, ivec_rd, mem_addr_out,
 mem_data_out, mem_rd, mem_tran, mem_wr, nmiack_tran, reti_tran, rts0, rts1,
 sleep_tran, t1, tend0, tend1, tout0, tout1, txa0, txa1, txs, cka0_in,
 cka1_in, cks_in, clearb, clkc, cts0, cts1, dcd0, dcd1, dma_req, dreq0, dreq1,
 en_prftch, int0_req, int1_req, int2_req, io_data_in, ivec_data_in,
 mem_data_in, nmi_req, resetb, rxa0, rxa1, rxs, wait_req);

 input cka0_in; /* asci 0 clock input */
 input cka1_in; /* asci 0 clock input */
 input cks_in; /* csio clock input */
 input clearb; /* master (test) reset */
 input clkc; /* main cpu clock */
 input cts0; /* cts 0 input */
 input cts1; /* cts 1 input */
 input dcd0; /* dcd 0 input */
 input dcd1; /* dcd 1 input */
 input dma_req; /* dma request */
 input dreq0; /* dma0 external request */
 input dreq1; /* dma1 external request */
 input en_prftch; /* prefetch enable */
 input int0_req; /* ext interrupt 0 */
 input int1_req; /* ext interrupt 1 */
 input int2_req; /* ext interrupt 2 */
 input nmi_req; /* nmi request */
 input resetb; /* internal (user) reset */
 input rxa0; /* asci 0 data input */
 input rxa1; /* asci 1 data input */
 input rxs; /* csio data input */
 input wait_req; /* wait request */
 input [7:0] io_data_in; /* i/o input data bus */
 input [7:0] ivec_data_in; /* int vector bus */
 input [7:0] mem_data_in; /* memory input bus */
 output cka0_out; /* asci 0 clock output */
 output cka1_out; /* asci 1 clock output */
 output cks_ext; /* csio clock external */
 output cks_out; /* csio clock output */
 output dma_ack; /* dma acknowledge */
 output halt_tran; /* halt transaction */
 output iack_tran; /* interrupt acknowledge transaction */
 output io_read; /* i/o read enable */
 output io_strobe; /* i/o data strobe */
 output io_tran; /* i/o transaction */
 output ivec_rd; /* interrupt vector enable */
 output mem_rd; /* memory read enable */
 output mem_tran; /* memory transaction */
 output mem_wr; /* memory write enable */
 output nmiack_tran; /* nmi acknowledge transaction */
 output reti_tran; /* return from interrupt transaction */

170

 output rts0; /* rts 0 output */
 output rts1; /* rts 1 output */
 output sleep_tran; /* sleep transaction */
 output t1; /* first clock of transaction */
 output tend0; /* dma0 end pulse */
 output tend1; /* dma1 end pulse */
 output tout0; /* prt 0 timer output */
 output tout1; /* prt 1 timer output */
 output txa0; /* asci 0 data output */
 output txa1; /* asci 1 data output */
 output txs; /* csio data output */
 output [7:0] io_data_out; /* i/o output data bus */
 output [7:0] mem_data_out; /* memory output data bus */
 output [15:0] io_addr_out; /* i/o address bus */
 output [19:0] mem_addr_out; /* memory address bus */

 /***/
 /* */
 /* signal declarations */
 /* */
 /***/
 wire asci0_int; /* asci 0 interrupt */
 wire asci1_int; /* asci 1 interrupt */
 wire asci0_rxreq; /* asci 0 rx request */
 wire asci0_txreq; /* asci 0 tx request */
 wire asci1_rxreq; /* asci 1 rx request */
 wire asci1_txreq; /* asci 1 tx request */
 wire cka0_out; /* asci 0 clock output */
 wire cka1_out; /* asci 1 clock output */
 wire cks_ext; /* csio clock external */
 wire cks_out; /* csio clock output */
 wire clk10c; /* clkc/10 clock enable */
 wire clk10cs; /* clkc/10 symmetric */
 wire clk20c; /* clkc/20 clock enable */
 wire clk30c; /* clkc/30 clock enable */
 wire clk30cs; /* clkc/30 symmetric */
 wire csio_int; /* csio interrupt */
 wire dma_ack; /* dma acknowledge (sys) */
 wire dma_ack_s; /* dma acknowledge */
 wire dma_req; /* dma request */
 wire dma_req_s; /* dma request (sys) */
 wire dma0_int; /* dma 0 interrupt */
 wire dma1_int; /* dma 1 interrupt */
 wire ftch_tran; /* inst fetch transaction */
 wire frc_imd2; /* force int mode 2 */
 wire halt_tran; /* halt transaction */
 wire iack_tran; /* int ack transaction */
 wire inst2_trap; /* illegal 2-byte instruction */
 wire inst3_trap; /* illegal 3-byte instruction */
 wire int_req; /* interrupt request */
 wire io_read; /* i/o read enable */
 wire io_read_c; /* i/o read enable (cpu) */
 wire io_read_d; /* i/o read enable (dma) */
 wire io_stop; /* i/o stop mode */
 wire io_strobe; /* i/o data strobe */
 wire io_strobe_c; /* i/o data strobe (cpu) */
 wire io_strobe_d; /* i/o data strobe (dma) */
 wire io_tran; /* i/o transaction */
 wire io_tran_c; /* i/o transaction (cpu) */
 wire io_tran_d; /* i/o transaction (dma) */
 wire ivec_rd; /* interrupt vector enable */
 wire ld_if1; /* load inst byte 1 */
 wire ld_mem_addr; /* update memory address */
 wire mem_rd; /* memory read enable */
 wire mem_rd_c; /* memory read enable (cpu) */
 wire mem_rd_d; /* memory read enable (dma) */
 wire mem_tran; /* memory transaction */
 wire mem_tran_c; /* memory transaction (cpu) */
 wire mem_tran_d; /* memory transaction (dma) */
 wire mem_wr; /* memory write enable */
 wire mem_wr_c; /* memory write enable (cpu) */
 wire mem_wr_d; /* memory write enable (dma) */
 wire nmiack_tran; /* nmi ack transaction */
 wire output_inh; /* disable cpu outputs */
 wire prt0_int; /* prt ch0 interrupt */
 wire prt1_int; /* prt ch1 interrupt */
 wire rd_peri; /* peripheral read */
 wire reti_tran; /* reti transaction */

171

 wire rts0; /* rts 0 output */
 wire rts1; /* rts 1 output */
 wire sleep_tran; /* sleep transaction */
 wire t1; /* first clock of transaction */
 wire t1_c; /* first clock of trans (cpu) */
 wire t1_d; /* first clock of trans (dma) */
 wire tend0; /* dma 0 end pulse */
 wire tend1; /* dma 1 end pulse */
 wire tout0; /* prt 0 timer output */
 wire tout1; /* prt 1 timer output */
 wire txa0; /* asci 0 data output */
 wire txa1; /* asci 1 data output */
 wire txs; /* csio data output */
 wire wait_req_s; /* wait request (sys) */
 wire wait_st; /* wait state identifier */
 wire wr_peri; /* peripheral write */
 wire [2:0] inten_reg; /* interrupt enable bits */
 wire [3:0] log_addr_page; /* logical address page */
 wire [7:0] asci_data; /* asci read data */
 wire [7:0] csio_data; /* csio read data */
 wire [7:0] dma_data; /* dma read data */
 wire [7:0] int_data; /* int read data */
 wire [7:0] io_data_in_s; /* i/o input data bus (sys) */
 wire [7:0] io_data_out; /* i/o output data bus */
 wire [7:0] io_data_out_c; /* i/o output data bus (cpu) */
 wire [7:0] io_data_out_d; /* i/o output data bus (dma) */
 wire [7:0] ivec_data_in_s; /* int vector bus (sys) */
 wire [7:0] mem_data_out; /* memory output data bus */
 wire [7:0] mem_data_out_c; /* memory output data bus (cpu) */
 wire [7:0] mem_data_out_d; /* memory output data bus (dma) */
 wire [7:0] mmu_data; /* mmu read data */
 wire [7:0] prt_data; /* prt read data */
 wire [15:0] addr_reg_in; /* processor logical address */
 wire [15:0] io_addr_out; /* i/o address bus */
 wire [15:0] io_addr_out_c; /* i/o address bus (cpu) */
 wire [15:0] io_addr_out_d; /* i/o address bus (dma) */
 wire [19:0] mem_addr_out; /* memory address bus */
 wire [19:0] mem_addr_out_c; /* memory address bus (cpu) */
 wire [19:0] mem_addr_out_d; /* memory address bus (dma) */

 /***/
 /* */
 /* processor */
 /* */
 /***/
 y90_core CPU (.addr_reg_in(addr_reg_in), .burst_done(), .ctr_reg(),
 .dma_ack(dma_ack_s), .fault_detect(), .ftch_tran(ftch_tran),
 .halt_tran(halt_tran), .iack_tran(iack_tran), .imd2_reg(),
 .inst2_trap(inst2_trap), .inst3_trap(inst3_trap),
 .io_addr_out(io_addr_out_c), .io_data_out(io_data_out_c),
 .io_read(io_read_c), .io_strobe(io_strobe_c), .io_tran(io_tran_c),
 .ivec_rd(ivec_rd), .ld_if1(ld_if1), .ld_init(),
 .ld_mem_addr(ld_mem_addr),
 .mem_addr_out({log_addr_page, mem_addr_out_c[11:0]}),
 .mem_data_out(mem_data_out_c), .mem_rd(mem_rd_c),
 .mem_tran(mem_tran_c),
 .mem_wr(mem_wr_c), .mmu_msb(), .mmu_swap(),
 .mwr_tran(), .nmiack_tran(nmiack_tran), .output_inh(output_inh),
 .reti_tran(reti_tran), .sleep_tran(sleep_tran), .stk_tran(), .t1(t1_c),
 .wait_st(wait_st), .wdt_arm(), .wdt_hit(), .wr_brst(), .clearb(clearb),
 .clkc(clkc), .dma_req(dma_req_s), .en_prftch(en_prftch),
 .frc_imd2(frc_imd2), .int_req(int_req), .io_data_in(io_data_in_s),
 .ivec_data_in(ivec_data_in_s), .mem_data_in(mem_data_in),
 .nmi_req(nmi_req), .resetb(resetb), .wait_req(wait_req_s));

 /***/
 /* */
 /* memory management unit */
 /* */
 /***/
 mmu_seg MMU (.mmu_addr_out(mem_addr_out_c[19:12]), .mmu_data(mmu_data),
 .addr_reg_in(addr_reg_in[15:12]), .clkc(clkc),
 .io_addr_out(io_addr_out[5:0]), .io_data_out(io_data_out),
 .ld_mem_addr(ld_mem_addr), .output_inh(output_inh),
 .resetb(resetb), .wr_peri(wr_peri));

 /***/
 /* */

172

 /* system management */
 /* */
 /***/
 sys_180 SYS (.clk10c(clk10c), .clk10cs(clk10cs), .clk20c(clk20c), .clk30c(clk30c),
 .clk30cs(clk30cs), .inten_reg(inten_reg), .io_stop(io_stop),
 .rd_peri(rd_peri), .io_data_in_s(io_data_in_s),
 .wait_req_s(wait_req_s), .wr_peri(wr_peri), .asci_data(asci_data),
 .clkc(clkc), .csio_data(csio_data), .dma_data(dma_data),
 .iack_tran(iack_tran), .inst2_trap(inst2_trap),
 .inst3_trap(inst3_trap), .int_data(int_data),
 .io_addr_out(io_addr_out), .io_data_in(io_data_in),
 .io_data_out(io_data_out), .io_read(io_read), .io_strobe(io_strobe),
 .io_tran(io_tran), .mem_tran(mem_tran), .mmu_data(mmu_data),
 .prt_data(prt_data), .resetb(resetb), .t1(t1), .wait_req(wait_req));

 /***/
 /* */
 /* dma */
 /* */
 /***/
 dma_180 DMA (.bus_ack(dma_ack), .dma_data(dma_data), .dma_req(dma_req_s),
 .dma0_int(dma0_int), .dma1_int(dma1_int),
 .io_addr_out_d(io_addr_out_d), .io_data_out_d(io_data_out_d),
 .io_read(io_read_d), .io_strobe(io_strobe_d), .io_tran(io_tran_d),
 .mem_addr_out_d(mem_addr_out_d), .mem_data_out_d(mem_data_out_d),
 .mem_rd(mem_rd_d), .mem_tran(mem_tran_d), .mem_wr(mem_wr_d), .t1(t1_d),
 .tend0(tend0), .tend1(tend1), .asci0_rxreq(asci0_rxreq),
 .asci0_txreq(asci0_txreq), .asci1_rxreq(asci1_rxreq),
 .asci1_txreq(asci1_txreq), .bus_req(dma_req), .clearb(clearb),
 .clkc(clkc), .dma_ack(dma_ack_s), .dreq0(dreq0), .dreq1(dreq1),
 .io_addr_out(io_addr_out[5:0]), .io_data_in(io_data_in_s),
 .io_data_out(io_data_out), .mem_data_in(mem_data_in),
 .nmi_req(nmi_req), .resetb(resetb), .sleep_tran(sleep_tran),
 .wait_req(wait_req_s), .wr_peri(wr_peri));

 assign io_addr_out = io_addr_out_c | io_addr_out_d;
 assign io_data_out = io_data_out_c | io_data_out_d;
 assign io_read = io_read_c | io_read_d;
 assign io_strobe = io_strobe_c | io_strobe_d;
 assign io_tran = io_tran_c | io_tran_d;
 assign mem_addr_out = mem_addr_out_c | mem_addr_out_d;
 assign mem_data_out = mem_data_out_c | mem_data_out_d;
 assign mem_rd = mem_rd_c | mem_rd_d;
 assign mem_tran = mem_tran_c | mem_tran_d;
 assign mem_wr = mem_wr_c | mem_wr_d;
 assign t1 = t1_c | t1_d;

 /***/
 /* */
 /* interrupt control */
 /* */
 /***/
 int_180 INT (.frc_imd2(frc_imd2), .int_data(int_data), .int_req(int_req),
 .ivec_data_out(ivec_data_in_s), .asci0_int(asci0_int),
 .asci1_int(asci1_int), .clkc(clkc), .csio_int(csio_int),
 .dma0_int(dma0_int), .dma1_int(dma1_int), .ftch_tran(ftch_tran),
 .iack_tran(iack_tran), .inst2_trap(inst2_trap),
 .inst3_trap(inst3_trap), .int0_req(int0_req), .int1_req(int1_req),
 .int2_req(int2_req), .inten_reg(inten_reg),
 .io_addr_out(io_addr_out[5:0]), .io_data_out(io_data_out),
 .ivec_data_in(ivec_data_in), .ivec_rd(ivec_rd),
 .prt0_int(prt0_int), .prt1_int(prt1_int), .resetb(resetb),
 .reti_tran(reti_tran), .wait_st(wait_st), .wr_peri(wr_peri));

 /***/
 /* */
 /* async serial comm interface */
 /* */
 /***/
 asci_180 ASCI (.asci_data(asci_data), .asci0_int(asci0_int),
 .asci0_rxreq(asci0_rxreq), .asci0_txreq(asci0_txreq),
 .asci1_int(asci1_int), .asci1_rxreq(asci1_rxreq),
 .asci1_txreq(asci1_txreq), .cka0_out(cka0_out), .cka1_out(cka1_out),
 .rts0(rts0), .rts1(rts1), .txa0(txa0), .txa1(txa1),
 .cka0_in(cka0_in), .cka1_in(cka1_in), .clk10c(clk10c),
 .clk10cs(clk10cs), .clk30c(clk30c), .clk30cs(clk30cs), .clkc(clkc),
 .cts0(cts0), .cts1(cts1), .dcd0(dcd0), .dcd1(dcd1),
 .io_addr_out(io_addr_out[5:0]), .io_data_out(io_data_out),

173

 .io_stop(io_stop), .rd_peri(rd_peri), .resetb(resetb), .rxa0(rxa0),
 .rxa1(rxa1), .wr_peri(wr_peri));

 /***/
 /* */
 /* programmable reload timer */
 /* */
 /***/
 prt_180 PRT (.prt_data(prt_data), .prt0_int(prt0_int), .prt1_int(prt1_int),
 .tout0(tout0), .tout1(tout1), .clk20c(clk20c), .clkc(clkc),
 .io_addr_out(io_addr_out[5:0]), .io_data_out(io_data_out),
 .rd_peri(rd_peri), .resetb(resetb), .wr_peri(wr_peri));

 /***/
 /* */
 /* clocked serial i/o */
 /* */
 /***/
 csio_180 CSIO (.cks_ext(cks_ext), .cks_out(cks_out), .csio_data(csio_data),
 .csio_int(csio_int), .txs(txs), .cks_in(cks_in), .clk10c(clk10c),
 .clkc(clkc), .io_addr_out(io_addr_out[5:0]), .io_data_out(io_data_out),
 .io_stop(io_stop), .rd_peri(rd_peri), .resetb(resetb), .rxs(rxs),
 .wr_peri(wr_peri));

 endmodule

174

